Меню Рубрики

Картины эшера с научной точки зрения

Голландский художник Мориц Корнилис Эшер, родившийся в 1898 году в Леувардене создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей.

Когда он учился в школе, родители планировали, что он станет архитектором, но плохое здоровье не позволило Морицу закончить образование, и он стал художником. До начала 50-х годов он не был широко известен, но после ряда выставок и статей в американских журналах (Time и др.) он получает мировую известность. Среди его восторженных поклонников были и математики, которые видели в его работах оригинальную визуальную интерпретацию некоторых математических законов. Это более интересно тем, что сам Эшер не имел специального математического образования.

В процессе своей работы он черпал идеи из математических статьей, в которых рассказывалось о мозаичном разбиении плоскости, проецировании трехмерных фигур на плоскость и неевклидовой геометрии, о чем будет рассказываться ниже. Он был очарован всевозможными парадоксами и в том числе «невозможными фигурами». Парадоксальные идеи Роджера Пенроуза были использованы во многих работах Эшера. Наиболее интересными для изучения идеями Эшера являются всевозможные разбиения плоскости и логика трехмерного пространства.

Регулярное разбиение плоскости, называемое «мозаикой» — это набор замкнутых фигур, которыми можно замостить плоскость без пересечений фигур и щелей между ними. Обычно в качестве фигуры для составления мозаики используют простые многоугольники, например, квадраты или прямоугольники. Но Эшер интересовался всеми видами мозаик — регулярными и нерегулярными (прим. перев. нерегулярные мозаики образуют неповоряющиеся узоры) — а также ввел собственный вид, который назвал «метаморфозами», где фигуры изменяются и взаимодействуют друг с другом, а иногда изменяют и саму плоскость.

Интересоваться мозаиками Эшер начал в 1936 году во время путешествия по Испании. Он провел много времени в Альгамбре, зарисовывая арабские мозаики, и впоследствии сказал, что это было для него «богатейшим источником вдохновения». Позже в 1957 году в своем эссе о мозаиках Эшер написал:

В математических работах регулярное разбиение плоскости рассматривается теоретически. Значит ли это, что данный вопрос является сугубо математическим? Математики открыли дверь ведущую в другой мир, но сами войти в этот мир не решились. Их больше интересует путь, на котором стоит дверь, чем сад, лежащий за ней.

Математики доказали, что для регулярного разбиения плоскости подходят только три правильных многоугольника: треугольник, квадрат и шестиугольник. (Нерегулярных вариантов разбиения плоскости гораздо больше. В частности в мозаиках иногда используются нерегулярные мозаики, в основу которых положен правильный пятиугольник.) Эшер использовал базовые образцы мозаик, применяя к ним трансформации, которые в геометрии называются симметрией, отражение, смещение и др. Также он исказил базовые фигуры, превратив их в животных, птиц, ящериц и проч. Эти искаженные образцы мозаик имели трех-, четырех- и шестинаправленную симметрию, таким образом сохраняя свойство заполнения плоскости без перекрытий и щелей.


Регулярное разбиение
плоскости птицами

Рептилии

Цикл

Эволюция 1

В гравюре «Рептилии» маленькие крокодилы играючи вырываются из тюрьмы двухмерного пространства стола, проходят кругом, чтобы снова превратиться в двухмерные фигуры. Мозаику рептилий Эшер использовал во многих своих работах. В «Эволюции 1» можно проследить развитие искажения квадратной мозаики в центральную фигуру из четырех ящериц.

Правильные геометрические тела — многогранники — имели особое очарование для Эшера. Во его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из однаковых правильных многоугольников. Они еще называются телами Платона. Это — тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. На гравюре «Четыре тела» Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.

Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника. Изящный пример звездчатого додекаэдра можно найти в работе «Порядок и хаос». В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции — это окно, которое отражается левой верхней части сферы.

Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра «Звезды», на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Таким образом нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера.

Форма пространства

Среди наиболее важных работ Эшера с математической точки зрения являются картины, оперирующие с природой самого пространства. Литография «Три пересекающиеся плоскости» — хороший пример для начала обзора таких картин. Этот пример демонстрирует интерес художника к размерности пространства и способность мозга распознавать трехмерные изображения на двухмерных рисунках. Как будет ниже, Эшер позже использовал данный принцип для создания изумительных визуальных эффектов.

Под влиянием рисунков в книге математика Х. Коксетера Эшер создал много иллюстраций гиперболического пространства. Один из примеров можно увидеть в работе «Предел круга III». Здесь представлен один из двух видов неевклидового пространства, описанных французским математиком Пуанкаре. Чтобы понять особенности этого пространства, представьте, что вы находитесь внутри самой картины. По мере вашего перемещения от центра круга к его границе ваш рост будет уменьшаться также, как уменьшаются рыбы на данной картине. Таким образом путь, который вам надо будет пройти до границы круга будет казаться вам бесконечным. На самом деле, находясь в таком простарнстве вы на первый взгляд не заметите ничего необычного в нем по сравнению с обычным евклидовым пространством. Например, чтобы достичь границ евклидового пространства вам также необходимо пройти бесконечный путь. Однако, если внимательно присмотреться, то можно будет заметить некоторые отличия, например, все подобные треугольники имеют в этом пространстве одинаковый размер, и вы не сможете там нарисовать фигуры с четырьмя прямыми углами, соединенными прямыми линиями, так как в этом пространстве не существует квадратов и прямоугольников. Странное место, не правда ли?

Еще более странное пространство показано в работе «Змеи». Здесь пространство уходит в бесконечность в обе стороны — и в сторону края окружности и в сторону центра окружности, что показано уменьшающимися кольцами. Если вы попадете в такое пространство, на что оно будет похоже?

Кроме особенностей евклидовой и неевклидовой геометрий Эшера интересовали визуальные аспекты топологии. Топология изучает свойства тел и поверхностей пространства, которые не изменяются при деформации, например, растяжении, сжатии или изгибе. Единственное, к чему не должна приводить деформация — это к разрыву. Топологам приходится изображать множество странных объектов. Одним из наиболее известных является лента Мебиуса, которая встречается во многих работах Эшера. Это может показаться странным, но у этой поверхности есть только одна сторона и одна кромка. Если вы проследите путь муравьев на литографии «Лента Мебиуса II», то увидите, что муравьи ползут не по противоположным поверхностям ленты, а по одной и той же. Сделать лист Мебиуса очень просто. Надо взять полоску бумаги, изогнуть ее, и склеить противоположные края ленты клеем. Как вы думаете, что случится, если разрезать лист Мебиуса вдоль?

Другая интересная литография назавается «Картинная галерея», в которой изменены одновременно и топология и логика пространства. Мы видим мальчика, который смотрит на картину, на которой нарисован приморский город с магазином на берегу, а в магазине — картинная галерея, а в галерее стоит мальчик, который смотрит на картину, на которой нарисован приморский город . стоп! Что-то не так.

Для понимания любой картины Эшера требуется внимание и наблюдательность, а эта работа требует особого внимания. Каким-то образом Эшер завернуть пространство в кольцо, и получилось, что мальчик находится одновременно внутри картины и вне ее. Секрет этого эффекта состоит в том, каким образом преобразовано изображение. Понять это можно, анализируя карандашный набросок сетки, которым пользовался Эшер при создании картины. Обратите внимание, что расстояние между линиями сетки увеличивается в направлении движения стрелки часов. Заметим еще, на чем основана хитрость картины — белое пятно в центре. Математики называют это пятно особым местом или особой точкой, где пространства не существует. Не существует способа изобразить этот участок картины без швов или наложений, поэтому Эшер решил эту проблему, поместив в центр картины свой автограф.

Логика пространства

Под «логикой» пространства мы понимаем те отношения между физическими объектами, которые обычны для реального мира, и при нарушении которых возникают визуальные парадоксы, называемые еще оптическими иллюзиями. Большинство художников, экспериментирующие с логикой пространства, изменяют эти отношения между объектами, основываясь на своей интуиции, как, например, Пикассо.

Эшер понимал, что геометрия определяет логику пространства, но и логика пространства определяет геометрию. Одна из наиболее часто используемый особенностей логики пространства — игра света и тени на выпуклых и вогнутых объектах. На литографии «Куб с полосками» выступы на лентах являются визуальным ориентиром того, как расположены полоски в пространстве и как они переплетаются с кубом. И если вы верите своим глазам, то вы никогда не поверите тому, что нарисовано на этой картине.

Еще один из аспектов логики пространства — перспектива. На рисунках, в которых присутствует эффект перспективы, выделяют так называемые точки исчезновения, которые сообщают глазу человека о бесконечности пространства. Изучение особенностей перспективы началось еще во времена возрождения художниками Альберти, Дизаргом и многими другими. Их наблюдения и выводы легли в основу современной геометрии проекций.

Вводя дополнительные точки исчезновения и немного изменяя элементы композиции для достижения нужного эффекта, Эшер смог изобразить картины, в которых изменяется ориентация элементов в зависимости от того, как зритель смотрит на картину. На картине «Cверху и cнизу» художник разместил сразу пять точек исчезновения — по углам картины и в центре. В результате, если мы смотрим на нижнюю часть картины, то создается впечатление, что мы смотрим вверх. Если же обратить взгляд на верхнюю половину картину, то кажется, что мы смотрим вниз. Чтобы подчеркнуть этот эффект, Эшер изобразил два вида одной и той же композиции.


Водопад

Третий тип картин с нарушенной логикой пространства — это «невозможные фигуры». Парадокс невозможных фигур основан на том, что наш мозг всегда пытается представить нарисованные на бумаге двухмерные рисунки как трехмерные. Эшер создал много работ, в которых обратился к этой аномалии. Наиболее интересная работа — литография «Водопад» — основана на фигуре невозможного треугольника, придуманного математиком Роджером Пенроузом. В этой работе два невозможных треугольника соединены в единую невозможную фигуру. Создается впечатление, что водопад является замкнутой системой, работающей по типу вечного двигателя, нарушая закон сохранения энергии. (Примечание. Обратите внимание на многогранники, установленные на башнях водопада.)

Самовоспроизведение и информация

В заключение мы рассмотрим аспекты творчества Эшера, относящиеся к теории информации и искусственному интеллекту. Эта область творчества художника широко освещена во многих статьях и книгах. Наиболее полное исследование этого вопроса освещено в книге Дугласа Хофстадтера (Douglas R. Hofstadter) «Гёдель, Эшер, Бах: Бесконечная золотая нить» (Godel, Escher, Bach: An Eternal Golden Braid), выпущенной в 1980 году и награжденной пулитцеровской премией.

Центральная идея самовоспроизведения, взятая на вооружение Эшером, обращается к загадке человеческого сознания и способности человеческого мозга обрабатывать информацию так, как не сможет обработать ни один компьютер. Литографии «Рисующие руки» и «Рыбы и чешуйки» используют эту идею разными способами. Самовоспроизведение является направленным действием. Руки рисуют друг друга, создавая самих себя. При этом сами руки и процесс их самовоспроизведения неразделимы. В работе «Рыбы и чешуйки» концепция самовоспроизведения представлена более функционально, и в данном случае она может быть названа самоподобием. В этом смысле данная работа описывает не только рыб, а все живые организмы, в том числе и человека. Конечно, мы не состоит из уменьшенных копий самих себя, но каждая клетка нашего тела несет в себе информацию обо всем теле в виде ДНК.

Углубляясь в изучение самовоспроизведения, можно его обнаружить в отражении и пересечении отражений реального мира. Такое пересечение встречается во многих картинах Эшера. Мы рассмотрим лишь один пример — литографию «Три сферы», на которой присутствуют три шаровидных тела, сделанных из разных материалов с различной отражающей способностью. Эти сферы отражают друг друга и художника, и комнату, в которой он работает, и лист бумаги, на котором он рисует сферы. Хофстадтер в своей книге написал «. каждая частица мира содержит в себе весь мир и содержится к во всех других частицах мира. «.

Таким образом, мы заканчиваем тем же, с чего начали, — автопортретом художника — его отражением в своей работе.

Заключение

Мы рассмотрели лишь небольшую часть работ из сотен набросков и литографий и гравюр, оставшихся после смерти Эшера в 1972 году. Еще многое будет сказано и уже сказано о значении и важности его работ. С каждым годом появляется все больше и больше книг, где освещается творчество художника, анализируются различные аспекты его творчества. Надеемся, что мы заинтересовали вас творчеством Эшера.

Перевод Влада Алексеева.

Дополнение переводчика

Странно, но в оригинальной работе обошли вниманием целый класс фигур, которые достаточно часто встречаются в работах Эшера. Это закрученные в спирали фигуры. В работе «Спирали» мы видим четыре закручивающиеся в спираль полоски, которые постоянно сближаются и постепенно закручиваются сами в себя, образуя своеобразный тор. Пройдя целый круг, спираль заходит внутрь самой себя, образуя тем самым, как бы, спираль второго порядка — спираль в спирали.

В работе «Водовороты» Эшер объединил спиралевидную форму и свой излюбленный художественный прием — регулярное разбиение плоскости (или мозаику). Здесь рыбы,выплыв из одного водоворота, попадают во второй и, погружась в него, постепенно уменьшаются в размерах и наконец совсем исчезают. Обратите внимание на постепенно уменьшающуюся в размерах мозаику. Если мысленно развернуть спираль, то мы увидим лишь два ряда рыб, плывущих навстречу друг другу. Но скрученные в спираль и соответствующим образом деформированные образы рыб полностью покрывают некоторую область бесконечной плоскости.

Иной способ представления спирали использован в работе «Сферические спирали», где четыре полосы расположены на поверхности шара, проходя от одного полюса шара к другому. Похожий путь может пройти самолет, летящий с северного полюса земного шара на южный.

Здесь мы привели основные виды спиралей, использованных Эшером в своих работах. Различные их модификации можно обнаружить и на многих других литографиях художника.

Заключение 2

Использование Эшером различных математических фигур и законов не ограничивается лишь вышеприведенными примерами. Внимательно изучая его картины, можно обнаружить и другие, не упомянутые в данной статье, геометрические тела или визуальную интерпретацию математических законов.

Закончить хотелось бы картиной «Узлы», изображающей замкнутые фигуры, которые нельзя отнести к какому-либо разделу данной статьи.

Математическое искусство Морица Эшера


Литография «Рука с зеркальной сферой», автопортрет.

Мауриц Корнелиус Эшер — известный каждому математику голландский художник-график.
Для сюжетов произведений Эшера характерно остроумное осмысление логических и пластических парадоксов.
Известен, в первую очередь, работами, в которых он использовал разные математические концепции — от предела и ленты Мебиуса до геометрии Лобачевского.


Ксилография «Красные муравьи».

Специального математического образования Мауриц Эшер не получал. Но с самого начала творческой карьеры интересовался свойствами пространства, изучал его неожиданные стороны.


«Узы единства».

Зачастую баловался Эшер с сочетаниями 2-мерного и 3-мерного мира.

Литография «Рисующие руки».


Литография «Рептилии».

Замощением называют разбиение плоскости на одинаковые фигуры. Для изучения такого рода разбиений традиционно используют понятие группа симметрий. Представим себе плоскость, на которой нарисовано некоторое замощение. Плоскость можно вращать вокруг произвольной оси и сдвигать. Сдвиг определяется вектором сдвига, а поворот — центром и углом. Такие преобразования называются движениями. Говорят, что то или иное движение — симметрия, если после него замощение переходит в себя.

Рассмотрим для примера плоскость, разбитую на одинаковые квадраты — бесконечный во все стороны лист тетради в клетку. Если такую плоскость повернуть на 90 градусов (180, 270 или 360 градусов) вокруг центра любого квадрата, замощение перейдет в себя. Также оно переходит в себя при сдвиге на вектор, параллельный одной из сторон квадратов. Длина вектора при этом должна быть кратна стороне квадрата.

В 1924 году геометр Джордж Полиа (до переезда в США Дьердь Пойа) опубликовал работу, посвященную группам симметрий замощений, в которой доказал замечательный факт (правда, уже обнаруженный в 1891 году российским математиком Евграфом Федоровым, а позже благополучно забытый): существует всего 17 групп симметрий, в состав которых входят сдвиги как минимум в двух разных направлениях. В 1936-м Эшер, заинтересовавшись мавританскими орнаментами (с геометрической точки зрения, вариант замощения), прочитал работу Полиа. Несмотря на то, что всей математики, стоящей за работой, он, по его собственному признанию, не понял, Эшер сумел ухватить ее геометрическую суть. В результате на основе всех 17 групп Эшер создал более 40 работ.


Мозаика.


Ксилография «День и ночь».


«Регулярное замощение плоскости IV».


Ксилография «Небо и вода».

Замощения. Группа-то простая, породающие: скользящая симметрия и параллельный перенос. А вот плитки замощения — чудесные. И в сочетании с Лентой Мёбиуса это все.

Ксилография «Всадники».

Еще одна вариация на тему плоского и объемного мира и замощений.

Литография «Волшебное зеркало».

Эшер дружил с физиком Роджером Пенроузом. В свободное от физики время Пенроуз занимался тем, что решал математические головоломки. Однажды ему пришла в голову такая идея: если вообразить замощение, состоящее более чем из одной фигуры, будет ли его группа симметрий отличаться от описанных у Полиа? Как оказалось, ответ на этот вопрос утвердительный — так на свет появилась мозаика Пенроуза. В 1980-х выяснилось, что она связана с квазикристаллами (Нобелевская премия по химии 2011 года).

Однако Эшер не успел (а, может, и не захотел) использовать в работе эту мозаику. (Но есть совершенно чудесная мозаика Пенроуза «Куры Пенроуза», их нарисовал не Эшер.)

Пятым в списке аксиом в «Началах» Евклида в реконструкции Гейберга значится такое утверждение: если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых. В современной литературе предпочитают эквивалентную и более изящную формулировку: через точку, не лежащую на прямой, проходит прямая, параллельная данной, и притом только одна. Но даже в такой формулировке аксиома, в отличие от остальных постулатов Евклида, выглядит громоздко и запутанно — именно поэтому на протяжении двух тысяч лет ученые пытались вывести это утверждение из остальных аксиом. То есть, фактически, превратить постулат в теорему.

В XIX веке математик Николай Лобачевский попытался сделать это от противного: он предположил, что постулат неверен, и попытался обнаружить противоречие. Но его не нашлось — и в результате Лобачевский построил новую геометрию. В ней через точку, не лежащую на прямой, проходит бесконечное множество различных прямых, не пересекающихся с данной. Лобачевский был не первым, кто обнаружил эту новую геометрию. Но он был первым, кто решился заявить о ней публично — за что, разумеется, его подняли на смех.

Посмертное признание работ Лобачевского состоялось, среди прочего, благодаря появлению моделей его геометрии — систем объектов на обычной евклидовой плоскости, которые удовлетворяли всем аксиомам Евклида, за исключением пятого постулата. Одна из этих моделей была предложена математиком и физиком Анри Пуанкаре в 1882 году — для нужд функционального и комплексного анализа.

Пусть есть круг, границу которого назовем абсолютом. «Точками» в нашей модели будут внутренние точки круга. Роль «прямых» исполняют окружности или прямые, перпендикулярные абсолюту (точнее, их дуги, попавшие внутрь круга). То, что для таких «прямых» не выполняется пятый постулат, практически очевидно. То, что для этих объектов выполнены остальные постулаты — очевидно чуть менее, однако, это так и есть.

Оказывается, в модели Пуанкаре можно определить расстояние между точками. Для вычисления длины требуется понятие римановой метрики. Ее свойства таковы: чем ближе пара точек «прямой» к абсолюту, тем больше расстояние между ними. Также между «прямыми» определены углы — это углы между касательными в точке пересечения «прямых».

Читайте также:  Очки с широкой оправой для зрения женские

Теперь вернемся к замощениям. Как они будут выглядеть, если разбить на одинаковые правильные многоугольники (то есть многоугольники со всеми равными сторонами и углами) уже модель Пуанкаре? Например, многоугольники должны становиться тем меньше, чем ближе они располагаются к абсолюту. Эта идея и была реализована Эшером в серии работ «Предел-круг». Впрочем, голландец использовал не правильные разбиения, но их более симметричные версии. Тот случай, где красота оказалась важнее математической точности.


Ксилография «Предел — круг II».


Ксилография «Предел — круг III».


Ксилография «Рай и ад».

Невозможными фигурами принято называть особые оптические иллюзии — они как будто являются изображением некоторого трехмерного объекта на плоскости. Но при внимательном рассмотрении в их строении обнаруживаются геометрические противоречия. Невозможные фигуры интересны не только математикам — ими занимаются и психологи, и специалисты по дизайну.

Прадедушка невозможных фигур — так называемый куб Некера, привычное всем изображение куба на плоскости. Оно было предложено шведским кристаллографом Луисом Некером в 1832 году. Особенность этого изображения в том, что его можно интерпретировать разным образом. Например, угол, обозначенный на этом рисунке красным кругом, может быть как ближним к нам из всех углов куба, так и, наоборот, самым дальним.

Первые настоящие невозможные фигуры как таковые были созданы другим шведским ученым Оскаром Рутерсвардом в 1930-х. В частности, он придумал собрать из кубиков треугольник, который не может существовать в природе. Независимо от Рутерсварда уже упоминавшийся Роджер Пенроуз вместе со своим отцом Лайонелом Пенроузом опубликовали в журнале British Journal of Psychology работу под названием «Невозможные объекты: Особый тип оптических иллюзий» (1956). В ней Пенроузы предложили два таких объекта — треугольник Пенроуза (цельную версию конструкции Рутерсварда из кубов) и лестницу Пенроуза. Вдохновителем своей работы они назвали Маурица Эшера.

Оба объекта — и треугольник, и лестница — позже появились и в картинах Эшера.


Литография «Относительность».


Литография «Водопад».


Литография «Бельведер».


Литография «Восхождение и спуск».

Другие работы с математическим смыслом:

Звездчатые многоугольники:

Ксилография «Звезды».


Литография «Кубическое деление пространства».


Литография «Поверхность, покрытая рябью».


Литография «Три мира»

На основе этого обзора, материалов Википедии и книжки М.Гарднера «Математические новеллы» (глава 11).

Волшебные картины Мориса Эшера, которыми иллюстрируют учебники кристаллографии

Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.

На самом деле, каждая из картин является научно-художественным исследованием закономерностей пространства и особенностей нашего восприятия. Специалисты рассматривают его творчество в контексте теории относительности и психоанализа. Но можно и просто отвлечься на несколько минут и погрузиться в мир, где четкая логика, царящая внутри рисунка, вдруг оказывается искаженной относительно нашего мира.

Законы симметрии

Картинами, знаковыми для Эшера, можно считать литографии, напоминающие мавританские мозаики. Кстати, художник признавался, что эта тема была навеяна посещением замка Альгамбра. Заполнение плоскости тождественными фигурами можно было бы считать детской забавой высокого художественного уровня, если не одна деталь: с математической точки зрения в данных рисунках выполняются определенные виды симметрии (в каждом — свой). Кстати, именно такие же, как в кристаллических решетках. Поэтому работы Мориса Эшера рекомендованы в качестве иллюстраций при изучении кристаллографии.

Метаморфозы

Эта интересная тема практически вытекает из предыдущих рисунков. Присмотритесь: похожие мотивы, но на смену четкой упорядоченности приходят постепенные изменения – от черного к белому, от маленького к большому, от птицы к рыбе… и от плоскости к объему!

Логика пространства

Почему мы любим фокусы? Потому что они, безопасно для нашей психики, на несколько секунд дают почувствовать присутствие волшебства. То есть, мы фиксируем нарушение закономерностей нашего мира, но тут же с облегчением понимаем, что нас просто мастерски надули, и значит мир на месте. С картинами Эшера, в которых художник исследовал закономерности пространства, происходит примерно то же самое. На первый взгляд – красивые картины, на второй и третий – «нас где-то провели, надо понять, где именно»… и зависаем надолго, пытаясь понять, «как же так?».

Самовоспроизведение информации

«Рисующие руки» — одна из наиболее известных картин Эшера. Считают, что на ее идею художника натолкнул набросок к «Портрету Джиневры де Бенчи» Леонардо да Винчи. Кстати, этот рисунок вовсе не является абсолютно симметричным, как это может показаться на первый взгляд.

Сам Морис Эшер писал о своем творчестве: «Хотя я абсолютно несведущ в точных науках, мне иногда кажется, что я ближе к математикам, чем к моим коллегам-художникам». На самом деле, ученые мужи отдают должное этому мастеру графики, ведь в его работах можно найти иллюстрации к темам «Мозаичное разбиение плоскости», «Неевклидова геометрия», «Проецирование трехмерных фигур на плоскость», «Невозможные фигуры» и многим другим. Кроме того, Эшер почти на 20 лет опередил математиков в работе с фракталами, теоретическое описание которых было дано лишь в 1970-е годы, а картины с использованием этой математической модели художник создавал гораздо раньше.

Сюрреалистические акварели, созданные испанским художником Борхе Санчесом, способны перенести в мир странных фантазий

Понравилась статья? Тогда поддержи нас, жми:

Загадочный мир Эшера Проект группы искусствоведов. — презентация

Презентация была опубликована 6 лет назад пользователемcimroo.ucoz.ru

Похожие презентации

Презентация на тему: » Загадочный мир Эшера Проект группы искусствоведов.» — Транскрипт:

1 Загадочный мир Эшера Проект группы искусствоведов

2 Морис Корнелиус Эшер (Maurits Cornelis Escher) Голландский художник, родился в 1898 году в Леевардене (Голландия). Автопортрет

3 Эшер — автор уникальных работ, в которых использованы или показаны широкий круг математических идей. Автопортрет

4 Многогранники Правильные геометрические тела — многогранники — имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой или встречаются в качестве вспомогательных элементов. На гравюре «Четыре тела» Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.

5 Порядок и хаос Изящный пример звездчатого додекаэдра можно найти в работе «Порядок и хаос». В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции — это окно, которое отражается в левой верхней части сферы.

6 Звезды На гравюре «Звезды» можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Таким образом нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера.

7 Рептилии В гравюре «Рептилии» маленькие крокодилы играючи вырываются из тюрьмы двухмерного пространства стола, проходят кругом, чтобы снова превратиться в двухмерные фигуры.

8 Четырёхугольная планета Эта малая планета, населенная людьми, имеет форму правильного четырехгранника и окружена сферической атмосферой. Видны 2 из 4 грани тетраэдра; ребро делит изображение надвое. Все вертикальные линии: стены домов, деревья и люди – направлены к центру тяжести, а все горизонтальные поверхности: сады, улицы, крыши, вода прудов и каналов – составляют часть сферической оболочки.

9 Двойной планетоид Двойной планетоид по форме является звёздчатым октаэдром (stella octangula Кеплера – восьмиугольная звезда). Два тетраэдра органично вписаны друг в друга. Один является творением людей, второй – творением природы: горы, деревья и кустарники.

10 Плоские черви Строительный кирпич имеет форму прямоугольного параллелепипеда, и это логично, потому что такие кирпичи соединять друг с другом проще всего. Но любой человек, любящий и понимающий красоту правильных тел, может пожалеть, что строители не используют другие формы. Например, тетраэдры, перемежающиеся с октаэдрами, могут складываться один с другим не хуже традиционных кирпичей. Вот дом, построенный из комбинаций этих двух форм. Он не имеет ни вертикальных, ни горизонтальных поверхностей, ни полов, ни стен, ни потолка в обычном понимании этих слов. Вот почему он весь внутри заполнен какой-то жидкой средой, в которой плавают существа, напоминающие плоских червей планарий.

11 Мозаики Регулярное разбиение плоскости, называемое «мозаикой» — это набор замкнутых фигур, которыми можно замостить плоскость без пересечений фигур и щелей между ними. Обычно в качестве фигуры для составления мозаики используют простые многоугольники, например, квадраты или прямоугольники. Но Эшер интересовался всеми видами мозаик — регулярными и нерегулярными — а также ввел собственный вид, который назвал «метаморфозами», где фигуры изменяются и взаимодействуют друг с другом, а иногда изменяют и саму плоскость.

12 В 1936 году Эшер начал эксперименты с мозаиками и трансформациями. Он создает мозаику в виде двух птиц, летящих навстречу друг другу, которая легла в основу картины «День и ночь».

13 В математических работах регулярное разбиение плоскости рассматривается теоретически. Значит ли это, что данный вопрос является сугубо математическим? Математики открыли дверь ведущую в другой мир, но сами войти в этот мир не решились. Их больше интересует путь, на котором стоит дверь, чем сад, лежащий за ней. В 1957 году в своем эссе о мозаиках Эшер написал: Бабочки

14 Цикл Эшер использовал базовые образцы мозаик, применяя к ним трансформации, которые в геометрии называются симметрия, отражение, смещение и др. Также он исказил базовые фигуры, превратив их в животных, птиц, ящериц и проч. Эти искаженные образцы мозаик имели трех-, четырех- и шестинаправленную симметрию, таким образом сохраняя свойство заполнения плоскости без перекрытий и щелей.

15 Оживающие орнаменты Эшера дают полное представление о замысле художника: орнамент (кристаллическая решетка) постепенно нарушает свою строгую упорядоченность, превращаясь в живые существа. В отличие от реального физического процесса, в котором нарушение порядка увеличивает молекулярный хаос, у Эшера старый неодушевленный порядок переходит в новый, одушевленный.

16 На картине «Метаморфозы-2» представлена последовательность 10 трансформаций. Это самая большая картина Эшера размерами 19 см на 3.9 м. Метаморфозы-2

17 Эволюция 1 Мозаику рептилий Эшер использовал во многих своих работах. В «Эволюции 1» можно проследить развитие искажения квадратной мозаики в центральную фигуру из четырех ящериц.

Читайте также:  Различные точки зрения на проблему социального неравенства

18 Встреча На серой поверхности стены развивается сложная структура белых и черных человеческих фигурок. И поскольку людям необходим хотя бы пол, по которому они могли бы ходить, для них изображен пол, с круглым отверстием посередине, через которое видна значительная часть той же стены. Человечки вынуждены не только ходить по кругу, но и встречаться: на переднем плане оптимист и черный пессимист пожимают друг другу руки.

19 Восемь голов В 1937 году Эшер показывает своему брату Биру картину-мозаику, над которой он в тот момент работал. Бир, профессор геологии, был впечатлен работой и увидел в ней возможности применения идей Эшера в кристаллографии.

20 В 1959 году Эшер встречается с профессором МакГиллаври, после этого художник выступает на международном конгрессе кристаллографии в Англии на тему симметрии. Также в 1959 году он получил копию статьи Лайонела и Роджера Пенроузов о невозможных фигурах. В статье упоминались некоторые ранние работы Эшера, но также было и кое- что новое. В начале 60-х годов вышла в свет первая книга с работами Эшера Grafiek en Tekeningen, в которой 76 работ прокомментировал сам автор. Книга помогла обрести понимание среди математиков и кристаллографов, включая некоторых из России и Канады. В августе 1960 Эшер прочитал лекцию по кристаллографии в Кембридже.

21 Математические и кристаллографические аспекты творчества Эшера становятся очень популярными. В 1965 году профессор Каролина МакГиллаври опубликовала книгу «Аспекты симметрии в творчестве М. К. Эшера». Предел круга 4

22 Предел — квадрат В середине 50-х годов Эшер объединяет мозаику с фигурами, уходящими в бесконечность. До 1958 года Морис Эшер изображает объекты, уменьшающиеся по мере приближения к центру картины, а после 1958 года он изображает фигуры, уменьшающиеся по мере удаления от центра картины. Причем смена направления связана с изучением Эшером статьи профессора Коксетера из Оттавы, который проиллюстрировал систему образцов, уменьшающихся по мере удаления от центра. Интерпретация эффекта Коксетера наблюдается как минимум в шести работах Мориса Эшера.

23 Предел круга III Под влиянием рисунков в книге математика Х. Коксетера Эшер создал много иллюстраций гиперболического пространства. Один из примеров можно увидеть в работе «Предел круга III». Здесь представлен один из двух видов неевклидового пространства, описанных французским математиком Пуанкаре. Чтобы понять особенности этого пространства, представьте, что вы находитесь внутри самой картины. По мере вашего перемещения от центра круга к его границе ваш рост будет уменьшаться также, как уменьшаются рыбы на данной картине.

24 Змеи Еще более странное пространство показано в работе «Змеи». Здесь пространство уходит в бесконечность в обе стороны — и в сторону края окружности и в сторону центра окружности, что показано уменьшающимися кольцами. Если вы попадете в такое пространство, на что оно будет похоже?

25 Водовороты В работе «Водовороты» Эшер объединил спиралевидную форму и свой излюбленный художественный прием — регулярное разбиение плоскости (или мозаику). Здесь рыбы, выплыв из одного водоворота, попадают во второй и, погружаясь в него, постепенно уменьшаются в размерах и наконец совсем исчезают. Обратите внимание на постепенно уменьшающуюся в размерах мозаику. Если мысленно развернуть спираль, то мы увидим лишь два ряда рыб, плывущих навстречу друг другу. Но скрученные в спираль и соответствующим образом деформированные образы рыб полностью покрывают некоторую область бесконечной плоскости.

26 Форма пространства Среди наиболее важных работ Эшера с математической точки зрения являются картины, оперирующие с природой самого пространства. Литография «Три пересекающиеся плоскости» — хороший пример для начала обзора таких картин. Этот пример демонстрирует интерес художника к размерности пространства и способность мозга распознавать трехмерные изображения на двухмерных рисунках. Копия работы М.К. Эшера «Три пересекающиеся плоскости»

27 Копия работы М.К. Эшера «Две пересекающиеся плоскости»

29 Копия работы М.К. Эшера «Кубическое деление пространства»

30 Концентрические сферы Четыре полые концентрические сферы освещены центральным источником света. Каждая сфера состоит из сетки, образованной девятью большими пересекающимися кольцами; они членят сферическую поверхность на 48 подобных сферических треугольников.

31 Дракон Как бы этот дракон ни стремился перейти в другое измерение, он остается абсолютно плоским. Прорежьте в двух местах лист бумаги, где он оттиснут. Затем согните лист так, чтобы получилось два квадратных отверстия. Но дракон – чудовище упрямое: несмотря на свою двухмерность, он всеми силами старается доказать, что существует в трех измерениях; поэтому в одно четырехугольное отверстие он просовывает голову, а в другое – хвост.

32 Рыбы и чешуйки В работе «Рыбы и чешуйки» концепция самовоспроизведения может быть названа самоподобием. В этом смысле данная работа описывает не только рыб, а все живые организмы, в том числе и человека. Конечно, мы не состоим из уменьшенных копий самих себя, но каждая клетка нашего тела несет в себе информацию обо всем теле в виде ДНК.

33 Рисующие руки Центральная идея самовоспроизведения, взятая на вооружение Эшером, обращается к загадке человеческого сознания и способности человеческого мозга обрабатывать информацию так, как не сможет обработать ни один компьютер. Руки рисуют друг друга, создавая самих себя. При этом сами руки и процесс их самовоспроизведения неразделимы.

34 Логика пространства Под «логикой» пространства мы понимаем те отношения между физическими объектами, которые обычны для реального мира, и при нарушении которых возникают визуальные парадоксы, называемые еще оптическими иллюзиями. Большинство художников, экспериментирующие с логикой пространства, изменяют эти отношения между объектами, основываясь на своей интуиции, как, например, Пикассо.

35 Одна из наиболее часто используемый особенностей логики пространства — игра света и тени на выпуклых и вогнутых объектах. На литографии «Куб с полосками» выступы на лентах являются визуальным ориентиром того, как расположены полоски в пространстве и как они переплетаются с кубом. И если вы верите своим глазам, то вы никогда не поверите тому, что нарисовано на этой картине. Куб с полосками

36 Вверху и внизу Еще один из аспектов логики пространства — перспектива. На рисунках, в которых присутствует эффект перспективы, выделяют так называемые точки исчезновения, которые сообщают глазу человека о бесконечности пространства. Эшер смог изобразить картины, в которых изменяется ориентация элементов в зависимости от того, как зритель смотрит на картину. На картине «Вверху и внизу» художник разместил сразу пять точек исчезновения — по углам картины и в центре. В результате, если мы смотрим на нижнюю часть картины, то создается впечатление, что мы смотрим вверх. Если же обратить взгляд на верхнюю половину картину, то кажется, что мы смотрим вниз.

39 Водопад Третий тип картин с нарушенной логикой пространства — это «невозможные фигуры». Парадокс невозможных фигур основан на том, что наш мозг всегда пытается представить нарисованные на бумаге двухмерные рисунки как трехмерные. Литография «Водопад» — основана на фигуре невозможного треугольника, придуманного математиком Роджером Пенроузом. В этой работе два невозможных треугольника соединены в единую невозможную фигуру. Создается впечатление, что водопад является замкнутой системой, работающей по типу вечного двигателя, нарушая закон сохранения энергии.

40 Относительность Три силы тяжести направлены перпендикулярно одна другой. Три земные поверхности прорезают друг друга под прямым углом, и каждая населена человеческими существами. Обитатели двух разных миров не могут ходить, сидеть или стоять на одном и том же полу, поскольку у них разные представления о горизонтали и вертикали. Однако они могут пользоваться одной и той же лестницей. Мы видим как наверху два человека идут рядом по лестничным ступенькам будто бы в одном направлении, – тем не менее один движется вверх, а другой – вниз. Контакт между ними невозможен, так как они живут в разных мирах и не подозревают о существовании друг друга.

42 Восхождение и спуск Бесконечные лестницы, представляющие главный мотив этой картины, навеяны статьей Л.С. и Р. Пенроузов, напечатанной в «Британском журнале психологии» в феврале 1958 года. Прямоугольник внутреннего двора замкнут стенами здания, у которого вместо крыши – бесконечная лестница, по которой поднимаются и спускаются вереница людей. Однако оба направления, хотя и выразительны, но одинаково бесполезны.

43 Бельведер Слева на переднем плане лежит лист бумаги с чертежом куба. Места пересечения граней отмечены двумя кружками. Какая грань впереди, какая позади? В трехмерном мире невозможно увидеть переднюю и заднюю стороны одновременно, поэтому их невозможно изобразить. На полу нижней площадки, то есть внутри, стоит лестница, на которую взбираются двое. Однако, достигнув верхней площадки, они снова окажутся снаружи, под открытыми небом, и снова им придется входить внутрь бельведера.

44 Человек с кубом Его мы видели на гравюре «Бельведер». Сидящий на скамье человек держит в руках абсурдное подобие куба. Он задумчиво разглядывает этот непостижимый предмет.

45 Выставка гравюр Вход справа внизу ведет на выставку – в галерею с экспозицией гравюр на стенах и в застекленных витринах. Мы видим юношу, который по крайней мере в четыре раза крупнее человека, стоящего у входа. Даже голова у него увеличена в объеме по сравнению с его правой рукой. На стене перед ним – последний лист графической серии, и он пристально разглядывает пароход, лодки, воду канала и дома на заднем плане. Затем его взгляд переходит слева направо, к многоярусному жилому массиву. Открытое окно, из которого выглядывает женщина, выходит прямо на покатую крышу выставочной галереи, и это возвращает нас к месту, откуда началось путешествие. Юноша воспринимает это как двухмерные детали рассматриваемой литографии. Если его глаза захватят еще больше пространства, ему покажется, что он вошел в мир графического листа.

46 Капля росы Картины Мориса Эшера сделались в современном научном мире символами, которые используют сами ученые, когда хотят показать необычность, парадоксальность задач и выводов, возникающих при решении этих задач. Особенно часто картины Эшера используют физики и математики. Возможно, это связано с тем, что в своих проблемах они чаще специалистов других областей науки выходят за пределы естественных с точки зрения современной интуиции понятий и тогда возникает интересная аналогия. Оказывается, зрительный мир, который, казалось бы, совершенно приземлен, который ясен и знаком до деталей, может также быть парадоксальным.

Источники:
  • http://imit-omsu.livejournal.com/26271.html
  • http://kulturologia.ru/blogs/070818/39992/
  • http://www.myshared.ru/slide/315952/