Меню Рубрики

Опишите что происходит с точки зрения сохранения импульса когда

Можно экспериментально проверить наши предположения о том, что, во-первых, покоящиеся два тела с равной массой, разорванные взрывом, полетят в разные стороны с равной скоростью и, во-вторых, что два тела, обладающие равными скоростями и массами, при соударении и слипании останавливаются. Такую проверку можно сделать с помощью замечательного устройства — воздушного желоба (фиг. 10.1).

В этом устройстве нет никаких трущихся деталей — вопрос, который очень беспокоил Галилея. Он не мог поставить эксперимента со скользящими телами, ибо они не скользили свободно, но о помощью чудесного желоба мы можем теперь избавиться от трения. Наши тела будут лететь без помех, а скорость их, согласно предвидению Галилея, будет оставаться постоянной. Это достигается тем, что тело поддерживается воздушной подушкой, а поскольку трение о воздух очень мало, то тело планирует практически с постоянной скоростью, если на него не действуют никакие силы. Возьмем сначала два скользящих бруска, вес или массы которых с большой точностью равны друг другу (практически измеряется вес, но он, как вы знаете, пропорционален массе), и поместим между ними небольшой взрыватель в закрытом цилиндре (фиг. 10.2).

Всю эту систему устанавливаем в центре желоба и электрической искрой поджигаем взрыватель. Что же произойдет? Если массы брусков одинаковы, то они, разлетевшись в стороны, одновременно достигнут концов желоба. Там они отскакивают от ограничителей, сталкиваются и слипаются в центре, точно в том же месте, откуда разлетелись (фиг. 10.3).

Это интересный опыт. И в действительности происходит все так, как мы рассказали.

Теперь на очереди проблема посложнее. Допустим, мы имеем две массы, причем одна движется со скоростью v, а другая стоит на месте. Затем первая ударяет по второй и они слипаются. Что произойдет дальше? Образуется одно тело с массой 2m, которое как-то будет двигаться. Но с какой скоростью? Вот в чем вопрос. Чтобы ответить на него, предположим, что мы едем вдоль желоба на автомобиле. Все законы физики должны при этом выглядеть точно так же, как и прежде, когда мы стояли на месте. Мы начали с того, что если столкнуть два тела с равными массами и одинаковыми скоростями v, то после слипания они останавливаются. А теперь представьте, что в это время мы катим на автомобиле со скоростью —v. Какую же картину мы увидим? Ясно, что одно из тел, поскольку оно все время летит рядом с автомобилем, будет казаться нам неподвижным. Второе же, которое движется навстречу со скоростью v, покажется нам несущимся с удвоенной скоростью 2v (фиг. 10.4).

Наконец, образовавшееся после соударения и слипания тело будет казаться нам летящим со скоростью v. Отсюда мы делаем вывод, что если тело, летящее со скоростью 2v, ударяется о покоящееся тело той же массы и прилипает к нему, то образовавшееся тело будет двигаться со скоростью v, или (что математически то же самое) тело со скоростью v, ударяясь о покоящееся тело той же массы и прилипая к нему, образует тело, движущееся со скоростью v/2. Заметьте, что если умножить массы тел на их скорости и сложить их, то получим одинаковый результат как до столкновения (mv + 0), так и после (2m·v/2). Вот как обстоит дело, если тело, обладающее скоростью v, столкнется с телом, находящимся в покое.

Точно таким же образом можно определить, что произойдет, когда сталкиваются два одинаковых тела, каждое из которых движется с произвольной скоростью.

Пусть одно тело летит со скоростью v1, а другое — со скоростью v2 в том же направлении (v1 > v2). Какова будет их скорость после соударения? Давайте снова сядем в машину и поедем, скажем, со скоростью v2. Тогда одно из тел будет казаться нам стоящим на месте, а второе — налетающим на него со скоростью v1 — v2. Эта ситуация уже знакома нам, и мы знаем, что после соударения скорость нового тела по отношению к машине будет равна 1/2 (v1— v2). Что же касается действительной скорости относительно земли, то ее можно найти, прибавив скорость автомобиля: v = 1/2(v1 — v2) + v2 или 1/2(v1 +v2) (фиг. 10.5). Обратите внимание, что снова

Таким образом, принцип относительности Галилея помогает нам разобраться в любом соударении равных масс. До сих пор мы рассматривали движение в одном измерении, однако на основе его становится ясным многое из того, что будет происходить в более сложных случаях соударения: нужно только пустить автомобиль не вдоль направления движения тел, а под каким-то углом. Принцип остается тем же самым, хотя детали несколько усложняются.

Чтобы экспериментально проверить, действительно ли тело, летящее со скоростью v после столкновения с покоящимся телом той же массы, образует новое тело, летящее со скоростью v/2, проделаем на нашей замечательной установке следующий опыт. Поместим в желоб три тела с одинаковыми массами, два из которых соединены цилиндром со взрывателем, а третье находится вблизи одного из них, хотя и несколько отделено от него. Оно снабжено клейким амортизатором, так что прилипает к тому телу, которое ударяет его. В первое мгновение после взрыва мы имеем два объекта с массами m, движущимися со скоростью v каждое. В последующее мгновение одно из тел сталкивается с третьим и образует новое тело с массой 2m, которое, как мы полагаем, должно двигаться со скоростью v/2. Но как проверить, что скорость его действительно v/2? Для этого мы вначале установим тела таким образом, чтобы расстояния до концов желоба относились как 2:1, так что первое тело, которое продолжает двигаться со скоростью v, должно пролететь за тот же промежуток времени вдвое большее расстояние, чем скрепившиеся два других тела (с учетом, конечно, того малого расстояния Δ, которое второе тело прошло до столкновения с третьим). Если мы правы, то массы m и 1m должны достичь концов желоба одновременно; так оно и происходит на самом деле (фиг. 10.6).

Следующая проблема, которую мы должны решить: что получится, если тела имеют разные массы. Давайте возьмем массы mи 2m и устроим между ними взрыв. Что произойдет тогда? С какой скоростью полетит масса 2m, если масса т летит со скоростью v? Фактически нам нужно повторить только что проделанный эксперимент, но с нулевым зазором между вторым и третьим телом. Разумеется, что при этом мы получим тот же результат — скорости тел с массами mи 2m должны быть со ответственно равны — v и v/2. Итак, при разлете тел с массами т и 2т получается тот же результат, что и при симметричном разлете двух тел с массами mс последующим неупругим соударением одного из этих тел с третьим, масса которого тоже равна m. Более того, отразившись от концов, каждое из этих тел будет лететь с почти той же скоростью, но, конечно, в обратном направлении, и после неупругого соударения они останавливаются.

Перейдем теперь к следующему вопросу. Что произойдет, если тело с массой m и скоростью v столкнется с покоящимся телом с массой 2m? Воспользовавшись принципом относительности Галилея, можно легко ответить на этот вопрос. Попросту говоря, нам нужно опять садиться в машину, идущую со скоростью —v/2 (фиг. 10.7), и наблюдать за только что описанным процессом. Скорости, которые мы при этом увидим, будут равны

После соударения масса Зm покажется нам движущейся со скоростью v/2. Таким образом, мы получили, что отношение скоростей до и после соударения равно 3:1, т. е. образовавшееся тело с массой Зm будет двигаться в три раза медленней. И в этом случае снова выполняется общее правило: сумма произведений массы на скорость остается той же как до, так и после соударения: mv + 0 равно 3mv/3. Вы видите, как постепенно шаг за шагом устанавливается закон сохранения импульса.

Итак, мы рассмотрели столкновение одного тела с двумя. Используя те же рассуждения, можно предсказать результаты столкновения одного тела с тремя телами, двух тел с тремя телами и т. д. На фиг. 10.8 как раз показан случай разлета масс 2m и Зm из состояния покоя.

В каждом из этих случаев выполняется одно и то же правило: масса первого тела, умноженная на его скорость, плюс масса второго тела, умноженная на его скорость, равны произведению полной массы на скорость ее движения. Все это — примеры сохранения импульса. Итак, начав с простого случая симметричных равных масс, мы установили закон сохранения для более сложных случаев. В сущности это можно сделать для любого рационального отношения масс, а поскольку любое число может быть со сколь угодно большой точностью заменено рациональным, то закон сохранения импульса справедлив для любых масс.

Как мы уже говорили, в точности замкнутых систем тел не существует. Поэтому возникает вопрос: в каких случаях можно применять закон сохранения импульса к незамкнутым системам тел? Рассмотрим эти случаи.

1. Внешние силы уравновешивают друг друга или ими можно пренебречь

С этим случаем мы уже познакомились в предыдущем параграфе на примере двух взаимодействующих тележек.

В качестве второго примера вспомним первоклассника и десятиклассника, соревнующихся в перетягивании каната, стоя на скейтбордах (рис. 26.1). При этом внешние силы также уравновешивают друг друга, а силой трения можно пренебречь. Поэтому сумма импульсов соперников сохраняется.

Читайте также:  Как капли от насморка влияют на зрение

Пусть в начальный момент школьники покоились. Тогда их суммарный импульс в начальный момент равен нулю. Согласно закону сохранения импульса он останется равным нулю и тогда, когда они будут двигаться. Следовательно,

где 1 и 2 – скорости школьников в произвольный момент (пока действия всех других тел компенсируются).

? 1. Докажите, что отношение модулей скоростей мальчиков обратно отношению их масс:

Обратите внимание: это соотношение будет выполняться независимо от того, как взаимодействуют соперники. Например, не имеет значения, тянут они канат рывками или плавно, перебирает канат руками только кто-то один из них или оба.

? 2. На рельсах стоит платформа массой 120 кг, а на ней – человек массой 60 кг (рис. 26.2, а). Трением между колесами платформы и рельсами можно пренебречь. Человек начинает идти вдоль платформы вправо со скоростью 1,2 м/с относительно платформы (рис. 26.2, б).

Начальный суммарный импульс платформы и человека равен нулю в системе отсчета, связанной с землей. Поэтому применим закон сохранения импульса в этой системе отсчета.

а) Чему равно отношение скорости человека к скорости платформы относительно земли?
б) Как связаны модули скорости человека относительно платформы, скорости человека относительно земли и скорости платформы относительно земли?
в) С какой скоростью и в каком направлении будет двигаться платформа относительно земли?
г) Чему будут равны скорости человека и платформы относительно земли, когда он дойдет до ее противоположного конца и остановится?

2. Проекция внешних сил на некоторую ось координат равна нулю

Пусть, например, по рельсам со скоростью катится тележка с песком массой mт. Будем считать, что трением между колесами тележки и рельсами можно пренебречь.

В тележку падает груз массой mг (рис. 26.3, а), и тележка катится далее с грузом (рис. 26.3, б). Обозначим конечную скорость тележки с грузом к.

Введем оси координат, как показано на рисунке. На тела действовали только вертикально направленные внешние силы (сила тяжести и сила нормальной реакции со стороны рельсов). Эти силы не могут изменить горизонтальные проекции импульсов тел. Поэтому проекция суммарного импульса тел на горизонтально направленную ось х осталась неизменной.

? 3. Докажите, что конечная скорость тележки с грузом

Мы видим, что скорость тележки после падения груза уменьшилась.

Уменьшение скорости тележки объясняется тем, что часть своего начального горизонтально направленного импульса она передала грузу, разгоняя его до скорости к. Когда тележка разгоняла груз, он, согласно третьему закону Ньютона, тормозил тележку.

Обратите внимание на то, что в рассматриваемом процессе суммарный импульс тележки и груза не сохранялся. Неизменной осталась лишь проекция суммарного импульса тел на горизонтально направленную ось x.

Проекция же суммарного импульса тел на вертикально направленную ось у в данном процессе изменилась: перед падением груза она была отлична от нуля (груз двигался вниз), а после падения груза она стала равной нулю (оба тела движутся горизонтально).

? 4. В стоящую на рельсах тележку с песком массой 20 кг влетает груз массой 10 кг. Скорость груза непосредственно перед попаданием в тележку равна 6 м/с и направлена под углом 60º к горизонту (рис. 26.4). Трением между колесами тележки и рельсами можно пренебречь.


а) Какая проекция суммарного импульса в данном случае сохраняется?
б) Чему равна горизонтальная проекция импульса груза непосредственно перед его попаданием в тележку?
в) С какой скоростью будет двигаться тележка с грузом?

3. Удары, столкновения, разрывы, выстрелы

В этих случаях происходит значительное изменение скорости тел (а значит, и их импульса) за очень краткий промежуток времени. Как мы уже знаем (см. предыдущий параграф), это означает, что в течение этого промежутка времени тела действуют друг на друга с большими силами. Обычно эти силы намного превышают внешние силы, действующие на тела системы.
Поэтому систему тел во время таких взаимодействий можно с хорошей степенью точности считать замкнутой, благодаря чему можно использовать закон сохранения импульса.

Например, когда во время пушечного выстрела ядро движется внутри ствола пушки, силы, с которыми действуют друг на друга пушка и ядро, намного превышают горизонтально направленные внешние силы, действующие на эти тела.

? 5. Из пушки массой 200 кг выстрелили в горизонтальном направлении ядром массой 10 кг (рис. 26.5). Ядро вылетело из пушки со скоростью 200 м/с. Какова скорость пушки при отдаче?


При столкновениях тела также действуют друг на друга с довольно большими силами в течение краткого промежутка времени.

Наиболее простым для изучения является так называемое абсолютно неупругое столкновение (или абсолютно неупругий удар). Так называют столкновение тел, в результате которого они начинают двигаться как единое целое. Именно так взаимодействовали тележки в первом опыте (см. рис. 25.1), рассмотренном в предыдущем параграфе, Найти общую скорость тел после абсолютно неупругого столкновения довольно просто.

? 6. Два пластилиновых шарика массой m1 и m2 движутся со скоростями 1 и 2. В результате столкновения они стали двигаться как единое целое. Докажите, что их общую скорость можно найти с помощью формулы


Обычно рассматривают случаи, когда тела до столкновения движутся вдоль одной прямой. Направим ось x вдоль этой прямой. Тогда в проекциях на эту ось формула (3) принимает вид

Направление общей скорости тел после абсолютно неупругого столкновения определяется знаком проекции vx.

? 7. Объясните, почему из формулы (4) следует, что скорость «объединенного тела» будет направлена так же, как начальная скорость тела с большим импульсом.

? 8. Две тележки движутся навстречу друг другу. При столкновении они сцепляются и движутся как единое целое. Обозначим массу и скорость тележки, которая вначале ехала вправо, mп и п, а массу и скорость тележки, которая вначале ехала влево, mл и л. В каком направлении и с какой скоростью будут двигаться сцепленные тележки, если:
а) mп = 1 кг, vп = 2 м/с, mл = 2 кг, vл = 0,5 м/с?
б) mп = 1 кг, vп = 2 м/с, mл = 4 кг, vл = 0,5 м/с?
в) mп = 1 кг, vп = 2 м/с, mл = 0,5 кг, vл = 6 м/с?

Дополнительные вопросы и задания

В заданиях к этому параграфу предполагается, что трением можно пренебречь (если не указан коэффициент трения).

9. На рельсах стоит тележка массой 100 кг. Бегущий вдоль рельсов школьник массой 50 кг с разбега запрыгнул на эту тележку, после чего она вместе со школьником стала двигаться со скоростью 2 м/с. Чему была равна скорость школьника непосредственно перед прыжком?

10. На рельсах недалеко друг от друга стоят две тележки массой M каждая. На первой из них стоит человек массой m. Человек перепрыгивает с первой тележки на вторую.
а) Скорость какой тележки будет больше?
б) Чему будет равно отношение скоростей тележек?

11. Из зенитного орудия, установленного на железнодорожной платформе, производят выстрел снарядом массой m под углом α к горизонту. Начальная скорость снаряда v0. Какую скорость приобретет платформа, если ее масса вместе с орудием равна M? В начальный момент платформа покоилась.

12. Скользящая по льду шайба массой 160 г ударяется о лежащую льдинку. После удара шайба скользит в прежнем направлении, но модуль ее скорости уменьшился вдвое. Скорость же льдинки стала равной начальной скорости шайбы. Чему равна масса льдинки?

13. На одном конце платформы длиной 10 м и массой 240 кг стоит человек массой 60 кг. Каково будет перемещение платформы относительно земли, когда человек перейдет к ее противоположному концу?
Подсказка. Примите, что человек идет с постоянной скоростью v относительно платформы; выразите через v скорость платформы относительно земли.

14. В лежащий на длинном столе деревянный брусок массой M попадает летящая горизонтально со скоростью и пуля массой m и застревает в нем. Сколько времени после этого брусок будет скользить по столу, если коэффициент трения между столом и бруском равен μ?

Все формулы

Все формулы по физике и математике

Темы по физике

  • Механика (56)
    • Кинематика (19)
    • Динамика и статика (32)
    • Гидростатика (5)
  • Молекулярная физика (25)
    • Уравнение состояния (3)
    • Термодинамика (15)
    • Броуновское движение (6)
    • Прочие формулы по молекулярной физике (1)
  • Колебания и волны (22)
  • Оптика (9)
    • Геометрическая оптика (3)
    • Физическая оптика (5)
    • Волновая оптика (1)
  • Электричество (39)
  • Атомная физика (15)
  • Ядерная физика (3)

Темы по математике

  • Квадратный корень, рациональные переходы (1)
  • Квадратный трехчлен (1)
  • Координатный метод в стереометрии (1)
  • Логарифмы (1)
  • Логарифмы, рациональные переходы (1)
  • Модуль (1)
  • Модуль, рациональные переходы (1)
  • Планиметрия (1)
  • Прогрессии (1)
  • Производная функции (1)
  • Степени и корни (1)
  • Стереометрия (1)
  • Тригонометрия (1)
  • Формулы сокращенного умножения (1)

Закон сохранения импульса

Закон сохранения импульса — Векторная сумма импульсов двух тел до взаимодействия равна векторной сумме их импульсов после взаимодействия

Докажем закон сохранения импульса.

Возьмем и обозначим массы двух тел и и скорости до взаимодействия , а после взаимодействия (столкновения)

По третьему закон Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению; поэтому их можно обозначить

Для изменений импульсов тел при их взаимодействии на основании Импульса силы можно записать так

Для первого тела:

Для второго тела:

И тогда у нас получается, что закон сохранения импульсов выглядит так:

Читайте также:  С точки зрения теории менеджмента среди барьеров межличностных коммуникаций отсутствует

Экспериментальные исследования взаимодействий различных тел — от планет и звезд до атомов и элементарных частиц — показали, что в любой системе взаимодействующих между собой тел при отсутствии действия сил со стороны других тел, не входящих в систему, или равны нулю, сумма импульсов тел остается неизменной.

Необходимым условием применимости закона сохранения импульса к системе взаимодействующих тел является использование инерциальной системы отсчета

В Формуле мы использовали :

— Время взаимодействия тел

— Импульс 1 тела до взаимодействия

— Импульс 2 тела до взаимодействия

— Импульс 1 тела после взаимодействия

— Импульс 2 тела после взаимодействия

7) Закон сохранения импульса

Если сумма внешних сил, действующих на систему, равна нулю, то равно нулю и изменение импульса системы: . Это означает, что, какой бы интервал времени мы ни взяли, суммарный импульс в начале этого интервалаи в его концеодин и тот же:. Импульс системы остается неизменным, или, как говорят, сохраняется:

(10)

Закон сохранения импульсаформулируется так:

если сумма внешних сил, действующих на тела системы, равна нулю, то импульс системы сохраняется.

Тела могут только обмениваться импульсами, суммарное же значение импульса не изменяется. Надо только помнить, что сохраняется векторная сумма импульсов, а не сумма их модулей.

Как видно из проделанного нами вывода, закон сохранения импульса является следствием второго и третьего законов Ньютона. Система тел,на которую не действуют внешние силы, называется замкнутой или изолированной. В замкнутой системе тел импульс сохраняется.Но область применения закона сохранения импульса шире: если даже на тела системы действуют внешние силы, но их сумма равна нулю, импульс системы все равно сохраняется.

Полученный результат легко обобщается на случай системы, содержащей произвольное число N тел:

(11)

Здесь — скорости тел в начальный момент времени, а— в конечный. Так как импульс — величина векторная, то уравнение (11) представляет собой компактную запись трех уравнений для проекций импульса системы на координатные оси.

Когда выполняется закон сохранения импульса?

Все реальные системы, конечно, не являются замкнутыми, сумма внешних сил довольно редко может оказаться равной нулю. Тем не менее в очень многих случаях закон сохранения импульса можно применять.

Если сумма внешних сил не равна нулю, но равна нулю сумма проекций сил на какое-то направление, то проекция импульса системы на это направление сохраняется. Например, система тел на Земле или вблизи ее поверхности не может быть замкнутой, так как на все тела действует сила тяжести, которая изменяет импульс по вертикали согласно уравнению (9). Однако вдоль горизонтального направления сила тяжести не может изменять импульс, и сумма проекций импульсов тел на горизонтально направленную ось будет оставаться неизменной, если действием сил сопротивления можно пренебречь.

Кроме того, при быстрых взаимодействиях (взрыв снаряда, выстрел из орудия, столкновения атомов и т. п.) изменение импульсов отдельных тел будет фактически обусловлено только внутренними силами. Импульс системы сохраняется при этом с большой точностью, ибо такие внешние силы, как сила тяготения и сила трения, зависящая от скорости, заметно не изменяет импульса системы. Они малы по сравнению с внутренними силами. Так, скорость осколков снаряда при взрыве в зависимости от калибра может изменяться в пределах 600 — 1000 м/с.Интервал времени, за который сила тяжести смогла бы сообщить телам такую скорость, равен

Внутренние же силы давления газов сообщают такие скорости за 0,01 с, т. е. в 10000 раз быстрее.

8) Сила тяготения.

Все тела Вселенной, как небесные, так и находящиеся на Земле, подвержены взаимному притяжению. Если же мы и не наблюдаем его между обычными предметами, окружающими нас в повседневной жизни (например, между книгами, тетрадями, мебелью и т.д.), то лишь потому, что оно в этих случаях слишком слабое.

Взаимодействие, свойственное всем телам Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным, а само явление всемирного тяготения — грави­тацией.

Гравитационное взаимодействие осуществляется посредством особого вида материи, называемого гравитационным полем. Такое поле существует вокруг любого тела, будь то планета, камень, человек или лист бумаги. При этом тело, создающее гравитационное поле, действует им на любое другое тело так, что у того появляется ускорение, всегда направленное к источнику поля. Появление такого ускорения и означает, что между телами возникает притяжение.

Особенностью гравитационного поля является его всепроникающая спо­собность. Защититься от него ничем нельзя, оно проникает сквозь любые материалы.

Гравитационные силы обусловлены взаимным притяжением тел и направлены вдоль линии, соединяющей взаимодействующие точки, поэтому называются центральными силами. Они зависят только от координат взаимодействующих точек и являются потенциальными силами. В 1682 г. И.Ньютон открыл закон всемирного тяготения:

Все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональ­ной квадрату расстояния между ними:

.

Коэффициент пропорциональности G называется гравитационной постоянной,

Скорость, которую необходимо сообщить телу у поверхности планеты, чтобы оно стало ее спутником, движущимся по круговой орбите, называется первая космическая скорость. Любое тело может стать искусственным спутником другого тела, если сообщить ему необходимую скорость.

,

где g – ускорение свободного падения на планете, R – радиус планеты. Для Земли первая космическая скорость составляет приблизительно 7,9 км/с.

Сила, с которой тела притягиваются к Земле вследствие гравитационного взаимодействия, назы­вается силой тяжести. Согласно закону всемирного тяготения

или ,

где g — ускорение свободного падения, R — рассто­яние от центра Земли до тела, М — масса Земли, т — масса тела. Ускоре́ние свобо́дного паде́ния g (обычно произносится как «Жэ»), — ускорение, придаваемое телу в вакууме силой тяжести, то есть геометрической суммой гравитационного притяжения планеты (или другого астрономического тела) и инерциальных сил, вызванных её вращением.

Законы сохранения в механике.Импульс и импульс силы. Закон сохранения импульса. Физика. 1 курс НПО и СПО.

Законы сохранения в механике.Импульс и импульс силы. Закон сохранения импульса. Физика. 1 курс НПО и СПО.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Импульс тела. Закон сохранения импульса.

Законы Ньютона позволяют решать различные практически важные задачи, касающиеся взаимодействия и движения тел. Большое число таких задач связано, например, с нахождением ускорения движущегося тела, если известны все действующие на это тело силы. А затем по ускорению определяют и другие величины (мгновенную скорость, перемещение и др.).

Но часто бывает очень сложно определить действующие на тело силы. Поэтому для решения многих задач используют ещё одну важнейшую физическую величину — импульс тела.

  • Импульсом тела р называется векторная физическая величина, равная произведению массы тела на его скорость

Импульс — векторная величина. Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения.

За единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скоростью 1 м/с. Значит, единицей импульса тела в СИ является 1 кг • м/с.

При расчётах пользуются уравнением для проекций векторов: рх = mvx.

В зависимости от направления вектора скорости по отношению к выбранной оси X проекция вектора импульса может быть как положительной, так и отрицательной.

Слово «импульс» (impulsus) в переводе с латинского означает «толчок». В некоторых книгах вместо термина «импульс» используется термин «количество движения».

Эта величина была введена в науку примерно в тот же период времени, когда Ньютоном были открыты законы, названные впоследствии его именем (т. е. в конце XVII в.).

При взаимодействии тел их импульсы могут изменяться. В этом можно убедиться на простом опыте.

Два шарика одинаковой массы подвешивают на нитяных петлях к укреплённой на кольце штатива деревянной линейке, как показано на рисунке а.

Рис. Демонстрация закона сохранения импульса

Шарик 2 отклоняют от вертикали на угол а (рис. б) и отпускают. Вернувшись в прежнее положение, он ударяет по шарику 1 и останавливается. При этом шарик 1 приходит в движение и отклоняется на тот же угол а (рис. в).

В данном случае очевидно, что в результате взаимодействия шаров импульс каждого из них изменился: на сколько уменьшился импульс шара 2, на столько же увеличился импульс шара 1.

Если два или несколько тел взаимодействуют только между собой (т. е. не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.

Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом. Но

  • векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел

В этом заключается закон сохранения импульса.

Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю. Покажем это, воспользовавшись для вывода закона сохранения импульса вторым и третьим законами Ньютона. Для простоты рассмотрим систему, состоящую только из двух тел — шаров массами m1 и m2, которые движутся прямолинейно навстречу друг другу со скоростями v1 и v2 (рис.).

Рис. Система из двух тел — шаров, движущихся прямолинейно навстречу друг другу

Силы тяжести, действующие на каждый из шаров, уравновешиваются силами упругости поверхности, по которой они катятся. Значит, действие этих сил можно не учитывать. Силы сопротивления движению в данном случае малы, поэтому их влияние мы тоже не будем учитывать. Таким образом, можно считать, что шары взаимодействуют только друг с другом.

Читайте также:  Какие из перечисленных функций с вашей точки зрения свойственны философии

Из рисунка видно, что через некоторое время шары столкнутся. Во время столкновения, длящегося в течение очень короткого промежутка времени t, возникнут силы взаимодействия F1 и F2, приложенные соответственно к первому и второму шару. В результате действия сил скорости шаров изменятся. Обозначим скорости шаров после соударения буквами v1 и v2.

В соответствии с третьим законом Ньютона силы взаимодействия шаров равны по модулю и направлены в противоположные стороны:

По второму закону Ньютона каждую из этих сил можно заменить произведением массы и ускорения, полученного каждым из шаров при взаимодействии:

Ускорения, как вы знаете, определяются из равенств:

Заменив в уравнении для сил ускорения соответствующими выражениями, получим:

В результате сокращения обеих частей равенства на t получим:

m1(v’1 — v1) = -m2(v’2 — v2).

Сгруппируем члены этого уравнения следующим образом:

m1v1′ + m2v2′ = m1v1 = m2v2. (1)

Учитывая, что mv = p, запишем уравнение (1) в таком виде:

P’1 + Р’2 = P1 + Р2.(2)

Левые части уравнений (1) и (2) представляют собой суммарный импульс шаров после их взаимодействия, а правые — суммарный импульс до взаимодействия.

Значит, несмотря на то, что импульс каждого из шаров при взаимодействии изменился, векторная сумма их импульсов после взаимодействия осталась такой же, как и до взаимодействия.

Уравнения (1) и (2) являются математической записью закона сохранения импульса.

Поскольку в данном курсе рассматриваются только взаимодействия тел, движущихся вдоль одной прямой, то для записи закона сохранения импульса в скалярной форме достаточно одного уравнения, в которое входят проекции векторных величин на ось X:

m1v’1x + m2v’2х= m1v1x + m2v2x.

Домашняя работа.

Задание 1. Ответь на вопросы.

  1. Что называют импульсом тела?
  2. Что можно сказать о направлениях векторов импульса и скорости движущегося тела?
  3. Что означает утверждение о том, что несколько тел образуют замкнутую систему?
  4. Сформулируйте закон сохранения импульса.
  5. Для замкнутой системы, состоящей из двух тел, запишите закон сохранения импульса в виде уравнения, в которое входили бы массы и скорости этих тел. Поясните, что означает каждый символ в этом уравнении.

Задание 2. Решите задачи.

1. Столкновение автомобилей.

Объясни эти ситуации с точки зрения закона сохранения импульса.

2.Почему большая рыба плывет назад?

Чем отличаются эти ситуации?

3. Для будущих защитников.

При стрельбе существует явление отдачи и на плече у солдата, к которому он прикладывает винтовку, могут появиться синяки. Почему же солдат, держащий на плече базуку ( ручной гранатомет), не испытывает при стрельбе отдачи?

В каком случае ружье стреляет дальше: когда оно неподвижно закреплено, или когда оно подвешено?

К занятию прикреплен файл «Ребусы». Вы можете скачать файл в любое удобное для вас время.

Все формулы

Все формулы по физике и математике

Темы по физике

  • Механика (56)
    • Кинематика (19)
    • Динамика и статика (32)
    • Гидростатика (5)
  • Молекулярная физика (25)
    • Уравнение состояния (3)
    • Термодинамика (15)
    • Броуновское движение (6)
    • Прочие формулы по молекулярной физике (1)
  • Колебания и волны (22)
  • Оптика (9)
    • Геометрическая оптика (3)
    • Физическая оптика (5)
    • Волновая оптика (1)
  • Электричество (39)
  • Атомная физика (15)
  • Ядерная физика (3)

Темы по математике

  • Квадратный корень, рациональные переходы (1)
  • Квадратный трехчлен (1)
  • Координатный метод в стереометрии (1)
  • Логарифмы (1)
  • Логарифмы, рациональные переходы (1)
  • Модуль (1)
  • Модуль, рациональные переходы (1)
  • Планиметрия (1)
  • Прогрессии (1)
  • Производная функции (1)
  • Степени и корни (1)
  • Стереометрия (1)
  • Тригонометрия (1)
  • Формулы сокращенного умножения (1)

Закон сохранения импульса

Закон сохранения импульса — Векторная сумма импульсов двух тел до взаимодействия равна векторной сумме их импульсов после взаимодействия

Докажем закон сохранения импульса.

Возьмем и обозначим массы двух тел и и скорости до взаимодействия , а после взаимодействия (столкновения)

По третьему закон Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению; поэтому их можно обозначить

Для изменений импульсов тел при их взаимодействии на основании Импульса силы можно записать так

Для первого тела:

Для второго тела:

И тогда у нас получается, что закон сохранения импульсов выглядит так:

Экспериментальные исследования взаимодействий различных тел — от планет и звезд до атомов и элементарных частиц — показали, что в любой системе взаимодействующих между собой тел при отсутствии действия сил со стороны других тел, не входящих в систему, или равны нулю, сумма импульсов тел остается неизменной.

Необходимым условием применимости закона сохранения импульса к системе взаимодействующих тел является использование инерциальной системы отсчета

В Формуле мы использовали :

— Время взаимодействия тел

— Импульс 1 тела до взаимодействия

— Импульс 2 тела до взаимодействия

— Импульс 1 тела после взаимодействия

— Импульс 2 тела после взаимодействия

Законы сохранения энергии и импульса. Упругие и неупругие столкновения.

Закон сохранения импульса

Начну с пары определений, без знания которых дальнейшее рассмотрение вопроса будет бессмысленным.

Сопротивление, которое оказывает тело при попытке привести его в движение или изменить его скорость, называется инертностью.

Мера инертности – масса.

Таким образом можно сделать следующие выводы:

  1. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются вывести его из состояния покоя.
  2. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются изменить его скорость в случае, если тело движется равномерно.

Резюмируя можно сказать, что инертность тела противодействует попыткам придать телу ускорение. А масса служит показателем уровня инертности. Чем больше масса, тем большую силу нужно применить для воздействия на тело, чтобы придать ему ускорение.

Замкнутая система (изолированная) – система тел, на которую не оказывают влияние другие тела не входящие в эту систему. Тела в такой системе взаимодействуют только между собой.

Если хотя бы одно из двух условий выше не выполняется, то систему замкнутой назвать нельзя. Пусть есть система, состоящая из двух материальных точек, обладающими скоростями и соответственно. Представим, что между точками произошло взаимодействие, в результате которого скорости точек изменились. Обозначим через и приращения этих скоростей за время взаимодействия между точками . Будем считать, что приращения имеют противоположные направления и связаны соотношением . Мы знаем, что коэффициенты и не зависят от характера взаимодействия материальных точек — это подтверждено множеством экспериментов. Коэффициенты и являются характеристиками самих точек. Эти коэффициенты называются массами (инертными массами). Приведенное соотношения для приращения скоростей и масс можно описать следующим образом.

Отношение масс двух материальных точек равно отношению приращений скоростей этих материальных точек в результате взаимодействия между ними.

Представленное выше соотношение можно представить в другом виде. Обозначим скорости тел до взаимодействия как и соответственно, а после взаимодействия — и . В этом случае приращения скоростей могут быть представлены в таком виде — и . Следовательно, соотношение можно записать так — .

Импульс (количество энергии материальной точки) – вектор равный произведению массы материальной точки на вектор ее скорости —

Импульс системы (количество движения системы материальных точек) – векторная сумма импульсов материальных точек, из которых эта система состоит — .

Можно сделать вывод, что в случае замкнутой системы импульс до и после взаимодействия материальных точек должен остаться тем же — , где и . Можно сформулировать закон закон сохранения импульса.

Импульс изолированной системы остается постоянным во времени, независимо от взаимодействия между ними.

Закон сохранения энергии

Консервативные силы – силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

Формулировка закона сохранения энергии:

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки является функцией только координат этой точки. Т.е. потенциальная энергия зависит от положения точки в системе. Таким образом силы , действующие на точку, можно определить так: можно определить так: . – потенциальная энергия материальной точки. Помножим обе части на и получим . Преобразуем и получим выражение доказывающее закон сохранения энергии.

Упругие и неупругие столкновения

Абсолютно неупругий удар – столкновение двух тел, в результате которого они соединяются и далее двигаются как одно целое.

Два шара , с и испытывают абсолютно неупругий дар друг с другом. По закону сохранения импульса . Отсюда можно выразить скорость двух шаров, двигающихся после соударения как единое целое — . Кинетические энергии до и после удара: и . Найдем разность

,

где приведенная масса шаров. Отсюда видно, что при абсолютно неупругом столкновении двух шаров происходит потеря кинетической энергии макроскопического движения. Эта потеря равна половине произведения приведенной массы на квадрат относительной скорости.

Абсолютно упругий удар – столкновение двух тел, в результате которого механическая энергия системы остается прежней.

Два шара , с и до соударения и и после. По закону сохранения импульса и энергии: , . Решением системы может стать и . Это значит, что шары не встретились. Потребуем и и перепишем уравнения в виде: , . Второе уравнение делим почленно на первое и получаем . Решаем систему из двух линейных уравнений и имеем: , .

Источники:
  • http://phscs.ru/physics10/impulse-preservation
  • http://xn--b1agsdjmeuf9e.xn--p1ai/%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0/%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD-%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D0%B0/
  • http://studfiles.net/preview/5709979/
  • http://www.kursoteka.ru/course/3024/lesson
  • http://xn--b1agsdjmeuf9e.xn--p1ai/%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0/%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD-%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D0%B0/
  • http://optoelectrosys.ru/teor/zakony-soxraneniya-energii-i-impulsa-uprugie-i-neuprugie-stolknoveniya-2.html