Меню Рубрики

Основные функции органов зрения и его функции

Разнообразные функции органов зрения обеспечивают около 90 % информации об окружающей нас среде. Снижение их может ограничивать профессиональную ориентацию человека и его трудоспособность вплоть до инвалидности. Поэтому и врачи стоматологического профиля должны иметь представление о том, как функционируют органы зрения, о физиологии (а на её основе – о патологии) зрительных функций и владеть доступнымиметодами их исследования.

Функции органов зрения реализуются не только за счёт восприятия, но также путём синтеза и анализа зрительных ощущений. Это осуществляется через тесную связь органов зрения с корой головного мозга при ведущей роли его в этом сложном процессе – акте зрения. Разнообразные функции, присущие органам зрения, позволяют им наиболее полно воспринимать зрительные впечатления, возбуждаемые световой энергией.

Основой всех зрительных функций является световая чувствительность глаз. Среди функциональных способностей органов зрения наиболее важное значение имеет возможность их различать формы и размеры предметов. Наиболее совершенное форменное (центральное) зрение обеспечивает центральная ямка жёлтого пятна сетчатки, в котором сконцентрировано около 7 млн. и более колбочек. На остальной же части сетчатки преобладают менее дифференцированные фоторецепторы – палочки, и чем дальше от центральной ямки проецируется изображение предмета, тем менее чётко оно воспринимается глазом. Примером этого может служить снижение зрения при косоглазии.

Центральное зрениеизмеряется остротой зрения (Visus). Это способность глаза чётко различатьдеталинаиболее мелких предметов, находящихся на максимальном удалении от глаза, т.е. воспринимаемых под наименьшим углом зрения. Острота зрения, как наиболее информативный показатель, является одним из основополагающих критериев оценки функционального состояния глаз. Поэтому определение остроты зрения (визометрия) входит в число обязательных исследований органов зрения.

Давно установлено, что с заданного расстояния (5 метров) весь рассматриваемый предмет различается под углом в 5 минут, а мельчайшие детали его – под углом в 1 минуту (1’). За нижнюю границу нормальной остроты зрения, равной 1,0, принята величина, обратная углу зрения в 1’.

Для исследования остроты зрения применяют различные таблицы, содержащие несколько рядов тестовых знаков. Но принцип построения таблиц одинаков: в каждом ряду тестовые знаки должны восприниматься исследуемым под углом в 5’, а детали знаков – под углом в 1’. Этому критерию достаточно оптимально соответствуют кольца Ландольта, имеющиеся в таблицах Головина – Сивцева, которые используются в нашей стране для определения остроты зрения.

Если острота зрения исследуемого составляет менее 0,1, то более точно её можно определить с помощью оптотипов, предложенных Б.Л. Поляком. Ориентировочно это исследование можно провести, показывая пальцы пациенту с различных расстояний на тёмном фоне. Если же он не видит и пальцев у самого глаза, нужно выяснить – различает ли пациент свет от зеркальца офтальмоскопа, направляемый в его глаз с разных сторон. При неспособности исследуемого отличить свет от тьмы, отсутствии прямой и содружественной реакции зрачка на свет, констатируют абсолютную слепоту (Visus=0). С методиками исследования функции центрального зрения и других функций глаз Вы ознакомитесь на практических занятиях.

Периферическое зрение (ПЗ)физиологически обеспечивается деятельностью палочек, которые занимают бÒльшую часть сетчатки за исключением макулярной области и диска зрительного нерва. Кроме того, палочки обеспечивают сумеречное и ночное зрение. ПЗ позволяет ориентироваться в окружающем пространстве, и если в значительной степени нарушено ПЗ, то даже при хорошем центральном зрении это становится проблематичным.

Функция ПЗ характеризуется полем зрения – это пространство, которое видит глаз при неподвижной голове и фиксированном взоре пациента. При исследовании поля зрения определяют границы его и наличие дефектов в поле зрения. Границы поля зрения зависят от уровня освещённости, величины и цвета предъявляемого объекта. Наиболее широкие границы поля зрения на объект белого цвета, затем – синего, красного и самое узкое – на зелёный цвет. Исследование поля зрения проводится отдельно на каждый глаз без коррекции. Допускается только коррекция зрения контактными линзами, но не очками, т.к. они могут искажать показатели границ поля зрения.

Изменения поля зрения могут быть в виде: сужения его границ в одном или нескольких меридианах, выпадения в поле зрения отдельных ограниченных участков – скотома; секторообразного выпадения, двустороннего выпадения поля зрения с височной или носовой стороны – гемианопсия. Исследование ПЗ (особенно в динамике) имеет важное значение в диагностике заболеваний головного мозга различного генезиса и различной патологии органов зрения – глаукоме, поражениях сосудистой оболочки, сетчатки, зрительного нерва, зрительно-нервного пути, прогрессирующей близорукости средней и высокой степени и др.

Существует несколько способов исследования поля зрения: контрольный (ориентировочный); периметрия с помощью настольного периметра Фёрстера, электрического проекционно-регистрационного периметра (ПРП) в 8-ми меридианах; исследование центрального поля зрения способом кампиметрии и компьютерной периметрии. Из этих способов Вам реально могут быть доступны два первых, и при необходимости Вы можете воспользоваться ими. На практических занятиях Вы освоите доступные Вам методы определения поля зрения.

Цветоощущение. Функция колбочек заключается не только в обеспечении центрального зрения, но также даёт возможность глазу различать широкий спектр цветов. Установлено, что способность к зрительному восприятию всей цветовой гаммы зависит от возможности различать три основных цвета различной длины волны: красного – длинноволнового, зелёного – средневолнового и синего – коротковолнового спектра. Каждый цвет характеризуется тремя признаками – тоном, насыщенностью и яркостью. Способность глаза различать цвета имеет важное значение в различных областях жизнедеятельности человека.

Нормальное цветоощущение трёх основных цветов называется нормальной трихромазией. Расстройства цветоощущения могут проявляться либо полным неразличением одного из трёх цветов –дихромазией, либо аномальным восприятием какого-либо цвета –цветоаномалия. Расстройства цветовосприятия могут быть врождёнными и приобретёнными. Среди врождённых расстройств наиболее часто встречается цветоаномалия – около 70% всей патологии цветоощущения. Цветоаномалия всегда поражает оба глаза, не сопровождается нарушением других зрительных функций и обнаруживается случайно или при специальном исследовании.

Приобретённая патология цветоощущения может встречаться при заболеваниях ЦНС, отравлениях, острой кровопотере, а также – при различной патологии сетчатки и зрительного нерва. Она бывает на одном или обоих глазах, выражается в нарушении восприятия всех трёх цветов, обычно сопровождается расстройствами других зрительных функций и в отличие от врождённой патологии цветоощущения, может претерпевать изменения в процессе заболевания и его лечения.

Для исследования цветоощущения используют: ориентировочный метод, заключающийся в предъявлении обследуемому предметов красного, зелёного и синего цветов; полихроматические таблицы, основанные на принципе уравнивания яркости и насыщенности основного и дополнительных цветов в виде кружочков, образующих цифры или фигуры; сложные спектральные приборы – аномалоскопы, используемые в клинической практике. При необходимости исследования функции цветоощущения на доступном Вам уровне, Вы реально сможете воспользоваться первыми двумя методами.

Светоощущение – это способность глаза воспринимать свет и различные степени его яркости. Это наиболее ранняя и основная функция органа зрения. Физиологически она реализуется палочковым аппаратом сетчатки, обеспечивая сумеречное и ночное зрение. Способность сетчатки воспринимать минимальное световое раздражение характеризуетпорог светоощущения, а восприятие наименьшей разницы в интенсивности освещения –порог различения.

Процесс приспособления глаза к различной степени освещённости называется адаптацией.Световая адаптация– это приспособление глаза к максимальному уровню освещённости, атемновая адаптация– к минимальной освещённости. Понижение темновой адаптации называетсягемералопией(«куриная слепота»). Она бывает врождённой и приобретённой; первая нередко имеет семейно-наследственный характер. Приобретённая гемералопия может быть одним из симптомов заболеваний сетчатки, зрительного нерва, близорукости высокой степени, глаукомы и др. Из общих заболеваний снижение темновой адаптации может наблюдаться при хронических заболеваниях печени (циррозе), авитаминозе.

Приобретённая гемералопия, как функциональное нарушение сетчатки, может развиться при гиповитаминозе, особенно с дефицитом витаминов «А», «В2» и «С». Кроме того, световая чувствительность может снижаться при недостатке кислорода, голодании, психических переживаниях, а также – у пожилых людей.

Для исследования световой чувствительности глаз и всего процесса световой и темновой адаптации в клинической и экспертной практике используют довольно сложные приборы – адаптометры. Ориентировочно темновую адаптацию можно определить в затемнённом помещении, предложив обследуемому обнаружить стул или какой-нибудь предмет на столе и т.п.; критерием будет служить время, которое он затратит на выполнение задания. С этой же целью можно использовать таблицу Кравкова – Пуркинье, позволяющую более точно, чем предыдущий метод, определить состояние темновой адаптации.

Бинокулярное зрение. Если смотреть на объект двумя хорошо функционирующими глазами, то этот объект отражается на сетчатке правого и левого глаза; но видится он единым, как если бы воспринимался одним глазом. Это возможно за счёт функции бинокулярного зрения, но для реализации её необходимо, чтобы изображения на сетчатке каждого глаза соответствовали друг другу по величине и проецировались на строго идентичные, корреспондирующие участки сетчатки правого и левого глаз. Такими оптимальными корреспондирующими областями являются центральные ямки жёлтого пятна, однако могут быть и равноудалённые, но близкие от них области сетчаток.

Бинокулярное зрение возможно, если острота зрения хуже видящего глаза будет не ниже 0,4 и имеется мышечное равновесие всех глазодвигательных мышц, обеспечивающее параллельное положение зрительных осей обоих глаз. Основным фактором достижения этого является фузионный рефлекс, реализующий слияние изображений от сетчаток обоих глаз.

Нарушение любого из этих условий может стать причиной расстройств или невозможности формирования бинокулярного зрения. Вследствие чего характер зрения будет либо монокулярным(зрение одним глазом), либоодновременным, при котором в корковых зрительных центрах воспринимаются импульсы то от одного, то от другого глаза. Такой характер зрения формируется и развивается при косоглазии различного генезиса.

Наличие бинокулярного зрения даёт возможность формирования и развития ещё более качественного стереоскопического зрения, которое обеспечивает восприятие окружающего мира в трёх измерениях, т.е. объёмности, глубины и расстояний между предметами. Кроме того, при бинокулярном зрении повышается острота зрения (по сравнению с остротой зрения каждого глаза в отдельности) и расширяется поле зрения.

Формируется бинокулярное зрение не сразу, развитие его начинается примерно с 3-х месячного возраста, а заканчивается к 7-10 годам и позднее. Бинокулярное и стереоскопическое зрение являются важными зрительными функциями, отсутствие их может существенно ограничивать выбор профессии и профессиональную пригодность.

Существует несколько способов проверки бинокулярного зрения: на клиническом уровне характер зрения исследуют с помощью специальных приборов – четырёхточечного цветотеста, синоптофора и др. Описание доступных Вам способов определения бинокулярного зрения Вы найдёте в учебнике и освоите их на практических занятиях.

Таким образом, полноценная работа органов зрения обеспечивается анатомо-физиологическими особенностями их устройства, разнообразными функциями и проявляется в процессе развития глаз, мозга и жизнедеятельности человека. Знание основ функций органов зрения и умение исследовать эти функции с помощью доступных методов позволят в ситуациях, когда это потребуется от Вас: более полно обследовать больных с различной офтальмологической патологией (в первую очередь – острой!), заподозрить её и обоснованно предпринять Ваши дальнейшие действия.

Основные функции органа зрения – восприятие светового потока, получение из окружающей среды информации о положении предметов, их цвете и форме. Глаз – один из главных органов чувств человека. Через него проходит 80% всех сведений об окружающем мире. Зрение – это сложнейшая фотохимическая реакция. Строение и функции глаза связаны с деятельностью сосредоточенных на сетчатке рецепторов.

Центральное и периферическое зрение

Центральная зрительная система подразумевает под собой информацию, которая доступна для человека по центру во время сконцентрированного взгляда. Достигается оно благодаря попадании света в центральную часть сетчатки. Характеризуется более четкими образами. Основной характеристикой центральной функции глаза остается острота зрения.

Периферическая зрительная функция – это информация, которую воспринимает человек за границами центрального участка во время сконцентрированного взгляда. Достигается при попадании света за границу пятна сетчатой оболочки зрительного органа. Полученная картинка характеризуется размытостью. Периферическое зрение – прекрасная возможность для человека разбираться в пространстве. Главной характеристикой считается поле зрения.

Периферические функции органа зрения позволяют воспринимать объекты, не фиксирующиеся взглядом. Достигается это при помощи работы палочек. Здесь нет различий по цветам, а также отсутствует четкость картинки. Отличная работа палочек происходит в период сумеречного света. Для периферической оптической системы свойственны поле зрения и цветоощущение. Методы их диагностики подразумевают при нормальном зрении одновременное видение объекта исследователем и пациентом. Методы диагностики поля видимости у ребенка основаны на передвижении от периферии к цвету игрушку. Важно заметить момент, когда ребенок отведет свой взгляд на нее. Для определения более точного поля видимости применяют особое оснащение.

Возможность восприятия света и цветовая способность

Учитывая строение и функции глаза, различают такие понятия, как светоощущение и цветовая зрительная функция.

Светоощущение — это возможность зрительного органа воспринимать световой поток, а также распознавать его яркость и интенсивность. Светоощущение – самая чувствительная функция оптической системы. Именно ее патологические изменения определяют раньше всех других изменений остальных функций.

При наступлении сумерек и темноты у человека в последнюю очередь пропадает именно светоощущение. Для каждого человека характерна свое световосприятие. Оно напрямую зависит от состояние сетчатки и количества в ней вещества, которое способно воспринимать поток света. Еще световосприятие определяется с учетом общего состояния оптической системы, в первую очередь, от активизации нервной ткани.

Методы определения ощущения света предполагают адаптацию глаза к сумеркам. Используют специальные приборы. Резкое ухудшение способности видеть в условиях сумеречного света носит название гемералопией (куриная слепота). Чаще всего оно возникает при патологиях сетчатки, зрительного нерва, нехватки витамина А.

Цветовая зрительная способность – это свойства глаза распознавать предмету по их цвету. Зрительные функции являются очень важной, так как удается намного лучше распознавать окружающий мир.

Рассматриваемая функция глаза оказывает воздействие на психологический и эмоциональный компонент человека.

Для исследования цветного зрения также разработаны свои методы. Имеются определенные таблицы. В их основе положен принцип управления яркости, насыщенности. В таблице имеется набор тестов. Каждая из них предполагает наличие кружков главного и вспомогательных цветов. Определенные таблицы обладают круглыми цифрами или фигурами. Их способны распознавать только люди, у которых расстроено цветоощущение. Это увеличивает точность исследования, а еще придает ему большей объективности.

Такие способы определения функции оптической системы должны происходить только при условии хорошего света. Человека сажают спиной к световому потоку на расстоянии 1 м от расположенных таблиц. Доктор по очереди показывает ему тесты таблиц и ждет, пока исследуемый даст ответ на видимые знаки. Для каждой экспозиции теста имеется своя длительность, но она не превышает 10 секунд. Первые два теста отвечают люди с нормальным или расстроенным восприятием цветов. Их роль – контролировать и объяснять человеку его задачи. Методы исследования позволяют поставить диагноз цветовой слепоты. Спектральные методы определения расстройства цветовой функции глаза включают аномалоскопию.

Бинокулярное зрение

Эта функция органа зрения позволяет видеть двумя зрительными органами, в результате чего изображение собирается в единую картинку. Для человека бинокулярная функция глаза обладает следующими положительными качествами:

  • увеличение видимой границы в горизонтальной плоскости;
  • усиление остроты зрительной способности;
  • возможность ощущать глубину поступающей картинки;
  • возможность оценивать расстояние до предметов.

Функции глаза и способы их диагностики – это очень важные понятия, без которых невозможно будет определить наличие определенных расстройств зрительной системы у человека. Используя представленные методики, можно дать полную оценку состояния оптической системы и обратить внимание на те функции, которые отклонены от нормы.

Орган зрения: строение и функции

При помощи органов зрения человек воспринимает окружающий мир. Известно, что большую часть информации получают люди как раз визуально. Речь образовалась и достигла должного уровня развития гораздо позже.

Кроме того, если говорить об общении, то тело и его движения контролировать гораздо сложнее, чем слова. Поэтому, существуют различные теории о распознании языка тела визуально, это своеобразный тест на искренность собеседника, способ узнать безусловную истину.

Чем чреваты заболевания глаз?

Это важная часть организма. Сейчас человек уже не так много, как раньше, задумывается о безопасности окружающего мира. Но задача адаптации к местности по-прежнему важна, и она выполняется при помощи глаза.

Травмирование при недостаточном внимании к обстоятельствам окружающей среды все еще возможно. Никто не оспорит утверждение, что со снижением зрения ухудшается и качество жизни. Отсутствие зрения – безусловное показание к установлению инвалидности, ведь обычная жизнедеятельность существенно осложняется, человек теряет множество возможностей.

Развитие органа зрения привело к усовершенствованию некоторых аспектов, но набор функций остался прежним. Главная задача – обеспечить визуальное восприятие внешнего мира объемное и всестороннее.

Анатомия и физиология глаза

Сама анатомия глаза очень сложна. Система совершенствовалась на протяжении тысячелетний, и достигла идеального уровня развития для жизнедеятельности человека. Многим удивительно узнать, что у животных и насекомых строение органа другое, позволяющее увеличить обзор или четкость образа в определенных условиях.

Но для человека такое устройство идеально, по расстановке глаз некоторые теоретики даже делают вывод о принадлежности человека к хищникам или травоядным, но это не основная задача. Главное, что такое строение органа зрения позволило популяции выжить и занять лидирующие позиции в животном мире.

Ядро всей системы – глазное яблоко. То, что этот орган имеет круглую форму, было понятно уже давно. Но вот его внутренние составляющие были исследованы сравнительно недавно, когда появились соответствующие инструменты.

А внутри глазного яблока находятся важные компоненты, такие как хрусталик, специфическая жидкость. Кроме того, в наличии имеется сетчатка и три оболочки. Каждая выполняет отведенную важную роль и обеспечивает восприятие светового потока.

Анатомия органа зрения:

  • Наружная (фиброзная) оболочка. Оно отвечает за прием световых сигналов, обеспечивает нужно преломление потоков. В этой части всей системы почти нет сосудов, она очень плотная.
  • Средняя оболочка получила наименование сосудистой. Она имеет более сложное строение и несколько составляющих. Так, оболочка включает сосудистую и радужную составляющие. В состав этой оболочки входит и ресничное тело. Полностью была исследована на так давно, так как имеет достаточно сложное строение. Эта часть выполняет основную роль в обеспечении видения.
  • Светочувствительная, внутренняя оболочка обеспечивает дальнейший прием световых сигналов и их преломление. Также она обеспечивает их распространение. Это сетчатка, богатая многочисленными светопринимающими рецепторами. В центре находится радужная оболочка, содержащая отверстие, именуемое зрачком. В толще внутренней оболочки находятся мышцы, они двигают зрачок, заставляя его сужаться, под влиянием внешних раздражителей. Черный слой поглощает свет.
  • Хрусталик. Присвоение одному из главных органов наименования хрусталик вполне логично. Он находится позади зрачка. Основная функция заключается в отражении светового потока. При этом окружность (выпуклая линза) не имеет никаких признаков других тканей организма. В хрусталике нет ни мышц, ни капилляров, ни нервов. Хрусталик только под воздействием мышц глаза может изменять свои параметры.
  • Есть в этом своеобразном органе и жидкость. Она именуется слезной. Но основное предназначение не выражение чувств, как в цивилизованную эпоху она используется человеком. Основная физиологическая задача – предохранения от повреждений, пересыхания, избавление от проникших бактерий и микроорганизмов.
  • Стекловидное тело, внутренне ядро. Основная по объему часть, составляющая глазное яблоко. Также зрительный нерв соединяет специальный отдел мозга с глазами.
Читайте также:  К чему снится проверять зрение у врача

Особенности строения

Орган зрения человека, его строение и функции, специфичен и все составляющие «заточены» изначально под решение задач выживания. Хрусталик невосприимчив, он не имеет для этого никаких компонентов. Но его двигают мышцы, которые как раз очень чувствительны к различным внешним изменениям. Так обеспечивается дальнее или ближнее зрение.

Глазное яблоко выполняет важную функцию. Именно оно обеспечивает восприятие и передачу внешних сигналов. Но само по себе оно очень чувствительно, подвержено и инфекциям и травмам. Это хрупкая конструкция защищена веками, которые смыкаются и размыкаются.

Не всегда эти движения человек может контролировать до конца. Это рефлекс относится к ряду безусловных. Это вполне логично, иначе человек не успевал бы реагировать на изменения внешней обстановки должным образом.

С этой особенностью связана трудность применения глазных капель и ношение линз. Но человек справляется с этой сложностью, тренируя мышцы и рефлексы. В нужный момент, тем не менее, они сработают так же эффективно.

Есть и такое место, которое именуется слепым пятном. Большой роли оно не играет, здесь просто нет рецепторов. Это место выхода зрительного нерва из сетчатки.

За прием световых сигналов отвечают особенные рецепторы. Они сосредоточены во внутренней оболочке, именуются палочками и колбочками. Колбочки отвечают за дневное восприятие, палочки – за ночное. Колбочки расположены прямо напротив зрачка. Это место также именуется желтым пятном.

Рецепторы состоят из особенных веществ. Они способны быстро распадаться и восстанавливаться. Поэтому при быстрой смене темноты на свет или наоборот человек некоторое время привыкает к обстановке.

Строение органов зрения достаточно сложно. Это очень чувствительная система. В преломлении световых потоков и восприятии зрительных объектов участвуют все составляющие. Есть и мышца, которые двигают глазное яблоко, помогая увеличить обзора и угол восприятия. Также защитные функции выполняют брови, ресницы и т.д.

Такова физиология зрительной системы, так как она сформировалась под влиянием эволюционных процессов.

Функции зрительной системы и возможные заболевания

Строение органа зрения человека именно таково, поскольку вся система выполняет специальные функции. О них уже говорилось вскользь, но стоит упомянуть отдельно.

Итак, глаза обеспечивают восприятие внешнего мира при помощи визуальных образов. Таким образом, усваивается информация, человек получает данные, необходимые для обеспечения нормальной жизнедеятельности. Предметы могут быть по-разному расположены в пространстве, орган зрения отвечает за правильное восприятие под разным углом. Это обеспечивается путем сложных видоизменений световых потоков, но эффективность работы органа велика, если состояние его здоровья удовлетворительное.

Информация нужна и для адаптации к условиям внешней среды. Человек узнает о возможной опасности посредством зрения. Он имеет возможность подготовиться к ней. Глаза человека выполняют важные функции, если зрение ухудшается даже незначительно, это сразу сказывается на качестве жизни.

Почему возникают недуги, и ухудшается деятельность всей системы? Чаще столь чувствительный орган просто изнашивается со временем. Поэтому появляются различные возрастные недуги, такие как дальнозоркость и близорукость. Излишнее напряжение и нагрузка также могут быть причиной ухудшения зрения.

Сейчас это особенно актуально, так как повсеместно используются для работы компьютеры. Пока глаз не сумел приспособиться к такой чрезмерной нагрузке, поэтому нужно тщательно следить за его состоянием и предпринимать все меры профилактики заболеваний.

На физиологическом уровне ухудшение восприятия предметов связано с изменением длины глазного яблока. Также и хрусталик способен утрачивать свою эластичность со временем. Уже не достигается нужная четкость восприятия. Это повсеместная проблема, которая связана и с ухудшением экологии.

Возможны и недуги, связанны со слизистой, с появлением различных новообразований. Такие недуги часто излечить удается только при оперативном вмешательстве. А операции на глазах очень сложны и опасны, это особенность физиологии.

Ранее считалось, что восстановить зрение невозможно. Сейчас используются операции, и успешно, которые позволяют восстановить его до 100% уровня. Но сами специалисты говорят о наличии противопоказаний и возможных осложнений. Поэтому, проще все-таки соблюдать профилактические меры, правильно организовывать рабочее место.

Всегда должна быть обеспечена нужная степень освещенности. Она угадывается очень просто. При этом нужно учесть, что открытые источники искусственного света могут плохо влиять на глаза.

Поэтому их необходимо прикрывать. Нельзя долго напрягать глаза. Нужно делать передышки в работе за компьютером, в чтении.

Расстояние до книги или компьютера должно быть соответствующим. Тем более, что излучение от компьютера также вредно. Читать в автобусе не желательно, так же как и лежа на диване.

Стоит запомнить элементарные правила ухода. Нельзя сильно тереть глаза руками, может проникнуть инфекция. Если возникло воспаление, можно воспользоваться настоем чая для примочек. И необходимо обеспечить постоянное поступление витамина А – физиология органа такова, что он постоянно нуждается в нем.

Функции органа зрения

Л Е К Ц И Я № 1

Тема: «Анатомия и физиология органа зрения»

Орган зрения является для человека важнейшим из всех органов чувств. Он поз-воляет получить до 90% информации об окружающем мире. Глаз отражает состояние всего организма и является не только зеркалом души, но и зеркалом патологии. Большинство глазных заболеваний представляют собой проявления разнообразных патологических процессов в организме. Любое заболевание глаз, ведущее к снижению зрения и тем более к слепоте – огромное несчастье для человека, так как выключает еще достаточно молодого, здорового и работоспособного человека из трудовой деяте-льности.

Развитие глаза человека начинается на второй недели эмбриональной жизни из мозговой трубки. В конце четвертой недели возникает хрусталик, вокруг которого фо-рмируется сосудистая оболочка. Постепенно дифференцируется склера, камеры глаза, становится прозрачным стекловидное тело. Из кожных складок формируются веки.

Существуют особые, критические периоды развития, в течение которых орган зре-ния особенно чувствителен к воздействию различных повреждающих факторов, спо-собных привести к возникновению различных его аномалий.

Зрительный анализатор состоит из 4 частей:

— защитный аппарат (орбита, веки, конъюнктива)

— придаточный аппарат (слезный и мышечный)

— проводящие нервные пути и корковые центры зрения

Строение глазного яблока.

Глазное яблоко имеет неправильную шаровидную форму. Средние размеры глаз-ного яблока у взрослого человека – 24 мм. Глазное яблоко имеет три оболочки:

— наружная (фиброзная) – состоит из склеры и роговицы

— средняя (сосудистая) – состоит из радужки, цилиарного тела и собственно сосудис-той (хориоидеи).

Наружная оболочка (склера и роговица).

Склера – наружная, непрозрачная, плотная, состоит из коллагеновых волокон.

Функции:защитная, формообразующая, обеспечивает тургор глазного яблока.

Место перехода склеры в роговицу называется лимб.

Роговица – передняя, более выпуклая часть наружной оболочки глаза. Она прозра-чная, бессосудистая, гладкая, зеркальная, блестящая, сферичная, высокочувстви-тельная (в ней имеется большое количество чувствительных нервных окончаний). Горизонтальный диаметр роговицы у новорожденных 9мм, в 1 год – 10мм, у взрослых – 11мм.

Функции:преломление света (сила преломления – 40Д у взрослых и 45Д у детей), защитная.

Средняя — сосудистая оболочка.

Она состоит из радужки, цилиарного тела и хориоидеи. Все три отдела сосудистой оболочки объединяют под названием увеальный тракт.

Радужка – представляет собой диафрагму, в центре которой имеется отверстие — зрачок. Зрачок может расширяться (в темноте) и сужаться (при ярком освещении). Цвет радужки зависит от количества пигмента. Постоянная окраска радужки фор-мируется лишь к 2-летнему возрасту. В радужке много чувствительных нервных окончаний.

Функции:принимает участие в фильтрации и оттоке внутриглазной жидкости.

Цилиарное тело – находится между радужкой и собственно сосудистой оболочкой. В цилиарном теле много чувствительных нервных окончаний. Цилиарное тело имеет тот же источник кровоснабжения, что и радужка (передние цилиарные артерии, задние длинные цилиарные артерии). Поэтому его воспаление (циклит), как правило, проте-кает одновременно с воспалением радужки (иридоциклит).

Функции:продукция внутриглазной жидкости, участие в акте аккомодации.

От него идут цинновы связки и вплетаются в капсулу хрусталика.

Собственно сосудистая оболочкаилихориоидея является задним отделом сосу-дистого тракта, располагается между сетчаткой и склерой.

Функции:обеспечивает питание сетчатки, принимает участие в ультрафильтрации и оттоке внутриглазной жидкости, регуляция офтальмотонуса.

В хориоидее нет чувствительных нервных окончаний, вследствие этого воспаления ее, травмы и опухоли протекают безболезненно. Кровоснабжение хориоидеи осущест-вляется из задних коротких цилиарных артерий, поэтому ее воспаление (хориоидит) протекает изолированно от воспалительных процессов переднего отдела увеального тракта. Кровоток в хориоидее замедленный, что способствует возникновению в ней метастазов опухолей различной локализации и оседанию возбудителей различных ин-фекционных заболеваний.

Внутренняя оболочка.

Сетчатка представляет собой высокодифференцированную нервную ткань. Это пе-риферический отдел зрительного анализатора. Имеет фоторецепторы – палочки и кол-бочки. Колбочки осуществляют центральное зрение, дневное зрение и цветоощу-щение. Палочки – периферическое зрение, ночное и сумеречное зрение. В сетчатке нет чувствительных нервных окончаний, поэтому все ее заболевания протекают безбо-лезненно. Внутренняя поверхность глазного яблока получила название глазного дна. На глазном дне имеются два важных образования: диск зрительного нерва (место вы-хода нерва из сетчатки) и область желтого пятна. В центральной ямке желтого пятна располагаются только колбочки, что обеспечивает высокую разрешающую способ-ность этой зоны. Начавшись на глазном дне в виде диска, зрительный нерв покидает глазное яблоко, затем глазницу и в области турецкого седла встречается с нервом вто-рого глаза. В турецком седле осуществляется неполный перекрест зрительных нервов, именуемый хиазмой. После частичного перекреста зрительные пути меняют свое наз-вание и называются зрительные тракты. Зрительные тракты направляются к подкор-ковым зрительным центрам и далее к зрительным центрам коры головного мозга – за-тылочным долям.

Пространство между роговицей и радужкой называется передней камерой глаза. Угол передней камеры – пространство, где радужка переходит в цилиарное тело, а роговица в склеру. В углу камеры проходит шлемов канал. Пространство между раду-жкой и хрусталиком называется задней камерой глаза. Задняя камера через зрачок сообщается с передней камерой. Камеры глаза заполнены прозрачной внутриглазной жидкостью. Полный обмен камерной влаги происходит за 10 часов. В ее состав вхо-дит вода, минеральные соли, витамины В2, С, глюкоза, кислород, белок. Внутриглаз-ная жидкость через шлеммов канал и венозную систему уносит из глаза продукты об-мена (молочную кислоту, углекислый газ и др.) Камеры глаза сообщаются друг с дру-гом посредством зрачка.

Хрусталик – представляет собой двояковыпуклую линзу, расположенную между радужкой и стекловидным телом. Формируется на 3-4 неделе жизни зародыша из эк-тодермы. В нем нет ни нервов, ни кровеносных и лимфатических сосудов.

Функции:преломление (сила преломления – 20,0Д), участие в акте аккомодации.

Стекловидное тело – располагается позади хрусталика и составляет 65% содер-жимого глаза. Оно прозрачное, бесцветное, гелеобразное. Сосудов и нервов в стекло-видном теле нет. Содержит до 98% воды, мало белка и солей.

Функции: опорная ткань глазного яблока, обеспечивает свободное прохождение световых лучей к сетчатке, пассивно участвует в акте аккомодации, защитная (предох-раняет внутренние оболочки глаза от дислокации).

Орбита.

Орбита, или глазница, — костное вместилище для глаза. По форме она напоминает четырехгранную пирамиду, вершина которой обращена в полость черепа, а основание обращено кпереди.

Орбиту образуют кости черепа: лобная, скуловая, верхняя челюсть, слезная, носо-вая, решетчатая и клиновидная. Анатомическая связь орбиты с придаточными пазуха-ми носа нередко является причиной перехода воспалительного процесса или прорас-тания опухоли из них в орбиту.

В орбите различают четыре стенки: верхнюю, нижнюю, внутреннюю и наружную.

У вершины глазницы имеется круглой формы диаметром 4 мм зрительное отвер­стие, через которое в полость орбиты входит глазничная артерия и выходит зри­тельный нерв в полость черепа.Содержимое глазницы состоит из глазного яблока, клетчатки, фасции, мышц, сосудов, нервов. В глазнице находятся восемь мышц. Из них шесть глазодвигательных (4 прямые и 2 косые), а также мышца, поднимающая верхнее веко и орбитальная мышца.

Веки.

Веки – подвижные кожно-мышечные складки, покрывающие глазное яблоко спе-реди. Образуют глазную щель. Состоят из пяти слоев: кожа, рыхлая подкожная клет-чатка (не содержит жира), круговая мышца глаза, хрящ, конъюнктива.

Функции:защищают глаза благодаря рефлекторному смыканию под влиянием раздра-жающих воздействий.

Конъюнктива.

Это соединительная оболочка, покрывает глазное яблоко спереди (за исключением роговицы) и веки с внутренней стороны. Она тонкая, прозрачная, розовая, гладкая, блестящая, влажная. При закрытых веках конъюнктива образует щелевидную полость – конъюнктивальный мешок.

Функции:защитная (при попадании в конъюнктивальную полость инородного тела или при патологическом процессе), механическая (обильная секреция слезной и слизистой жидкости), увлажняющая (постоянная выработка секрета), питательная (из ее сосудов через роговицу питательные вещества попадают в глаз), барьерная (богата лимфоидными элементами).

Слезный аппарат.

Слезный аппарат состоит из слезной железы и слезоотводящих путей (слезных то-чек, слезных канальцев, слезного мешка и слезно-носового канала).

Слезная железа располагается в углублении в верхне-наружной стенки орбиты.

Функции: продукция слезы (после второго месяца жизни). В покое у человека в сут-ки выделяется около 1 мл слезы.

Слеза равномерно распределяется по поверхности глазного яблока, всасывается верхней и нижней слезными точками, оттуда поступает в верхний и нижний слезный канальцы. Канальцы, соединяясь в общий слезный каналец, впадают в слезный мешок. Слезный мешок переходит в слезно-носовой канал, который открывается под нижнюю носовую раковину.

Функции слезы: бактерицидная (содержит фермент лизоцим), питательная (содер-жит 98% воды, 0,1% белка, 0,8% минеральных солей, калий, натрий, хлор, глюкозу и мочевину), увлажняющая (обеспечивает постоянное увлажнение глазного яблока).

Мышечный аппарат.

Глазное яблоко имеет шесть глазодвигательных мышц – четыре прямые (верхняя, нижняя, наружная, внутренняя) и две косые (нижняя и верхняя). Эти мышцы обес-печивают хорошую подвижность его во всех направлениях.

Оптическая система глаза – это роговица, влага передней и задней камер, хрус-талик и стекловидное тело. Проходя через эти образования, световые лучи преломля-ются и попадают на сетчатку.

Акт зрения – сложный нейрофизиологический акт, состоящий из 4 этапов:

1 – с помощью оптических сред глаза на сетчатке образуется перевернутое изображе-ние предметов.

2 — под воздействием световой энергии в палочках и колбочках происходит сложный фотохимический процесс, в результате которого возникает нервный импульс.

3 – импульсы, возникшие в сетчатке, проводятся по нервным волокнам к зрительным центрам коры головного мозга.

4 – в корковых центрах энергия нервного импульса превращается в зрительное ощу-щение и восприятие.

Функции органа зрения.

Центральное зрение – способность органа зрения различать форму предметов в пространстве. Центральное зрение характеризуется двумя зрительными функциями: остротой зрения и цветоощущением.

Под нормальной остротой зрения понимается способность глаза различать раз-дельно две светящиеся точки под углом зрения в 1 о . Исследование остроты зрения у взрослых производят по таблице Сивцева-Головина, у детей – по таблице Орловой. О наличии зрения у новорожденного можно судить по прямой и содружественной реак-циям зрачков на свет. Со второй недели новорожденный реагирует на появление в по-ле зрения ярких предметов поворотом глаз в их сторону и может кратковременно сле-дить за их движением. В 1-2 месяца ребенок достаточно долго фиксирует двигаю-щийся предмет обоими глазами. С 3-5 месяцев зрение можно проверить с помощью ярко-красного шарика диаметром 4 см, а с 6-12 месяцев – шариком такого же цвета ди-аметром 0,7 см. Располагая его на различных расстояниях и привлекая внимание ре-бенка раскачиванием шарика, определяют остроту зрения. Незрячий ребенок реаги-рует только на звуки и запахи.

Цветоощущение– это способность глаза воспринимать световые лучи различной длины волны. Все многообразие цветовых оттенков получают путем смешивания то-лько трех основных цветов – красного, зеленого и синего. Способность правильно раз-личать основные цвета называется нормальной трихромазией. Цветовое зрение опре-деляется с помощью таблиц профессора Рабкина.

Периферическое зрение – совокупность пространства, видимая глазом человека при неподвижной фиксации головы и глаза. Определяется полем зрения. Исследуется поле зрения с помощью периметра Ферстера, а также имеется контрольный способ Дондерса. Нормальные границы поля зрения на белый цвет: наружная граница – 90 0 , внутренняя – 55 0 , нижняя – 65 0 , верхняя – 45 0 .

Светоощущение – способность глаза к восприятию света. Процесс приспособления глаза к различным условиям освещения называется адаптацией. Различают два вида адаптации: к темноте (при понижении уровня освещенности) и к свету (при повыше-нии уровня освещенности). При адаптации к свету понижается чувствительность глаза к световому раздражителю, она длится 1 мин. При темновой адаптации увеличивается чувствительность к свету, максимальная адаптация наблюдается через 1 час.

Бинокулярное зрение – способность глаза рассматривать предметы в их простра-нственном соотношении. В норме бинокулярное зрение происходит в результате сли-яния зрительных образов в одно зрительное ощущение. Оно постепенно развивается у детей и достигает полного своего развития к 7-15 годам. Для развития бинокулярного зрения необходимо наличие:

— соответствующей иннервации всех глазных мышц

— нормального тонуса наружных мышц

— отсутствия нарушения проводящих путей и высших зрительных центров

— одинаковой остроты зрения в обоих глазах (не ниже 0,4 на каждый глаз)

— одинаковой рефракции в обоих глазах

— одинаковой величины изображений на сетчатках

— симметричного положения глазных яблок

Исследуется бинокулярное зрение с помощью 4-х точечного цветотеста, синапто-фора, а также имеется контрольный способ – опыт Соколова с «дырой в ладони».

Нарушение бинокулярного зрения отмечается при любом виде косоглазия.

Функции зрения – краткое описание функций глаз

Главной функцией органов зрения является восприятие света, получение из окружающего мира информации о положении предметов, их формы и цвета.

Глаз – самый важный из органов чувств человека. Благодаря ему мы узнаем более 80% информации об окружающем мире.

Само по себе зрение – сложная фотохимическая реакция, обусловленная деятельностью расположенных на сетчатке рецепторов (палочек и колбочек). Колбочки содержат пигмент йодопсин и обеспечивают дневное зрение. Возможность видеть ночью и во время сумерек дают палочки, содержащие пигмент родопсин.

Читайте также:  Точки зрения по вопросу о принципах построения государства

Свет, отражаясь от окружающих предметов, попадает на сетчатку глаза, где палочки и колбочки превращают его в нервные импульсы. Эти импульсы идут по зрительному нерву в головной мозг.

Таким образом, зрительный анализатор состоит из рецепторной части (палочки и колбочки), зрительного нерва и коркового отдела (принимающего нервные импульсы и трансформирующего их в зрительные образы).

Центральное и периферическое

Существуют такие понятия, как центральное и периферическое зрение.

Центральное зрение – это то, что видит человек по центру при сконцентрированном взгляде. Оно обусловлено попаданием изображений в центральную часть сетчатки (в область пятна) и характеризуется наиболее четкими образами. При характеристике центрального зрения используют понятие «острота зрения».

Периферическое зрение – это то, что видит человек за пределами центрального участка при сфокусированном взгляде. Оно формируется при попадании лучей за пределы пятна сетчатой оболочки глаза, изображение получается нечетким. Периферическое зрение позволяет человеку ориентироваться в пространстве и характеризуется термином «поле зрения».

Световосприятие и цветовое зрение

Помимо центрального и периферического зрения, выделяют также следующие функции зрения.

  • Светоощущение – характеризует способность органа зрения воспринимать свет, а также различать его интенсивность и яркость.
  • Цветоощущение (цветовое зрение) – способность зрительного органа распознавать различные цветовые оттенки. Это очень важная функция глаз, помогающая человеку лучше познавать окружающий мир. Также цветовое зрение важно для водителей (при управлении различными транспортными средствами) и докторов (при постановке диагнозов – определение различных окрасок кожи, слизистой оболочки, элементов поражения). Также цветоощущение влияет на эмоциональный и психологический компонент человека.

Бинокулярное зрение

Человек обладает бинокулярным зрением, которое обуславливает способность видеть двумя глазами, при этом соединяются изображения каждого глаза в единую картину. Бинокулярное зрение дает человеку значительные преимущества, среди которых:

  • увеличение поля зрения в горизонтальной плоскости;
  • усиление остроты зрения;
  • ощущение глубины изображения (объемность и трехмерность);
  • возможность оценки расстояния до предметов.

Подводя итог вышесказанному, можно сделать вывод, что глаз является одним из самых важных органов чувств человека, необходимый для получения информации и ориентирования в пространстве.

Советуем прочитать также статью о том, как не потерять зрение в эпоху высоких технологий.

Для более полного ознакомления с болезнями глаз и их лечением – воспользуйтесь удобным поиском по сайту или задайте вопрос специалисту.

Основные функции органа зрения и методы их исследования

Содержание:

Орган зрения является для человека важнейшим из всех органов чувств. Он позволяет получить до 90 % информации об окружающем мире. Зрительный анализатор строго адаптирован к восприятию доходящей до Земли через атмосферу видимой части спектра светового излучения с длиной волны 380—760 нм.

Зрение является сложным и до конца не изученным процессом. Схематично его можно представить следующим образом. Отраженные от окружающих нас предметов лучи света собираются оптической системой глаза на сетчатке. Фоторецепторы сетчатки — папочки и колбочки — трансформируют световую энергию в нервный импульс благодаря фотохимическому процессу разложения с последующим ресинтезом зрительного пигмента хромопротеида, состоящего из хромофора (ретиналя) — альдегида витамина А — и опсина. Зрительный пигмент, содержащийся в палочках, называют родопсином, в колбочках — йодопсином. Молекулы ретиналя находятся в дисках наружных сегментов фоторецепторов и под воздействием света подвергаются фотоизомеризации (цис- и трансизомеры), вследствие чего и рождается нервный импульс.

Палочковый аппарат является образованием, высокочувствительным к свету при пороговой и надпороговой освещенности — ночное (скотопическое: от греч. skotos — темнота и opsis — зрение), а также при слабой освещенности (0,1—0,3 лк) — сумеречное (мезопическое: от греч. mesos — средний, промежуточный) зрение (определяется полем зрения и темновой адаптацией). Колбочковый аппарат сетчатки глаза обеспечивает дневное, или фотопическое (от греч. photos — свет), зрение (определяется остротой зрения и цветовым зрением). В формировании зрительного образа участвуют рецепторные (периферические), проводящие и корковые отделы зрительного анализатора. В головном мозге в результате синтеза двух изображений создается идеальный образ всего видимого человеком. Подтверждением реальности зрительного образа служит возможность его распознавания по другим сигналам: речевым, слуховым, осязательным и др.

Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение.

↑ Центральное зрение

Центральным зрением следует считать центральный участок видимого пространства. Основное предназначение этой функции — служить восприятию мелких предметов или их деталей (например, отдельных букв при чтении страницы книги). Это зрение является наиболее высоким и характеризуется понятием «острота зрения».

Острота зрения (Visus или Vis) — способность глаза различать две точки раздельно при минимальном расстоянии между ними, которая зависит от особенностей строения оптической системы и световоспринимающего аппарата глаза. Центральное зрение обеспечивают колбочки сетчатки, занимающие ее центральную ямку диаметром 0,3 мм в области желтого пятна. По мере удаления от центра острота зрения резко снижается. Это объясняется изменением плотности расположения нейроэлементов и особенностью передачи импульса. Импульс от каждой колбочки центральной ямки проходит по отдельным нервным волокнам через всс отделы зрительного пути, что обеспечивает четкое восприятие каждой точки и мелких деталей предмета.

Точки А и В (рис. 4.1)

будут восприниматься раздельно при условии, если их изображения на сетчатке «b» и «а» будут разделены одной невозбужденной колбочкой «с». Это создает минимальный световой промежуток между двумя отдельно лежащими точками.

Диаметр колбочки «с» определяет величину максимальной остроты зрения. Чем меньше диаметр колбочек, тем выше острота зрения. Изображения двух точек, если они попадут на две соседние колбочки, сольются и будут восприниматься в виде короткой линии.

С учетом размеров глазного яблока и диаметра колбочки 0,004 мм минимальные углы аОb и АОВ равны 1′. Этот угол, позволяющий видеть две точки раздельно, в физиологической оптике называется углом зрения, иными словами, это угол, образованный точками рассматриваемого объекта (А и В) и узловой (О) точкой глаза.

Определение остроты зрения (визометрия). Для исследования остроты зрения используют специальные таблицы, содержащие буквы, цифры или значки различной величины, а для детей — рисунки (чашечка, елочка и др.). Их называют оптотипами (рис. 4.2).

В физиологической оптике существуют понятия минимально видимого, различимого и узнаваемого. Обследуемый должен видеть оптотип, различать его детали, узнавать представляемый знак или букву. Оптотипы можно проецировать па экран или дисплей компьютера.

В основу создания оптотипов положено международное соглашение о величине их деталей, различаемых под углом зрения 1′, тогда как весь оптотип соответствует углу зрения 5′.

В нашей стране наиболее распространенным является метод определения остроты зрения по таблице Головина — Сивцева (рис. 4.3),

помещенной в аппарат Рота. Нижний край таблицы должен находиться на расстоянии 120 см от уровня пола. Пациент сидит на расстоянии 5 м от экспонируемой таблицы. Сначала определяют остроту зрения правого, затем — левого глаза. Второй глаз закрывают заслонкой.

Таблица имеет 12 рядов букв или знаков, величина которых постепенно уменьшается от верхнего ряда к нижнему. В построении таблицы использована десятичная система: при прочтении каждой последующей строчки острота зрения увеличивается на 0,1. Справа от каждой строки указана острота зрения, которой соответствует распознавание букв в этом ряду. Слева против каждой строки указано то расстояние, с которого детали этих букв будут видны под углом зрения 1′, а вся буква — под углом зрения 5′. Так, при нормальном зрении, принятом за 1,0, верхняя строка будет видна с расстояния 50 м, а десятая — с расстояния 5 м.

Встречаются люди и с более высокой остротой зрения — 1,5; 2,0 и более. Они читают одиннадцатую или двенадцатую строку таблицы. Описан случай остроты зрения, равной 60,0. Обладатель такого зрения невооруженным глазом различал спутники Юпитера, которые с Земли видны под углом 1″.

При остроте зрения ниже 0,1 обследуемого нужно приближать к таблице до момента, когда он увидит ее первую строку. Расчет остроты зрения следует производить по формуле Снеллена:

где d — расстояние, с которого обследуемый распознает оптотип; D — расстояние, с которого данный оптотип виден при нормальной остроте зрения. Для первой строки D равно 50 м. Например, пациент видит первую строку таблицы на расстоянии 2 м. В этом случае

Vis = 2м/50 м = 0,04.

Поскольку толщина пальцев руки примерно соответствует ширине штрихов оптотипов первой строки таблицы, можно демонстрировать обследуемому раздвинутые пальцы (желательно на темном фойе) с различного расстояния и соответственно определять остроту зрения ниже 0,1 также по приведенной выше формуле. Если острота зрения ниже 0,01, но обследуемый считает пальцы на расстоянии 10 см (или 20, 30 см), тогда Vis равна счету пальцев на расстоянии 10 см (или 20, 30 см). Больной может быть не способен считать пальцы, но определяет движение руки у лица, это считается следующей градацией остроты зрения.

Минимальной остротой зрения является светоощущение (Vis = 1/?) с правильной (pioectia lucis certa) или неправильной (proectia lucis inceila) светопроекцией. Светопроекцию определяют путем направления в глаз с разных сторон луча света от офтальмоскопа. При отсутствии светоощущения острота зрения равна нулю (Vis = 0) и глаз считается слепым.

Для определения остроты зрения ниже 0,1 применяют оптотипы, разработанные Б. Л, Поляком, в виде штриховых тестов или колец Ландольта, предназначенных для предъявления на определенном близком расстоянии с указанием соответствующей остроты зрения (рис. 4.4).

Данные оптотипы специально созданы для военно-врачебной и медикосоциальной экспертизы, проводимой при определении годности к военной службе или группы инвалидности.

Существует и объективный (не зависящий от показаний пациента) способ определения остроты зрения, основанный на оптокинетическом нистагме. С помощью специальных аппаратов обследуемому демонстрируют движущиеся объекты в виде полос или шахматной доски. Наименьшая величина объекта, вызвавшая непроизвольный нистагм (увиденный врачом), и соответствует остроте зрения исследуемого глаза.

В заключение следует отметить, что в течение жизни острота зрения изменяется, достигая максимума (нормальных величин) к 5—15 годам и затем постепенно снижаясь после 40—50 лет.

↑ Периферическое зрение

Периферическое зрение является функцией палочкового и колбочкового аппарата всей оптически деятельной сетчатки и определяется полем зрения. Поле зрения — это видимое глазом (глазами) пространство при фиксированном взоре. Периферическое зрение помогает ориентироваться в пространстве.

Поле зрения исследуют с помощью периметрии. Самый простой способ — контрольное (ориентировочное) исследование по Дондерсу. Обследуемый и врач располагаются лицом друг к другу на расстоянии 50—60 см, после чего врач закрывает правый глаз, а обследуемый — левый. При этом обследуемый открытым правым глазом смотрит в открытый левый глаз врача и наоборот. Поле зрения левого глаза врача служит контролем при определении поля зрения обследуемого. На срединном расстоянии между ними врач показывает пальцы, перемещая их в направлении от периферии к центру. При совпадении границ обнаружения демонстрируемых пальцев врачом и обследуемым поле зрения последнего считается неизмененным. При несовпадении отмечается сужение поля зрения правого глаза обследуемого по направлениям движения пальцев (кверху, книзу, с носовой или височной стороны, а также в радиусах между ними). После проверки ноля зрения правого глаза определяют поле зрения левого глаза обследуемого при закрытом правом, при этом у врача закрыт левый глаз. Данный метод считается ориентировочным, так как не позволяет получить числового выражения степени сужения границ поля зрения. Метод может быть применен в тех случаях, когда нельзя провести исследование на приборах, в том числе у лежачих больных.

Наиболее простым прибором для исследования поля зрения является периметр Ферстера, представляющий собой дугу черного цвета (на подставке), которую можно смещать в различных меридианах. При проведении исследования на этом и других приборах необходимо соблюдать следующие условия. Голову обследуемого устанавливают на подставке таким образом, чтобы исследуемый глаз находился в центре дуги (полусферы), а второй глаз был закрыт повязкой. Кроме того, в течение всего исследования обследуемый должен фиксировать метку в центре прибора. Обязательна также адаптация пациента к условиям проведения исследования в течение 5—10 мин. Врач перемещает по дуге периметра Ферстера в различных меридианах исследования белую или цветные метки от периферии к центру, определяя таким образом границы их обнаружения, т. е. границы поля зрения.

Периметрию на широко вошедшем в практику универсальном проекционном периметре (ППУ) также проводят монокулярно. Правильность центровки глаза контролируют с помощью окуляра. Сначала проводят периметрию на белый цвет. При исследовании поля зрения на различные цвета включают светофильтр: красный (К), зеленый (ЗЛ), синий (С), желтый (Ж). Объект перемещают от периферии к центру вручную или автоматически после нажатия на клавишу «Движение объекта» на панели управления. Изменение меридиана исследования осуществляют поворотом проекционной системы периметра. Регистрацию величины поля зрения проводит врач на бланке-графике (отдельно для правого и левого глаза).

Более сложными являются современные периметры, в том числе на компьютерной основе. На полусферическом или каком-либо другом экране в различных меридианах передвигаются или вспыхивают белые либо цветные метки. Соответствующий датчик фиксирует показатели испытуемого, обозначая границы поля зрения и участки выпадения в нем на специальном бланке или в виде компьютерной распечатки.

При определении границ поля зрения на белый цвет обычно используют круглую метку диаметром 3 мм. При низком зрении можно увеличить яркость освещения метки либо использовать метку большего диаметра. Периметрию на различные цвета проводят с меткой 5 мм. В связи с тем что периферическая часть ноля зрения является ахроматичной, цветная метка поначалу воспринимается как белая или серая разной яркости и лишь при входе в хроматическую зону поля зрения она приобретает соответствующую окраску (синюю, зеленую, красную), и только после этого обследуемый должен регистрировать светящийся объект. Наиболее широкие границы имеет поле зрения на синий и желтый цвета, немного уже поле на красный цвет и самое узкое — на зеленый (рис. 4.5).

Нормальными границами поля зрения на белый цвет считают кверху 45—55°, кверху кнаружи 65°, кнаружи 90°, книзу 60—70°, книзу кнутри 45°, кнутри 55°, кверху кнутри 50°. Изменения границ поля зрения могут происходить при различных поражениях сетчатки, хориоидеи и зрительных путей, при патологии головного мозга.

Информативность периметрии увеличивается при использовании меток разных диаметра и яркости — так называемая квантитативная, или количественная, периметрия. Она позволяет определить начальные изменения при глаукоме, дистрофических поражениях сетчатки и других заболеваниях глаз. Для исследования сумеречного и ночного (скотопического) поля зрения применяют самую слабую яркость фона и низкую освещенность метки, чтобы оценить функцию палочкового аппарата сетчатки.

В последние годы в практику входит визоконтрастопериметрия, представляющая собой способ оценки пространственного зрения с помощью черно-белых или цветных полос разной пространственной частоты, предъявляемых в виде таблиц или на дисплее компьютера. Нарушение восприятия разных пространственных частот (решеток) свидетельствует о наличии изменений на соответствующих участках сетчатки или поля зрения.

Концентрическое сужение поля зрения со всех сторон характерно для пигментной дистрофии сетчатки и поражения зрительного нерва. Поле зрения может уменьшиться вплоть до трубочного, когда остается только участок 5—10° в центре. Пациент еще может читать, но не может самостоятельно ориентироваться в пространстве (рис. 4.6).

Симметричные выпадения в полях зрения правого и левого глаза — симптом, свидетельствующий о наличии опухоли, кровоизлияния или очага воспаления в основании мозга, области гипофиза или зрительных трактов.

Гетеронимная битемпоральная гемианопсия — это симметричное половинчатое выпадение височных частей полей зрения обоих глаз. Оно возникает при поражении внутри хиазмы перекрещивающихся нервных волокон, идущих от носовых половин сетчатки правого и левого глаза (рис. 4.7).

Гетеронимная биназальная симметричная гемианопсия встречается редко, например при выраженном склерозе сонных артерий, одинаково сдавливающих хиазму с двух сторон.

Гомонимная гемианопсия — это половинчатое одноименное (право-или левостороннее) выпадение полей зрения в обоих глазах (рис. 4.8).

Оно возникает при наличии патологии, затрагивающей один из зрительных трактов. Если поражается правый зрительный тракт, то возникает левосторонняя гомонимная гемианопсия, т. е. выпадают левые половины полей зрения обоих глаз. При поражении левого зрительного тракта развивается правосторонняя гемианопсия.

В начальной стадии опухолевого или воспалительного процесса может быть сдавлена только часть зрительного тракта. В этом случае регистрируются симметричные гомонимные квадрантные гемианопсии, т. е. выпадает четверть поля зрения в каждом глазу, например пропадает левая верхняя четверть поля зрения как в правом, так и в левом глазу (рис. 4.9).

Когда опухоль мозга затрагивает корковые отделы зрительных путей, вертикальная линия гомонимных выпадений полей зрения не захватывает центральные отделы, она обходит точку фиксации, т. е. зону проекции желтого пятна. Это объясняется тем, что волокна от нейроэлементов центрального отдела сетчатки уходят в оба полушария головного мозга (рис. 4.10).

Патологические процессы в сетчатке и зрительном нерве могут вызывать изменения границ поля зрения различной формы. Для глаукомы, например, характерно сужение поля зрения с носовой стороны.

Локальные выпадения внутренних участков поля зрения, не связанных с его границами, называют скотомами. Их определяют с использованием объекта диаметром 1 мм также в различных меридианах, при этом особенно тщательно исследуют центральный и парацентральный отделы. Скотомы бывают абсолютными (полное выпадение зрительной функции) и относительными (понижение восприятия объекта в исследуемом участке поля зрения). Наличие скотом свидетельствует об очаговых поражениях сетчатки и зрительных путей. Скотома может быть положительной и отрицательной. Положительную скотому видит сам больной как темное или серое пятно перед глазом. Такое выпадение в поле зрения возникает при поражениях сетчатки и зрительного нерва. Отрицательную скотому сам больной не обнаруживает, ее выявляют при исследовании. Обычно наличие такой скотомы свидетельствует о поражении проводящих путей (рис. 4.11).

Мерцательные скотомы — это внезапно появляющиеся кратковременные перемещающиеся выпадения в поле зрения. Даже в том случае, когда пациент закрывает глаза, он видит яркие, мерцающие зигзагообразные линии, уходящие на периферию. Этот симптом является признаком спазма сосудов головного мозга. Мерцательные скотомы могут повторяться с неопределенной периодичностью. При их появлении пациент должен немедленно принимать спазмолитические средства.

По месту расположения скотом в поле зрения выделяют периферические, центральные и пароцентральные скотомы. На удалении 12—18° от центра в височной половине располагается слепое пятно. Это — физиологическая абсолютная скотома. Она соответствует проекции диска зрительного нерва. Увеличение слепого пятна имеет важное диагностическое значение.

Читайте также:  Какие продукты полезны для глаз зрения

Центральные и парацентральные скотомы выявляют при кампиметрии. Пациент фиксирует взглядом светлую точку в центре плоской черной доски и следит за появлением и исчезновением белой (или цветной) метки, которую врач переметает по доске, и отмечает границы дефектов поля зрения.

Центральные и парацентральные скотомы появляются при поражении папилломакулярного пучка зрительного нерва, сетчатки и хориоидеи. Центральная скотома может быть первым проявлением рассеянного склероза.

↑ Цветоощущение

Цветовое зрение — способность глаза к восприятию цветов на основе чувствительности к различным диапазонам излучения видимого спектра. Это функция колбочкового аппарата сетчатки.

Можно условно выделить три группы цветов в зависимости от длины волны излучения:

  • длинноволновые — красный и оранжевый,
  • средневолновые — желтый и зеленый,
  • коротковолновые — голубой, синий, фиолетовый.

Все многообразие цветовых оттенков (несколько десятков тысяч) можно получить при смешении трех основных цветов — красного, зеленого, синего. Все эти оттенки способен различить глаз человека. Это свойство глаза имеет большое значение в жизни человека. Цветовые сигналы широко используют на транспорте, в промышленности и других отраслях народного хозяйства. Правильное восприятие цвета необходимо во всех медицинских специальностях, в настоящее время даже рентгенодиагностика стала не только черно-белой, но и цветной (рис. 4.12, 4.13).

Идея трехкомпонентности цветовосприятия впервые была высказана М. В. Ломоносовым еще в 1756 г. В 1802 г. Т. Юнг опубликовал работу, ставшую основой трехкомпонентной теории цветовосприятия. Существенный вклад в разработку этой теории внесли Г. Гельмгольц и его ученики. Согласно трехкомпонентной теории Юнга — Ломоносова — Гельмгольца, существует три типа колбочек. Каждому из них свойствен определенный пигмент, избирательно стимулируемый определенным монохроматическим излучением. Синие колбочки имеют максимум спектральной чувствительности в диапазоне 430—468 нм, у зеленых колбочек максимум поглощения находится на уровне 530 нм, а у красных — 560 нм.

В то же время цветоощущение есть результат воздействия света на все три типа колбочек. Излучение любой длины волны возбуждает все колбочки сетчатки, но в разной степени (рис. 4.14).

При одинаковом раздражении всех трех групп колбочек возникает ощущение белого цвета. Существуют врожденные и приобретенные расстройства цветового зрения. Около 8 % мужчин имеют врожденные дефекты цветовосприятия. У женщин эта патология встречается значительно реже (около 0,5 %). Приобретенные изменения цветовосприятия отмечаются при заболеваниях сетчатки, зрительного нерва и центральной нервной системы.

В классификации врожденных расстройств цветового зрения Криса—Нагеля красный цвет считается первым и обозначают его «протос» (греч. protos — первый), затем идут зеленый — «дейтерос» (греч. deuteros — второй) и синий — «тритос” (греч. tritos — третий). Человек с нормальным цветовосприятием — нормальный трихромат.

Аномальное восприятие одного из трех цветов обозначают соответственно как прот-, дейтер- и тританомалию. Прот- и дейтераномалии подразделяют на три типа: тип С — незначительное снижение цветовосприятия, тип В — более глубокое нарушение и тип А — на грани утраты восприятия красного или зеленого цвета.

Полное невосприятие одного из трех цветов делает человека дихроматом и обозначается соответственно как прот-, дейтер- или тританопия (греч. аn — отрицательная частица, ops, opos — зрение, глаз). Людей, имеющих такую патологию, называют прот-, дейтер- и тританопами. Невосприятие одного из основных цветов, например красного, изменяет восприятие других цветов, так как в их составе отсутствует доля красного.

Крайне редко встречаются монохроматы, воспринимающие только один из трех основных цветов. Еще реже, при грубой патологии колбочкового аппарата, отмечается ахромазия — черно-белое восприятие мира. Врожденные нарушения цветовосприятия обычно не сопровождаются другими изменениями глаза, и обладатели этой аномалии узнают о ней случайно при медицинском обследовании. Такое обследование является обязательным для водителей всех видов транспорта, людей, работающих с движущимися механизмами, и при ряде профессий, когда требуется правильное различение цветов.

Оценка цветоразличительной способности глаза. Исследование проводят на специальных приборах — аномалоскопах или с помощью полихроматических таблиц. Общепринятым считается метод, предложенный Е. Б. Рабкиным, основанный на использовании основных свойств цвета.

Цвет характеризуется тремя качествами:

    цветовым тоном, который является основным признаком цвета и зависит от длины световой волны;

насыщенностью, определяемой долей основного тона среди примесей другого цвета;

  • яркостью, или светлотой, которая проявляется степенью близости к белому цвету (степень разведения белым цветом).
  • Диагностические таблицы построены по принципу уравнения кружочков разного цвета по яркости и насыщенности. С их помощью обозначены геометрические фигуры и цифры («ловушки»), которые видят и читают цветоаномалы. В то же время они не замечают цифру или фигурку, выведенную кружочками одного цвета. Следовательно, это и есть тот цвет, который не воспринимает обследуемый. Во время исследования пациент должен сидеть спиной к окну. Врач держит таблицу на уровне его глаз на расстоянии 0,5—1 м. Каждая таблица экспонируется 5 с. Дольше можно демонстрировать только наиболее сложные таблицы (рис. 4.15, 4.16).

    При выявлении нарушений цветоощущения составляют карточку обследуемого, образец которой имеется в приложениях к таблицам Рабкина. Нормальный трихромат прочитает все 25 таблиц, аномальный трихромат типа С — более 12, дихромат — 7-9.

    При массовых обследованиях, предъявляя наиболее трудные для распознавания таблицы из каждой группы, можно весьма быстро обследовать большие контингенты. Если обследуемые четко распознают названные тесты при троекратном повторе, то можно и без предъявления остальных сделать заключение о наличии нормальной трихромазии. В том случае, если хотя бы один из этих тестов не распознан, делают вывод о наличии цветослабости и для уточнения диагноза продолжают предъявление всех остальных таблиц.

    Выявленные нарушения цветоощущения оценивают по таблице как цветослабость I, II или III степени соответственно на красный (протодефицит), зеленый (дейтеродефицит) и синий (тритодефицит) цвета либо цветослепоту — дихромазия (прот-, дейтер- или тританопия). С целью диагностики расстройств цветоощущения в клинической практике также используют пороговые таблицы, разработанные Е. Н. Юстовой и соавт. для определения порогов цветоразличения (цветосилы) зрительного анализатора. С помощью этих таблиц определяют способность уловить минимальные различия в тонах двух цветов, занимающих более или менее близкие позиции в цветовом треугольнике.

    ↑ Бинокулярное зрение

    Бинокулярное зрение — восприятие окружающих предметов двумя глазами (от лат. bi — два, осulus — глаз) — обеспечивается в корковом отделе зрительного анализатора благодаря сложнейшему физиологическому механизму зрения — фузии, т. е. слиянию зрительных образов, возникающих отдельно в каждом глазу (монокулярное изображение), в единое сочетанное зрительное восприятие.

    Единый образ предмета, воспринимаемого двумя глазами, возможен лишь в случае попадания его изображения на так называемые идентичные, или корреспондирующие, точки сетчатки, к которым относятся центральные ямки сетчатки обоих глаз, а также точки сетчатки, расположенные симметрично по отношению к центральным ямкам (рис. 4.17).

    В центральных ямках совмещаются отдельные точки, а на остальных участках сетчатки корреспондируют рецепторные поля, имеющие связь с одной ганглиозной клеткой. В случае проецирования изображения объекта на несимметричные, или так называемые диспаратные, точки сетчатки обоих глаз возникает двоение изображения — диплопия.

    Бинокулярное зрение формируется постепенно и достигает полного развития к 7—15 годам. Оно возможно лишь при определенных условиях, причем нарушение любого из них может стать причиной расстройства бинокулярного зрения, вследствие чего характер зрения становится либо монокулярным (зрение одним глазом), либо одновременным, при котором в высших зрительных центрах воспринимаются импульсы то от одного, то от другого глаза. Монокулярное и одновременное зрение позволяет получить представление лишь о высоте, ширине и форме предмета без оценки взаиморасположения предметов в пространстве по глубине.

    Основной качественной характеристикой бинокулярного зрения является глубинное стереоскопическое видение предмета, позволяющее определить его место в пространстве, видеть рельефно, глубинно и объемно. Образы внешнего мира воспринимаются трехмерными. При бинокулярном зрении расширяется поле зрения и повышается острота зрения (на 0,1—0,2 и более).

    При монокулярном зрении человек приспосабливается и ориентируется в пространстве, оценивая величину знакомых предметов. Чем дальше находится предмет, тем он кажется меньше. При повороте головы расположенные на разном расстоянии предметы смещаются относительно друг друга. При таком зрении труднее всего ориентироваться среди находящихся вблизи предметов, например трудно попасть концом нитки в ушко иголки, налить воду в стакан и т. п. Отсутствие бинокулярного зрения ограничивает профессиональную пригодность человека.

    Для формирования нормального (устойчивого) бинокулярного зрения необходимы следующие условия:

      Достаточная острота зрения обоих глаз (не менее 0,4), при которой формируется четкое изображение предметов на сетчатке.

    Свободная подвижность обоих глазных яблок. Именно нормальный тонус всех двенадцати глазодвигательных мышц обеспечивает необходимую для существования бинокулярного зрения параллельную установку зрительных осей, когда лучи от рассматриваемых предметов проецируются на центральные области сетчатки. Такое положение глаз обеспечивает ортофорию (греч. optos — прямой, foros — несущий). В природе ортофория наблюдается достаточно редко, в 70—80 % случаев встречается гетерофория (греч. geteros — другой), считающаяся проявлением скрытого косоглазия. Это состояние обоих глаз характеризуется тем, что в покое они могут принимать такое положение, при котором зрительная ось одного глаза отклоняется или кнутри (эзофория), или кнаружи (экзофория), или кверху (гиперфория), или книзу (гипофория). Причиной гетерофории считается неодинаковая сила действия глазодвигательных мышц, т. е. мышечный дисбаланс. Однако в отличие от явного косоглазия при гетерофории сохраняется бинокулярное зрение благодаря существованию фузионного рефлекса. В ответ на появление физиологического двоения из коры головного мозга поступает сигнал, мгновенно корригирующий тонус глазодвигательных мышц, и два изображения предмета сливаются в единый образ. Патология глазодвигательного аппарата является одной из основных причин утраты бинокулярного зрения. Степень гетерофории, выражаемая в призменных диоптриях, определяется величиной отклонения зрительной линии одного из глаз от точки фиксации.

    Равные величины изображений в обоих глазах — изейкония. Следует отметить, что при неравенстве величин изображений (анизейкония) 1,5—2,5 % возникают неприятные субъективные ощущения в глазах (астенопические явления), а при анизейконии 4—5 % и более бинокулярное зрение практически невозможно. Разные по величине изображения возникают при анизометропии — разной рефракции двух глаз.

    Нормальная функциональная способность сетчатки, проводящих путей и высших зрительных центров.

  • Расположение двух глаз в одной фронтальной и горизонтальной плоскости. При смещении одного глаза во время травмы, а также в случае развития воспалительного или опухолевого процесса в орбите нарушается симметричность совмещения полей зрения, утрачивается стереоскопическое зрение.
  • Существует несколько простых способов определения бинокулярного зрения без использования приборов.

      Первый заключается в надавливании пальцем на глазное яблоко в области век, когда глаз открыт. При этом появляется двоение, если у пациента имеется бинокулярное зрение. Это объясняется тем, что при смещении одного глаза изображение фиксируемого предмета переместится на несимметричные точки сетчатки.

    Второй способ — опыт с карандашами, или так называемая проба с промахиванием, в ходе которой наличие или отсутствие бинокулярности выявляют с помощью двух обычных карандашей. Пациент держит один карандаш вертикально в вытянутой руке, врач — другой в том же положении. Наличие бинокулярного зрения у пациента подтверждается в том случае, если при быстром движении он попадает кончиком своего карандаша в кончик карандаша врача.

    Третий способ — проба с «дырой в ладони». Одним глазом пациент смотрит вдаль через свернутую из бумаги трубочку, а перед вторым глазом помещает свою ладонь на уровне конца трубочки. При наличии бинокулярного зрения происходит наложение изображений и пациент видит в ладони отверстие, а в нем предметы, видимые вторым глазом.

  • Четвертый способ — проба с установочным движением. Для этого пациент сначала фиксирует взгляд обоими глазами на близко расположенном предмете, а затем один глаз закрывает ладонью, как бы «выключая» его из акта зрения. В большинстве случаев глаз отклоняется к носу или кнаружи. Когда глаз открывают, он, как правило, возвращается на исходную позицию, т. е. совершает установочное движение. Это свидетельствует о наличии у пациента бинокулярного зрения.
  • Для более точного определения характера зрения (монокулярное, одновременное, неустойчивое и устойчивое бинокулярное) в клинической практике широко используют аппаратные методы исследования, в частности общепринятую методику Белостоцкого — Фридмана с применением четырехточечного прибора «Цветотест ЦТ-1» (Россия). На его экране светятся четыре точки: белая, красная и две зеленые. Обследуемый смотрит через очки с красным стеклом перед правым глазом и зеленым перед левым. В зависимости от того, какие ответы выдает пациент, находясь на расстоянии 5 м, можно точно установить наличие или отсутствие у него бинокулярного зрения, а также определить ведущий (правый или левый) глаз.

    С целью определения стереоскопического зрения часто применяют «Fly»-стереотест (с изображением мухи) фирмы «Titmus Optical» (США). Для установления величины анизейконии используют фазоразделительный гаплоскоп. В ходе исследования пациенту предлагают объединить два полукруга в полный бесступенчатый круг, меняя величину одного из полукругов. За величину имеющейся у пациента анизейконии принимают процентное отношение величины полукруга для правого глаза к величине полукруга для левого глаза.

    Аппаратные методы исследования стереоскопического зрения широко используют в детской практике при диагностике и лечении косоглазия.

    ↑ Светоощущение

    Светоощущение является функцией палочкового аппарата сетчатки. Это способность глаза к восприятию света и различению степеней его яркости.

    Светоощущение считается наиболее чувствительной функцией органа зрения, изменения которой раньше, чем изменения других функций, выявляют при различных патологических процессах, и они, таким образом, служат ранними критериями диагностики многих заболеваний (глаукома, поражения ЦНС, болезни печени, гиповитаминозы, авитаминозы и т. д.). Светоощущение является первой, самой древней функцией световоспринимающих клеток и органов. У человека при наступлении слепоты светоощущение в сравнении с другими функциями глаза исчезает в последнюю очередь.

    Световосприятие (чувствительность глаза к свету) индивидуально и в каждом конкретном случае находится в прямой зависимости от состояния сетчатки и концентрации в ней светочувствительного вещества. Кроме того, оно определяется общим состоянием зрительно-нервного аппарата, в первую очередь уровнем возбудимости нервной ткани.

    Принято различать абсолютную светочувствительность, характеризующуюся порогом раздражения, или, другими словами, порогом восприятия света, и различительную светочувствительность, характеризующуюся порогом различения, т. е. порогом восприятия предельной (минимальной) разницы яркости света между двумя освещенными объектами, что позволяет отличать их от окружающего фона. При этом и порог раздражения, и порог различения обратно пропорциональны степени светоощущения, т. е. чем меньше воспринимаемый глазом минимум света или улавливаемая разница в его яркости, тем выше световая чувствительность. Фоторецепторы сетчатки глаза человека возбуждаются уже при наличии 1 кванта света, но ощущение света возникает только при наличии 5—8 квантов света.

    Следует уточнить, что, для того чтобы сетчатка была способна даже к самому малому световосприятию, длина волны световых лучей, исходящих от объекта, должна обязательно находиться в пределах видимого излучения и, кроме того, продолжительность и интенсивность раздражения, а также величина объекта должны быть доступны для их восприятия сетчаткой.

    Способность глаза проявлять световую чувствительность при различной освещенности называется адаптацией. Именно эта функция органа зрения позволяет сохранять высокую светочувствительность и одновременно предохранять фоторецепторы сетчатки от перенапряжения.

    Принято различать световую адаптацию, определяющую максимальное количество света, воспринимаемого глазом, и темновую, или так называемую абсолютную, адаптацию, определяющую соответственно минимум воспринимаемого глазом света. Длительность обоих видов адаптации глаза во многом зависит от уровня предшествующей освещенности. Когда глаз адаптируется к возросшей яркости света (световая адаптация), чувствительность фоторецепторов сетчатки особенно интенсивно снижается в первые секунды и достигает нормальных значений к концу 1-й минуты.

    При переходе в условия пониженной освещенности зрительный анализатор нуждается в темновой адаптации. Световая чувствительность фоторецепторов относительно быстро увеличивается, через 20—30 мин процесс замедляется, и лишь спустя 50—60 мин адаптация достигает своего максимума.

    Простым методом исследования световой чувствительности является проба Кравкова, основанная на феномене Пуркинье, который заключается в том, что в условиях пониженной освещенности происходит перемещение максимума яркости цветов от красной части спектра к синефиолетовой. Днем красный мак и синий василек кажутся одинаково яркими, а в сумерках мак становится почти черным, а василек воспринимается как светло-серое пятно.

    Для проведения пробы Кравкова — Пуркинье на углы квадрата размером 20 х 20 см, сделанного из черного картона, наклеивают 4 квадратика размером 3 х 3 см из голубой, желтой, красной и зеленой бумаги. В затемненной комнате эти цветные квадратики показывают пациенту на расстоянии 40—50 см от его глаза. В норме через 30—40 с обследуемый различает желтый, а затем голубой квадраты. При нарушении светоощущения вместо желтого квадрата пациент видит светлое пятно, а голубой квадрат вообще не выявляет.

    Более точное определение светочувствительности производят на регистрирующем полуавтоматическом адаптометре. Исследование выполняют в темноте, длительность его 50—60 мин. Сначала обследуемый максимально адаптируется к свету. В течение 10 мин он смотрит на освещенный экран, а затем погружается в полную темноту. Пациенту предъявляется слабо освещенный тест, яркость которого постепенно увеличивается. Когда обследуемый различит тест, он нажимает па кнопку. На бланке регистрирующего устройства ставится точка. Яркость теста изменяют сначала через 2—3 мин, а затем с интервалом 5 мин. По прошествии 60 мин исследование заканчивают. Соединив точки на регистрационном бланке, исследователь получает кривую световой чувствительности обследуемого.

    Наиболее частыми расстройствами сумеречного зрения считаются симптоматическая и функциональная гемералопия (от греч. hemera — днем, aloos — слепой, ops — глаз). В народе это состояние получило название «куриная слепота» по образу и подобию зрения дневных птиц, не видящих в темноте.

    Причиной симптоматической гемералопии являются поражения фоторецепторов сетчатки, нередко сопровождающие различные органические заболевания сосудистой оболочки, сетчатки и зрительного нерва (глаукома, невриты зрительного нерва и пигментные дегенерации сетчатки). Функциональная гемералопия считается характерным симптомом гиповитаминоза А и в большинстве случаев клинически проявляется развитием ксеротических бляшек на конъюнктиве у лимба. Эта форма заболевания хорошо поддается лечению витаминами А и группы В. Иногда гемералопия имеет характер врожденного семейно-наследственного заболевания неясной этиологии, при котором изменения на глазном дне отсутствуют.

    Источники:
    • http://zreniemed.ru/xarakteristiki/funkcii-glaz.html
    • http://eyecaretips.ru/anatomiya-glaza/organ-zreniya
    • http://megaobuchalka.ru/11/47071.html
    • http://ofthalm.ru/funkcii-zrenija.html
    • http://zreni.ru/articles/oftalmologiya/2336-osnovnye-funkcii-organa-zreniya-i-metody-ih-issledovaniya.html