Меню Рубрики

Контрольная по физиологии на тему зрение

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Контрольная работа № __1__

по курсу Анатомия, физиология и патология органов ………………………………..слуха, речи и зрения.___

Работу выполнил (ф. и. о. студента)

Хохлова Екатерина Владимировна___

студент __2__ курса заочного отделения

психолого-педагогического и специального образования

группа № __274 город Красноармейск)

дата сдачи работы в учебную часть «4 » апреля_ 2014 г.

Работу проверил (ф.и.о. преподавателя)

Кузьмина Нина Владимировна______

оценка ______________ подпись_______________ дата проверки _____

Содержание

Вопрос № 1 Анатомическое строение зрительного анализатора ………..……………………..3 Вопрос № 2 Физиология слухового анализатора……. …………………………………… ……6 Вопрос № 3 Патология органов речи…………………….……………………………………. 10 Библиографический список……………………………………………………….. 14

1 Анатомическое строение зрительного анализатора.

Зрительный анализатор является сложной нервно-рецепторной системой. Он состоит из рецепторной части (сетчатки), проводящих путей (зрительных нервов, хиазмы, зрительных трактов), зрительных центров (подкорковых и корковых). Периферическая часть зрительного анализатора – это глазное яблоко с защитным (глазницы, веки) и вспомогательным (слезные органы, мышцы глаз, конъюнктива) аппаратом глаза. С боков и сзади глаз прочно защищен костями глазницы. Стенки глаза образованы…тремя…оболочками.…… …… Наружная — белочная оболочка (склера) — служит прочным чехлом для внутри расположенных структур. Передний отдел склеры виден при осмотре, покрыт конъюнктивой и заканчивается прозрачной и немного выпуклой спереди — роговицей. Конъюнктива покрывает также внутреннюю поверхность век. ………………………………………………………. …… ….. …..Средняя оболочка — сосудистая. Она обеспечивает полноценное питание практически всех структур глаза. За роговицей сосудистая оболочка, образует радужку, которая имеет индивидуальную для каждого рисунок и окраску. В центре радужки расположено отверстие — зрачок, который служит диафрагмой при прохождении света внутрь глаза. За радужкой располагается фокусирующая линза — хрусталик, который вследствие изменения своей кривизны позволяет рассматривать близко и далеко расположенные предметы. Внутреннее пространство глаза заполнено желеобразной массой — стекловидным телом, создающим плотный каркас глаза.
. Третья, внутренняя оболочка глаза — сетчатка, самая сложная по устройству и выполняемым функциям оболочка. …………..…………………………. ……………………………………………………………………………… ……..3

Она тонкой пленкой выстилает стенки полости глаза и будучи придавленной стекловидным телом и внутриглазной жидкостью к сосудистой оболочке, имеет жесткое крепление только у места выхода из глаза зрительного нерва и по так называемой зубчатой линии недалеко от ресничного тела. Сетчатка состоит из различных видов клеток, главные из которых палочки, колбочки и нервные (ганглиозные) клетки. Палочки и колбочки под воздействием света образуют электрические импульсы, которые передаются в нервные клетки. Палочки отвечают за черно-белое или сумеречное зрение, а так же помогают контролировать периферическое пространство относительно точки фиксации глаза. Колбочки определяют цветное зрение и в силу того, что их максимальное количество находится в центральном отделе сетчатки (макуле, или желтом пятне), куда приходят лучи, сфокусированные всеми линзами глаза, играют исключительную роль в восприятии объектов, расположенных в точке фиксации взгляда. В отличие от палочек, колбочки очень требовательны к поступающей энергии и кислороду, поэтому сетчатка имеет свои дополнительные сосуды, которые обеспечивают надежное и достаточное питание составляющих ее клеток. ……………..……………………………
Нервные клетки, центральные отростки которых образуют зрительный нерв, связаны с несколькими палочками. Только каждой колбочке соответствует своя нервная клетка, что подчеркивает их значимость. Местом наиболее высокого зрения в сетчатке является область так называемого желтого пятна. Оно расположено в заднем полюсе глазного яблока, имеет овальную форму и углубление в центре – центральную ямку, содержащую одни только колбочки. ……………………….. ………………………………………… …В полости глазного яблока небольшое пространство, ограниченное задней поверхностью роговицы, передней поверхностью радужки и центральной частью передней поверхности хрусталика, носит название передней камеры глаза. Пространство, ограниченное задней поверхностью радужки, ……………………………………………………………………………… ……………………………………………………………………………… ……………..4

периферической частью хрусталика и внутренней поверхностью цилиарного тела, называется задней камерой глаза. ……………………………………… Стекловидное тело лежит за хрусталиком, занимает большую часть полости глазного яблока. Оно представляет собой прозрачную студневидную массу, не содержащую ни кровеносных сосудов, ни нервов. ………………… …..В центре сетчатки имеется диск зрительного нерва, от которого начинается зрительный нерв. Особенностью зрительного нерва является его строение. Он состоит из двух частей, несущих раздражение от наружных и внутренних отделов сетчатки. Вначале зрительный нерв отходит от глазного яблока как единое целое, входит в полость черепа и идет по основанию мозга, затем волокна, несущие раздражения от наружных отделов сетчатки (центральное зрение), идут кзади по своей стороне, а волокна, несущие раздражение от внутренних отделов сетчатки (боковое зрение), полностью перекрещиваются. После перекреста образуются правый и левый зрительные тракты, в которых содержатся волокна как со своей стороны, так и с противоположной. Оба зрительных тракта направляются к коленчатым телам (подкорковые зрительные центры), от которых начинается пучок Грациоле, несущий раздражение к корковым полям затылочной доли мозга. …. ….При поражении зрительного нерва возникает слепота на один глаз — амавроз. Поражение перекреста зрительных нервов проявляется сужением полей зрения. При нарушении функции зрительного тракта возникает выпадение половин полей зрения ( гемианопсия ). Зрительные расстройства при поражении коры головного мозга в затылочной области проявляются частичным выпадением полей зрения ( скотома ) или зрительной агнозией (больной не узнает знакомые предметы). Частым случаем этого нарушения является алексия (расстройство чтения), когда ребенок утрачивает в памяти сигнальное значение буквенных изображений. К расстройствам зрения относится так же потеря цветоощущения: больной не различает некоторые цвета или видит все в сером цвете.………..………………………………. ……………………………………………………………………………… …….5

2 Физиология слухового анализатора. ………………………….

Адекватным раздражителем слухового анализатора является звук, который представляет собой колебательные движения среды (воздуха, воды, почвы и пр.). В звуке как и во всяком колебательном движении, различают амплитуду — размах колебаний, период — время, в течение которого совершается полное колебательное движение, и частоту — число полных колебаний в 1 с. Различные части слухового анализатора, или органа слуха, выполняют две различные по характеру функции: 1) звукопроведение, т. е. доставку звуковых колебаний к рецептору (окончаниям слухового нерва); 2) звуковосприятие, т. е. реакцию нервной ткани на звуковое раздражение. ………………………….
1)Звукопроведение.
а)Воздушное…звукопроведение.
В проведении звуковых колебаний принимают участие ушная раковина, наружный слуховой проход, барабанная перепонка, слуховые косточки, кольцевая связка овального окна, мембрана круглого окна (вторичная барабанная перепонка), жидкость лабиринта (перилимфа), основная мембрана.
У человека роль ушной раковины сравнительно невелика. У человека ушная раковина, как рупор, лишь собирает звуковые волны. Однако и в этом отношении ее роль незначительна. Поэтому, когда человек прислушивается к тихим звукам, он приставляет к уху ладонь, благодаря чему поверхность ушной раковины значительно увеличивается. …………………………………………
Барабанная перепонка и слуховые косточки превращают воздушные колебания с большой амплитудой и малым давлением в колебания жидкости лабиринта с малой амплитудой и большим давлением. Эта трансформация достигается благодаря следующим условиям: 1) поверхность барабанной перепонки в 15—20 раз больше площади овального окна; 2) молоточек и наковальня образуют неравноплечий рычаг, так что экскурсии, совершаемые подножной пластинкой стремени, примерно в полтора раза меньше экскурсий ……………………………………………………………………………… ………..6

рукоятки молоточка. Общий эффект трансформирующего действия барабанной перепонки и рычажной системы слуховых косточек выражается в увеличении силы звука на 25—30 дБ. Нарушение этого механизма при повреждениях барабанной перепонки и заболеваниях среднего уха ведет к соответствующему снижению слуха, т. е. на 25—30 дБ. …………………………………………
Выравнивание давления по обе стороны от барабанной перепонки происходит благодаря вентиляционной функции слуховой трубы, которая соединяет барабанную полость с носоглоткой. При каждом глотательном движении воздух из носоглотки поступает в барабанную полость, и, таким образом, давление воздуха в барабанной полости все время поддерживается на уровне атмосферного, т. е. на том же уровне, что и в наружном слуховом проходе.
К звукопроводящему аппарату относятся также мышцы среднего уха, которые выполняют следующие функции: 1) поддержание нормального тонуса барабанной перепонки и цепи слуховых косточек; 2) защиту внутреннего уха от чрезмерных звуковых раздражений; 3) аккомодацию, т. е. приспособление звукопроводящего аппарата к звукам различной силы и высоты. При сокращении мышцы, натягивающей барабанную перепонку, слуховая чувствительность повышается, что дает основания считать эту мышцу «настораживающей». Стременная мышца играет противоположную роль — она при своем сокращении ограничивает движения стремени и тем самым как бы приглушает слишком сильные звуки. ………………………………………..
б).Костное…звукопроведение.
Звук может доставляться к внутреннему уху непосредственно через кости черепа. Под влиянием колебаний внешней среды возникают колебательные движения костей черепа, в том числе и костного лабиринта. Эти колебательные движения передаются на жидкость лабиринта (перилимфу). Такая же передача имеет место при непосредственном соприкосновении звучащего тела, например ножки камертона, с костями черепа, а также под воздействием звуков высокой ……………………………………………………………………………… ………. 7

частоты с малой амплитудой колебаний. ………………………………………
В наличии костного проведения звуковых колебаний можно убедиться посредством простых опытов: 1) при плотном затыкании обоих ушей пальцами, т. е. при полном прекращении доступа воздушных колебаний через наружные слуховые проходы, восприятие звуков значительно ухудшается, но все же происходит; 2) если ножку звучащего камертона приставить к темени или к сосцевидному отростку, то звучание камертона будет отчетливо слышно и при заткнутых ушах. ……………………………………………………………………
Костное звукопроведение имеет особое значение в патологии уха. Благодаря этому механизму обеспечивается восприятие звуков, хотя и в резко ослабленном виде, в тех случаях, когда полностью прекращается передача звуковых колебаний через наружное и среднее ухо. Костное звукопроведение осуществляется, в частности, при полной закупорке наружного слухового прохода (например, при серной пробке), а также при заболеваниях, приводящих к неподвижности цепи слуховых косточек (например, при отосклерозе).
2)Звуковосприятие
При колебании основной мембраны происходит также и перемещение слуховых клеток Кортиева органа, сопровождающееся возникновением в них процесса возбуждения, или нервного импульса. Этот момент и является началом слухового восприятия. До этого момента в наружном, среднем и отчасти внутреннем ухе происходит лишь передача физических колебаний, возникших в окружающей среде. При раздражении волосковых клеток Кортиева органа происходит превращение физической энергии звуковых колебаний в физиологический процесс нервного возбуждения. В этом превращении и состоит функция Кортиева органа как периферического отдела слухового анализатора. …………………………………………………………..
Слуховой орган человека воспринимает звуки различной высоты, т. е. различной частоты колебаний. Область слухового восприятия ограничена звуками, частота которых расположена между 16 колебаниями в секунду — ……………………………………………………………………………… ………. 8

нижней границей и 2000 колебаний в секунду — верхней границей.
В пределах области слухового восприятия наше ухо способно различать звуки по высоте, силе и тембру. Для объяснения этой способности было высказано несколько теорий. Согласно новейшей гидродинамической теории Бекеши и Флетчера, которая в настоящее время считается основной, действующим началом слухового восприятия является амплитуда звука. Амплитудному максимуму каждой частоты в диапазоне слышимости соответствует специфический участок базилярной мембраны. Под влиянием звуковых амплитуд в лимфе обеих лестниц улитки происходят сложные динамические процессы и деформации мембран, при этом место максимальной деформации соответствует пространственному расположению звуков на основной мембране, где наблюдались вихревые движения лимфы. Сенсорные клетки сильнее всего возбуждаются там, где амплитуда колебаний максимальна, поэтому разные частоты действуют на различные клетки.
Что касается различения звуков по силе, то оно, согласно современным взглядам, объясняется вовлечением в нервный процесс различного числа клеток Кортиева органа: чем звук сильнее, тем большее число клеток посылает в мозг нервные импульсы. …………………………………………………….
Специфической особенностью слуха человека является способность воспринимать звуки речи не только как физические явления, но и как смыслоразличительные единицы — фонемы. Эта способность обеспечивается наличием у человека сенсорного (чувствительного) центра речи, расположенного в заднем отделе верхней височной извилины левого полушария головного мозга. При выключении этого центра нарушается анализ и синтез сложных звуковых комплексов, составляющих словесную речь. Восприятие тонов и шумов, входящих в состав речи, может в этих случаях сохраниться, но различение этих тонов и шумов именно как речевых звуков становится невозможным, в результате чего нарушается понимание речи — возникает сенсорная афазия («словесная глухота»). У левшей сенсорный центр речи находится в правом полушарии. 9

3 Патология органов речи

Заболевание наружного носа и носовой полости. ……………………. 1) Сужение и зарастание полости носа. Наблюдается врождённая узость носовых ходов в одной или в обеих половинах носовой полости. В других случаях врождённое сужение касается только входа в нос и заключается в частичном либо полном зарастании, или атрезии ноздрей. …………………… 2) Повреждение носа. В результате повреждения носовых костей может возникнуть деформация носа в виде смещения его в сторону. При повреждении носовой перегородки часто образуется подслизистое кровоизлияние, или гематома, которая впоследствии превращается в абсцесс. …………………….. 3) Инородные тела носа. Они приводят к закупорке одной, а иногда обеих половин носовой полости и нередко вызывают гнойное воспаление слизистой оболочки носа. Чаще инородные тела застревают в начальном отделе нижнего носового хода и легко удаляются врачом. ……………………………………. 4) Острый насморк. Может наблюдаться как самостоятельное заболевание или как одно из проявлений общего инфекционного заболевания (грипп, корь, скарлатина). Причиной возникновения острого насморка чаще является проникновение в толщу слизистой оболочки болезнетворных микроорганизмов. Он возникает в результате простуды. Признаками острого насморка являются ощущение сухости и жжения в носу и в носоглотке, чихание, небольшое повышение температуры. Закладывание носа приводит к изменению тембра голоса, появляется гнусавость, нарушается обоняние. Воспалительный процесс может распространиться через евстахиеву трубу в среднее ухо. Лечение сводится к устранению закладывания носа посредством различных медикаментозных средств, а также к лечению основного заболевания, вызвавшего насморк. ………………………………………………………………. Озена – особое хроническое заболевание, сопровождающееся резкой атрофией слизистой оболочки носа и нижележащих дыхательных путей. При ней также ……………………………………………………………………………… ……….10

Анатомия, физиология и патология органа зрения

Строение и функции оптического аппарата глаза. Аккомодация, рефракция, её аномалии. Структура и функции сетчатки. Нервные пути и связи в зрительной системе. Врождённая и приобретенная патология органов зрения. Обучение и воспитание слабовидящих детей.

Подобные документы

Основные причины инвалидности и смертности людей работоспособного возраста. Возрастные изменения структур глазного дна. Неосложненное физиологическое старение сосудов. Атеросклеротические поражения сосудов сетчатки. Гипертоническая ангиопатия сетчатки.

реферат, добавлен 21.03.2013

Неврологическая патология: этиология, предрасполагающие факторы, клиническая картина. Последствия гипоксии плода и новорожденного. Оценка врожденных рефлексов. Определяющие критерии асфиксии. Анализ историй болезни пациентов с патологией новорожденных.

курсовая работа, добавлен 14.05.2014

Понятие, строение, организованные функции ассоциативной коры головного мозга. Центры памяти, понимания слов, восприятия пространства. Профилактика нарушений зрения. Типичное шестислойное строение мозгового вещества, последствия нарушения строения.

контрольная работа, добавлен 16.02.2011

Строение промежуточного мозга. Роль печени и поджелудочной железы в пищеварении. Торможение центральной нервной системы. Анатомия и физиология вегетативной нервной системы, ее возрастные особенности. Состав крови и физико-химические свойства плазмы.

контрольная работа, добавлен 13.12.2013

Клиническая анатомия уха. Наружное ухо. Среднее ухо. Внутреннее ухо или лабиринт. Физиология уха. Слуховой анализатор. Барабанная перепонка. Слуховая труба. Методика исследования уха. Отоскопия. Продувание слуховых труб при помощи катетера.

реферат, добавлен 31.12.2003

Принцип строения зрительного анализатора. Центры головного мозга, анализирующие восприятие. Молекулярные механизмы зрения. Са и зрительный каскад. Некоторые нарушения зрения. Близорукость. Дальнозоркость. Астигматизм. Косоглазие. Дальтонизм.

реферат, добавлен 17.05.2004

Рост численности детей с хроническими заболеваниями и функциональными отклонениями. Оздоровление детей и подростков в течении учебного года. формирование здоровья подрастающего поколения через гигиеническое воспитание и обучение здоровому образу жизни.

реферат, добавлен 27.11.2011

Медико-биологические основы органов слуха. Наследственные патологии слуха, вызванные генетическими заболеваниями и врожденными дефектами. Часто встречаемые заболевания органов слуха: серная пробка, разрыв барабанной перепонки, отит различной этиологии.

контрольная работа, добавлен 07.10.2013

Повреждение роговицы, радужки, хрусталика, сетчатки и сосудистой оболочки глаза, первая помощь. Ранения век и слезных органов. Отличительные черты проникающих и непроникающих ранений глаза. Экстренная помощь при разрушении глаза и ранении глазницы.

реферат, добавлен 16.08.2009

Функциональная анатомия гипоталамуса, его строение. Афферентные и эфферентные связи и общие функции гипоталамуса. Влияние его на сердечно-сосудистую систему и на поведение личности. Функциональные расстройства у людей с повреждениями гипоталамуса.

Физиология анализаторов — контрольная работа

Категория: Контрольные работы
Рубрика: Биология и естествознание
Размер файла: 5102 Kb
Количество загрузок:
Количество просмотров:
Описание работы: контрольная работа на тему Физиология анализаторов
Подробнее о работе: Читать или Скачать
ВНИМАНИЕ: Администрация сайта не рекомендует использовать бесплатные Контрольные работы для сдачи преподавателю, чтобы заказать уникальные Контрольные работы, перейдите по ссылке Заказать Контрольные работы недорого
Смотреть
Скачать
Заказать

Физиология анализаторов

  • Вестибулярный анализатор
  • Висцеральный анализатор. интерорецепторы
  • Тактильный анализатор
  • Боль. ноцицептивный анализатор
  • Слуховой анализатор
  • Зрительный анализатор
  • Обонятельный анализатор
  • Вкусовой анализатор

Анализатор — это совокупность рецепторов и нейронов мозга, участвующих в обработке информации о сигналах внешнего или внутреннего мира и в получении о них представления (ощущения, восприятия). Все анализаторы состоят из трех основных отделов: периферического (в нем происходит превращение сигнала внешнего мира в электрический процесс), проводникового — в нем происходит обработка информации и проведение ее в высшие отделы мозга и, наконец, центрального или коркового отдела, в котором происходит окончательная обработка сенсорной информации и возникает ощущение — субъективный образ сигнала.

Рассмотрим принцип работы анализатора.

Рецептор — это специализированная структура (клетка или окончание нейрона), которая в процессе эволюции приспособилась к восприятию соответствующего раздражителя внешнего или внутреннего мира. Например, адекватным раздражителем для фоторецепторов является квант видимого света, для фонорецепторов — звуковые колебания воздушной или водной среды, для терморецепторов — воздействие температуры. Под влиянием адекватного раздражителя в рецепторной клетке или в нервном специализированном окончании происходит изменение проницаемости для ионов (например, под влиянием растяжения в рецепторе растяжения мышц рака происходит увеличение открытия натриевых каналов, что вызывает деполяризацию, степень которой пропорциональна степени растяжения), что приводит к генерации рецепторного потенциала.

Афферентные нейроны — это первые нейроны, которые участвуют в обработке сенсорной информации. Как правило, афферентные нейроны лежат в ганглиях (спинномозговые ганглии, ганглии головы и шеи, например, вестибулярный ганглий, спиральный ганглий, коленчатый ганглий и т.п.). Исключением являются фоторецепторы — их афферентные нейроны лежат непосредственно на сетчатке.

Следующий нейрон, принимающий участие в обработке информации, расположен в спинном, продолговатом или в среднем мозге. Отсюда идут пути к таламусу. Исключением из этого правила является обонятельный анализатор — после обонятельной луковицы информация направляется сразу же в обонятельную кору, не заходя в таламус. От общего сенсорного коллектора (таламуса) информация поступает в соответствующие проекционные и ассоциативные зоны коры. Для каждого анализатора имеются свои конкретные участки, куда приходят импульсы от рецепторного аппарата. В проекционных зонах происходит декодирование информации, возникает представление о модальности сигнала, о его силе и качестве, а в ассоциативных участках коры — определение «что это такое?» — акцепция сигнала. Это происходит с участием процессов памяти.

Читайте также:  Чем является бытие с точки зрения древнегреческого философа аристотеля

Высшие отделы наряду с собственными рецепторными механизмами регулируют и процессы адаптации в рецепторах — привыкание. В основном, все рецепторы — быстро адаптирующиеся, поэтому они реагируют на начало воздействия стимула и на окончание его действия. Часть рецепторов — медленно адаптирующиеся, поэтому постоянно реагируют на стимул. Например, быстро адаптируются рецепторы обоняния, вкуса, но медленно адаптируются рецепторы боли (ноцицепторы).

Проприоцептивная чувствительность. мышечные рецепторы

Если закрыть глаза и попытаться написать текст, то буквы будут все-таки написаны достаточно четко. Таким способом просто убедиться, что мы умеем пользоваться информацией, идущей от мышц и суставов. Известно, что имеется 3 вида рецепторов, осуществляющих восприятие положения мышцы, ее состояние и положение сустава: это мышечные веретена, сухожильные рецепторы Гольджи и суставные рецепторы.

Мышечные веретена представляют собой инкапсулированные мышечные волокна (интрафузальныс волокна), на которые намотаны нервные волокна, представляющие собой окончания дендритов афферентного нейрона, расположенного в спинномозговом ганглии. Это рецепторы растяжения: когда мышца растягивается под влиянием силы тяжести или искусственно (например, ударом неврологического молоточка), то возникает растяжение мышечных волокон веретена, что влечет за собой растяжение нервных окончаний.

Сухожильные рецепторы тоже относятся к первичным рецепторам: в момент сокращения мышц в этих рецепторах возникает деполяризация, величина которой пропорциональна силе, развиваемой мышцей.

Адекватным раздражителем для рецепторов вестибулярного аппарата — для волосковых клеток макул (они расположены в вестибулюме) и волосковых клеток гребешков (находятся в расширенной части ампул полукружных каналов) являются соответственно линейное и угловое ускорения (ускорение Кориолиса). Сигнал от рецепторов идет в продолговатый мозг. Здесь расположены 4 вестибулярных ядра.

От вестибулярных ядер продолговатого мозга начинаются пути:

1. Вестибулоспинальный, который передает информацию от вестибулярного аппарата на мотонейроны спинного мозга и тем самым способствует сохранению равновесия при движении.

2. Вестибулоокулярный путь — этот путь используется для регуляции активности мышц глаза во время движения. Благодаря этому, несмотря на всевозможные перемещения тела, на сетчатке сохраняется объект наблюдения.

3. Вестибуломозжечковый путь — идет к мозжечку и несет туда информацию о положении тела в пространстве.

4. Лемнисковый путь — от вестибулярных ядер информация идет также к специфическим ядрам таламуса (по лемнисковому пути), а от них — в кору — в сенсорные зоны, расположенные в постцентральной извилине (в области проекции лица).

Афферентные связи вестибулярного аппарата. Г — глаз; М — мышца; Ж — желудок; ТК — тонкая кишка; ПМ — продолговатый мозг; CM — спинной мозг.

Висцеральный анализатор. интерорецепторы

Рецепторы, расположенные в органах, называются висцерорецепторами, или интерорецепторами.

Импульсация от интерорецепторов поступает в продолговатый мозг по волокнам IX (языкоглоточного) и Х (блуждающего) нервов, проходя через чувствительные ганглии — верхний и нижний ганглии языкоглоточного нерва, верхний и нижний ганглии блуждающего нерва. Затем она достигает ядра одиночного нерва (ядро солитарного тракта или висцеро-сенсорнос ядро), расположенного в продолговатом мозге. Отсюда начинается путь, идущий через вентробазальное (специфическое) ядро таламуса к коре, лимбической системе. В продолговатом и в среднем мозге часть информации используется для процессов регуляции деятельности органов. Часть импульсов от висцерорецепторов поступает в ретикулярную формацию, от нее — в неспецифические ядра таламуса, затем — диффузно к нейронам коры и лимбической системы. Поэтому при нарушении деятельности внутренних органов у человека возникают неосознанные эмоциональные состояния негативной окраски, например, «беспричинный страх» и т.п. И.М. Сеченов, называя это темным чувством, придавал большое значение потоку импульсов от рецепторов внутренних органов в определении настроения человека, его поступков, действии.

Рассмотрим отдельные виды висцерорецепторов.

Сердечно-сосудистая система. В сердце имеются механорецепторы, реагирующие на растяжение — в эндокарде, эпикарде, миокарде. Кроме этого имеются хеморецепторы, которые возбуждаются при недостатке кислорода или избытке углекислого газа (соответственно — гипоксемия, гиперкапния) и при избытке водородных ионов (ацидоз).

Легкие. В легких имеются три вида мехапорецепторов. В регуляции деятельности системы внешнего дыхания принимают участие и хеморсцспторы сосудистых областей.

Механорецепторы легких — это:

1) рецепторы растяжения,

2) ирритантные рецепторы и 3) рецепторы типа J — юкстаальвеолярные рецепторы капилляров.

Рецепторы растяжения возбуждаются во время глубокого вдоха.

Ирритантные рецепторы расположены в эпителиальном и субэпителиальном слоях всех воздухоносных путей. Особенно их много в области корней легких. Они не являются «чистыми» мехацоренепторами: частично реагируют на пары едких веществ — аммиака, эфира, табачного дыма, двуокиси серы, а также на химические вещества типа гистамина. Ирритантные рецепторы возбуждаются при быстром вдохе и быстром выдохе, наличии во вдыхаемом воздухе частичек пыли, содержании в воздухоносных путях слизи, содержании во вдыхаемом воздухе паров едких веществ, ряда химических веществ. Это возбуждение порождает явление одышки — частое и поверхностное дыхание, а также остановку дыхания, например, при наличии паров аммиака, кашель. Их возбуждение вызывает неприятные ощущения першения и жжения.

Рецепторы типа J — или юкстаальвеолярные рецепторы капилляров — находятся вблизи (юкста) капилляров малого круга кровообращения в интерстициальной ткани альвеол. Они возбуждаются в ответ на выделение ряда БАВ, в ответ на отек ткани и вызывают одышку.

Почки. Кровь. Для поддержания основных констант организма (гомеостаза) требуются непосредственно органы-исполнители и рецепторы, улавливающие гомеостатические показатели. Об этих рецепторах известно мало.

А) Осморецспторы. Они расположены во многих тканях и органах и чувствительны к изменению осмотического давления внутренней среды организма, являются разновидностью механорецепторов.

Б) Волюморецепторы: они предназначены для оценки объема жидкости, циркулирующей и находящейся и органе.

В) В последние годы подтверждено существование натриорецепторов — они реагируют на изменение уровня натрия в крови — и глюкозорецепторов, реагирующих на изменение уровня глюкозы в крови.

В желудке и кишечнике обнаружены механорецепторы, реагирующие на объем пищевого химуса и хеморецепторы. Механорецепторы содержатся в мочевом пузыре, возбуждаются в ответ на растяжение. Их активность порождает позыв к мочеиспусканию.

Тактильный анализатор служит для анализа всех механических влияний, действующих на тело человека. Рецепторы, предназначенные для этого, содержатся в коже, в частности, в эпидермисе, дерме и частично в подкожной клетчатке.

Выделяют 3 основных вида рецепторов:

1. Рецепторы давления, которые воспринимают силу механического воздействия (рецепторы силы).

2. Рецепторы прикосновения, или датчики скорости — это тельца Мейсснера.

3. Рецепторы вибрации — это датчики ускорения или датчики синусоидального изменения силы. Они реагируют лишь на вторую производную изменения силы — ускорение. Морфологически они представлены тельцами Паччини. Расположены в глубоких слоях дермы.

Боль. ноцицептивный анализатор

Боль — это ощущение, которое возникает при действии на организм повреждающих факторов. Это ощущение является важным для организма, т.к сообщает о наличии повреждающего фактора.

Существуют специфические рецепторы, воспринимающие повреждающий агент, в ответ на что и возникает ощущение боли. Их называют болевыми рецепторами. В связи с тем, что чувство боли — это понятие, характерное для человека, а не для животных, предложено называть эти рецепторы ноцицепторами (от лат. — ноцио — режу, повреждаю). Эти рецепторы расположены в коже, мышцах, в суставах, надкостнице, подкожной клетчатке и во внутренних органах и представляют собой свободные нервные окончания, разветвления дендрита афферного нейрона, несущего импульсы в спинной (или продолговатый — от рецепторов головы) мозг. Существуют 2 вида ноцицепторов: механоноцицепторы и хемоноцицепторы. Первые возбуждаются под влиянием механических воздействий. Хемоноцицепторы реагируют на химические вещества, в том числе на избыток водородных ионов, избыток ионов калия, а также на воздействия брадикинина, гистамина, соматостатина, вещества Р.

В спинном мозге происходит переключение импульсации на нейроны, дающие начало спиноталамическому пути (переднебоковой путь). Эти нейроны дают аксоны, которые доходят до таламуса — до его специфических ядер, в частности, до вентробазального ядра, т.е. до того же ядра, к которому приходят импульсы от тактильных рецепторов кожи и от пропонорецепторов. От специфических ядер импульсация поступает в соматосенсорную кору. Эти участки находятся в области постцентральной извилины и в глубине сильвиевой борозды. В этих участках мозга происходит анализ импульсной активности, осознание боли. Но окончательное отношение к боли возникает с участием нейронов лобной доли коры. Одновременно поток импульсации от ноцицепторов на уровне продолговатого и среднего мозга отходит по коллатералям в ретикулярную формацию, от нее — к неспецифическим ядрам таламуса, от них — ко всем участкам коры (диффузная активация нейронов всех участков коры), а также достигает нейронов лимбичсской системы. Благодаря этой информации болевая импульсация приобретает эмоциональную окраску — в ответ на болевую импульсациго возникает чувство страха, чувство боли и другие эмоции.

На уровне спинного и продолговатого мозга часть импульсов, идущих от ноцицепторов, по коллатсралям достигает мотонейронов спинного и продолговатого мозга и вызывает рефлекторные ответы, например, сгибательные движения. Часть информации от ноцицепторов на уровне спинного и продолговатого мозга по коллатералям отводится к эфферентным нейронам вегетативной нервной системы, поэтому возникают вегетативные рефлексы в ответ на болевой раздражитель (например, спазм сосудов, расширение зрачка).

Слуховой анализатор предназначен для восприятия периодических сгущений и разряжении воздушной или другой среды, которые создаются источником колебаний.

До того, как достигнуть рецепторов, реагирующих на эти колебания, волны должны пройти целый ряд специализированных периферических приборов, называемых наружным и средним ухом.

Наружное ухо состоит из ушной раковины, наружного слухового прохода, который перегораживается барабанной перепонкой от среднего уха.

Барабанная перепонка — это малоподатливая и слаборастяжимая мембрана.

Среднее ухо содержит цепь соединенных между собой косточек: молоточка, наковальни и стремечка. Стремечко является самой легкой косточкой во всем организме человека. Рукоятка молоточка прикреплена к барабанной перепонке, основание стремечка — к овальному окну. Слуховые косточки образуют систему рычагов, делающих более эффективной передачу звуковых колебаний из воздушного пространства наружного слухового прохода в жидкую среду внутреннего уха.

Внутреннее ухо соединено со средним с помощью овального окна, в котором неподвижно укреплена подножная пластинка стремечка. Внутреннее ухо содержит рецепторный аппарат двух анализаторов: вестибулярного (преддверие и полукружные каналы) и слухового, к которому относится улитка с кортиевым органом.

Наружное, среднее и внутреннее ухо.

Внизу — схема каналов улитки в развернутом виде и движения звуковой волны:

Кортиев орган: 1 — мембрана тектория; 2 — внутренние чувствительные клетки; 3 — наружные чувствительные клетки; 4 — нервные волокна; 5 — клетки Хенсена; 6 — клетки Клаудиса; 7 — базальная мембрана; 8 — спиральный ганглий

Проведение звуковых колебаний в улитке. Звуковая волна, воздействуя на систему слуховых косточек среднего уха, приводит в колебательное движение мембрану овального окна, которая, прогибаясь, взывает волнообразные перемещения перилимфы верхнего и нижнего каналов, которые постепенно затухают по направлению к вершине улитки. Колебания перилимфы передаются на вестибулярную мембрану, а также на полость среднего канала, приводя и движение эндолимфу и базилярную мембрану. Деформируясь, базилярная мембрана смещает волоски волосковых клеток относительно текториальной мембраны. В результате такого смещения возникает электрический разряд волосковых клеток.

Проводящие пути и центры слухового анализатора. Нейроны первого порядка слухового пути входят в состав спирального ганглия улитки. — (продолговатый мозг, нижние бугры четверохолмия, височная часть коры).

Переработка информации в центрах. Клетки кортиева органа кодируют информацию. Нижние бугры четверохолмия отвечают за воспроизведение ориентировочного рефлекса на звуковое раздражение (поворот головы в сторону источника звука). Слуховая кора принимает активное участие в обработке информации, связанной с анализом коротких звуковых сигналов, с процессом дифференцировки звуков, фиксацией начального момента звука, различения его деятельности. Слуховая кора ответственна за создание комплексного представления о звуковом сигнале, поступающем в оба уха раздельно, а также за пространственную локализацию звуковых сигналов. Нейроны, участвующие в обработке информации, идущей от слуховых рецепторов, специализируются по выделению (детектированию) соответствующих признаков. Особенно эта дифференцировка присуща нейронам слуховой коры, расположенным в верхней височной извилине.

Через зрительную систему человек получает более 80% информации о внешнем мире.

Основные показатели зрения. Зрение характеризуют следующие показатели:

1) диапазон воспринимаемых частот или длин волн света;

2) диапазон интенсивностей световых волн от порога восприятия до болевого порога;

3) пространственная разрешающая способность — острота зрения;

4) временная разрешающая способность — время суммации и критическая частота мельканий;

5) порог чувствительности и адаптация;

6) способность к восприятию цветов;

7) стереоскопия — восприятие глубины.

Глазное яблоко. Периферический отдел зрительного анализатора особенно сложен. Он представлен глазным яблоком. Последнее является системой, преломляющей световые лучи. К преломляющим средам относятся роговица, жидкость передней камеры глаза, хрусталик и стекловидное тело. Радужная оболочка, как диафрагма в фотоаппарате, регулирует поток света.

Сетчатка с нейроанатомической точки зрения — высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны. Фоторецепторные клетки — палочки и колбочки расположены в пигментном слое, наиболее удаленном от хрусталика.

Схема строения глазного яблока (А) и глазное дно в области слепого пятна (Б).

Они повернуты от пучка падающего света таким образом, что их светочувствительные концы спрятаны в промежутках между сильно пигментированными эпителиальными клетками. Эпителиальные пигментные клетки участвуют в метаболизме фоторецепторов и синтезе зрительных пигментов. Все нервные волокна, выходящие из сетчатки, лежат в виде переплетенного пучка на пути света, создавая препятствие на пути его попадания в рецепторы. Кроме того, в том месте, где они выходят их сетчатки по направлению к мозгу, отсутствуют светочувствительные элементы — это так называемое слепое пятно. Свет, попадающий на сетчатку в области слепого пятна не воспринимается элементами сетчатки, поэтому остается «дефект» изображения, проецируемого на сетчатку.

Палочки и колбочки отличаются как структурно, так и функционально. Зрительный пигмент (пурпур — родопсин) — содержится только в палочках. В колбочках находятся другие зрительные пигменты — йодопсин, хлоролаб, эритлаб, необходимые для цветового зрения. Палочка в 500 раз более чувствительна к свету, чем колбочка, но не реагирует на свет с разной длиной волны, т.е. она не цветочувствительна. В глазу человека около 6 млн. колбочек и 120 млн. палочек — всего около 130 млн. фоторецепторов. Плотность колбочек наиболее высока в центре сетчатки и падает к периферии. В центре сетчатки, в небольшом ее участке, находятся только колбочки. Этот участок называется центральной ямкой. Здесь плотность колбочек равна 150 тысячам на 1 квадратный миллиметр, поэтому в области центральной ямки острота зрения максимальна. Палочек в центре сетчатки очень мало, их больше на периферии сетчатки, но острота «периферического» зрения при хорошей освещенности невелика. В условиях сумеречного освещения преобладает периферическое зрение, а острота зрения в области центральной ямки падает. Таким образом, колбочки функционируют при ярком свете и выполняют функцию восприятия цвета, палочки воспринимают свет и обеспечивают зрительное восприятие при слабой освещенности.

Строение сетчатки глаза. Вверху — падающий свет; 1 — волокна зрительного нерва; 2 — ганглиоэные клетки; 3 — внутренний синаптический слой; 4 — амакриновые клетки; 5 — биполярные клетки; 6 — горизонтальные клетки; 7 — наружный синаптический слой, 8 — ядра рецепторов; 9 — рецепторы; 10 — пигментный слой эпителиальных клеток

Обработка информации в центрах. Обработка информации в этом анализаторе начинается на периферии — непосредственно на сетчатке — (верхние бугры четверохолмия, затылочная доля коры мозга).

Теория цветоощущения. Все исследователи сходятся на том, что цвет мы определяем на основе рецепции световой волны с помощью трех видов колбочек: один вид наиболее чувствителен к длине волны, дающий ощущение красного, другой вид — синего (фиолетового), а третий вид колбочек дает ощущение желтого (принятое ранее представление о наличии «зеленоузнающих» колбочек подвергнуто ревизии). Еще в прошлом веке физиолог Э. Геринг выдвинул представление о так называемых оппонентных цветах (красный-зеленый, синий-желтый, черный-белый). Оказалось, что его теория хорошо объясняет способность человека различать цвета.

Таким образом, трехкомпонентная теория цветовосприятия (колбочки трех видов) хорошо согласуется с оппонентной теорией.

Рецепторы обонятельного анализатора заложены в слизистой носа в области верхней носовой раковины. Они представляют собой чувствительные волосковые клетки, располагающиеся среди опорных клеток, включенных в эпителий. Нервные волокна, отходящие от чувствительных клеток, составляют обонятельные нервы, заканчивающиеся обонятельными луковицами. Аксоны этих клеток направляются в подкорковые центры, нейроны которых дают аксоны, поступающие в корковые центры — в области ункус гиппокампа. При взаимодействии молекулы с рецептором в нервном окончании генерируется потенциал, передающийся по волокнам в центры.

Вкусовые рецепторы заложены в сосочках языка. Они представляют собой вкусовые «почки». Чувствительные клетки в них окружены опорными и погружены в глубину. Небольшие углубления над ними заполнены слизью, в которую выстоят чувствительные волоски. Они воспринимают раздражение от веществ, имеющих к ним стереохимическое сродство. Нервные волокна, отходящие от почек, формируют вкусовые. Импульсы поступают в ядра одиночного пучка продолговатого мозга, отсюда нейроны передают импульсы в составе медиальной петли в ядра таламуса. Нейроны, заложенные здесь, передают импульсы в кору. Различают вкусовые ощущения следующих типов: сладкий, кислый, соленый, горький.

Всевозможные оттенки вкусовых ощущений зависят от множества дополнительных вкусовых и обонятельных раздражении, создаваемых определенными веществами. Обонятельный и вкусовой анализаторы тесно связаны в своей активности. Оба они принадлежат к легко адаптирующимся. Кроме того, оба могут поддаваться «тренировке» — понижению порогов возбуждения и повышению чувствительности к определенным факторам.

Тест по биологии (8 класс) на тему:
Контрольная работа на тему «Анализаторы» 8 класс биология

используется для контроля по теме «АНАЛИЗАТОРЫ»

Вложение Размер
analizatory_0.docx 29.21 КБ

Предварительный просмотр:

АНАЛИЗАТОРЫ. ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР. СТРОЕНИЕ И ФУНКЦИИ ГЛАЗА. АНАЛИЗАТОРЫ СЛУХА И РАВНОВЕСИЯ. КОЖНО-МЫШЕЧНАЯ ЧУВСТВИТЕЛЬНОСТЬ. ОБОНЯНИЕ. ВКУС

Задание. Выберите один правильный ответ.

1. Воспринимающим элементом любого анализатора являются:

A. Проводящие пути

Б. Кора головного мозга

2. Анализ внешних раздражителей происходит в:

A. Проводящих путях

Б. Коре головного мозга

3. Защищают глаза от пыли:

А. Брови и ресницы

В. Слезные железы

4. Наружная оболочка глазного яблока называется:

Б. Фиброзная (белковая)

5. Пигментированная часть сосудистой оболочки называется:

6. Изображение видимых предметов формируется на:

7. Способность расширяться и сужаться, пропуская необходимое количество света обеспечивает:

B. Стекловидное тело

8. Цветовое зрение обеспечивают:

B. Клетки радужной оболочки

9. Максимальное количество рецепторных клеток на сетчатке расположено в области:

Б. Слепого пятна

В. Желтого пятна

10. Светочувствительные рецепторы — палочки и колбочки находятся в

А.белочной оболочке глаза

Б.сосудистой оболочке глаза

В.стекловидном теле и хрусталике глаза

Г. сетчатке глаза

11. Расплывчатое изображение близкорасположенных предметов является признаком:

12. Ушная раковина входит в состав:

Б. Наружного уха

B. Внутреннего уха

Читайте также:  Верни себе зрение метод шичко бейтс

13. Барабанная перепонка преобразует звуковые колебания в:

14. Слуховые косточки расположены в полости:

A. Наружного уха

B. Внутреннего уха

15. Молоточек, наковальня и стремя:

A. Уравнивают атмосферное давление и давление в слуховой трубе

Б. Ослабляют колебания барабанной перепонки

B. Усиливают колебания барабанной перепонки

16. Улитка является органом:

17. Функцию вестибулярного аппарата выполняют:

Б. Барабанная перепонка

B. Полукружные каналы

18 . Установите соответствие между анализаторами и их структурами.

А) стекловидное тело 1) зрительный

Б) улитка 2) пространственный (вестибулярный)

В) колбочки 3) слуховой

Е) полукружные каналы

19. В слизистой оболочке носовой полости находятся:

A. Вкусовые рецепторы

Б. Осязательные рецепторы

АНАЛИЗАТОРЫ. ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР. СТРОЕНИЕ И ФУНКЦИИ ГЛАЗА. АНАЛИЗАТОРЫ СЛУХА И РАВНОВЕСИЯ. КОЖНО-МЫШЕЧНАЯ ЧУВСТВИТЕЛЬНОСТЬ. ОБОНЯНИЕ. ВКУС

Задание. Выберите один правильный ответ.

1. Каждый анализатор состоит

А) только из проводникового отдела

Б) только из рецептора

В) только из коркового отдела

Г) из периферического, проводникового , центрального отдела

А) преобразует сигналы в нервные импульсы

Б) превращает нервные импульсы в ощущения

В) только проводит возбуждение

Г) усиливает нервные импульсы

3. Сосудистая оболочка

А) защищает глаз

Б) пропускает световые лучи

В) преломляет световые лучи

Г) снабжает глаз кровью

4. при слабом свете зрачок рефлекторно:

В) не изменяется

Г) то расширяется, то сужаются

5. Цвет глаз зависит от пигмента, содержащегося в

А) радужной оболочке

Б) белочной оболочке

6. Светочувствительные клетки содержит

А) белочная оболочка

Б) сосудистая оболочка

В) радужная оболочка

А) участвует в питании глаза

Б) воспринимает свет

В) преломляет световые лучи

Г) защищает глаз

8. место выхода зрительного нерва, не воспринимающее лучей света, называется:

А) белое пятно Б) желтое пятно В) темная область Г) слепое пятно

9. место наилучшего видения (много палочек и колбочек):

А) белое пятно Б) желтое пятно В) темная область Г) слепое пятно

10. Установите соответствие между частями глаза и структурами, их составляющими.

ЧАСТИ ГЛАЗА СТРУКТУРЫ

А) веки 1) вспомогательный аппарат глаза

Б) зрачок 2) глазное яблоко

В) слёзные железы

Г) стекловидное тело

11. наружное ухо от среднего отделяет:

А) перепонка овального окна

Б) слуховая труба

В) барабанная перепонка

Г) наружный слуховой проход

12. Слуховые рецепторы находятся в

А) наружном слуховом проходе

Б) барабанной перепонке

В) улитке внутреннего уха

13. Вестибулярный аппарат находится

А) во внутреннем ухе

В) в наружном слуховом проходе

Г) в среднем ухе

14. В полости среднего уха находятся косточки

А) молоточек Д) стремечко

Б) подковка Е) уздечка

В) наковальня Ж) улитка

15. Почему воспаление среднего уха может возникнуть как осложнение при ангине, скарлатине и гриппе?

А) это случайное совпадение

Б) эти заболевания усиливают восприимчивость организма к инфекции

В) инфекция может попасть в среднее ухо через слуховую трубу

Г) больному человеку трудно следить за чистотой органов слуха

16. Ощущение вкуса пищи обеспечивают:

A. Вкусовые рецепторы

Б. Обонятельные рецепторы

B. Взаимодействие вкусовых, обонятельных, температурных и осязательных рецепторов

17. На корне языка расположены рецепторы, чувствительные к

А) сладкому Б) кислому В) горькому Г) солёному

18. В слизистой оболочке носовой полости находятся:

A. Вкусовые рецепторы

Б. Осязательные рецепторы

19. Анализ звуковых раздражителей происходит:

Зрительный Анализатор | Контрольная работа по анатомии

Оглавление:

1. Понятие об анализаторе

Представлен воспринимающим отделом — рецепторами сетчатой оболочки глаза, зрительными нервами, проводящей системой и соответствующими участками коры в затылочных долях мозга.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение). Правая сторона сетчатки каждого глаза передает через зрительный нерв «правую часть» изображения в правую сторону головного мозга, аналогично действует левая сторона сетчатки. Затем две части изображения — правую и левую — головной мозг соединяет воедино.

Так как каждый глаз воспринимает «свою» картинку, при нарушении совместного движения правого и левого глаза может быть расстроено бинокулярное зрение. Попросту говоря, у вас начнет двоиться в глазах или вы будете одновременно видеть две совсем разные картинки.

2. Строение глаза

Глаз можно назвать сложным оптическим прибором. Его основная задача -«передать» правильное изображение зрительному нерву.

Основные функции глаза:

оптическая система, проецирующая изображение;

— система, воспринимающая и «кодирующая» полученную информацию для головного мозга;

— «обслуживающая» система жизнеобеспечения.

Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой.

Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.

Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.

Хрусталик — «естественная линза» глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно «наводя фокус», за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза.

Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.

Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.

Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении, также они отвечают за периферическое зрение. Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное зрение), дают возможность различать цвета.

Наибольшее скопление колбочек находится в центральной ямке (макуле), отвечающей за самую высокую остроту зрения. Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.

Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.

Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.

Строение роговицы

Знание строения роговицы особенно пригодится тем, кто хочет понять, как проходит эксимер-лазерная коррекция и почему она проходит именно так, и тем, кому предстоит операция на роговице.

Эпителиальный слой — поверхностный защитный слой, при повреждении восстанавливается. Так как роговица — бессосудистый слой, то за «доставку кислорода» отвечает именно эпителий, забирающий его из слезной пленки, которая покрывает поверхность глаза. Эпителий также регулирует поступление жидкости внутрь глаза.

Боуменова мембрана — расположена сразу под эпителием, отвечает за защиту и участвует в питании роговицы. При повреждении не восстанавливается.

Строма — наиболее объемная часть роговицы. Основная ее часть — коллагеновые волокна, расположенные горизонтальными слоями. Также содержит клетки, отвечающие за восстановление.

Десцеметова мембрана — отделяет строму от эндотелия. Обладает высокой эластичностью, устойчива к повреждениям.

Эндотелий — отвечает за прозрачность роговицы и участвует в ее питании. Очень плохо восстанавливается. Выполняет очень важную функцию «активного насоса», отвечающего за то, чтобы лишняя жидкость не скапливалась в роговице (иначе произойдет ее отек). Таким образом эндотелий поддерживает прозрачность роговицы.

Количество эндотелиальных клеток в течение жизни постепенно снижается от 3500 на мм 2 при рождении до 1500 — 2000 клеток на мм 2 в пожилом возрасте. Снижение плотности этих клеток может происходить из-за различных заболеваний, травм, операций и т.д. При плотности ниже 800 клеток на мм 2 роговица становится отечной и теряет свою прозрачность. Шестым слоем роговицы часто называют слезную пленку на поверхности эпителия, которая также играет значительную роль в оптических свойствах глаза.

3. Рост и развитие глаза после рождения

Развитие глаза. К моменту рождения, даже у недоношенных, глаз вполне способен функционировать как орган зрения. Об этом свидетельствует двигательная реакция (откидывание головки назад, движения глаз, поворот головы) в ответ на включение электрической лампочки.

У новорожденного диаметры глазного яблока обычно на 25-35% короче, чем у взрослых, но соотношение диаметров почти столь же изменчиво. Глаз взрослого человека весит чаще всего 6-8 г, а глаз новорожденного-2-4 г. После рождения вес глаза увеличивается всего лишь в 2-3 раза, причем особенно интенсивно в течение первого года жизни; к 3-4 годам он почти достигает веса глаза взрослого человека. Диаметр роговицы у новорожденного почти такой же, как у взрослых, а глазная щель, хотя и вдвое: короче, но очень широко раскрывается. К тому же глаз сильно выступает вперед, так как глазница, в которой он расположен, очень неглубока.

Нередко у новорожденного отсутствует или очень слабо выражена реакция на свет. Это объясняется тем, что во время родов, вследствие сдавления черепа, в сетчатке легко возникают кровоизлияния. Через несколько дней нормальное состояние сетчатки восстанавливается, не оставляя никаких последствий. Иногда, в основном у недоношенных детей, в первые дни роговица кажется беловатой и непрозрачной, зрение отсутствует. Причина заключается в том, что еще не успела рассосаться оболочка, покрывающая зрачок.

Обычный для новорожденных синевато-серый цвет глаз объясняется незначительным содержанием пигмента в радужной оболочке. Постепенно образование темного пигмента усиливается, и через несколько месяцев глаза приобретают постоянную окраску. У жителей южных стран, как правило, пигментация выражена сильнее (глаза темные, карие), чем у жителей северных стран (глаза светлые, серые).

Слёзные железы функционируют у новорожденных, даже недоношенных, увлажняя переднюю поверхность глазного яблока. Однако рефлекторное усиление секреции появляется лишь на 3-5-м месяце жизни. Поэтому в раннем грудном возрасте дети не плачут, а кричат без слез. Это объясняется тем, что рефлекторное усиление секреции слёзных желез происходит под влиянием парасимпатических нервов, которые начинают полностью функционировать значительно позднее симпатических.

Одна из основных функций глаза — острота зрения , или способность распознавания минимальных по размеру объектов на максимальном расстоянии. Считается, что хорошо видит человек, который может с расстояния 50 м сосчитать пальцы на руке. При этом угол между сетчаткой глаза и сторонами пальца имеет ширину, равную 1 минуте. Такая способность -видеть под углом зрения, равным 1 минуте, -называется единицей (1,0), или, как иногда очень упрощенно говорят, стопроцентным зрением.

При рассматривании предметов на одинаковом расстоянии острота зрения тем выше, чем меньшего размера объекты удается рассмотреть. То есть острота зрения тем выше, чем на большем расстоянии человек может увидеть предметы одинакового размера. Обычно тесты для проверки остроты зрения помещаются на расстоянии 5 м. Наиболее часто для этих целей используется таблица Сивцева-Головина. Если рассматривать ее с расстояния 5 м, то остроте зрения, равной единице, соответствует четкое видение десятой сверху строчки.

Если человек видит знаки только первой строчки, это соответствует зрению, сниженному в 10 раз, то есть 0,1. При определении по таблице Сивцева-Головина с пятиметрового расстояния острота зрения при видении каждого последующего ряда букв выше на 0,1. Так, если ребенок различает лишь буквы третьего ряда, острота его зрения равна 0,3. В таблицах вместо букв могут быть кольца разной величины с разрывом, по различению которого судят об остроте зрения.

Для обследования детей, не знающих буквы, широко распространена таблица Орловой с рисунками. Перед тем как определять зрение у такого ребенка, следует подвести его к таблице и проверить, правильно ли он называет рисунки. При этом необходимо учитывать, что внимание детей быстро истощается.

Зрительные функции детских глаз имеют длительный период созревания. Для детей трех лет острота зрения 0,2-0,3 может считаться нормальной; для четырехлетних она равна 0,6, а ко времени поступления в школу острота зрения ребенка достигает 0,7-0,8. Если ребенок не способен различать с расстояния, равного 5 м, первую строчку таблицы, то есть его зрение меньше 0,1, тогда следует показывать ему пальцы с разного расстояния. Способность считать пальцы с расстояния каждого метра расценивается как 0,02: считает пальцы с одного метра -0,02, с двух -0,04, с трех -0,06, с четырех -0,08. Если же у ребенка нет предметного зрения и он не способен различать пальцы, а видит только руку у своего лица -острота его зрения равна 0,001. Если ребенок не различает даже свет, его зрение равно нулю (0), если же есть светоощущение, острота зрения расценивается как 1.

Как определить, видит ли грудной ребенок?

Для этого надо проверить, реагирует ли его зрачок на направленный на него яркий свет электрического фонарика. В возрасте одного месяца ребенок обычно следит за движущимися на расстоянии 20-40 см от его глаз предметами. К трем-четырем месяцам он уже видит более отдаленные от него предметы, а в четыре-шесть месяцев младенец зрительно реагирует на знакомые ему лица. Если малыш не видит того, что видят другие дети его возраста, родители должны показать его детскому офтальмологу.

Когда проверяют отдельно зрение каждого глаза, другой глаз должен быть прикрыт.

Неодинаковая реакция на выключение правого и левого глаза означает разницу в их остроте зрения.

Важным, но не единственным условием хорошего зрения является необходимость того, чтобы идущие от предметов лучи соединились точно на сетчатке. Это возможно при соответствии длины глаза и силы его оптики -рефракции. Соразмерность длины и оптики глаза называется эмметропией, несоразмерность — аметропией.

Если глаз маленького размера или оптика слаба, параллельные лучи сойдутся лишь позади сетчатки, а изображение на ней будет размытым. Чем ближе к такому глазу наблюдаемый им объект, тем лучи от него сойдутся дальше от сетчатки и тем хуже видит человек со слабой рефракцией. Так как он лучше видит дальние предметы, чем близкие, его называют дальнозорким.

У некоторых длина глаза слишком велика или сила его преломляющей оптики слишком сильна, поэтому параллельные лучи от далеких предметов сойдутся в глазу, не успев достигнуть сетчатки. На сетчатке могут собраться только расходящиеся лучи от близко расположенных объектов. Поэтому такая рефракция называется близорукостью -миопией. Компенсировать зрение при близорукости, разводить лучи и делать рефракцию слабее могут поставленные перед глазом «минусовые» стекла. При дальнозоркости на сетчатке могли бы соединиться лучи, имеющие сходящееся направление еще до попадания в глаз. Но в природе таких лучей нет.

Собирающиеся лучи могут быть созданы искусственно — приставлением к глазу выпуклого «плюсового» стекла. На рисунке показано изменение хода лучей при нахождении стекол перед глазами с разными видами несоразмерной рефракции. Глаз в некоторой степени сам может изменять свою преломляющую силу при рассматривании предметов, находящихся на разном расстоянии. Это возможно благодаря тому, что меняется кривизна, а следовательно, и преломляющая сила хрусталика.

Такое приспособление (фокусировка) глаза к видению на разном расстоянии называется аккомодацией.

Если ребенок плохо видит далеко лежащие предметы, а при приставлении перед глазом минусовых стекол зрение его улучшается, он, вероятно, близорукий. Дальнозоркий же ребенок, благодаря напряжению своей аккомодации, со зрением вдаль справляется чаще. А вот долго рассматривая близкие предметы, он может быстро уставать, так как его аккомодации не хватает для сведения на сетчатке очень расходящихся лучей. Если при взгляде ребенка вдаль приставление к глазу выпуклого стекла не ухудшает его зрение, не создает этим искусственно близорукость, то вероятно, ребенок дальнозоркий. Помимо таких простых, но субъективных методов, зависящих от ответов исследуемого, существуют и объективные способы определения рефракции, которые может применить только врач.

Правильно определить рефракцию и ответить на вопрос о том, нужны ли ребенку очки, может лишь врач-офтальмолог.

4. Острота зрения. Близорукость и дальнозоркость, профилактика этих заболеваний

При близорукости изображение приходится не на определенную область сетчатки, а расположено в плоскости перед ней. Поэтому оно воспринимается нами как нечеткое. Происходит это из-за несоответствия силы оптической системы глаза и его длины. Обычно при близорукости размер глазного яблока увеличен (осевая близорукость), хотя она может возникнуть и как результат чрезмерной силы преломляющего аппарата (рефракционная миопия). Чем больше несоответствие, тем сильнее близорукость. Близорукость может быть врожденной, а может появиться со временем, иногда начинает усиливаться — прогрессировать. При близорукости человек хорошо различает даже мелкие детали вблизи, но чем дальше расположен предмет, тем хуже он его видит. Задача любой коррекции этого нарушения зрения — ослабить силу преломляющего аппарата глаза так, чтобы изображение пришлось на определенную область сетчатки (то есть вернулось «в норму»).

При дальнозоркости изображение приходится не на определенную область сетчатки, а расположено в плоскости за ней. Что и приводит к нечеткости изображения, которое воспринимает сетчатка. Причиной этого служит несоответствие размеров глазного яблока и силы преломляющего аппарата. Это может происходить из-за малого размера глазного яблока и (или) слабости преломляющего аппарата. Увеличив ее, можно добиться того, что лучи будут фокусироваться там, где они фокусируются при нормальном зрении.

Дальнозоркость — состояние врожденное. Однако при небольших степенях в молодом возрасте она никак не проявляется, так как может быть компенсирована напряжением хрусталика глаза. В это время дальнозоркость может быть выявлена только при проведении специального обследования (при медикаментозном расширении зрачка хрусталик расслабляется и проявляется истинная рефракция глаза).

Поначалу глаз «справляется собственными силами». Так как затылочные доли головного мозга, ответственные за зрение, воспринимают нечеткую картинку, как расположенную слишком близко, они дают сигнал хрусталику на увеличение силы рефракции.

Читайте также:  Человека стремящегося приспособить науку к такой точке зрения смысл

При нормальном зрении такой механизм действует для рассматривания предметов вблизи, здесь он применяется «не по назначению», но дает необходимый результат. Однако когда степень дальнозоркости увеличивается или происходит возрастное снижение эластичности хрусталика (пресбиопия, или возрастная дальнозоркость), сил хрусталика уже не хватает и человек перестает хорошо видеть и вблизи, и вдали.

Естественная детская дальнозоркость. У новорожденного роговица и хрусталик более выпуклы, а размер их почти такой же, как у взрослых. В естественных условиях, т. е. в растянутом состоянии, радиус кривизны передней поверхности хрусталика примерно вдвое меньше, чем у взрослых. Расстояние между передними поверхностями роговицы и хрусталика, т. е. между границами основных переломляющих сред, также меньше, чем у взрослых.

Все это обусловливает более сильное преломление лучей. Вместе с тем у новорожденного передне-задний диаметр глаза примерно на 25% короче, чем у взрослых. В результате параллельные лучи, несмотря на более сильное преломление, сходятся позади сетчатки, а чтобы они сошлись на сетчатке, необходимо дополнительное усиление преломления путем аккомодации. Иными словами, глаз ребенка может быть назван дальнозорким.

Кажущаяся близорукость. Естественная детская дальнозоркость не препятствует, однако, ясному видению на расстоянии 4-6 см, т. е. более близком, чем это возможно не только для дально.121 зоркого, но и для нормального глаза взрослого. Такая кажущаяся близорукость объясняется очень большой силой аккомодации, превышающей 20D и связанной со способностью хрусталика принимать при сокращении ресничной мышцы почти шарообразную форму.

В течение первых лет жизни передне-задний диаметр глаза быстро растет, достигая к Г/а годам 92%, а к 3 годам 94% диаметра глаза взрослого человека. Соответственно уменьшается детская дальнозоркость. Она окончательно исчезает в школьном возрасте. Это означает, что в течение всего дошкольного возраста ребенок аккомодирует, следовательно, напрягает зрение, даже тогда, когда смотрит вдаль.

Кажущаяся близорукость также сохраняется в течение всего дошкольного возраста. Даже в 7-летнем возрасте расстояние до ближайшей точки ясного видения, как правило, не превышает 6-7 см. Поэтому, когда ребенок дошкольного возраста старательно рисует или внимательно рассматривает, он так низко склоняет голову, что легко принять его за близорукого.

В последующие годы эластичность хрусталика все заметней уменьшается, что ведет к падению силы аккомодации, а тем самым и к удалению от глаза ближней точки ясного видения.

Близорукость. Близорукость чаще всего связана с увеличением передне-заднего диаметра глаза. В близоруком глазу параллельные лучи сходятся не на сетчатке, а впереди нее. На сетчатке сойдутся лучи, исходящие от более близких предметов. При сильной близорукости дальняя точка ясного видения может находиться на расстоянии меньше 25 см от глаза. У взрослого при ее отстоянии на 25 см ближняя точка находится в 7 см от глаза, а при отстоянии дальней точки на 10 см ближняя находится на расстоянии 5 см. Для исправления близорукости применяют очки с вогнутыми стеклами, которые, уменьшая преломление, позволяют лучам, идущим от удаленных предметов, сходиться на сетчатке

У детей не кажущаяся, а настоящая близорукость выявляется, как правило, лишь после трехлетнего возраста. Чаще всего близорукость передается по наследству. Однако она может быть и приобретенной. Развитию близорукости способствует усиленное напряжение органа зрения во время занятий, рассматривания картинок, вышивания и др., особенно если не соблюдаются гигиенические требования к посадке, освещению помещений, к учебным и наглядным пособиям. Близорукость чаще развивается у ослабленных детей.

Близорукость может резко изменить поведение и даже характер ребенка. Он становится рассеянным, близко подносит предметы к глазам, прищуривается, горбится, жалуется на головные боли, боли в глазах, на то, что предметы перед глазами расплываются. Некоторые дети при сосредоточенном рассматривании предметов, особенно при утомлении, начинают косить глазами..

Детей с плохим зрением обычно во время занятий сажают ближе к источнику света и к столу воспитателя. Воспитатели должны следить за тем, чтобы выписанные детям очки. были правильно подобраны к глазам, а заушины очков удобно и плотно держались за ушами. При постоянном перекашивании, сползании очков они могут оказаться бесполезными и даже вредными, а потому при выявлении дефектов очки надо отдавать оптику для исправления. Дети, которым выписаны очки, обязательно должны пользоваться ими. В противном случае близорукость будет быстро прогрессировать.

Дальнозоркость.

При дальнозоркости человек ясно видит более или менее удаленные предметы, что объясняется уменьшенным передне-задним диаметром глазного яблока. В дальнозорком глазу параллельные лучи сходятся позади сетчатки. Чтобы они сошлись на сетчатке, глаз должен аккомодировать. Иными словами, без аккомодации дальнозоркий глаз вообще не может ясно видеть. Поскольку сила аккомодации частично используется при установке глаза на даль, ее остающейся силы недостаточно для ясного видения близких предметов. Поэтому при дальнозоркости ближняя точка ясного видения всегда отстоит от глаза на большее расстояние, чем при нормальном зрении.

Для исправления дальнозоркости необходимо усилить преломление при помощи очков с двояковыпуклыми стеклами). У детей дошкольного возраста дальнозоркость выявляется редко.

5. Бинокулярное зрение, развитие пространственного зрения у детей

Бинокулярное зрение. Человек значительную часть полей зрения обоих глаз видит одновременно и правым и левым глазом, что значительно улучшает зрительную оценку расстояний и позволяет видеть объемную форму предметов.

При бинокулярном зрении оба глаза должны быть всегда точно установлены на один и тот же пункт поля зрения, чтобы изображение каждой части видимого предмета занимало в обеих сетчатках совершенно одинаковое положение, иными словами, чтобы попадало на их идентичные, т. е. тождественные, точки. Клетки зрительной области коры больших полушарий, к которым; приходят импульсы от идентичных точек обеих, сетчаток, тесно связаны между собой. Их одновременное возбуждение позволяет четко видеть предмет.

Стоит слегка надавить сбоку глазное яблоко и тем самым несколько сместить его, как изображение раздваивается, становится неясным. Это происходит потому, что изображение попадает на неидентичные точки обеих сетчаток.

Установка глаза на ту или иную точку поля зрения обеспечивается шестью мышцами, которые одним концом прикрепляются к глазнице, а другим -к определенным участкам поверхности глазного яблока. Оно вращается в различном направлении в зависимости от того, какие из этих мышц сокращаются.

У новорожденного движения обоих глаз часто бывают недостаточно согласованны. Иногда движение одного глаза отстает от движения другого, и ребенок косит глазами; мало того, один глаз может даже остаться неподвижным. Наблюдая за ребенком, можно обнаружить, что его как бы безучастный взгляд по временам оживляется. Это происходит в тот момент, когда оба глаза согласованно фиксируют какой-то предмет и ребенок ясно его видит.

Если предмет медленно передвигается, ребенок пытается следить за ним глазами, а при неудаче начинает вращать глаза во все стороны проявляя беспокойство, которое проходит, как только взор снова упадет на предмет. Через несколько дней после рождения-движения обоих глаз становятся хорошо согласованными. Однако во время сна согласованность еще долгое время может нарушаться.

Косоглазие. Нарушения согласованного движения глазных яблок, а также дефекты оптической системы одного или двух глаз могут привести к устойчивому косоглазию. Сначала оно бывает заметным только при утомлении или сосредоточенном рассматривании какого-либо предмета, а в дальнейшем усиливается и становится постоянным. Острота зрения косящего глаза резко снижается, ухудшается возможность правильно определять расстояние между предметами, их размеры, объем.

У детей косоглазие чаще всего появляется на 2-3-м году жизни, иногда становится заметным после какой-либо тяжелой болезни или испуга. Очень важно своевременно выявить косоглазие и показать ребенка врачу, так как оно хорошо излечимо лишь в начальных стадиях. При возникновении косоглазия в одном глазу вся зрительная нагрузка переносится на здоровый глаз, а больной глаз, перестав упражняться, постепенно перестает функционировать и атрофируется. При косоглазии назначают очки, даже если ребенку 1-2 года. Выписанные очки дети должны носить постоянно, снимая их только при умывании и отходе ко сну.

Развитие пространственного зрения. Известны случаи, когда взрослый человек, родившийся слепым, после операции становится зрячим. Такому человеку, хотя и не сразу, но довольно быстро удается фиксировать взором предметы. Гораздо труднее ему ориентироваться в пространстве: он не может определить зрением ни величину или форму предмета, ни его положение в пространстве -вверху или внизу, справа или слева, близко или далеко. Лишь сопоставляя зрительные ощущения с хорошо знакомыми осязательными и двигательными, он постепенно научается пользоваться зрением.

У ребенка уже в первые месяцы жизни одновременная информация, получаемая с рецепторов различных анализаторов -зрительного, кожного, двигательного, слухового, становится источником образования в коре больших полушарий многочисленных условных связей, позволяющих ориентироваться в пространстве. Двигая ручками, ребенок сначала случайно прикасается к. висящей перед ним игрушке. В этот момент в кору больших полушарий поступает сигнализация с мышц руки о ее положении в пространстве, с мышц шеи о положении головы, с мышц глазного яблока о направлении зрительной оси, с рецепторов сетчатки о видимой игрушке, с кожных рецепторов о прикосновении к предмету.

После неоднократного повторения такой информации в коре больших полушарий образуются соответствующие условные связи, в результате которых ребенок может произвести движение руки, необходимое для того, чтобы прикоснуться к игрушке. Другая игрушка, висящая рядом с первой, станет источником несколько измененной информации о положении руки, зрительной оси, а потому измененным окажется и движение руки, необходимое для прикосновения к игрушке.

С возрастом зрительная информация становится все более сложной и дифференцированной. Ребенок ощупывает предмет, вертит его в руках, сжимает. Начав ходить, ребенок идет к предмету, бросает его, снова находит -знакомство с пространством расширяется. Так постепенно, в результате образования множества новых условных связей ребенок получает возможность при помощи зрения познавать окружающий мир.

Одновременно развивается способность определять степень удаленности предмета и ощущать его объемность, или рельефность, т. е. неодинаковую удаленность его частей от глаза. О расстоянии до предмета информируют глазные мышцы.

По мере приближения предмета правый глаз поворачивается влево, а левый -вправо. Чем ближе предмет к глазу, тем больше становится угол между зрительными осями. Если один предмет находится в 20-30 см от глаза, а другой-сзади первого в 2-3 м от глаза, можно наблюдать интересное явление двоения. Когда человек смотрит двумя глазами на ближний предмет, дальний двоится; при переводе зрения на дальний, двоится ближний предмет. Это происходит потому, что изображение нефиксируемой точки попадает не на идентичные точки сетчатки).

При фиксации ближней точки изображение дальней оказывается в правом глазу левее центральной ямки, а в левом -правее ее. В этом нетрудно убедиться, если прикрывать рукой то один, то другой глаз: исчезает точка на стороне закрытого глаза. При фиксации дальней точки получается обратная картина: изображение ближней точки в правом глазу правее, а в левом -левее центральной ямки. Если закрыть один глаз, исчезнет точка на стороне, противоположной закрытому глазу.

Двоение точек, находящихся ближе или дальше той, на которую направлен взор, не только не мешает видению, но в некоторой мере облегчает определение расстояния от точек до глаза, а главное, дает возможность различать рельеф предмета, видеть его объемно. Как известно, расстояние между зрачками глаз около 60 мм. Следовательно, при бинокулярном зрении, особенно когда предмет не плоский и находится недалеко, человек видит его с двух разных позиций, а следовательно, неодинаково.

Уже в первые годы жизни образуются многочисленные условные связи, на основании которых» степень несоответствия отдельных участков изображения предмета на сетчатке позволяет судить об объемном рельефе фигуры. Дети 3-4 лет уже видят форму предметов объемно и легко отличают на расстоянии круг от шара, квадрат от куба, треугольник от пирамиды или конуса, хотя названий геометрических фигур они не знают.

6. Гигиена зрения. Гигиеническое требование к освещению

Организация занятий, требующих напряжения зрения.

Чрезмерное напряжение зрения, если оно часто повторяется, способствует развитию близорукости, а нередко и косоглазия. Поэтому необходимо большое внимание уделять организации такой обстановки, которая облегчает функцию органов зрения. Глаза напрягаются при недостаточном освещении, а также при сильной аккомодации. Поэтому надо следить за освещением помещений, в которых занимаются дошкольники.

На занятиях, связанных с длительным напряжением глазных мышц (рисование, лепка, вышивание), время от времени надо отвлекать детей от работы каким-либо замечанием или показом наглядных пособий, чтобы переключить зрение с близкого расстояния на далекое и дать отдых ресничной мышце.

Особое внимание надо обращать на правильную с гигиенической точки зрения организацию просмотра диапозитивных фильмов и телевизионных передач . Количество кадров в диапозитивном фильме не должно превышать для младших групп детского сада 25-30, средних 35-40 и старших 45-50. Детям 3-5 лет рекомендуется смотреть не более одного фильма (15-20 минут), а старшим (6-7 лет) -два фильма, если общая их продолжительность не превышает 20-25 минут.

Экран располагают на уровне глаз дошкольников, сидящих на стуле. Так как яркость освещения экрана зависит от срока службы лампы в фильмоскопе, то надо следить, чтобы этот срок не превышал 20-25 часов, т. е. 40-60 сеансов. Расстояние первого ряда стульев от экрана надо делать равным двойной ширине экрана Между рядами стульев должно быть не менее 50 см, а последний ряд стульев располагают не далее 4 л» от экрана.

Смотреть телевизионные передачи следует не чаще двух раз в неделю. Телевизор надо установить на столике высотой 1-1,2 м над полом и по испытательной таблице получить хорошее качество изображения. Первый ряд стульев должен быть не ближе 2, а последний не дальше 5 м от экрана; в промежутке устанавливаются еще 5 рядов по 4-5 стульев. Продолжительность телевизионной передачи для детей 3-4 лет должна быть не более 10-15, а для детей 5-7 лет -не более 25-30 минут.

Освещение. При хорошем освещении все функции организма протекают более интенсивно, улучшается настроение, повышается активность, работоспособность ребенка.

Наилучшим считается естественное дневное освещение. Для большей освещенности окна игровых и групповых комнат обычно смотрят на/юг, юго-восток или юго-запад. Свет не должны заслонять ни противоположные здания, ни высокие деревья.

Чем больше площадь застекленной поверхности окон, тем светлее в комнате. Минимально допустимой нормой считается такая площадь, при которой в ясный день на самом отдаленном от окна месте освещенность равна 100 люксам.

Отсюда следует, что, чем больше площадь помещения, тем больше должна быть световая поверхность окон. Отношение площади остекленной поверхности окон к площади пола называется световым коэффициентом. Для игровых и групповых помещений в городах принята норма светового коэффициента, равная 1:4-1:5; в сельской местности, где здания, как правило, строят на открытых со всех сторон площадках, световой коэффициент допускается равным 1:5-1:6. Световой коэффициент для остальных помещений должен быть не менее 1 : 8.

Чем дальше место от окна, тем хуже его освещенность естественным светом. Для достаточной освещенности глубина помещения не должна превышать двойное расстояние от пола до верхнего края окна. Если глубина помещения равна 6 м, то верхний край окна должен быть на расстоянии 3 м от пола.

Ни цветы, которые могут поглощать до 30% света, ни посторонние предметы, ни шторы не должны мешать прохождению света в помещение, где находятся дети. В игровых и групповых комнатах допустимы только узкие занавески из светлой, хорошо стирающейся ткани, которые располагаются на кольцах по краям окон и применяются в тех случаях, когда необходимо ограничить прохождение в помещение прямых солнечных лучей. Матовые и замазанные мелом оконные стекла в детских учреждениях не допускаются. Необходимо заботиться, чтобы стекла были гладкие, высокого качества.

Для лучшего освещения детских помещений стены и мебель окрашивают в светлые тона, отражающие наибольшее количество света. Нижнюю часть стен (1,5-J,8 м от пола), подвергающуюся большому загрязнению, окрашивают светлыми масляными красками, устойчивыми к влиянию горячей воды, мыла и дезинфицирующих растворов. Остальную часть стен покрывают клеевой краской, а потолки помещений белят.

Для искусственного освещения обычно пользуются электричеством. Достаточное освещение групповых комнат площадью в 62 кв. м дают 8 ламп мощностью 300 ватт каждая, подвешенных в два ряда (по 4 лампы в ряду) на уровне 2,8-3 м от пола. В спальнях площадью в 70 кв. м надо иметь 8 ламп по 150 ватт каждая. Кроме ‘ того, в спальнях и примыкающих к ним коридорах необходимо дополнительное ночное освещение с помощью ламп синего цвета. Лампы должны быть помещены в арматуру, смягчающую их яркость и дающую рассеянный свет. Установлено, что — прямой, не огражденный арматурой свет снижает работоспособность, сильно слепит глаза, вызывает резкие тени. Так, при прямом освещении тень от туловища понижает освещенность рабочего места на 50%, а от руки даже на 80%.

Значительное преимущество перед обычным электрическим освещением имеет освещение так называемым «дневным светом» -люминесцентными источниками света. Люминесцентные лампы дают высокую световую отдачу, позволяющую значительно увеличить норму освещенности. Их спектр в своей видимой части близок к спектру естественного света; кроме того, они дают рассеянный свет, не создающий резких теней. Потребление электроэнергии при люминесцентном освещении почти в три раза меньше, чем при электрическом той же интенсивности.

Естественное и искусственное освещение не достигает цели, если отсутствует надлежащий уход за источниками света и помещениями, в которых они находятся. Так, например, замерзшее стекло поглощает до 80% световых лучей, грязь может снижать прохождение света на 25% и больше. Значительно снижается мощность электрических ламп, по мере их эксплуатации. Поэтому необходим систематический уход как за стеклами окон и арматурой, так и за, самим помещением, его стенами и потолком. Надо следить также за своевременной сменой устаревших ламп.

Список использованной литературы

1. Авербах М.И. Схематический анатомо-физиологический очерк глаза. В кн.: Авербах М.И. Офтальмологические очерки. М.-Л..1940. с. 20-66.

2. Воробьёва Е.А. Новые данные о функциональной анатомии путей оттока водянистой влаги глаза. Арх. анат., гистол., эмбриол.т.36., вып. 3., 1959, с. 93-99.

3. Рева Г.В. Развивающийся глаз. Владивосток, Дальпресс., 1998. 256 с.

4. Хамидова М.Х. Развитие глаза и проводниковых зрительных путей у человека до и после рождения. Ташкент, Медицина, 1972, 162 с.

Все файлы на сайте, прежде чем выкладываются, проверяются на вирусы. Поэтому мы даем 100% гарантию чистоты файлов.

Скачать бесплатно Зрительный Анализатор | Контрольная работа по анатомии с:

Источники:
  • http://allbest.ru/k-3c0b65635b3bc78b5c53b89421206d27-6.html
  • http://studentbank.ru/view.php?id=8074
  • http://nsportal.ru/shkola/biologiya/library/2016/12/25/kontrolnaya-rabota-na-temu-analizatory-8-klass-biologiya
  • http://zreni.ru/download/referat/496-zritelnyy-analizator-kontrolnaya-rabota-po-anatomii.html