Меню Рубрики

Зрение рыба не может тем более

Зрение рыб — это очень важный орган ориентировки в окружающей среде, и это так, независимо от того, является рыба хищной, всеядной или преимущественно употребляющей растительную пищу. Но способ её жизни и питания накладывает отпечаток на свойства зрения.

Если рыба мелкая и питающаяся взвешенными в воде организмами, то и зрение её приспособлено рассматривать мелкие, даже микроскопические объекты на небольшом расстоянии. А вот донные рыбы, обычно двигающиеся по самому дну и часто в полумраке и в мутной водичке, муть которой они же сами и подняли со дна, могут видеть не очень хорошо, но пользоваться для поиска преимущественно обонянием и осязанием. Например, карповые — сазаны, карпы, и другие — двигаясь по дну, ощупывают слой ила перед собой своими длинными усами, очень чувствительно реагируя на всякие живые движущиеся в иле организме: моллюсков, червей, рачков, и немедленно выдвигая в нужный момент рот-трубку, чтобы засосать найденную добычу.

Зрение у рыб хищников

Хищники должны хорошо видеть рыбу, которой они питаются. И на довольно большом расстоянии. Аналогично этому все или большинство рыб должны иметь «дальнее» зрение в целях собственной безопасности — для защиты от тех же самых хищников. Единственным исключением из этого принципа может являться умение хорошо прятаться. Многие рыбы имеют способность менять цвет или рисунок своей кожи или прятаться в норки.

Рыба как индикаторы загрязнения

Большинство рыб достаточно хорошо видят вокруг себя, особенно спереди и сбоку; они прекрасно различают мелкие предметы в ближнем плане — метров до 1—1,5. А такие рыбы, как форель, хариус, жерех, щука, в состоянии обнаруживать движущиеся в воде объекты с довольно приличного расстояния. Но часто именно такие рыбы нетерпимо относятся к гамутнённости или загрязнённости воды, вплоть до того, что являются для нас индикаторами загрязнения.

Вода — более плотная среда, чем воздух. Поэтому лучи света в ней распространяются медленнее, рассеиваясь в толще. Согласно новейшим научным данным, слой воды толщиной в сто метров считается уже совершенно непрозрачным. Общая реакция рыбы на прямой свет и освещенность проявляется по-разному.

Поведение рыб в зимнее время

В зимнее время, например, большинство рыб не любят «засвечиваться» в местах яркого освещения. Когда сверлят во льду лунки, видимо, рыба прекрасно видит эти множественные снопы света от лунок в прозрачной, отстоявшейся подо льдом воде. Это её пугает — и не спроста! — и она уходит от незадачливых рыбаков в сторону от таких мест.

Рыболовы тогда говорят, что лунки «засвечены». Есть рыбы, которые и в летнее время предпочитают держаться на глубине. В то же время многих рыб, особенно верховых, ничуть не смущает обилие света. Щука, к примеру, часами может стоять у самой поверхности воды, греясь под лучами солнца. На зрение рыб, безусловно, влияют прозрачность воды и ее освещенность в зависимости от времени суток, погодных условий (ясно, пасмурно, очень пасмурно и т. п.), а также в зависимости от глубины, на которой обитает рыба. Зимой, поскольку водоемы прозрачнее, видимость объектов подо льдом примерно в два раза выше, чем летом. Все это говорит о том, что при определении дальности видимости различных предметов рыбами следует учитывать многие факторы, в том числе особенности работы зрительного аппарата рыб.

Строение глаза рыбы

На световоспринимающей оболочке их глаза — сетчатке — расположены два вида светочувствительных элементов. Это колбочки (короткие и утолщенные) и палочки (более удлиненные). Колбочки располагаются в центре сетчатки, палочки по краям, ближе к периферии. Колбочки восприимчивы только к яркому дневном свету, благодаря им рыбы различают цвета (Цветовое зрение рыб). Палочки реагируют только на слабый свет и работают поэтому в сумерках и ночью. Правда, в сумеречное время функционируют частично и колбочки.

Вообще, глаза у рыб устроены несколько иначе, чем у человека и наземных животных. Хрусталик глаза у рыб твердый и не способен изменять форму с тем, чтобы «сфокусировать» расстояние до объекта. Однако рыбы могут видеть отчетливо и на разных расстояниях за счет перемещения хрусталика ближе к сетчатке с помощью особой сократительной мышцы. Из-за преломления луча зрения на границе двух сред — воздуха и воды — рыба видит предметы над водой так, как будто смотрит через круглое окно. Чем ближе рыба к поверхности воды и к берегу, тем больше вероятность того, что она обнаружит рыболова. Осторожные рыбы при этом спешат укрыться в глубине. В любом случае рыболову желательно меньше передвигаться в месте ловли, не стоять во весь рост, соблюдать правила маскировки.

Зрение рыб. Как видят рыбы

Органическая жизнь — часть природы. Поэтому все живые организмы на Земле существуют в тесном взаимодействии с окружающей средой. Система органической и неорганической жизни на Земле достаточно устойчива в значительной степени благодаря способности живых организмов чутко реагировать на малейшие изменения внешней среды. Смысл этой реакции заключается в том, чтобы поддерживать состояние организма максимально адекватным окружающей среде. Если функциональных возможностей организма для приспособления к изменению среды не хватает, то для выживания потребуются органические изменения, которые в случае их безусловной пользы для вида закрепляются генетически. Именно так исторически возникали важнейшие ароморфозы, на основе которых осуществлялось видообразование.

Таким образом, своевременная рецепция изменений параметр ров внешней (и внутренней) среды — жизненно важная функция любого индивидуума, а также вида в целом.

Поэтому раздражимость является одним из основных признаков живого, обязательным свойством всех живых (растительных и животных) клеток. Благодаря ей все живые существа объединяются с окружающим миром как бы в единое информационное поле, нарушение которого пагубно отражается на индивидууме популяции, виде и биосе в целом. Раздражимость является унифицированной реакцией клеток и тканей организма на изменения внешней среды. На организм из внешней среды действуют слишком много раздражителей, отличающихся качественно и количественно. Поэтому реактивность организма должна быть избирательной.

Рыбы воспринимают большое количество сигналов из внешней среды: от ионных до механических. В физиологии стимулы внешней среды принято делить на благоприятные и неблагоприятные (табл. 2.1). Строго говоря, это деление с точки зрения эволюционного развития нелепо, так как любая информация из внешней среды животному необходима для своевременной адекватной рН акции. Это тот случай, когда справедливо высказывание «проинформирован — значит защищен».

Внешние стимулы, воспринимаемые рыбами

Электромагнитная и тепловая энергия Свет

Тепло/холод Электричество Магнитная энергия

Механическая энергия Звук/вибрация

На большое значение факторов внешней среды для нормального функционирования животного организма указывал патриарх физиологии И. П. Павлов. В его «башне молчания» создавалась полнейшая изоляция животного от внешнего мира. В отсутствие внешних раздражителей у подопытных животных развивались психические патологии,

У рыб контакт с внешней средой еще более плотный, чем у высших позвоночных. Поэтому и контроль за изменениями во внешней среде у рыб должен быть более чутким. Этому способствует хорошо развитый рецепторный аппарат. Рыбы реагируют на видимый человеком свет, электромагнитные поля, гравитационное поле Земли, низко- и высокочастотные колебания среды, атмосферное давление, образование волн на поверхности водоема, химический состав воды, изменение скорости потока воды, ее температуры, механическое раздражение. Практически все известные человеку физико-химические и биотические изменения, возникающие в водоеме, рецептируются рыбой посредством хорошо развитых сенсорных систем.

Мощный афферентный поток, исходящий от органов зрения, акустико-латеральной системы, органов химической рецепции, механорецепторов, проприорецепторов, электрорецепторов, магниторецепторов, терморецепторов, органов рецепции давления, стекается в центральную нервную систему, где подвергается анализу, на основании которого принимается оптимальное решение метаболического или этологического характера. Такой мониторинг за изменениями окружающей среды позволяет рыбе с наибольшей биологической эффективностью адаптировать свой обмен веществ или запустить локомоторные реакции с целью удовлетворения индивидуальных физиологических потребностей и в конечном счете биологических потребностей стаи, популяции, вида в целом, распознавать наиболее важные сигналы из внешнего мира и адекватно на них реагировать. Другая информация из внешнего мира, менее значимая на данный момент, либо вообще не воспринимается, либо как бы принимается к сведению, но не сопровождается сомато-вегетативными реакциями животных.

Рис. 2.1. Общая схема восприятия раздражителей из окружающей среды рыбами

Для восприятия и анализа наиболее важных сведений из внешней среды эволюция снабдила животных высокоспециализированными структурами — сенсорными системами, которые обладают высокой чувствительностью и избирательной реактивности по отношению к свету, звуку, химическому составу и температуре окружающей среды, электромагнитному полю, изменению гравитации, давления, Сенсорная система включает в себя рецепторный аппарат (глаз, ухо, ампулы Лоренцини и др.) и анализирующий аппарат в составе центральной нервной системы (рис. 2.1).

Обращает на себя внимание то, что сенсорные органы у рыб не так четко дифференцированы по функциям, как у высших позвоночных. Например, у рыб трудно назвать орган слуха. Экспериментально установлено, что рыбы реагируют на звук. Но за восприятие колебаний воды у рыбы отвечают несколько органов: боковая линия, лабиринт, плавательный пузырь, а у пластинчатожаберных еще и особые образования — ампулы Лоренцини на голове и окончаниях лицевого нерва. Более того, термин «органы чувств» применительно к рыбам зачастую лишен первоначального смысла, так как сенсорная информация может и не поступать в центральную нервную систему. В этом случае она не подвергается чувственной оценке, следовательно, и структуры, отвечающие за эту рецепцию факторов внешней среды, нельзя называть органами чувств.

Тем не менее сенсорные системы рыб обеспечивают надежную связь между водной средой и организмом рыбы. Тот факт, что при отсутствии больших полушарий мозга (и тем более кортикальных структур) рыбы проявляют эмоциональные реакции на действие раздражителей из внешней среды, за формирование которых у рыб отвечает лимбическая система, оправдывает применение термина «сенсорные» (чувственные) системы при изучении физиологии рыб.

Под зрением принято понимать способность к рецепции электромагнитного излучения определенного (воспринимаемого глазом человека) спектра (рис. 2.2.). В ряду сенсорных органов рыб органам зрения принадлежит особая роль. Свет ввиду своей высокой скорости и прямолинейности распространения обеспечивает животное уникальной информацией. Органы зрения информируют животное одновременно о месте расположения, контурах, величине, подвижности или неподвижности объекта, направлении движения и его удаленности от животного. Источником света является Солнце. Все жизненные ритмы рыб прямо или опосредованно связаны с цикличностью солнечной активности. Поэтому фоторецепция- это и пусковой механизм биологических циклов. Экспериментально установлено, то видимый для рыб спектр электромагнитного излучения лежит в той же зоне, что и у высших позвоночных. Однако водная среда определенным образом изменяет диапазон восприятия электромагнитного излучения. Так, инфракрасные лучи (ИК) не проникают в воду, поэтому не воспринимаются глазом рыб.

Рис. 2.2. Место видимого света в спектре электромагнитных излучений

Ультрафиолетовые лучи (УФ) также рыбами не воспринимаются, хотя в свое время экспериментально удавалось выработать условный рефлекс у некоторых видов на этот тип излучений. Впоследствии было установлено, что глаз рыбы не способен к восприятию ультрафиолетовых лучей. Однако они могут создавать эффект флюоресценции различных органических и неорганических частиц в воде, на что рыбы и реагируют.

Будучи непрозрачными телами, рыбы создают в воде характерные оптические поля благодаря способности рассеивать света воде. Важную роль здесь играет и форма тела рыбы. Уплощение тела в вертикальной плоскости уменьшает оптическое поле для наблюдателя, располагающегося ниже рыбы. Горизонтальное уплощение, наоборот, увеличивает оптическое поле рыбы и делает ее более заметной для обитателей нижних горизонтов водоема. Для большинства пелагических рыб характерны округлые формы дорсальной и латеральных поверхностей тела. Их маскировка обеспечивается неодинаковым расположением отражающих пластин и, следовательно, более или менее равномерным рассеиванием света в разных направлениях.

Рассеивание света возникает благодаря особым оптическим свойствам как наружных покровов рыб, так и среды их обитания. В разных водоемах при различной их освещенности (характер облачности, расположение солнца относительно горизонта, сезон года) оптическое поле одной и той же особи будет иметь разные характеристики (рис. 2.3). Имеет значение и местоположение наблюдателя.

Отражающая поверхность рыб формируется прежде всего, структурой их кожи. В наружных слоях кожи рыб располагаются кристаллы гуанина и гипоксината, которые имеют вид тонких блестящих пластин — своеобразных микроскопических зеркал обладающих высокой отражательной способностью. Эти миниатюрные зеркала не только отражают свет с определенной длиной волны, но и производят его поляризацию. Благодаря этим кожным структурам рыбы имеют серебристую окраску тела.

Читайте также:  Культура с точки зрения межкультурной коммуникации

Под и над отражательными пластинами гуанина и гипоксината располагается большое количество меланофоров и иридоцитов — структур, отвечающих за цветовую окраску тела рыбы. В результате взаимодействия отражающих пластин и пигментации кожи возникает специфический оптический эффект. Именно поэтому субъективная оценка окраски рыб бывает столь неоднозначной. Данное явление хорошо известно аквариумистам, которые для демонстрации эффектной цветовой гаммы рыб используют источники света с разными характеристиками; устанавливают их под разными углами по отношению к наблюдаемому объекту, применяют светоотражающие и светопоглощающие ширмы, грунты и прочее оборудование аквариума.

Таким образом, задача аквариумиста прямо противоположна той, что стоит перед рыбой в естественной среде обитания. Аквариумист, демонстрируя рыб на выставке, создает максимальное оптическое поле рыбы. В природных условиях рыба миниминизирует свое оптическое поле, так как у пелагической рыбы другая биологическая задача — стать наименее заметной для хищника.

Рис. 2.3. Оптическое поле рыбы при различных условиях: а — влияние солнечного света и толщи воды; б и в — влияние расположения наблюдателя. Интенсивность отраженного света (R) характеризует длина стрелки

В случае если стратегия самозащиты рыбы иная (напугать противника, предупредить о своей ядовитости), окраска рыбы может быть яркой, а сама рыба заметна издалека. Подобная стратегия Распространена в биоценозах коралловых рифов.

Иногда отражающие пластины и органы пигментации тела выполняют еще одну функцию — коммуникативную.

Так, у тропических стайных рыб, например голубых и красных неонов, «неоновая» полоса и яркая красно-голубая окраска тела служат для быстрого распознавания членов стаи в мутных воя притоков реки Амазонки. В других случаях (бойцовая рыбка) яркая окраска тела сами, служит для привлечения самки и запугивания соперника.

Цветовое зрение. Для рыб характерно цветовое зрение. Однако цвета рыбы воспринимают не в таких красках, как человек. Водная среда может быть сильно пигментирована за счет планктонных организмов или неорганических веществ. Таким образом, вода выступает в качестве светового фильтра. Кроме того, водная поверхность производит поляризацию света, что также приводит к искажению цветовой гаммы. Наконец, особенности морфологу зрительного анализатора рыб предполагают особое восприятие цветов.

Экспериментально показано, что ганглионарный слой глаза рыб по-своему анализирует возникающий в фоточувствительных клетках потенциал действия. Цвет объекта формируется в результате двух процессов: суммирования основных цветов с одной стороны и вычитания с другой стороны (рис. 2.4). В формировании цветовой палитры участвуют и структуры головного мозга, например зрительные бугры среднего мозга.

К. Фриш методом условных рефлексов доказал способной! пескаря, гольяна, колюшки и других рыб различать кормушки, окрашенные в различные цвета.

Рис. 2.4. Спектральный состав видимого рыбами света

Цветовая чувствительность глаза рыб утрачивается при уменьшении общей освещенности объекта до 1 лк и менее.

Свет как внешний раздражитель и, следовательно, зрение имеет неодинаковое значение для разных видов рыб. Планктонофаги и пелагические рыбы значительно зависят от света. При их искусственном ослеплении они утрачивают способность активно питаться.

Рыбы-планктонофаги имеют хорошо развитую зрительную систему, у них крупные глаза, большой зрачок, сложно организованная ретина и хорошо развитые отделы головного мозга, отвечающие за формирование зрительных образов (прежде всего средний мозг).

Активность таких видов рыб, как уклея, верховка, плотва, вобла связана с освещенностью водоема. При изменении освещенности от 1 до 500 лк пищевая активность рыб не меняется. Критическим уровнем освещенности является 0,1 лк, при котором рыбы прекращают активный поиск зоопланктона и поедают рачков только при непосредственном контакте с ними.

Для донных рыб (бентософагов) свет и зрение имеют меньшее значение. Так, при ослеплении осетровых их пищевая активность практически не менялась. Глаза у них мелкие, ретина чаше всего однослойная, средний мозг менее развит. Пищевая активность рыб наблюдается и при хорошей освещенности, и при полной темноте. Многие хищные рыбы открытых вод при поиске и захвате добычи также полагаются исключительно на зрение, в связи с чем их пищевая активность проявляется только днем. У таких хищников, как окунь, судак, хорошо развит зрительный анализатор. Но среди хищных рыб есть и придонные виды, а также виды с пиком активности в ночное время. Понятно, что у этих хищников зрение развито хуже, второстепенно или вообще не имеет значения, по крайней мере, при поиске пиши. Оптическая рецепция глаза основана на способности сетчатки поглощать достаточное количество световых квантов за счет разрушения светочувствительного пигмента. Установлено, что в сетчатке глаза большинства рыб с хорошим зрением присутствуют четыре фоточувствительных пигмента: родопсин с максимумом поглощения света при длине волны около 500 нм; порфиропсин с максимумом поглощения света при длине волны 522нм; йодопсин с максимумом поглощения света при длине волны 562 нм; цианопсин с максимумом поглощения света при дайне волны 62 нм. Измерения показали, что для рецепции синего света необходима структура, поглощающая излучение с длиной волны оком 450 нм, для восприятия зеленого цвета — соответственно около 525 нм и красного — около 555 нм. Исходя из этого, можно предположить, что у рыб могут быть проблемы с восприятием сине- фиолетовой части видимого спектра и более широкие возможности рецепции оранжево-красной части.

Однако практика показывает, что шкалы световосприятия рык зависят от их местообитания (химического состава, цвета воды и прозрачности). У морских рыб шкала световосприятия сдвинута в коротковолновую часть спектра, у пресноводных рыб — в длинноволновую.

Характер световосприятия зависит и от глубины обитаний рыбы, так как по мере увеличения глубины происходит резкое усиление поглощения водной средой красных и УФ-лучей. На больших глубинах преобладают лучи из синей части спектра. У донных обитателей (скаты, камбала) и глубоководных рыб воспринимаемый спектр сужен до 410-650 нм, у рыб из поверхностных слоев расширен до 400-750 нм.

В основе спектральной чувствительности глаза рыб лежит на сколько явлений. Во-первых, в ретине глаза рыб обнаружены все четыре известных у хордовых животных светочувствительных пигмента, хотя для цветового зрения достаточно и двух.

Во-вторых, все колбочки сетчатки глаза рыб (клетки, обеспечивающие цветовое восприятие) имеют в своем составе жировые капли, представляющие собой раствор каротиноидов. И прежде чем световой луч попадет на фоточувствительный пигмент, подвергается фильтрации раствором каротиноидов.

Теоретически с такими морфологическими и физиолого-биохимическими особенностями глаза рыбы могут иметь очень насыщенные цветом зрительные образы. По крайней мере, механизм цветового восприятия у высших наземных позвоночных (включая человека) проще.

Среда обитания наложила отпечаток на функции и морфологию органов зрения рыб. Известно, что за восприятие света у рыбы отвечает не только глаз. Так, у круглоротых имеются светочувствительные клетки на коже. При помощи этих образований животные определяют силу источника света.

У всех рыб имеется эпифиз — структура в составе промежуточного мозга со специфическими функциями. Однако изначально это светочувствительный орган. У миноги он имеет вид пузырька и расположен на голове близко к коже, которая в этом месте прозрачна. Это, по существу, теменной глаз, при помощи которого минога довольно сносно ориентируется в воде — определяет силу и направление источника света.

Настоящий глаз, конечно, более совершенен и по строению и по функциям. Относительная величина глаз у рыб может колебаться в значительных пределах в зависимости от образа жизни и места обитания.

Морской окунь, судак, щука и многие другие рыбы имеют сравнительно крупные глаза. А глаза различных сомов, пескаря, вьюна относительно размеров их тела небольшие.

У морских глубоководных рыб, приспособившихся к жизни при очень низкой освещенности, глаза достигают огромных размеров. Диаметр их глаза может составлять 30-50 % длины головы (Polyipnus sp., Bathymacrops sp., Mycthophium sp.). Однако у других глубоководных видов рыб глаза могут быть редуцированы или вообще отсутствовать (Idiacanthus sp., Ipnops sp.). Для пещерных рыб также характерно большое разнообразие в строении глаза: от хорошо развитого до полностью редуцированного.

На глубине 800-900 м рыбы и другие водные животные широко применяют такое явление, как люминесценция, для облегчения зрительной коммуникации (табл. 2.2).

2.2. Характеристика свечения некоторых морских организмов

Что видят рыбы

Что видят рыбы

Глаз — совершенный оптический прибор. Он напоминает фотографический аппарат. Хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик чечевице-образный и может изменять свою кривизну. Это дает возможность приспосабливать зрение к расстоянию.

Под водой человек видит очень плохо. Способность преломлять световые лучи у воды и хрусталика глаза наземных животных почти одинакова, поэтому лучи собираются в фокусе далеко позади сетчатой оболочки. На самой же сетчатке получается неясное размытое изображение.

Хрусталик глаза у рыб шарообразен, он лучше преломляет лучи, но не может менять форму. И все же в какой-то степени рыбы могут приспосабливать зрение к расстоянию. Они достигают этого приближением или удалением хрусталика от сетчатой оболочки с помощью особых мышц.

Практически рыба в прозрачной воде видит не далее чем на 10—12 метров, а ясно — только в пределах полутора метров.

Угол зрения у рыб очень велик. Не поворачивая тела, они могут видеть предметы каждым глазом по вертикали в зоне около 150° и по горизонтали до 170°. Объясняется это расположением глаз по обеим сторонам головы и положением хрусталика, сдвинутого к самой роговице.

Совершенно необычным должен казаться рыбе надводный мир. Без искажения рыба видит лишь предметы, находящиеся прямо над ее головой — в зените. Например, облако или парящую чайку. Но чем острее угол входа светового луча в воду и чем ниже расположен надводный предмет, тем более искаженным кажется он рыбе. При падении светового луча под углом 5—10°, особенно если водная поверхность неспокойна, рыба вообще перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса в 97,6°, полностью отражаются от водной поверхности, и она представляется рыбе зеркальной. В ней отражаются дно, водные растения, плавающие рыбы.

С другой стороны, особенности преломления лучей позволяют рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом. Сидящий на берегу человек не увидит рыбу — она скрыта береговым выступом, а рыба увидит человека.

Фантастически выглядят полупогруженные в воду предметы. Вот как, по словам Л. Я. Перельмана, должен представляться рыбам человек, находящийся по грудь в воде: «Для них мы, идя по мелководью, раздваиваемся, превращаемся в два существа: верхнее — безногое, нижнее— безголовое с четырьмя ногами! Когда мы удаляемся от подводного наблюдателя, верхняя половина нашего тела все сильнее сжимается в нижней части; на некотором расстоянии почти все надводное туловище пропадает, — останется лишь одна свободно реющая голова».

Даже опустившись под воду, человеку трудно проверить, как видят рыбы. Невооруженным глазом он вообще ничего четко не увидит, а наблюдая через застекленную маску или из окна подводной лодки, увидит все в искаженном виде. Ведь в этих случаях между глазом человека и водой будет еще и воздух, который обязательно изменит ход световых лучей.

Как видят рыбы предметы, расположенные вне воды, удалось проверить подводной съемкой. С помощью особой фотоаппаратуры были получены снимки, которые полностью подтвердили высказанные выше соображения. Представление о том, каким кажется надводный мир подводным наблюдателям, можно составить, опустив под воду зеркало. При определенном наклоне мы увидим в нем отражение надводных предметов.

Особенности строения глаза рыб, так же как и других органов, зависят прежде всего от условий обитания и образа их жизни.

Зорче других — дневные хищные рыбы: форель, жерех, щука. Это и понятно: они обнаруживают добычу, главным образом, зрением. Хорошо видят рыбы, питающиеся планктоном и донными организмами. У них зрение тоже имеет первостепенное значение для отыскивания добычи.

Читайте также:  Богл взаимные фонды с точки зрения здравого смысла

Наши пресноводные рыбы — лещ, судак, сом, налим— чаще охотятся ночью. Им нужно хорошо видеть в темноте. И природа позаботилась об этом. У леща и судака в сетчатой оболочке глаз находится светочувствительное вещество, а у сома и налима имеются даже специальные пучки нервов, воспринимающие самые слабые световые лучи.

Рыбки аномалопс и фотоблефарон, обитающие в водах Малайского архипелага, пользуются в темноте собственным освещением. Фонарики расположены у них около глаз и светят вперед, совсем как автомобильные фары. Свечение вызывают бактерии, находящиеся в особых колбочках. Фонарики по желанию хозяев могут зажигаться и гаснуть. Аномалопс выключает их, поворачивая светящейся стороной внутрь, а фотоблефарон задергивает фонарики, как шторой, складкой кожи.

От образа жизни зависит и расположение глаз на голове. У многих донных рыб — камбалы, сома, звездочета — глаза расположены в верхней части головы. Это позволяет им лучше видеть врагов и добычу, проплывающих над ними. Интересно, что у камбал в младенческом возрасте глаза расположены так же, как у большинства рыб, — по обеим сторонам головы. В это время камбалы имеют цилиндрическую форму тела, живут в толще воды и кормятся зоопланктоном. Позднее они переходят на питание червями, моллюсками, а иногда и рыбками. И тут с камбалами происходят замечательные превращения: левая сторона начинает у них расти быстрее, чем правая, левый глаз переходит на правую сторону, тело становится плоским, и в конце концов оба глаза оказываются на правой стороне. Закончив превращение, камбалы опускаются на дно и ложатся на левый бок — не зря их метко прозвали лежебоками.

Глаза камбал имеют и другую особенность. Они могут поворачиваться в разные стороны независимо один от другого. Это позволяет рыбам одновременно следить за приближением добычи или врага справа и слева.

В.Сабунаев, «Занимательная ихтиология»

Зрение рыба не может тем более

Органы чувств. Зрение.

Орган зрения — глаз по своему устройству напоминает фотографический аппарат, причем хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик имеет чечевицеобразную форму и способен изменять свою кривизну, поэтому животные могут приспосабливать зрение к расстоянию. Хрусталик у рыб шарообразный и не может менять форму. Зрение их перестраивается на различные расстояния при приближении или удалении хрусталика от сетчатой оболочки.

Оптические свойства водной среды не позволяют рыбе видеть далеко. Практически пределом видимости у рыб в прозрачной воде считают расстояние 10—12 м, а ясно рыбы видят не далее 1,5 м. Лучше видят дневные хищные рыбы, живущие в прозрачной воде (форель, хариус, жерех, щука). Некоторые рыбы видят в темноте (судак, лещ, сом, угорь, налим). У них в сетчатке глаза есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.

Угол зрения рыб очень велик. Не поворачивая тела, большинство рыб способно видеть каждым глазом предметы в зоне около 150° по вертикали и до 170° по горизонтали (рис. 1).

Иначе видит рыба предметы, находящиеся над водой. В этом случае вступают в силу законы преломления световых лучей, и рыба может видеть без искажения лишь предметы, которые находятся прямо над головой— в зените. Наклонно падающие световые лучи преломляются и сжимаются в угол 97°,6 (рис. 2).

Чем острее угол входа светового луча в воду и ниже предмет, тем более искаженным видит его рыба. При падении светового луча под углом 5—10°, особенно если водная поверхность неспокойна, рыба перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса, изображенного на рис. 2, полностью отражаются от водной поверхности, поэтому она представляется рыбе зеркальной.

С другой стороны, преломление лучей позволяет рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом (рис. 3).вне преломления лучей водной поверхностью может увидеть человека.

Рыбы различают цвета и даже оттенки.

Цветовое зрение у рыб подтверждается их способностью изменять окраску в зависимости от цвета грунта (мимикрия). Известно, что окунь, плотва, щука, которые держатся на светлом песчаном дне, имеют светлую окраску, а на черном торфяном дне — более темную. Особенно ярко выражена мимикрия у различных камбал, способных с изумительной точностью приспосабливать свою окраску к цвету грунта. Если камбалу пустить в стеклянный аквариум, под дно которого подложить шахматную доску, то на спине у нее появятся клетки, подобные шахматным. В природных условиях камбала, лежащая на галечном дне, настолько сливается с ним, что становится совершенно незаметной для человеческого глаза. В то же время ослепшие рыбы, в том числе и камбала, не меняют своего цвета и остаются темно-окрашенными. Отсюда ясно, что изменение рыбами окраски связано с их зрительным восприятием.

Опыты кормления рыб из разноцветных чашечек подтвердили, что рыбы отчетливо воспринимают все спектральные цвета и могут различать близкие оттенки. Новейшие опыты, основанные на спектрофотометрических методах, показали, что многие виды рыб воспринимают отдельные оттенки не хуже человека.

Методами пищевой дрессировки установлено, что рыбы воспринимают и форму предметов — отличают треугольник от квадрата, куб от пирамиды.

Известный интерес представляет отношение рыб к искусственному свету. Еще в дореволюционной литературе писали о том, что костер, разведенный на берегу реки, привлекает плотву, налимов, сомов и улучшает результаты ловли. Последние исследования показали, что многие рыбы — килька, кефаль, сырть, сайра — направляются к источникам подводного освещения, поэтому в настоящее время электрический свет используют в промысловой ловле. В частности, этим способом успешно ловят кильку на Каспии, а сайру у Курильских островов.

Попытки применить электрический свет в спортивной ловле пока не дали положительных результатов. Проводились такие опыты зимой в местах скопления окуня и плотвы. Во льду прорубали лунку и ко дну водоема опускали электролампу с рефлектором. Затем производили ловлю на мормышку с подсадкой мотыля в соседней лунке и в лунке, вырубленной в стороне от источника света. Оказалось, что количество поклевок вблизи лампы меньше, чём вдали от нее. Аналогичные опыты производились при ловле судака и налима ночью; они также не дали положительного эффекта.

Для спортивной ловли рыбы заманчиво использование приманок, покрытых светящимися составами. Установлено, что рыбы схватывают светящиеся приманки. Однако опыт ленинградских рыболовов не показал их преимуществ; обычные приманки рыбы во всех случаях берут охотнее. Литература по данному вопросу также не убедительна. В ней описываются только случаи поимки рыб на светящиеся приманки, а сравнительных данных о ловле в тех же условиях на обычные приманки не приводится.

В итоге надо считать, что целесообразность использования света и светящихся приманок на ловле еще окончательно не выяснена и необходимо дальнейшее детальное изучение этого вопроса.

Особенности зрения рыб позволяют сделать некоторые выводы, полезные для рыболова. Можно с уверенностью сказать, что находящаяся у поверхности воды рыба не в состоянии видеть стоящего на берегу рыболова далее 8—10 м и сидящего или ловящего взабродку — далее 5—6 м; имеет значение при этом и прозрачность воды. Практически можно считать, что если рыболов не видит рыбу в воде, когда смотрит на хорошо освещенную водную поверхность под углом, близким к 90°, то и рыба не видит рыболова. Поэтому маскировка имеет смысл только при ловле на мелких местах или поверху в прозрачной воде и при забросе на небольшое расстояние. Наоборот, предметы снаряжения рыболова, близкие к рыбе (поводок, грузило, сачок, поплавок, лодка), должны сливаться с окружающим фоном.

Наличие слуха у рыб долгое время отрицалось. Такие факты, как подход рыб по звонку к месту кормежки, привлечение сомов ударами по воде особой деревянной колотушкой («клочение» сомов), реакция на свисток парохода, еще мало что доказывали. Возникновение реакции могло объясняться раздражением других органов чувств. Новейшие опыты показали, что рыбы реагируют на звуковые раздражения, причем эти раздражения воспринимаются и слуховыми лабиринтами, имеющимися в голове рыб, и поверхностью кожи, и плавательным пузырем, играющим роль резонатора.

Какова чувствительность звуковых восприятий у рыб, точно не установлено, но доказано, что они улавливают звуки хуже человека, причем высокие тона рыбы слышат лучше, чем низкие. Звуки, возникающие в водной среде, рыбы слышат на значительном расстоянии, а звуки, возникающие в воздушной среде, слышат плохо, так как звуковые волны отражаются от поверхности и плохо проникают в воду. Учитывая эти особенности, рыболов должен остерегаться шуметь в воде, но может не опасаться напугать рыбу, громко разговаривая. Интересно использование звуков в спортивной ловле. Однако вопрос о том, какие звуки привлекают рыб, а какие отпугивают, не изучен. Пока звук используют лишь при ловле сомов, «клочением».

Орган боковой линии.

Орган боковой линии есть только у рыб и земноводных, постоянно живущих в воде. Боковая линия чаще всего представляет собой канал, который тянется вдоль туловища от головы до хвоста. В канале разветвляются нервные окончания, с большой чувствительностью воспринимающие даже самые незначительные водные колебания. При помощи этого органа рыбы определяют направление и силу течения, ощущают токи воды, образующиеся при смывании подводных предметов, чувствуют движение соседа в стае, врагов или добычи, волнение на поверхности воды. Кроме того, рыба воспринимает и колебания, которые передаются воде извне — сотрясение почвы, удары по лодке, взрывную волну, вибрацию корпуса парохода и т. п.

Подробно изучена роль боковой линии в схватывании рыбой добычи. Многократно поставленные опыты показали, что ослепленная щука хорошо ориентируется и безошибочно схватывает движущуюся рыбку, не обращая внимания на неподвижную. Слепая щука с разрушенной боковой линией теряет способность ориентации, натыкается на стенки бассейна и. будучи голодной, не обращает внимания на плавающую рыбку.

Учитывая это, рыболов должен вести себя осторожно и на берегу и в лодке. Сотрясение почвы под ногами, волна от неаккуратного движения в лодке могут насторожить и надолго распугать рыбу. Не безразличен для успеха ловли характер движения в воде искусственных приманок, так как хищники при преследовании и схватывании добычи ощущают создаваемые ею водные колебания. Уловистее, безусловно, окажутся те приманки, которые наиболее полно воспроизводят признаки обычной добычи хищников.

Органы обоняния и вкуса.

Органы обоняния и вкуса у рыб разделены. Органом обоняния у костистых рыб служат парные ноздри, расположенные по обеим сторонам головы и ведущие в носовую полость, выстланную обонятельным эпителием. В одно отверстие вода входит, а из другого выходит. Такое устройство органов обоняния позволяет рыбе ощущать запахи растворенных или взвешенных в воде веществ, причем на течении рыба может чувствовать запахи только по струе, несущей пахучее вещество, а в тиховодье — только при наличии токов воды.

Орган обоняния слабее всего развит у дневных хищных рыб (щука, жерех, окунь), сильнее — у ночных и сумеречных рыб (угорь, сом, карп, линь).

Вкусовые органы расположены в основном во рту и глоточной полости; у одних рыб вкусовые сосочки находятся в области губ и усов (сом, налим), а иногда расположены по всему телу (сазан). Как показывают опыты, рыбы способны различать сладкое, кислое, гор » кое и соленое. Так же, как и обоняние, чувство вкуса сильнее развито у ночных рыб.

В литературе имеются указания о целесообразности добавлять в прикормку и насадку различные пахучие вещества, будто бы привлекающие рыбу: мятное масло, камфару, анисовые, лавро-вишневые и валерьяновые капли, чеснок и даже керосин. Неоднократное использование этих веществ в корме не показало сколько-нибудь заметного улучшения клева, а при большом количестве пахучих веществ, наоборот, рыба почти совсем переставала ловиться. Аналогичный результат дали опыты, поставленные над аквариумными рыбами, которые неохотно ели корм, смоченный анисовым маслом, валерьянкой и т. п. Вместе с тем естественный запах свежей прикормки, особенно конопляного жмыха, конопляного и подсолнечного масла, ржаных сухарей, свежесваренной каши, без сомнения, привлекает рыбу и ускоряет ее подход к кормушке.

Значение тех или иных органов чувств при отыскании пищи различными рыбами показано в табл. 1.

Читайте также:  Проблемы техники с точки зрения философии

Как видят рыбы?

Рыбы по своей природе близоруки. Большинство рыб ясно различает предметы в пределах одного-двух метров, а максимальная дальность зрения у них не превышает 15 метров. Дело в том, что природные воды имеют довольно низкую прозрачность, поэтому глаза рыб не приспособлены к дальнему видению. Зато на близком расстоянии рыбы видят хорошо. Некоторые рыбы обладают очень острым зрением на расстоянии до 5 см от глаз.

Хищные рыбы (таймень, щука), ориентирующиеся на свою добычу при помощи органов зрения, обладают относительно хорошим зрением. Они различают предметы на расстоянии 10-15 метров.

У леща, карася и линя, обитающих в мутной воде, ведущих стайный образ жизни и отыскивающих корм с помощью органов обоняния и осязания, зрение довольно слабое.

У рыб есть цветовое зрение. Рыбы многих видов различают примерно те же цвета, что и человек. И даже более тонко реагируют на оттенки голубого, синего и фиолетового цветов. Пескарь, приученный получать корм из красной миски, всегда легко отыскивает ее из многих таких же мисок других цветов.

Есть рыбы, которые обитают на большой глубине (около 1500 м), куда не проникает свет. У рыб, живущих на глубинах, где есть какая-то естественная освещенность, глаза достигают огромных размеров, у некоторых становятся телескопическими, что увеличивает их чувствительность и расширяет поле зрения. Это позволяет рыбе использовать тот минимум света, который исходит от органов свечения различных глубоководных животных. Такие глаза способны воспринимать свет, интенсивность которого составляет всего 10 -10 от естественной освещенности на поверхности моря.

У многих рыб на внутренней поверхности сосудистой оболочки имеется отражательный слой клеток (тапетум), наполненных блестящими кристалликами гуанина. Его роль заключается в том, что он не пропускает световые лучи к тканям, лежащим позади сетчатки,и возвращает их повторно на сетчатку. Это усиливает возможность глаза в условиях слабой освещенности.

У некоторых сверхглубоководных рыб, обитающих на очень больших глубинах в полной темноте, глаза редуцируются.

У каждого глаза у рыб свое поле зрения, а оба глаза вместе охватывают большой сектор обзора — около 270 градусов. Это означает, что рыба видит предметы не только находящиеся впереди и по сторонам, но и несколько сзади.

Такой хороший обзор рыба имеет благодаря строению глаз и их расположению по бокам головы.

Глаза рыбы не имеют век, так что они никогда не закрываются.

Зрение рыб

Закройте один глаз! Теперь откройте и закройте другой. Что вы видели? Практически одно и то же — и правым и левым глазом, ведь обоими глазами вы смотрите вперед. Теперь представьте, что то же самое проделает рыба. Закроет правый глаз — увидит то, что находится с левой стороны от нее, закроет левый — увидит то, что с правой. Но ведь рыба не может закрывать глаза — значит, она одновременно смотрит и вправо и влево! И видит совсем разные картины. Как же рыба в них разбирается?

Расположенные на разных сторонах головы, глаза рыбы приспособлены к монокулярному зрению, так как шаровидный хрусталик далеко сдвинут вперед, к самой роговице (рис.1), в глаз проникают лучи не только спереди, но также сверху и с боков, — и поэтому поле зрения рыбы весьма обширно!


Рис.1.

Считая вместе с движением глаз, угол зрения охватывает по горизонтали 166-170°, по вертикали — около 150°; а бинокулярное зрение возможно только в очень ограниченном поле (приблизительно 130°). И именно в этом поле рыба ясно различает предметы. Положение глаз рыбы служит в этом отношении определяющим фактором. Если рыба хочет рассмотреть объект, она вынуждена быстро развернуться, чтобы он оказался в поле зрения обоих глаз — в узком конусообразной формы бинокулярном пространстве (рис.2).


Рис.2.

Предметы, находящиеся над поверхностью воды, рыба способна видеть через так называемое «зрительное окно». Это окно равняется окружности на поверхности воды, образованной углом в 97,6° с вершиной, расположенной в точке нахождения рыбы (рис.3).


Рис.3.

Через это окно рыбы видят от зенита до горизонта во всех направлениях. Это полусферическое зрительное поле содержит все предметы, находящиеся над плоскостью, касательной к поверхности воды у края окна. Но искажение и яркость предметов весьма различны. Предметы, находящиеся прямо над головой, кажутся больше (они воспринимаются рыбой почти без искажений), и следует помнить об этом при ловле пугливых рыб. По мере опускания предмета по меридиану воздушной полусферы к горизонту, его изображение будет уменьшаться как в ширину, так и в длину и в то же время искажаться, хотя линейное расстояние от рыбы до предмета неизменно. Предмет становится видимым более смутно в связи с тем, что лучи, образующие с поверхностью воды все меньший угол, сильно отражаются от поверхности и только частично попадают в глаз рыбе. Явление преломления света вызывает также расхождение между истинным и наблюдаемым местоположением предмета в пространстве. При этом наибольшее расхождение между ними будет при угле падения лучей света в 45°, уменьшаясь по мере приближения к 90°.

В отличие от прочих животных, у рыбы глаз имеет эллипсоидную форму и снабжен плоской роговицей. Преломляющая сила глаза зависит не только от кривизны роговицы и хрусталика, но и от свойств материала, из которого они состоят, а роговица у рыб, как и у человека, не способна в воде преломлять световые лучи.

В большинстве своем рыбы близоруки — они хорошо видят только на близком расстоянии — около 1 м, а дальше 10-12 м вообще ничего увидеть не могут. В сетчатке у костистых рыб имеются специальные воспринимающие элементы — колбочки и палочки. Причем у рыб дневных преобладают колбочки, а у добывающих пищу в сумерки и ночью — изобилуют палочки: так, у ночного налима насчитывается 260 палочек на той же площади, где у щуки имеется всего 18! На свету состояние сетчатки изменяется: колбочки выдвигаются к свету, и наоборот, в сумерки к свету сдвигаются палочки.

У рыб (как и у людей) различная концентрация световоспринимающих элементов приводит к тому, что они видят отчетливо только специально рассматриваемый предмет. Хищным рыбам, подстерегающим свою добычу, необходимо очень широкое поле зрения, чтобы хорошо видеть достаточно обширный участок, и им такое зрение не очень подходит. Однако и здесь природа нашла выход — световоспринимающие приборы глаза устроены так, что они способны передавать в мозг информацию не об интенсивности падающего на них света, а лишь о характере изменения освещенности. Как только произойдет хоть малейшее изменение освещенности палочек и колбочек, они немедленно телеграфируют об этом мозгу и ждут следующих изменений, чтобы дать следующую телеграмму. И так всю жизнь.

У большинства хищных рыб очень сильна двигательная пищевая реакция на движение объектов питания. Формами защиты рыб-жертв от рыб-хищников являются образование стай, неподвижность и т.д. Чтобы спастись от хищников, мирные рыбы должны издали увидеть приближающуюся опасность, поэтому малейшая, едва заметная подвижность крупных объектов, их силуэтов, теней и неясные мелькания хорошо воспринимаются этими рыбами и вызывают у них оборонительную реакцию. Так что во время рыбалки учитывайте эти особенности зрения нехищных рыб и постарайтесь своим страшным видом и не менее страшной тенью их не распугать. Кстати, именно эта четко выраженная защитная реакция на тень лежит в основе способа ловли кефали на рогожку.

Когда вы ловите на блесну, живца или другую двигающуюся приманку, учитывайте еще один важный фактор. Восприятие движений рыбами можно измерить в так называемых оптических моментах, которые характеризуются способностью рыб воспринимать прерывистость света. Оптический момент человека равен 1/18-1/24 с. Это значит, что, когда в зрительном поле человека проходит 18-24 одинаковых предмета в секунду, они сливаются вместе, принимая вид неподвижной линии. По мере уменьшения этой скорости последовательно движущиеся предметы воспринимаются сначала как мелькание, а затем как отдельные перемещающиеся предметы. Ихтиологи определяют оптические моменты с помощью специальной оптомоторной установки. Например, у черноморских рыб, а также леща и окуня они вдвое меньше, чем у человека (1/57-1/67 с), это означает, что по сравнению с человеком рыбы способны воспринимать вдвое более быстрые движения. У пресноводных: гольяна, линя, карася, толстолобика, щуки и верховки оптический момент примерно вдвое больший (1/18-1/27 с). Такое разнообразие оптических моментов у рыб связано, по-видимому, с различным восприятием движений. Небольшие величины оптических моментов позволяют некоторым «зрительным рыбам» успешно питаться подвижными объектами и избегать своих врагов. Любой движущийся предмет, размеры которого меньше или равны величине рыбы, являются зрительным пищевым сигналом, а движущийся предмет большего размера — зрительным оборонительным сигналом. Практически все рыбы реагируют на движущуюся тень, но восприятие движений и характер ответных реакций зависят от образа жизни рыб. С этим связана более грубая способность восприятия движений у пресноводных малоподвижных рыб — карася и толстолобика, питающихся неподвижными и малоподвижными объектами. Именно небольшими оптическими моментами можно объяснить, почему при ловле с катеров или спиннингом крючки остаются пустыми — рыбы или не замечают проносящуюся на большой скорости приманку, или она действует на них отпугивающе, а вы так старались!

Конечно, калькулятор и компьютер на рыбалку брать не надо, лучше внимательнее присмотреться к тому, как и чем питаются рыбы.

Оказывается, рыбьи глаза способны идентифицировать большинство геометрических фигур. На выбор рыбой пищевых приманок значительное влияние оказывает их форма. Ихтиологами применялись приманки примерно одинакового размера следующих форм: шар, конус, треугольник, квадрат, параллелепипед, червеобразная, звезда и т.д. Все предлагаемые формы, за исключением звезды, воспринимались рыбами положительно. Вероятно, необычность формы звезды их отпугивает, так как даже очень голодные рыбы избегали хватать ее.

А воспринимают ли рыбы цвет? Прежде считали, что различение цветов в воде невозможно. Но еще в середине XX в. Карл Фриш успешно вырабатывал условные рефлексы пескаря на определенный цвет, давая корм всегда в красной мисочке с одновременным выкладыванием пустых черной, серой и белой мисок. Очень скоро пескари научились подплывать прямо к красной миске. Было доказано, что для цветового зрения рыбам служат колбочки.

Эксперименты по исследованию цветового зрения у рыб были продолжены многими ихтиологами и проводятся до сих пор. Шименц установил, что рыбы воспринимают ультрафиолетовые лучи как цветовые, отличая их от прочих. Если вспомнить, что ультрафиолет проникает глубже других лучей, то представление о полной темноте глубин до 1500 м не будет правильным. Кстати, Гертер дрессировал рыб не только на разный цвет, но и на определенную форму, и даже на буквы R и L.

Но это все ученые. А что же говорят рыболовы? Например, насадку с красным червем окуни берут охотнее, чем с белым, а белугу, наоборот, привлекает белый цвет. Раньше на Каспийском море существовал браконьерский лов белуги «на каладу». На большие крючки насаживались куски белой клеенки в форме треугольника. Возможно, что белуга принимает насадку за белую ракушку и берет ее. Издавна рыболовы окрашивают свои сети в малозаметные для рыб цвета.

К сожалению, на наличие цветового зрения исследованы на сегодняшний день не все виды рыб, но точно известно, что цвета различают речная минога, мойва, треска, пикша, сайда, полосатая зубатка, подкаменщик, камбала-ерш, кефаль, хамса, ставрида, морской и речной налим, барабулька, лещ, щука, речной окунь, золотой карась, линь, сазан, речной угорь, ушастый окунь, гольян и некоторые другие рыбы. Еще было установлено, что рыбы, выращенные на разных кормах, предпочитают разные цвета пищи.

Кстати, не забывайте, что рыбы, очутившиеся на берегу, не утрачивают способности видеть. Угорь переползает из одного водоема в другой. Выброшенные на берег лосось или щука свои движения направляют так, чтобы снова очутиться в водоеме. Так что будьте аккуратны и не разбрасывайте рыб вдоль берега, а то добыча вам только хвостом махнет!

Источники:
  • http://biofile.ru/bio/1000.html
  • http://zooeco.com/0-rib/0-ribi3-14.html
  • http://okafish.ru/sabunaev/glava1_1.htm
  • http://allforchildren.ru/why/misc99.php
  • http://belkamfish.com/stati/zreniefish.htm