Меню Рубрики

Кислоты с точки зрения теории диссоциации

Диссоциация оснований. Согласно теории электролитической диссоциации, основания – это электролиты, которые при диссоциации образуют только один вид анионов – гидроксид-ионы OH  : NaOH  Na + + OH  ; Ca(OH)2  CaOH + + OH  ; CaOH +  Ca 2+ + OH  .

Ступенчатость диссоциации обусловливает возможность образования основных и кислых (см. ниже) солей.

Диссоциация кислот. Кислоты – это электролиты, которые при диссоциации образуют только один вид катионов – катионы водорода H + . HCl  H + + Cl  ; HNO3  H + + NO3  ; H2SO4  H + + HSO4  — ; HSO4   H + + SO4 2  ; H3PO4  H + + H2PO4  ; H2PO4   H + + HPO4 2  ; HPO4 2   H + + PO4 3  .

Диссоциация амфотерных гидроксидов. Амфотерные гидроксиды дис-социируют в водном растворе как по типу кислоты, так и по типу основания. При их диссоциации одновременно образуются катионы H + и гидроксид-анионы OH  : H + + MeO  ⇄ MeOH ⇄ Me + + OH  .

К ним относятся гидроксиды цинка Zn(OH)2, алюминия Al(OH)3, хрома Cr(OH)3, свинца Pb(OH)2 и др.

1. Средние соли – это электролиты, при диссоциации которых в водных растворах образуются катионы металла и анионы кислотного остатка. Напри-мер, Na2SO42 Na + + SO4 2  ; Ca3(PO)43 Ca 2+ + 2 PO4 3  .

2.Кислые соли при растворении в воде образуют катион металла и сложный анион из атомов водорода и кислотного остатка: KHSO3  K + + HSO3  ( = 1).

Сложный анион диссоциирует частично: HSO3  ⇄ H + + SO3 2  (  : Al(OH)2Cl  Al(OH)2 + + Cl  ( = 1).

Сложный катион диссоциирует частично: Al(OH)2 + ⇄ AlOH 2+ + OH  ( 2+ ⇄ Al 3+ + OH  ( + + Al 3+ + 2 SO4 2  ;

Сложные соли диссоциируют на катион металла и анионы кислотных остатков. Например, ZnClNO3  Zn 2+ + Cl  + NO3  ;

ОВР-реакции, протекающие с изменением степени окисления.

Окисление – это процесс отдачи электронов при этом происходит понижение степени окисления.

Восстановление – это процесс присоединения электронов, при этом происходит понижение степени окисления.

Реакции, в кот. ок-ль. и восст-ль предс. собой различные ве-ва наз. межмолеклярными. Если ок-ль и восс-ль атомы одной молекулы — внутримолекулярные.

Под степенью окисления (окислительным числом) понимают условный заряд атома в соединении, вычисленный из предположения, что в молекуле все связи ионные. Степень окисления указывает, сколько электронов оттянуто от атома (положительная степень окисления) или притянуто к нему от другого атома (отрицательная степень окисления). Мера удаления или приближения электронов к атому в степени окисления не отражена.Восстановители

а) Металлы как простые вещества: K 0 , Na 0 , Ca 0 , Al 0 и др.

б) Простые анионы неметаллов: S 2  , Cl  , J  , Br  , Se 2  и др.

в) Сложные анионы и молекулы, содержащие электроположитель-ные элементы в промежуточной степени окисления: S +4 O3 2  , N +3 O2  , As +3 O3 3  , Cr +3 O2  , [Fe +2 (CN)6] 4  , C +2 O, N +2 O, S +4 O2 и др.

г) Простые катионы в низшей степени окисления: Fe 2+ , Sn 2+ , Cr 3+ , Cu + , Mn 2+ , As 3+ и др.

д) Некоторые простые вещества:

е) Катод при электролизе.

а) Неметаллы как простые вещества с большой электроотрицательностью: F2, O2, Cl2 и др.

б) Простые катионы в высокой степени окисления: Sn 4+ , Fe 3+ , Cu 2+ и др., а также H + .

г) Сложные ионы и молекулы, содержащие атомы неметаллов в положительной степени окисления: H2S +6 O4, S +6 O3, HOCl +1 , HCl +5 O3,

д) Анод при электролизе.

В соединениях, когда атомы находятся в промежуточной степени окисления, последние могут проявлять как восстановительные, так и окислительные свойства (окислительно-восстановительная двойствен-ность):

Применяют два метода составления уравнений реакций окисления-восстановления:

2.Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации.

способность взаимодействовать с основаниями с образованием солей

способность взаимодействовать с некоторыми металлами с выделением водорода

способность изменять цвет индикатора (красная окраска лакмуса)

Согласно теории электролитической диссоциации кислоты – это электролиты, диссоциирующие в растворах с образованием ионов (катионов) водорода и анионов кислотного остатка.

Именно ионы водорода вызывают красный цвет лакмуса и сообщают кислотам кислый вкус.

способность взаимодействовать с кислотами с образованием солей

способность изменять цвет индикатора иначе, чем их изменяют кислоты (синяя окраска лакмуса)

своеобразный «мыльный вкус»

Согласно теории электролитической диссоциации основания – это электролиты, диссоциирующие в растворах с образованием аниона гидроксила и катиона металла.

Носителем щелочных свойств является анион гидроксила.

Соли при электролитической диссоциации распадаются на катион металла и анион кислотного остатка. Так как таких ионов, которые были бы общими для водных растворов всех солей нет, поэтому соли и не обладают общими свойствами.

3.Реакции нейтрализации

А) при нейтрализации любой сильной кислоты любым сильным основанием на каждую грамм-молекулу образующейся воды выделяется около 13,8 ккал теплоты.

Это говорит о том, что подобные реакции сводятся к одному процессу. Рассмотрим одну из этих реакций. Перепишем уравнение первой реакции, записывая сильные электролиты в ионной форме, а слабые — в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул.

(вода очень слабый электролит)

В ходе реакции ионы Na + и не претерпели изменений. Поэтому исключим эти ионы из обеих частей уравнения. Получим:

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу – к образованию молекул воды из ионов водорода и гидроксила.

Реакция образования воды из ионов обратима

Но так как вода слабый электролит и диссоциирует в ничтожно малой степени, то равновесие в этой реакции сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

При составлении ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы.

Общие данные о растворимости важнейших солей обычно приведены в таблицах во всех учебниках химии.

Б) нейтрализация слабой кислоты сильным основанием

Здесь сильные электролиты – NaOH и соль, а слабые – кислота и вода:

Так как только ионы натрия не претерпевают изменений, то ионно-молекулярное уравнение имеет вид:

В) нейтрализация сильной кислоты слабым основанием

Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул – гидроксид аммония и воду:

Не изменяются только ионы . Опуская их, получаем ионно-молекулярное уравнение:

Г) нейтрализация слабой кислоты слабым основанием

В этой реакции все вещества, кроме образующейся соли, слабые электролиты. Поэтому ионно-молекулярная форма имеет вид:

Реакции нейтрализации сильных кислот сильными основаниями протекают практически до конца. Реакции нейтрализации, в которых хотя бы одно из исходных веществ – слабый электролит, и при которых молекулы малодиссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца. Они доходят до состояния равновесия, при котором соль существует с кислотой и основанием, из которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции.

При растворении твердого тела в воде растворение прекращается, когда получается насыщенный раствор, т.е. когда между растворяемым веществом и находящимися в растворе молекулами того же вещества устанавливается равновесие.

При растворении электролита, например соли, в раствор переходят не молекулы, а ионы; следовательно и равновесие в насыщенном растворе устанавливается между твердой солью и перешедшими в раствор ионами.

Например, в насыщенном растворе сульфата кальция устанавливается равновесие

твердая соль ионы в растворе

Если обозначим концентрацию катионов кальция и анионов кислотного остатка, то в насыщенном растворе электролита произведение концентраций его ионов есть величина постоянная при данной температуре. Эта величина называетсяпроизведением растворимости и обозначается ПР.

ПРCaSO4=[Ca 2+ ][SO]

Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации

Читайте также:

  1. I. 36. Состав, свойства и применение азотных удобрений.
  2. I. Первая группа теорий – детерминистские теории.
  3. IV. система педагогических исследований с методологической точки зрения
  4. PGP. Принцип функционирования. Свойства ключа.
  5. V2: 01.01. Предмет и метод экономической теории
  6. VIII . Механические свойства металлов. Диаграмма растяжения металлов.
  7. XV. Влияние углерода и постоянных примесей на свойства стали
  8. Абсолютные величины и их виды, познавательные свойства и условия применения в экономико-статистическом анализе.
  9. Автономные системы и свойства их решений.
  10. Азотирование и нитроцементация. Структура, свойства и области получения.
  11. Аксиомы теории вероятностей.
  12. Актуальность проблематики с точки зрения изменения роли ИТ в бизнесе и обществе

Кислоты основания соли с точки зрения электролитической диссоциации

Рассмотрим в свете теории электролитической диссоциации свойства веществ, которые в водных растворах проявляют свойства электролитов.

Кислоты. Для кислот характерны следующие общие свойства:

а) способность взаимодействовать с основаниями с образованием солей;

б) способность взаимодействовать с некоторыми металлами с выделением водорода;

в) способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;

При диссоциации любой кислоты образуются иокы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.

Читайте также:  Зачем носить очки если плохое зрение

У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых — в меньшей. Чем лучше кислота диссоциирует, т. е. чем больше ее константа диссоциации, тем она сильнее.

Сравнивая данные, приведенные в табл. 12 и 14, можно заметить, что величины констант диссоциации кислот изменяются в очень широких пределах. В частности, константа диссоциации циановодорода много меньше, чем уксусной кислоты. И хотя обе эти кислоты — слабые, все же уксусная кислота значительно сильнее циановодорода. Величины первой и второй констант диссоциации серной кислоты показывают, что в отношении первой ступени диссоциации — сильная кислота, а в отношении второй — слабая. Кислоты, константы диссоциации которых лежат в интервале , иногда называют кислотами средней силы. К ним, в частности, относятся ортофосфорная и сернистая кислоты (в отношении диссоциации по первой ступени).

Основания. Водные растворы оснований обладают следующими общими свойствами:

а) способностью взаимодействовать с кислотами с образованием солей;

б) способностью изменять цвета индикаторов иначе, чем их изменяют кислоты (например, они вызывают синюю окраску лакмуса);

в) своеобразным «мыльным» вкусом.

Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания — это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. К таким гидроксидам принадлежит гидроксид цинка. При взаимодействии его, например, с соляной кислотой получается хлорид цинка

а при взаимодействии с гидроксидом натрия — цинкат натрия;

Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами, или амфотерными электролитами. К таким гидроксидам кроме гидроксида цинка относятся гидроксиды алюминия, хрома и некоторые другие.

Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул возможна, следовательно, по местам обеих этих связей. Если обозначить амфо-терный электролит формулой ROH, то его диссоциацию можно выразить схемой:

Таким образом, в растворе амфотериого электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.

Явление амфотерности наблюдается также среди некоторых органических соединений. Важную роль оно играет в биологической химии; например, белки — амфотерные электролиты.

Соли. Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионоз, образующих соль.

При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы . Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим уравнениям:

При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы . Например, при растворении хлорида гидроксомагния диссоциация протекает согласно уравнениям:

Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима.

В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ноны. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства основании. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония:

Изучение подобного рода реакций, а также реакций, протекающих в иеводиых средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теории кислот и оснований принадлежит протонная теория, выдвинутая в 1923 г.

Согласно протонной теории, кислотой является донор протона, т. е. частниа (молекула или ион), которая способна отдавать ион водорода — прогон, а основанием — акцептор протона, т. е. частица (молекула или ион), способная присоединять протон. Соотношение между кислотой и основанием определяется схемой:

Связанные этим соотношением основание и кислота называются сопряженными. Например, является основанием, сопряженным кислоте .

Реакцию между кислотой и основанием протонная теория представляет схемой:

Например, в реакции

ион — основание, сопряженное кислоте , а ион — кислота, сопряженная основанию .

Существенным в протонной теории является то положение, что вещество проявляет себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Важнейшим фактором при этом является энергия связи вещества с протоном. Так, в ряду эта энергия максимальна для и минимальна для HF. Поэтому в смеси с вода функционирует как кислота, а в смеси с HF — как основание:

Дата добавления: 2015-04-24 ; Просмотров: 2868 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Эквивалентная (Нормальная) концентрация

это число эквивалентов в 1 литре раствора. Обозначают символом Сн

0,1 нормальный раствор — децинормальный.

Мольная доля — это величина, характеризующая отношение количества молей данного вещества к общему количеству молей всех веществ, находящихся в смеси или растворе. Для того чтобы определить мольные доли веществ, необходима лишь таблица Менделеева и элементарное умение совершать вычисления.

Чтобы определить мольную долю того или иного вещества, вам понадобится сначала вычислить количество молей и этого вещества и всех других веществ, содержащихся в смеси (растворе), потом подставить эти величины в следующую формулу:Х = n1/Σn , где Х – мольная доля интересующего нас вещества, n1 – количество его молей, а Σn – сумма количества молей всех имеющихся веществ.

Электролитическая диссоциация. Влияние природы вещества на его способность к электролитической диссоциации в водном растворе. Гидратация ионов в растворе. Основания и кислоты с точки зрения теории электролитической диссоциации. Ион гидроксония. Амфотерные гидроксиды. Кислотно-основной характер диссоциации. Диссоциация средних, кислых и основных солей.

Под электролитической диссоциацией понимают распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов – катионов и анионов. Например, молекула уксусной кислоты так диссоциирует в водном растворе:

CH3COOH === + СО

Процесс диссоциации во всех случаях является обратимым, поэтому при надписи уравнений диссоциации применяется знак обратимости(стрелочки –туда и обратно).

Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.

Гидратация ионов во многом определяет их поведение в растворе — она влияет на скорость передвижения ионов, на условия их взаимного сближения и адсорбции на разделах фаз. Чем больше и устойчивей гидратная оболочка, тем труднее перемещаться ионам в воде и сближаться друг с другом или адсорбироваться.

С точки зрения теории электролитической диссоциации основания — это вещества, диссоциирующие в водном растворе с образованием анионов одного вида — гидроксид-ионов ОН-.

В общем виде уравнение электролитической диссоциации основания имеет вид:

NаОН « Na+ + OH-; Ва(ОН)2 « Ba2+ + 2OH-; NH3·H2O « NH4+ + OH-.

С точки зрения теории электролитической диссоциации кислоты — это вещества, диссоциирующие в водном растворе с образованием катионов одного вида — катионов водорода Н+,

В общем виде уравнение электролитической диссоциации кислоты имеет вид:

СН3СООН = Н+ + СН3СОО-.

Гидроксо́ний (оксоний, гидроний) НзО+ — комплексный ион, соединение протона с молекулой воды.

Амфоте́рные гидрокси́ды — неорганические соединения, гидроксиды амфотерных элементов, в зависимости от условий проявляющие свойства кислотных или осно́вных гидроксидов.

Все амфотерные гидроксиды являются твёрдыми веществами. Нерастворимы в воде, в основном являются слабыми электролитами.

При нагревании разлагаются с образованием соответствующего амфотерного оксида, например:

В ряде случаев промежуточным продуктом при разложении является метагидроксид, например:

При взаимодействии с кислотами образуют соли с амфотерным элементом в катионе, например:

При взаимодействии со щёлочью образуют соли с амфотерным элементом в анионе, например:

Соли – это электролиты, которые диссоциируют в растворе на катионы металлов (и NH4+) и анионы кислотных остатков. Соли по своему составу бывают кислые, основные и средние. Кислые соли характерны для слабых многоосновных кислот, основные – для слабых многокислотных оснований, а средние соли могут быть образованы как сильными, так и слабыми кислотами и основаниями. Однако независимо от состава, соли первично диссоциируют на катион металла и кислотный остаток.

Читайте также:  Закон шарля с молекулярной точки зрения

Средняя соль AICI3 Û AI+3 + 3CI- , ZnSO4 Û Zn+2 + SO42-.

Кислая соль KHCO3 Û K+ + HCO3- NaH2PO4 Û Na+ + H2PO4

Основная соль— ZnOHCI Û ZnOH+ + CI- Cr(OH)2NO3 Û Cr(OH)2+ + NO3-

Сильные и слабые электролиты. Степень диссоциации электролитов. Факторы, определяющие степень диссоциации. Основные представления теории сильных электролитов. Истинная и кажущаяся степень диссоциации в растворах сильных электролитов. Концентрация ионов в растворе и активность.

В растворах некоторых электролитов диссоциирует лишь часть молекул. Способность вещества к электролитической диссоциации называется степенью диссоциации. Она показывает отношение числа молекул, продиссоциированных на ионы, к общему числу молекул растворенного электролита: α = п/N ,

где α— степень диссоциации; п — количество ионов в растворе;

N— общее число молекул в растворе.

По степени диссоциации в растворах все электролиты делятся на две группы. К первой группе относят электролиты, степень диссоциации которых в растворах α > 30 % и почти не зависит от концентрации раствора. Их называют сильными электролитами. К сильным электролитам в водных растворах относятся щелочи: КОН, NaOH, Ba(OH)2, Са(ОН)2; кислоты: HNO3, НСl, H2SO4, НClO4, а также их соли.

Электролиты, степень диссоциации которых в растворах α K2 > K3 = 8 · 10-3 > 6 · 10-8>10-12

Суммарному равновесию: H3PO4 ↔ 3H+ + PO43- отвечает суммарная константа диссоциации: K = K1· K2 ·K3

Закон разбавления Оствальда. Степень диссоциации определяется константой диссоциации и концентрацией слабого электролита в растворе.

Рассмотрим равновесные молярные концентрации исходного слабого электролита и образовавшихся катионов и анионов в состоянии химического равновесия:

Молярные концентрации веществ В начальный момент времени (τ0) К моменту достижения равновесия (τравн.) MA с0 [MA] = (1−α )с0 M+ [M+] = αс0 A− [A−] = αс0

Данное выражение было впервые выведено немецким физико-химиком В. Оствальдом (закон разбавления Оствальда). Закон разбавления показывает, что степень диссоциации данного слабого электролита зависит от его концентрации и константы диссоциации. Последняя в данном растворителе и для данного электролита зависит только от температуры.

При очень низкой степени диссоциации (α о С), она называется ионным произведением воды KW:

Диссоциация воды – процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100 о С значения 10 -13 .

В чистой воде при 25 о С концентрации ионов водорода и гидроксила равны между собой:

[H + ] = [OH — ] = 10 -7 моль/л

Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными.

Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10 -7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10 -14 . Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации

ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если [H + ] = 10 -3 моль/л, то [OH — ] = KW/[H + ] = 10 -14 /10 -3 = 10 -11 моль/л, или, если [OH — ] = 10 -2 моль/л, то [H + ] = KW/[OH — ] = 10 -14 /10 -2 = 10 -12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды.

На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями.

Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода:

Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила:

Легко показать, прологарифмировав ионное произведение воды, что

Если рН среды равен 7 — среда нейтральная, если меньше 7 — кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 – среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 7702 — | 6712 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации.

Кислоты. Для кислот характерны следующие общие свойства:

  • а) способность взаимодействовать с основаниями с образованием солей;
  • б) способность взаимодействовать с некоторыми металлами с выделением водорода;

Константы диссоциации некоторых сильных кислот в водных растворах при 25 °С

Константа диссоциации К

  • в) способность изменять цвета индикаторов, в частности вызывать красную окраску лакмуса;
  • г) кислый вкус.

При диссоциации любой кислоты образуются ионы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т.д. C устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.

У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых — в меньшей. Чем лучше кислота диссоциирует, т.е. чем больше ее константа диссоциации, тем она сильнее.

Из сравнения данных, приведенных в табл. 12 и 14, видно, что величины констант диссоциации кислот изменяются в очень широких пределах. В частности, константа диссоциации циановодорода много меньше, чем уксусной кислоты. И хотя обе эти кислоты — слабые, все же уксусная кислота значительно сильнее циановодорода. Величины первой и второй констант диссоциации серной кислоты показывают, что в отношении первой ступени диссоциации H2SO4 — сильная кислота, а в отношении второй — слабая. Кислоты, константы диссоциации которых лежат в интервале IO -4 —10“ 2 , иногда называют кислотами средней силы. К ним, в частности, относятся ортофосфорная и сернистая кислоты (в отношении диссоциации по первой ступени).

Основания. Водные растворы оснований обладают следующими общими свойствами:

  • а) способностью взаимодействовать с кислотами с образованием солей;
  • б) способностью изменять цвета индикаторов иначе, чем их изменяют кислоты (например, они вызывают синюю окраску лакмуса);
  • в) своеобразным «мыльным» вкусом.

Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, очевидно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания — это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. К таким гидроксидам принадлежит гидроксид цинка. При взаимодействии его, например, с соляной кислотой получается хлорид цинка

а при взаимодействии с гидроксидом натрия — цинкат натрия:

Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами, или амфотерными электролитами. К таким гидроксидам, кроме гидроксида цинка, относятся гидроксиды алюминия, хрома и некоторые другие.

Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул возможна, следовательно, по местам обеих этих связей. Если обозначить амфотерный электролит формулой ROH, то его диссоциацию можно выразить схемой:

Таким образом, в растворе амфотерного электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.

Явление амфотерности наблюдается также среди некоторых органических соединений. Важную роль оно играет в биологической химии; например, белки — амфотерные электролиты.

Соли. Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионов, образующих соль.

При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы H + . Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим уравнениям:

При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы ОН

Читайте также:  Сад для детей с ослабленным зрением

. Например, при растворении хлорида гидроксомагния диссоциация протекает согласно уравнениям:

Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима. В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ионы. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства оснований. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония:

Изучение подобного рода реакций, а также реакций, протекающих в неводных средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теорий кислот и оснований принадлежит протонная теория, созданная в 1923 г.

Согласно протонной теории, кислотой является донор протона, т.е. частица (молекула или ион), которая способна отдавать ион водорода — протон, а основанием — акцептор протона, т.е. частица (молекула или ион), способная присоединять протон. Соотношение между кислотой и основанием определяется схемой:

Связанные этим соотношением основание и кислота называются сопряженными. Например, ион НСО4 является основанием, сопряженным кислоте H2SO4.

Реакцию между кислотой и основанием протонная теория представляет схемой:

Например, в реакции

ион Cl — — основание, сопряженное кислоте НС1, а ион NH4 — кислота, сопряженная основанию NH3.

Существенным в протонной теории является то положение, что вещество проявляет себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Важнейшим фактором при этом является энергия связи вещества с протоном. Так, в ряду NH3-H2O-HF эта энергия максимальна для NH3 и минимальна для HF. Поэтому в смеси с NH3 вода функционирует как кислота, а в смеси с HF — как основание:

Электролитическая диссоциация: сущность теории С. Аррениуса

Своё начало теория электролитов берёт ещё в первой половине XIX века, когда М. Фарадей провёл свои знаменитые опыты с растворами поваренной соли. Он установил, что абсолютно чистая вода очень плохо проводит электрический ток, но стоит добавить в неё несколько кристаллов соли, и проводимость тут же возрастает. Уже тогда родилось предположение, что соль распадается в воде на некие частицы, которые способны проводить электрический ток, однако, полноценная теория, описывающая все эти процессы в растворах, появилась гораздо позже.

Теория электролитической диссоциации

Теория, основоположником которой явился Сванте Аррениус в период 1883—1887 гг., базируется на идее, что при попадании молекул растворимого вещества (электролита) в полярную или неполярную жидкость происходит их диссоциация на ионы. Электролитами называются соединения, которые в растворе самопроизвольно распадаются на ионы, способные к самостоятельному существованию. Количество образующихся ионов, их строение и величина заряда зависят только от природы диссоциировавшей молекулы.

Для использования теории в описании свойств растворения используется ряд допущений, а именно: предполагается, что диссоциация является неполной, ионы (их электронные оболочки) не реагируют друг с другом, а их поведение можно описать законом действующих масс в идеальных условиях. Если рассмотреть теоретическую систему, где электролит КА находится в фазовом равновесии с продуктами своей диссоциации — катионом К+ и анионом А-, то согласно закону действующих масс можно составить уравнение реакции диссоциации:

Константа равновесия, записанная, через концентрации веществ при изотермических условиях будет иметь следующее значение:

Кд = [K+] x [A-] / [KA] (2)

В этом случае (в уравнении 2), константа равновесия Кд, будет являться не чем иным, как константой диссоциации, значения [KA], [K+], [A-] в правой части — это равновесные концентрации электролита и его продуктов диссоциации.

Учитывая допущение теории Аррениуса, которые были применены автором, в частности, о неполноте диссоциации, вводится понятие степени диссоциации — α. Таким образом, если выразить концентрацию раствора С (моль/л), то на литр раствора приходится αС моль электролита (КА), а равновесная его концентрация может быть выражена, как (1-α)С моль/л. Из уравнения реакции (1) очевидно, что на αС моль электролита (КА) образуется такое же количество ионов К+ и А-. Если подставить все эти величины в уравнение (2) и провести ряд упрощений, то получим формулу константы диссоциации (степень диссоциации формула):

Это уравнение позволяет количественно определить величину степени электролитической диссоциации в разных растворах.

Теория Аррениуса дала развитие множеству научных направлений в химии: с её помощью были созданы первые теории кислот и оснований, были даны объяснения физико-химическим процессам в гомогенных системах. Тем не менее, она не лишена недостатков, которые в основном относятся к тому факту, что теория не учитывает межионные взаимодействия.

Классификация электролитов с примерами

Электролиты классифицируют на слабые и сильные, периодически выделяя группу электролитов средней силы. Сильные электролиты характеризуются тем, что распадаются в растворе полностью. Как правило — это сильные минеральные кислоты, например:

  • Азотная кислота — HNO3.
  • Хлороводородная кислота — HCl.
  • Хлорная кислота — HClO4.
  • Ортофосфорная кислота — H3PO4.

Сильными электролитами могут быть основания, например:

Основная масса сильных электролитов — это подавляющее большинство солей (NaCl, Na2SO4, Ca (NO3)2, CH3COONa, хлориды, сульфиды).

Слабые электролиты, напротив, в растворах гидратируют частично. К этой группе следует относить неорганические кислоты (H2CO3, H3BO3, H3AsO4), слабые основания (аммоний), некоторые соли (HgCl2), органические кислоты (CH3COOH, C6H5COOH), фенолы и амины. В неводных растворах одни и те же соединения могут являться и сильными и слабыми электролитами, таким образом, зависят от природы растворителя.

Диссоциация кислот, оснований и солей

Закономерности для кислот

При электрической диссоциации кислот в водных растворах обязательно в качестве катионов образуются положительно заряженные ионы водорода (Н+):

Если кислота многоосновная (например: уравнение диссоциации H2SO4), то диссоциация происходит последовательно, за каждый раз отщепляя один ион водорода:

H2SO4 → H + + HSO4- первая ступень — гидросульфат ион

HSO4- → H + + SO4- вторая ступень — сульфат ион

Процесс для многоосновной кислоты, как правило, протекает максимально по первой ступени, степень диссоциации последующих намного меньше.

Характеристика процесса для щелочей

При диссоциации щелочей в водных растворах обязательно образуется отрицательно заряженный гидроксил ион (ОН-):

Процесс для многокислотных оснований (пример — механизм диссоциации гидроксида магния) протекает многоступенчато аналогично многоосновным кислотам:

Mg (OH)2 → OH- + Mg (OH)+ первая ступень

Mg (OH)+ → OH- + Mg2+ вторая ступень

Существуют также случаи, когда в процессе диссоциации могут образовываться и катионы водорода, и гидроксил-анионы (при диссоциации амфолитов или амфотерных соединений, например, Zn, Al):

2OH- + Zn2+ + 2H2O ←→ Zn (OH)2 + H2O ←→ [Zn (OH)4]2- + 2H+

Правила протекания для кислых и основных солей

Для кислых солей, основная закономерность заключается в следующем — сначала диссоциируют катионы (положительно заряженные металлы), а только потом катионы водорода:

KHSO4 → K+ + HSO4- первая ступень

HSO4 — → H+ + SO4- вторая ступень

У основных солей, в первую очередь, переходят в раствор остатки кислоты, а уже затем гидроксил-ион:

BaOHCl → Cl- + Ba (OH)+ первая ступень

Ba (OH)+ → OH- + Ba2+ вторая ступень

Водородный показатель

Определение, сущность и значение

Процессы диссоциации могут протекать не только для растворенных веществ, но и растворителя. Так, вода является сама со себе слабым электролитом и для неё характерна диссоциация в очень незначительной степени. Уравнение процесса можно записать следующим образом:

Одна молекула воды диссоциирует на положительно заряженные ионы водорода и отрицательно заряженные анионы гидроксония. Именно концентрация этих ионов определяет уровень кислотности раствора — чем больше ионов гидроксония, тем более кислый раствор.

Концентрация ионов гидроксония в реальных растворах, как правило, очень мала (например: 5×10−6 г/л) и поэтому для удобства, это значение логарифмируют, а чтобы получить положительное значение, берут с обратным знаком. Кратко сформулируем строгое определение понятия «водородный показатель» или рН.

рН (водородный показатель) — это отрицательный натуральный логарифм концентрации ионов гидроксония, отражающий кислотность раствора.

Значения водородного показателя принято оценивать по шкале значений от 0 до 14, где 0 — наиболее кислый раствор, а 14 — наиболее щелочной. Нейтральным раствором (соответствующим рН чистой воды) считается раствор со значением 7. Для примера приводим несколько типичных растворов, имеющих характерные значения водородного показателя:

Значение рН Раствор
11 Нашатырный спирт
9,5 Гидроксид кальция
8,0 30% раствор поваренной соли
7,4 Плазма крови
7,0 Деионизированная вода
6,5 Молоко
5,5 Кофе
2,8 Уксус (раствор 5% концентрации)
0,1 Хлорная кислота (65%)

Значительно реже прибегают к использованию еще одного показателя — рОН. По своему смыслу он абсолютно аналогичен водородному показателю, за исключением того, что за основу берётся концентрация гидроксил-ионов.

Источники:
  • http://studfiles.net/preview/7015876/page:5/
  • http://studopedia.su/15_96479_svoystva-kislot-osnovaniy-i-soley-s-tochki-zreniya-teorii-elektroliticheskoy-dissotsiatsii.html
  • http://studopedia.ru/4_120003_ekvivalentnaya-normalnaya-kontsentratsiya.html
  • http://bstudy.net/634904/estestvoznanie/svoystva_kislot_osnovaniy_soley_tochki_zreniya_teorii_elektroliticheskoy_dissotsiatsii
  • http://1001student.ru/himiya/elektroliticheskaya-dissotsiatsiya-sushhnost-teorii-s-arreniusa.html