Меню Рубрики

Что такое наблюдение с точки зрения физики

Страницы работы

Фрагмент текста работы

Наблюдение – метод исследования предметов и явлений объективной действительности в том виде, в каком они существуют в природе. Наблюдаемой называют любую физическую величину, значение которой можно найти экспериментально (измерить).

Гипотеза – вероятное предположение о причине каких-либо явлений, достоверность которого при современном состоянии науки не может быть проверена и доказана.

Эксперимент – изучение того или иного явления в точно учитываемых условиях, когда имеется возможность следить за ходом изменения явления, активно воздействовать на неё.

Теория — обобщение опыта, практики, научной деятельности, вскрывающее основные закономерности изучаемого процесса или явления.

Опыт – совокупность накопленных знаний.

Механика – наука, изучающая механические движения, т.е. перемещения тел друг относительно друга или изменение форм тела.

Материальная точка – физическое тело, размерами и формой которого можно пренебречь.

Поступательное движение – движение, при котором любая прямая, жёстко связанная с телом, перемещается параллельно самой себе.

Мгновенная скорость (скорость) – характеризует быстроту изменения радиус-вектора перемещения r в момент времени t.

Ускорение – характеризует быстроту изменения скорости в момент времени t.

Тангенциальное ускорение характеризует изменение скорости по модулю.

Нормальное ускорение – по направлению.

Угловая скорость – векторная величина производной от элементарного углового перемещения по времени.

Угловое ускорение – векторная величина, равная первой производной от угловой скорости по времени.

Импульс – векторная мера кол-ва механического движения, которое может быть передано от одного тела к другому при условии, что движение не меняет своей формы.

Механическая система – совокупность тел, выделенных для рассмотрения.

Внутренние силы – силы, с которыми взаимодействуют между собой тела, входящие в рассматриваемую систему.

Внешние силы – действуют со стороны тел, не принадлежащих системе.

Система называется замкнутой или изолированной, если отсутствуют внешние силы

Прямая задача механики – зная силы, найти движение (функции r(t), V(t)).

Обратная задача механики – зная движение тела, найти силы, действующие на него.

Масса (аддитивная величина):

1. Мера инертности при поступательном движении тела (инертная масса)

2. Мера кол-ва вещества в объёме тела

3. Мера гравитационных свойств тел, участвующих в гравитационных взаимодействиях (гравитационная масса)

1. В способности тела сохранять состояние движения

2. В способности тела под действием других тел изменять состояние не скачками, а непрерывно.

3. Сопротивляться изменению состояния своего движения.

Системы отсчёта, по отношению к которым свободная м.т. находится в состоянии относительного покоя или равномерного прямолинейного движения, называются инерциальными (в них выполняется I закон Ньютона).

I закон Ньютона: Если система отсчёта движется относительно инерциальной с ускорением, то она называется неинерциальной.

II закон Ньютона: В инерциальной системе скорость изменения импульса м.т. равна результирующей силе, действующей на неё и совпадает с ней по направлению.

III закон Ньютона: Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.

Абсолютная скорость – скорость м.т. относительно неподвижной системы отсчёта.

Относительная скорость – скорость м.т. относительно подвижной системы отсчёта.

Переносная скорость – скорость подвижной системы отсчёта относительно

Михаил Петров

Никто в мире не понимает квантовую механику — это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция — математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому — тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов — медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики — объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах — крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр — около 1 нм), а на чуть более ощутимом объекте — крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно — после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись — теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье, опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать — просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть иллюзорное порождение нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» — комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин — декогеренция.

Читайте также:  Высказать точку зрения о чем или на что

Дело вот в чем — во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» — необратимый с точки зрения термодинамики процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните — сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность — выбирать приходится каждому из нас.

Как СОЗНАНИЕ управляет материей

Квантовая физика радикально изменила наши представления о мире. Согласно квантовой физике мы можем влиять своим сознанием на процесс омоложения!

Почему это возможно? С точки зрения квантовой физики, наша действительность – источник чистых потенциальных возможностей, источник сырья, из которого состоит наше тело, наш разум и вся Вселенная.Универсальное энергетическое и информационное поле никогда не перестает изменяться и преобразовываться, каждую секунду превращаясь во что-то новое.

В 20 веке, во время физических экспериментов с субатомарными частицами и фотонами, было обнаружено, что факт наблюдения за течением эксперимента изменяет его результаты. То, на что мы фокусируем наше внимание — может реагировать.

Этот факт подтверждает классический эксперимент, который каждый раз удивляет ученых. Он повторялся во многих лабораториях и всегда получались одни и те же результаты.

Для этого опыта приготовили источник света и экран с двумя щелями. В качестве источника света использовалось устройство, которое «выстреливало» фотонами в виде однократных импульсов.

За ходом эксперимента велось наблюдение. После окончания опыта, на фотобумаге, которая находилась за щелями были видны две вертикальные полоски. Это следы фотонов, которые проходили сквозь щели и засвечивали фотобумагу.

Когда этот эксперимент повторяли в автоматическом режиме, без участия человека, то картина на фотобумаге изменялась:

Если исследователь включал прибор и уходил, и через 20 минут фотобумага проявлялась, то на ней обнаруживалось не две, а множество вертикальных полосок. Это были следы излучения. Но рисунок был другим.

Структура следа на фотобумаге напоминала след от волны, которая проходила сквозь щели.Свет может проявлять свойства волны или частицы.

В результате простого факта наблюдения волна исчезает и превращается в частицы. Если не вести наблюдение, то на фотобумаге проявляется след волны. Этот физический феномен получил название «Эффект Наблюдателя».

Эти же результаты были получены и с другими частицами. Эксперименты повторялись многократно, но каждый раз они удивляли ученых. Так было обнаружено, чтона квантовом уровне материя реагирует на внимание человека. Это было новым в физике.

По представлениям современной физики все материализуется из пустоты. Эта пустота получила названия «квантовое поле», «нулевое поле» или «матрица». Пустота содержит энергию, которая может превращаться в материю.

Материя состоит из сконцентрированной энергии — это фундаментальное открытие физики 20 века.

В атоме нет твердых частей. Предметы состоят из атомов. Но почему предметы твердые? Палец приложенный к кирпичной стене не проходит сквозь нее. Почему? Это связано с различиями частотных характеристик атомов и электрическими зарядами. У каждого типа атомов своя частота вибраций. Этим определяются различия физических свойств предметов. Если бы было можно менять частоту вибраций атомов, из которых состоит тело, то человек смог бы пройти сквозь стены. Но вибрационные частоты атомов руки и атомов стены близки. Поэтому палец упирается в стену.

Для любых видов взаимодействий необходим частотный резонанс.

Это легко понять на простом примере. Если осветить каменную стену светом карманного фонаря, то свет будет задержан стеной. Однако излучение мобильного телефона легко пройдет сквозь эту стену. Все дело в различиях частот между излучением фонаря и мобильного телефона. Пока вы читаете этот текст, сквозь ваше тело проходят потоки самого различного излучения. Это космическое излучение, радиосигналы, сигналы миллионов мобильных телефонов, излучение, идущее из земли, солнечная радиация, излучение, которое создают бытовые приборы и т.п.

Вы это не ощущаете, поскольку можете видеть только свет, а слышать только звук. Даже если вы сидите в тишине с закрытыми глазами, сквозь вашу голову проходят миллионы телефонных разговоров, картины телевизионных новостей и сообщений по радио. Вы это не воспринимаете, поскольку нет резонанса частот между атомами из которых состоит ваше тело и излучением. Но если резонанс есть, — то вы немедленно реагируете. Например, когда вы вспоминаете о близком человеке, который только что подумал о вас. Все во вселенной подчиняется законам резонанса.

Мир состоит из энергии и информации. Эйнштейн, после долгих размышлений об устройства мира сказал: »Единственная существующая во вселенной реальность — это поле». Подобно тому, как волны являются творением моря, все проявления материи: организмы, планеты, звезды, галактики — это творения поля.

Возникает вопрос, как из поля создается материя? Какая сила управляет движением материи?

Исследования ученых привели их к неожиданному ответу. Создатель квантовой физики Макс Планк во время своей речи при получении Нобелевской премии произнес следующее:

«Все во Вселенной создается и существует благодаря силе. Мы должны предполагать, что за этой силой стоит сознательный разум, который является матрицей всякой материи«.

МАТЕРИЯ УПРАВЛЯЕТСЯ СОЗНАНИЕМ

На рубеже 20 и 21 века в теоретической физике появились новые идеи, которые позволяют объяснить странные свойства элементарных частиц. Частицы могут возникать из пустоты и внезапно исчезать. Ученые допускают возможность существования параллельных вселенных. Возможно частицы переходят из одного слоя вселенной в другой. В развитии этих идей участвуют такие знаменитости, как Stephen Hawking, Edward Witten, Juan Maldacena, Leonard Susskind.

Согласно представлениям теоретической физики — Вселенная напоминает матрешку, которая состоит из множества матрешек — слоев. Это варианты вселенных — параллельные миры. Те, что расположены рядом — очень похожи. Но чем дальше слои друг от друга слои — тем меньше между ними сходства. Теоретически, для того, что бы переходить из одной вселенной в другую, не требуются космические корабли. Все возможные варианты расположены один в другом. Впервые эти идеи были высказаны учеными в середине 20 века. На рубеже 20 и 21 века они получили математическое подтверждение. Сегодня подобная информация легко принимаются публикой. Однако пару сотен лет назад, за такие высказывания могли сжечь на костре или объявить сумасшедшим.

Все возникает из пустоты. Все находится в движении. Предметы — иллюзия. Материя состоит из энергии. Все создается мыслью. Эти открытия квантовой физики не содержат ничего нового. Все это было известно древним мудрецам. Во многих мистических учениях, которые считались секретными и были доступны только посвященным, говорилось, что нет никакого различия между мыслями и предметами. Все в мире наполнено энергией. Вселенная реагирует на мысль. Энергия следует за вниманием.

То, на чем ты фокусируешь свое внимание, начинает изменяться. Эти мысли в различных формулировках даются в Библии, древних гностических текстах, в мистических учениях, которые возникли в Индии и Южной Америке. Об этом догадывались строители древних пирамид. Эти знания являются ключом к новым технологиям, которые сегодня используются для управления реальностью.

Наше тело – это поле энергии, информации и разума, находящееся в состоянии постоянного динамического обмена с окружающей средой. Импульсы разума постоянно, каждую секунду придают телу новые формы для приспособления к меняющимся требованиям жизни.

Эффект Зенона или Управление материей с помощью мысли — эффект Наблюдателя в квантовой физике

Сегодня посетили интересные мысли в блоге lana_artifex , а именно в посте Random Science: как квантовый эффект Зенона останавливает время, в котором описывается эффект Зенона из квантовой физики. Он заключается в том, что если наблюдать за распадающимся (или радиоактивным) атомом с определенной частотой (или так называемой вероятностью события, причем при вычислении вероятности сразу включается только ограниченная двоичная логика — да или нет), то атом может не распадаться практически безконечно — пока вы наблюдате за ним и насколько вас хватит. Проводились эксперименты, подтверждались данные — действительно, изначальные атомы, за которыми «наблюдали» ученые с определенной частотой (или вероятностью) — не распадались. Почему слово «наблюдали» вынесено в кавычки? Ответ под катом вместе с постом lana_artifex и моими комментариями к нему.

Элейский Зенон – греческий философ, который предположил, что если время разделить на множество отдельных частей, то мир замрет. Оказалось, что Зенон был прав, если говорить о квантовой механике. Он делал это, предлагая серии парадоксов, среди которых было доказательство, что ничего никогда не двигается. И в случае с этим парадоксом, ученые только в 1977 г. смогли догнать безумные идеи Зенона.

Физики из Университета Техаса – Д. Сударашан и Б. Мишра, предложили доказательства эффекта Зенона, показав, что можно остановить распад атома просто наблюдая за ним достаточно часто.

Официальное название современной научной теории – квантовый эффект Зенона, и он основан на довольно известном Парадоксе Стрелы. Стрела летит в воздухе. Ее полет является серией состояний. Состояние определяется самым коротким промежутком времени из возможных. В любой момент состояния, стрела неподвижна. Если бы она не была неподвижна, то было бы два состояния, одно, в котором стрела находится в первой позиции, второе, где стрела находится во второй позиции. Это вызывает проблему. Не существует другого способа описать состояние, но если время состоит из множества состояний, и стрела не двигается ни в одном из них, то стрела не может двигаться вовсе.

Данная идея сокращения времени между наблюдениями движений заинтересовала двух физиков. Они поняли, что распадом некоторых атомов можно манипулировать при помощи Парадокса Стрелы. Атом Натрия, который не находится под наблюдением имеет потенциал к распаду, по крайней мере с нашей точки зрения данный атом находится в состоянии суперпозиции. Он как разложился, так и нет. Проверить нельзя пока никто не посмотрит на него. Когда это происходит, атом переходит в одно из двух состояний. Это как подбросить монетку, шанс 50/50, что атом распался. В определенный момент времени, после того как он перешел в состояние суперпозиции, существует больший шанс, что он не распался при наблюдении за ним. В другие моменты наоборот, он скорее распадется.

Предположим, что атом скорее распался после трех секунд, но маловероятно, что распался после одной. Если проверить через три секунды, то атом скорее будет разложившимся. Однако Мишра и Сударашан предполагают, что если проверять атом три раза в секунду, то вероятность того, что он не распадется вырастает. На первый взгляд звучит как полный бред, но это именно то, что происходит. Исследователи проводили наблюдение за атомами: в зависимости от частоты измерений, они повышали или уменьшали шанс на распад, нежели в случае с обычной ситуацией.

“Усовершенствованный” распад является результатом квантового анти-эффекта Зенона. Если правильно подстроить частоту измерений, можно заставить систему распадаться быстрей или медленней. Зенон был прав. Мы действительно можем остановить мир, главное научиться смотреть на него правильно. В то же время, мы можем и привести к его разрушению, если не будем аккуратны.

Читайте также:  В основе теории ламарка лежала точка зрения о том чтобы

Мои комментарии к посту:

kactaheda
Интересные темы поднимаете. Нет ли случайно информации, с помощью чего наблюдали за атомом?
«Атом Натрия, который не находится под наблюдением имеет потенциал к распаду, по крайней мере с нашей точки зрения данный атом находится в состоянии суперпозиции»

lana_artifex
Определённые темы поднимаю на уровне общедоступного блога, обсуждаю их со своим кругом друзей и не развиваю далее — пусть в блоге они остаются на уровне науки, не всякий поймёт эти темы в их развитии. Информации такой нет, но вы как читаете мысли — есть возможность запросить инфу по этому вопросу у автора , что уже было сделано , пока без ответа

kactaheda
Можете не утруждаться — я вам попробую ответить сам 🙂 А вы разве не автор этого блога?
Итак, что такое процесс наблюдения в квантовой физике? Классически — это момент регистрации определенной частички в пространстве. Но идем дальше. Наблюдаем мы не глазами и не камерой, а. тоже частичками. В классическом эксперименте с двумя щелями за прохождением электрона через одну из щелей наблюдают с помощью фотонов. Получается забавная вещь — наблюдающие фотоны как бы сбивают пролетающие электроны. Но есть еще один интересный момент — что электроны, что фотоны являются электромагнитными волнами, распространяющимися в среде (назовем ее эфир, как привычнее для меня или же поле, физический вакуум, как его называют современные ученые) на скорости света. То есть одни волны интерферируют с другими, причем ортогонально — то есть перпендикулярно направлениям распространения друг друга. При таком наблюдении фотонами за электронами, электрон, являясь волной, не может проинтерферировать сам с собой, создавая спектральную картину на экране из максимумов и минимумов, а пролетает как бы только через одну щель — что видно в виде одной полоски на экране.

Итак, исходя из всего этого, можно сделать вывод, что «бомбардируя» распадающийся атом натрия другими наблюдательными частичками, в этом эксперименте просто постоянно пытаются поддерживать его устойчивое состояние, добавляя энергию порциями — в каждый момент наблюдения.

lana_artifex
Спасибо, поняла суть!

lana_artifex
Тему с эффектом Зенона подняла как философскую подводку к следующему посту о картине, а сами по себе прочтения эффекта Зенона — тема уже больше эзотерическая , в лучшем смысле этого слова

kactaheda
Да, в эзотерике именно об этом и говорится — наши мысли (являясь электромагнитными волнами) влияют на другие электромагнитные волны, из которых состоит весь Мир — вплоть до мельчайшего атома, протона, мюона и любого возможного бозона 🙂 И таких частичек можно открывать миллиарды — например частичку Бога в БАКе 🙂
Так что вот я и вернулся к своему первому посту в ЖЖ — про Наблюдателя в квантовой физике. Только теперь у меня есть научное объяснение чудесам.

Наблюдения и опыты

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Рис. 1. Длина тени пропорциональна высоте тела

Проверим: если поставить две палки, длина которых отличается в 2 раза, длины их теней будут отличаться тоже в 2 раза (см. рис. 2).

Рис. 2. Эксперимент по проверке пропорциональности длины тени высоте тела

Теперь мы можем найти высоту дома: измерьте тень своего друга и тень дома. Во сколько раз тень дома длиннее тени друга, во столько раз дом выше друга (см. рис. 3).

Рис. 3. Нахождение высоты дома

А потом спросите высоту дома у того, кто знает, и похвалите себя за точность.

А древние греки по тени от Солнца смогли с высокой точностью вычислить радиус Земли!

Этим и занимается физика: исследовать явление, выявить закономерность и применить ее на практике.

Определение радиуса Земли

Еще древние греки, а именно Эратосфен Киренский, смогли вычислить радиус Земли.

Египтяне и греки заметили, что во время летнего солнцестояния Солнце освещает дно глубоких колодцев в Сиене, а в Александрии – нет (см. рис. 4).

Рис. 4. Освещение колодцев

Солнце находится настолько далеко от Земли, что его лучи можно считать параллельными. Александрия и Сиена лежат на одном меридиане, и рисунок лежит в одной плоскости (см. рис. 5).

Рис. 5. Положение городов Александрия и Сиена

Обратите внимание: солнечный луч вместе со стенкой колодца и поверхностью Земли образовывает треугольник (см. рис. 6).

Рис. 6. Ход луча в колодце Александрии

Его можно считать подобным треугольнику, образованному центром Земли, Александрией и Сиеной (см. рис. 7).

Рис. 7. Подобие треугольников

Тогда расстояние между Сиеной и Александрией относится к радиусу Земли, как ширина колодца относится к глубине, которой в колодце достигают солнечные лучи.

В науке недостаточно действовать по интуиции. Интуиция помогает построить догадку, объясняющую явление, и которую нужно проверять. Исследования бывают сложнее, чем наше с тенью, и важно разделить способы исследования и осознанно их применять.

Проследим, какая была схема нашего исследования тени. Оно началось с наблюдения: мы смотрели на тени людей. На основе наблюдений мы сделали предположение (гипотезу), что длина тени пропорциональна высоте. Ее мы проверили на опыте: измеряли тени от палок известных длин. Она подтвердилась, и выявленную закономерность мы применили на практике, узнав высоту дома.

Теперь рассмотрим подробнее: изучение провоцируется наблюдением. Что-то происходит само собой, а мы это наблюдаем и замечаем.

Значение слова «гипотеза»

Слово «гипотеза» имеет древнегреческое происхождение: ὑπόθεσις. Тезис – это утверждение, точное суждение. Приставка гипо- означает «под» или «ниже». Слышали о болезни гипотонии? Это пониженное давление.

Таким образом, гипотеза – это «недоутверждение», она «ниже утверждения», утверждение, которое еще необходимо доказать.

Затем мы формулируем гипотезу – это предположение или догадка, которую мы делаем на основе наблюдений и которую следует проверить. В примере с тенями гипотеза состояла в том, что длина тени пропорциональна высоте предмета.

Чтобы проверить гипотезу, применяем следующий метод: ставим опыт или эксперимент. При наблюдении может возникнуть иллюзия. Например, нам кажется, что тяжелые тела падают быстрее, чем легкие (см. рис. 8).

Рис. 8. Представление, что более тяжелые тела падают быстрее, ошибочно

Они действительно падают по-разному из-за сопротивления воздуха (см. рис. 9), но трудно представить, чтобы даже в безвоздушном пространстве перо падало так же, как гиря.

Рис. 9. Действие сопротивления воздуха

Чтобы узнать, нужно проверить, провести опыт, и избавиться от иллюзий личного восприятия.

Гипотеза, которую нельзя проверить

Согласно Попперу, философу, который занимался проблемами научного познания, имеют смысл лишь те теории, которые можно проверить. Теория считается научной, если существует возможность ее опровергнуть, даже если этого не сделали. Например, по закону всемирного тяготения все тела, обладающие массой, притягиваются. Возможность опровергнуть этот закон есть: для этого нужно найти две массы, которые не будут притягиваться. Этого не сделали, но принципиальная возможность есть.

Существование бога нельзя проверить экспериментально, не придумали такого эксперимента, который мог бы его опровергнуть. А это, по Попперу, – признак ненаучной теории. В этом и отличие: если научные теории рано или поздно проверяются экспериментально, то в бога люди просто верят или не верят.

Наблюдение

Наблюдение ведется со стороны, а во время опыта мы, наоборот, сами создаем условия, при которых будет происходить явление. Чтобы изучать конкретное явление и находить зависимость, нужно отбросить всё лишнее, на что можно не обращать внимания в эксперименте. Это называется построить модель. Например, мы не обращаем внимания на то, что днем солнце высоко над горизонтом, а вечером низко: в опыте мы проводим измерения на протяжении короткого времени, и движением солнца на небосводе пренебрегаем.

Опыт без гипотезы не имеет смысла: когда мы ставим опыт, мы должны понимать, чего мы хотим добиться, каких результатов можно ожидать и что они будут означать: подтверждение гипотезы или опровержение.

Примеры изучения явлений в повседневной жизни

Мы в квартире чувствуем сквозняк, а это поток воздуха (см. рис. 10).

Рис. 10. Поток воздуха

Воздух должен попадать в квартиру и покидать ее. Делаем предположение, что для сквозняка в квартире должны быть открыты одновременно два окна (см. рис. 11).

Рис. 11. В квартире открыты два окна

Проводим опыт: закрываем все окна – сквозняка нет. Открываем одно окно – сквозняка нет. Открываем два окна – сквозняк появляется. Наше предположение оказалось правильным.

Почему за закрытой дверью плохо слышно звуки? Мы наблюдаем, что, когда дверь открыта, слышно хорошо, когда закрыта – хуже (см. рис. 12).

Рис. 12. Хорошая слышимость

Дерево плохо проводит звук? Почему тогда хорошо слышен стук в дверь? Значит, дерево хорошо проводит звук. В чем дело? Проведите эксперимент: закройте дверь, попросите кого-то постучать по какому-то предмету, например по чашке. Один раз, прислонив чашку к двери, а второй раз – отойдя на шаг от двери. Во втором случае будет плохо слышно, потому что звук будет отражаться на границе воздуха и древесины.

Используя это явление, можно переговариваться через стены, прикладывая к ним железные кружки (см. рис. 13).

Рис. 13. Способ переговоров через стену

Кружка хорошо вибрирует под действием голоса, а затем звук передается без воздушной прослойки через стену.

Почему телефон на одном и том же заряде работает разное время?

Мы находим закономерности далеко не только на уроках физики.

Например, можно наблюдать, что мобильный телефон держит заряд не всегда одинаково долго. От чего это зависит? Обычно используют его для Интернета, слушают музыку, и совсем немного разговаривают. Делаем предположение, гипотезу, что музыка и Интернет требуют разного потребления энергии. Как это проверить? Провести опыт, включить на заряженном телефоне музыку до полной разрядки, а потом сделать то же самое с Интернетом и сравнить, в каком случае батарея прослужит дольше. Так мы когда-нибудь сможем правильно выбрать, чем развлечься в дороге без розетки, чтобы телефон не выключился.

Когда мы провели опыт и сделали выводы, мы можем применить полученные знания – сделать важный переход от знания к его применению.

Применение

В механике люди перешли от исследования полета тела, брошенного под углом к горизонту (см. рис. 14), к созданию артиллерийских орудий.

Рис. 14. Тело, брошенное под углом к горизонту

Еще пример. Люди перешли от прыгающей крышки кипящего чайника к паровой машине: в обоих случаях пар заставляет что-то двигаться, и в случае с машиной мы извлекли из этого пользу (см. рис. 15).

Рис. 15. Тепловоз

Перешли от исследования нагревания тел к борьбе с глобальным потеплением (см. рис. 16).

Рис. 16. Работающие заводы

В геометрической оптике исследуем, как свет меняет направление на границе двух сред (см. рис. 17), чтобы затем направить его так, как нам нужно: на матрицу фотоаппарата, в близорукий или дальнозоркий глаз.

Рис. 17. Изменение направления света на разделе двух сред

Согласно легенде, Архимед сумел направить солнечные лучи на вражеские корабли так, что они загорелись.

Исследуя звук, заметили, что он имеет конечную скорость распространения в воздухе – около 340 м/с. Зная это, можно определить расстояние до грозового разряда (см. рис. 18).

Рис. 18. Исследование расстояние до грозы

Если мы услышали гром через 3 секунды после вспышки молнии, разряд произошел на расстоянии . По такому же принципу работает аппарат УЗИ: посылается ультразвуковой сигнал и засекается время, через которое он отразится от внутреннего органа и вернется к датчику.

В физике наблюдали за почернением фотопленки под действием рентгеновских лучей (см. рис. 19).

Рис. 19. Влияние рентгеновских лучей

Причем эти лучи хорошо проходят через мягкие ткани организма и плохо проходят через костную ткань – по этому принципу вам делают рентгеновские снимки.

Схема «наблюдение – гипотеза – модель – опыт» не единственно возможная. Например, в астрономии наблюдение – основной метод исследований. Мы же не можем расставить звезды, как нам нужно, и посмотреть, что будет. В таком виде опыт невозможен.

Читайте также:  Объяснение пословиц с точки зрения физики

Обратите внимание, как получилось с открытием законов Кеплера, по которым движутся планеты. Астроном Тихо Браге проводил систематические наблюдения за движением планет, собрав большой массив данных об этом движении. Иоганн Кеплер на основании собранных данных вывел закон движения планет. И для проверки закона Кеплер мог воспользоваться снова результатами наблюдений Браге.

Еще один пример – исследования в области экологии Земли. Важный вопрос: выживет ли человечество при таком воздействии на окружающий мир? Прямо проверить это нельзя, но можно изучать модели: изолированные сообщества, островитян, сравнивать их цивилизации.

Новая гипотеза может возникнуть при проведении опыта. Когда стали создавать и испытывать всё более мощные пушки, заметили, что снаряд летит намного дальше, чем предсказывали расчеты. Это происходит из-за того, что снаряды покидают плотные слои атмосферы и там летят почти без сопротивления воздуха. Эксперимент вышел за пределы модели, в которой воздух считали однородным, потребовалась новая модель и новые эксперименты.

Почему чайник закипает за разное время?

Попробуйте исследовать такое явление: нагревание воды в электрочайнике. Мы каждый день наблюдаем, как закипает чайник, и замечаем, что чем больше в нем воды, тем дольше она закипает, тем больше требуется энергии.

Выдвинем гипотезу, что количество энергии пропорционально количеству воды в чайнике. Нужно провести опыт: попробовать вскипятить сначала два стакана воды, а затем четыре, и сравнить время (см. рис. 20).

Рис. 20. Проведение опыта

Создаем модель: мы не можем измерить энергию, выделяемую чайником, но можем измерить время работы чайника. Будем считать, что энергия выделяется равномерно, и, если времени пройдет в 2 раза больше, значит, энергии выделилось в 2 раза больше. Считаем, что энергия расходуется только на нагревание воды. Мы исследуем, как требуемая энергия зависит только от количества воды. Понятно, что теплая вода закипит быстрее, чем холодная, значит, нужно взять воду одинаковой температуры. Теперь остается провести опыт. Вы можете провести его самостоятельно. Если с четырьмя стаканами воды чайник будет закипать в 2 раза дольше, чем с двумя, наша гипотеза подтвердится.

Действительно, количество теплоты, необходимое для нагревания, равно Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

masterok

Мастерок.жж.рф

Хочу все знать

Прочитал сейчас такое утверждение, что никто в этом мире не понимает, что такое квантовая механика. Это, пожалуй, самое главное, что нужно знать о ней. Конечно, многие физики научились использовать законы и даже предсказывать явления, основанные на квантовых вычислениях. Но до сих пор неясно, почему наблюдатель эксперимента определяет поведение системы и заставляет ее принять одно из двух состояний.

Перед вами несколько примеров экспериментов с результатами, которые неизбежно будут меняться под влиянием наблюдателя. Они показывают, что квантовая механика практически имеет дело с вмешательством сознательной мысли в материальную реальность.

Сегодня существует множество интерпретаций квантовой механики, но Копенгагенская интерпретация, пожалуй, является самой известной. В 1920-х ее общие постулаты были сформулированы Нильсом Бором и Вернером Гейзенбергом.

В основу Копенгагенской интерпретации легла волновая функция. Это математическая функция, содержащая информацию о всех возможных состояниях квантовой системы, в которых она существует одновременно. Как утверждает Копенгагенская интерпретация, состояние системы и ее положение относительно других состояний может быть определено только путем наблюдения (волновая функция используется только для того, чтобы математически рассчитать вероятность нахождения системы в одном или другом состоянии).

Можно сказать, что после наблюдения квантовая система становится классической и немедленно прекращает свое существование в других состояниях, кроме того, в котором была замечена. Такой вывод нашел своих противников (вспомните знаменитое эйнштейновское «Бог не играет в кости»), но точность расчетов и предсказаний все же возымели свое.

Тем не менее число сторонников Копенгагенской интерпретации снижается, и главной причиной этого является таинственный мгновенный коллапс волновой функции в ходе эксперимента. Знаменитый мысленный эксперимент Эрвина Шредингера с бедным котиком должен продемонстрировать абсурдность этого явления. Давайте вспомним детали кота Шредингера простыми словами. Т.е вывод заключается в том, что пока наблюдатель не откроет коробку, кот будет бесконечно балансировать между жизнью и смертью, или будет одновременно жив и мертв. Его судьба может быть определена только в результате действий наблюдателя. На этот абсурд и указал Шредингер.

Но оказывается есть еще и другой эксперимент.

Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.

Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине.

Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).

Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним — даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.

Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос. Т.е еще раз: как только они подносят к пластине измерительный прибор, волна локально превращается в поток отдельных частиц. Когда прибор убирают, поток отдельных частиц вновь сливается в излучение и на экране опять можно наблюдать интерференционную картину.

Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. А можно сказать и так, что на самом деле «эффект наблюдателя» — это вопрос когнитивного восприятия результатов опыта. Это еще называют «Квантовый эффект Сознания».

Тот же эффект наблюдается при экстремальном охлаждении некоторых атомов вещества (происходит нивелирование теплового — электромагнитного взаимодействия между ним) при образовании конденсата Бозе-Эйнштейна — группа атомов сливается воедино и теряется возможность говорить о каждом из них по отдельности. В первом случае система не конкретизирована и проявляет волновые свойства, во втором случае приобретает эффект корпускулярного проявления в соответствии с информацией, которая нас начинает конкретно интересовать.

Вот тут пытаются объяснить этот эффект научными методами, а вот далее будут объяснения немного в сторону не классической науки

По представлениям современной физики все материализуется из пустоты. Эта пустота получила названия «квантовое поле», «нулевое поле» или «матрица». Пустота содержит энергию, которая может превращаться в материю.

Материя состоит из сконцентрированной энергии — это фундаментальное открытие физики 20 века.

В атоме нет твердых частей. Предметы состоят из атомов. Но почему предметы твердые? Палец приложенный к кирпичной стене не проходит сквозь нее. Почему? Это связано с различиями частотных характеристик атомов и электрическими зарядами. У каждого типа атомов своя частота вибраций. Этим определяются различия физических свойств предметов. Если бы было можно менять частоту вибраций атомов, из которых состоит тело, то человек смог бы пройти сквозь стены. Но вибрационные частоты атомов руки и атомов стены близки. Поэтому палец упирается в стену.

Для любых видов взаимодействий необходим частотный резонанс.

Это легко понять на простом примере. Если осветить каменную стену светом карманного фонаря, то свет будет задержан стеной. Однако излучение мобильного телефона легко пройдет сквозь эту стену. Все дело в различиях частот между излучением фонаря и мобильного телефона. Пока вы читаете этот текст, сквозь ваше тело проходят потоки самого различного излучения. Это космическое излучение, радиосигналы, сигналы миллионов мобильных телефонов, излучение, идущее из земли, солнечная радиация, излучение, которое создают бытовые приборы и т.п.

Вы это не ощущаете, поскольку можете видеть только свет, а слышать только звук. Даже если вы сидите в тишине с закрытыми глазами, сквозь вашу голову проходят миллионы телефонных разговоров, картины телевизионных новостей и сообщений по радио. Вы это не воспринимаете, поскольку нет резонанса частот между атомами из которых состоит ваше тело и излучением. Но если резонанс есть, — то вы немедленно реагируете. Например, когда вы вспоминаете о близком человеке, который только что подумал о вас. Все во вселенной подчиняется законам резонанса.

Мир состоит из энергии и информации. Эйнштейн, после долгих размышлений об устройства мира сказал: »Единственная существующая во вселенной реальность — это поле». Подобно тому, как волны являются творением моря, все проявления материи: организмы, планеты, звезды, галактики — это творения поля.

Возникает вопрос, как из поля создается материя? Какая сила управляет движением материи?

Исследования ученых привели их к неожиданному ответу. Создатель квантовой физики Макс Планк во время своей речи при получении Нобелевской премии произнес следующее:

«Все во Вселенной создается и существует благодаря силе. Мы должны предполагать, что за этой силой стоит сознательный разум, который является матрицей всякой материи«.

МАТЕРИЯ УПРАВЛЯЕТСЯ СОЗНАНИЕМ

На рубеже 20 и 21 века в теоретической физике появились новые идеи, которые позволяют объяснить странные свойства элементарных частиц. Частицы могут возникать из пустоты и внезапно исчезать. Ученые допускают возможность существования параллельных вселенных. Возможно частицы переходят из одного слоя вселенной в другой. В развитии этих идей участвуют такие знаменитости, как Stephen Hawking, Edward Witten, Juan Maldacena, Leonard Susskind.

Согласно представлениям теоретической физики — Вселенная напоминает матрешку, которая состоит из множества матрешек — слоев. Это варианты вселенных — параллельные миры. Те, что расположены рядом — очень похожи. Но чем дальше слои друг от друга слои — тем меньше между ними сходства. Теоретически, для того, что бы переходить из одной вселенной в другую, не требуются космические корабли. Все возможные варианты расположены один в другом. Впервые эти идеи были высказаны учеными в середине 20 века. На рубеже 20 и 21 века они получили математическое подтверждение. Сегодня подобная информация легко принимаются публикой. Однако пару сотен лет назад, за такие высказывания могли сжечь на костре или объявить сумасшедшим.

Все возникает из пустоты. Все находится в движении. Предметы — иллюзия. Материя состоит из энергии. Все создается мыслью.

Эти открытия квантовой физики не содержат ничего нового. Все это было известно древним мудрецам. Во многих мистических учениях, которые считались секретными и были доступны только посвященным, говорилось, что нет никакого различия между мыслями и предметами.

Все в мире наполнено энергией.
Вселенная реагирует на мысль.
Энергия следует за вниманием.
То, на чем ты фокусируешь свое внимание, начинает изменяться.

Эти мысли в различных формулировках даются в Библии, древних гностических текстах, в мистических учениях, которые возникли в Индии и Южной Америке. Об этом догадывались строители древних пирамид. Эти знания являются ключом к новым технологиям, которые сегодня используются для управления реальностью.

Наше тело – это поле энергии, информации и разума, находящееся в состоянии постоянного динамического обмена с окружающей средой.

А вы какое объяснение больше предпочитаете?

Источники:
  • http://theoryandpractice.ru/posts/8507-quantum-experiment
  • http://econet.ru/articles/65310-kak-soznanie-upravlyaet-materiey
  • http://kactaheda.livejournal.com/384822.html
  • http://interneturok.ru/lesson/physics/7-klass/vvedenie/nablyudeniya-i-opyty
  • http://masterok.livejournal.com/3229836.html