Меню Рубрики

Анатомо физиологические особенности органов зрения является

Фармакодинамика

Лекарственный препарат — средство в руках врача.Читать

Фармакокинетика

Изучает особенности поступления препарата в организм.Читать

Витамины известны нам уже более 100 лет.Читать

Термин массаж пришел к нам из французского языка.Читать

Чтобы лучше представить себе, как устроен глаз, давайте обратимся к рис. 1.

Глазное яблоко помещается в глазнице и имеет не совсем правильную шаровидную форму. Стенки глазного яблока образованы тремя оболочками. Снаружи оно покрыто белочной оболочкой, или склерой (1). Она самая толстая, прочная и обеспечивает глазному яблоку определенную форму. Эта оболочка непрозрачна и лишь в переднем отделе в склеру как бы врезано крошечное окошечко диаметром около 12 мм—роговица (2) .Изнутри к склере прилегает вторая оболочка глаза—сосудистая (3). Она обильно снабжена кровеносными сосудами и пигментом, содержащим красящее вещество. Часть сосудистой оболочки, находящейся за роговицей, образует радужную оболочку, или радужку (4). Радужная оболочка окрашена и просвечивает через роговицу. Окраска радужки зависит от количества пигмента. Когда его много — глаза темно или светло-карие, а когда мало — серые, зеленоватые или голубые.

Рисунок 1. Строение глаза. 1 — склера; 2 — роговица; 3 — сосудистая оболочка; 4 — радужка; 5 — зрачок; 6 — ресничное тело; 7 — хрусталик; 8 — стекловидное тело; 9 — сетчатая оболочка; 10 — колбочки; 11 — палочки; 12 — нервные клетки.

У некоторых людей (альбиносы) в радужной оболочке пигмент не содержится. Глаза таких людей имеют красный цвет (просвечивают только кровеносные сосуды). В центре радужки есть небольшое отверстие — зрачок (5), который, суживаясь или расширяясь, пропускает то больше, то меньше света. Многие, наверное, не раз замечали, как при слабом освещении зрачки становятся широкими, а при ярком — узкими. Посмотрите друг на друга при разном освещении и вы убедитесь, что величина зрачка меняется в зависимости от освещения. Радужка отделяется от собственно сосудистой оболочки ресничным телом (6). В толще его находится ресничная мышца, на тонких упругих нитях которой подвешен хрусталик (7) — крошечная двояковыпуклая линза диаметром 10 мм. При сокращении или расслаблении ресничной мышцы хрусталик меняет свою форму — кривизну поверхностей. Это свойство хрусталика позволяет четко видеть предметы как на близком, так и на далеком расстоянии. При чтении или любой другой работе на близком расстоянии хрусталик становится более выпуклым, а при взгляде вдаль уплощается. Свойство глаз приспосабливаться к рассматриванию предметов, находящихся на разном расстоянии от него, называется аккомодацией. Она осуществляется за счет цилиарной (ресничной) мышцы.

Хрусталик не имеет ни сосудов, ни нервов, его питание обеспечивается специальной жидкостью, которую продуцирует ресничное тело.

У детей и молодых людей до 25—35 лет хрусталик эластичен и представляет собой прозрачную массу полужидкой консистенции, заключенную в капсулу. С возрастом хрусталик плотнеет.

Вся внутренняя полость глаза заполнена прозрачной желеобразной массой — стекловидным телом (8). При помутнении стекловидного тела зрение резко ухудшается.

Роговица, хрусталик и стекловидное тело — оптическая, или преломляющая, система глаза. Луч света проходит через прозрачные среды, которые изменяют (преломляют) его направление. Преломляющая сила глаза зависит от состояния оптической системы у данного человека. Но для получения четкого изображения важна не только преломляющая сила оптической системы глаза сама по себе, но и ее способность фокусировать лучи на третьей, самой внутренней оболочке глаза — сетчатке (9).

Сетчатка имеет очень сложное строение. В ней различают 10 слоев клеток. Особенно важное значение имеют клетки, получившие название колбочек (10) и палочек (II). В сетчатой оболочке палочки и колбочки расположены неравномерно. Палочки (числом около 130 млн.) отвечают за восприятие света, а колбочки (их около 7 млн.) — за цветовое восприятие.

Самым важным местом сетчатки является так называемая центральная ямка, расположенная в центре желтого пятна. Это — область наилучшего восприятия зрительных ощущений. В пределах центральной ямки плотность колбочек достигает от 113 тыс. до 147 тыс. на 1 мм, а палочки полностью отсутствуют. По мере удаления от центральной ямки плотность колбочек уменьшается, а палочек — возрастает, и на расстоянии 5—6 мм от центральной ямки количество палочек достигает наибольшей плотности (до 170 тыс. на 1 мм).

Колбочки являются клетками, обеспечивающими дневное и цветное зрение. Они возбуждаются при солнечном и ярком электрическом свете. Палочки же обеспечивают сумеречное и ночное зрение. Под влиянием света в колбочках и палочках происходят определенные физические и химические процессы.

В палочках находится особое вещество, получившее название зрительного пурпура (родопсин), в колбочках — фотореагент (иодопсин), природа которого не установлена. В результате воздействия света зрительный пурпур подвергается изменениям: на свету он распадается, а в темноте восстанавливается при участии витамина А и других веществ. (Пожалуйста, обратите внимание на витамин А. В дальнейшем мы еще вернемся к тому, какое значение он имеет для поддержания хорошего зрения.)

Нарушение нормальной деятельности палочек вызывает заболевание, известное под названием “куриная слепота”. Это заболевание заключается в том, что человек прекрасно видит днем и при ярком электрическом свете; вечером, как только наступают сумерки, он почти перестает видеть, а с наступлением темноты полностью теряет зрение. Цвет предметов воспринимают только колбочки, поэтому ночью, когда мы видим только при помощи палочкового аппарата, все предметы кажутся одинаково серыми. Недаром существует пословица: “Ночью все кошки серы”. Лучше всего цвета воспринимаются теми участками сетчатки, где больше всего колбочек (желтое пятно и центральная ямка). У некоторых людей, обычно мужчин, частично или полностью утеряна способность восприятия цвета. Нарушение цветового зрения является серьезным препятствием к овладению такими профессиями, как машинист, летчик, шофер и т. д., при которых цветоощущение имеет первостепенное значение.

От палочек и колбочек отходят нервные волокна (12), образующие затем зрительный нерв, выходящий из глазного яблока и направляющийся в головной мозг.

Зрительный нерв состоит примерно из 1 млн. волокон. В центральной части зрительного нерва проходят сосуды. В месте выхода зрительного нерва палочки и колбочки отсутствуют, вследствие чего свет этим участком сетчатки не воспринимается. Это место называют слепым пятном в отличие от желтого пятна.

Как видим, глаз человека устроен очень сложно, каждая его часть имеет определенное предназначение. Следовательно, орган зрения нуждается в защите от повреждений, более того, в определенных условиях для нормального развития и работы.

Защитными приспособлениями глаза являются веки и слезная жидкость. Веки закрываются рефлекторно. При этом они изолируют сетчатку от действия света, а роговицу и склеру — от каких-либо вредных воздействий. При моргании происходит равномерное распределение слезной жидкости по всей поверхности глаза, благодаря чему глаз предохраняется от высыхания.

Слезная жидкость вырабатывается специальными слезными железами. Она содержит 97,8% воды, 1,4% органических веществ и 0,8% солей. Слезы увлажняют роговицу и способствуют сохранению ее прозрачности. Кроме того, они смывают с поверхности глаза, а иногда и век попавшие туда инородные тела соринки, пыль и т.д.

В слезной жидкости содержатся вещества, убивающие микробы. Благодаря этому слезная жидкость играет особо важную защитную роль. Слезная жидкость через слезные канальцы, отверстия которых расположены во внутренних углах глаз, попадает в так называемый слезный мешок, а уже отсюда — в носовую полость.

Когда слезная железа производит избыточное количество жидкости (а это бывает, когда человек плачет), то она не успевает уходить в слезные канальцы и стекает через край нижнего века.

Глаз — самый подвижный из всех органов человеческого организма. Он совершает постоянные движения, даже в состоянии кажущегося покоя. Мелкие движения глаз (микродвижения) играют значительную роль в зрительном восприятии. Без них невозможно было бы различать предметы. Кроме того, глаз совершает заметные движения (макродвижения) — повороты, перевод взора с одного предмета на другой, слежение за движущимся предметом (например, на экране телевизора, дисплея и т. д.), сведение глаз к носу, когда предмет приближается к лицу.

Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательные мышцы, расположенные в глазнице. Всего их 6, 4 прямые мышцы крепятся к передней части склеры (сверху, снизу, справа, слева) и каждая из них поворачивает глаз в свою сторону. А две косые мышцы, верхняя и нижняя, прикрепляются к задней части склеры. Содружественное действие глазодвигательных мышц обеспечивает одновременный поворот глаз в ту или иную сторону. При повреждении мышц глаза у человека ограничивается поле зрения, поскольку утрачивается способность поворачивать глаза в ту или иную сторону.

Итак, глаз человека представляет собой сложную оптическую систему, которая состоит из роговицы, хрусталика и стекловидного тела. Преломляющая сила глаза (прохождение луча света через прозрачные среды и изменение его направления) зависит от состояния оптической системы глаза у данного человека.

Попадающие в глаз световые лучи претерпевают преломление и, собираясь в фокусе этой системы, дают изображение предметов, от которых они идут (рис. 2).

Если проходящие через прозрачные среды лучи света преломляются слишком сильно, они фокусируются впереди сетчатки: в таком случае у человека определяется близорукость.

Переднезадняя ось близорукого глаза по сравнению с осью нормального, как правило, удлинена, поэтому фокус располагается впереди сетчатки, а на самой сетчатке изображение получается нечеткое, образуются фигуры светорассеяния. Диаметр таких фигур прямо пропорционален диаметру зрачка. Иногда можно видеть, как близорукие люди прищуриваются — этим они уменьшают диаметр зрачка, и изображение предмета становится несколько ярче и четче. Для коррекции близорукости достаточно ослабить преломление лучей рассеивающей линзой, которая совместит фокус с сетчаткой. Близорукий глаз может ясно видеть предметы, находящиеся только на близком расстоянии от него.

Рисунок 2. Ход лучей в нормальном (Н), близоруком (Б) и дальнозорком (Д) глазу.

Глаз новорожденного имеет значительно более короткую, чем глаз взрослого, переднезаднюю ось (примерно 17—18 мм вместо 24 мм). В первые 3 года происходит интенсивный рост глаза. К 3 годам длина переднезадней оси глаза достигает 23 мм, т. е. составляет примерно 95% от размера оси взрослого. Рост глазного яблока продолжается до 14—15 лет. К этому времени длина оси глаза становится в среднем 24 мм. Соответственно с этим меняется и преломляющая сила глаза.

Близорукость бывает врожденной, может появляться у дошкольников, но чаще всего возникает в школьном возрасте, причем с каждым годом обучения в школе число учащихся с миопией увеличивается, а степень ее нередко возрастает. Ко времени совершеннолетия примерно пятая часть школьников из-за миопии ограничена в той или иной мере в выборе профессии. Прогрессирование близорукости может вести к серьезным необратимым изменениям в глазу и значительной потере зрения.

Условия формирования и структура профессиональных заболеваний от физического перенапряжения
Среди профессиональных заболеваний различных систем и органов весьма значительное место занимают заболевания верхних конечностей, обусловленные перенапряжением. Эта область профессиональной патол .

Внутричерепные кровоизлияния
По локализации кровоизлияния могут быть: Þ эпидуральными, Þ субдуральными, Þ &nbsp .

Анатомо-физиологические особенности органа зрения

ЛЕКЦИЯ №1. Часть 1.

Зрительный анализатор состоит из глазного яблока, строение которого схематично представлено на рис. 1, проводящих путей и зрительной коры головного мозга.

Рис.1. Схема строения глаза 1 — склера, 2 — сосудистая оболочка, 3 — сетчатка, 4 — роговица, 5 — радужка, 6 — ресничная мышца, 7 — хрусталик, 8 — стекловидное тело, 9 — диск зрительного нерва, 10 — зрительный нерв, 11 — желтое пятно.

Вокруг глаза расположены три пары глазодвигательных мышц. Одна пара поворачивает глаз влево и вправо, другая — вверх и вниз, а третья вращает его относительно оптической оси. Сами глазодвигательные мышцы управляются сигналами, поступающими из мозга. Эти три пары мышц служат исполнительными органами, обеспечивающими автоматическое слежение, благодаря чему глаз может легко сопровождать взором всякий движущийся вблизи и вдали объект (рис. 2).

Рис.2. Мышцы глаза 1 — наружная прямая; 2 — внутренняя прямая; 3 — верхняя прямая; 4 — мышца, поднимающая верхнее веко; 5 — нижняя косая мышца; 6 — нижняя прямая мышца.

Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три — основные:
склера — внешняя оболочка,
сосудистая оболочка — средняя,
сетчатка — внутренняя.
Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки — ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением — при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.3).

Рис.3. Схематическое представление механизма аккомодации слева — фокусировка вдаль; справа — фокусировка на близкие предметы.

Хрусталик в глазу «подвешен» на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора на удаленном предмете), то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается (при рассматривании близко расположенного объекта), ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией.
Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате — сетчатой оболочке. Сетчатка глаза — передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток — фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом «желтом пятне». Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. «Желтым пятном» человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.
От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно «обслуживает» целую группу палочек.
Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки — на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных «помех» в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки — «слепом пятне». Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека. Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию — кору, где и происходит формирование зрительного образа (рис. 4).

Рис.4. Схема строения зрительного анализатора 1 — сетчатка, 2 — неперекрещенные волокна зрительного нерва, 3 — перекрещенные волокна зрительного нерва, 4 — зрительный тракт, 5 — наружнее коленчатое тело, 6 — radiatio optici, 7 — lobus opticus,

Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора «работают» гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость (миопия), дальнозоркость (гиперметропия), возрастная дальнозоркость (пресбиопия) и астигматизм (рис. 5).

Рис.5. Ход лучей при различных видах клинической рефракции глаза a — эметропия (норма); b — миопия (близорукость); c — гиперметропия (дальнозоркость); d — астигматизм.

Близорукость (миопия) — большей частью наследственно обусловленное заболевание, когда в период интенсивной зрительной нагрузки (учебы в школе, институте) вследствие слабости цилиарной мышцы, нарушения кровообращения в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Вследствие такого удлинения продольной оси глаза изображения предметов фокусируется не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам, пользуется очками с рассеивающими («минусовыми») линзами для уменьшения преломляющей силы хрусталика. Близорукость неприятна не тем, что требует ношения очков, а тем, что при прогрессировании заболевания возникают дистрофические очаги в оболочках глаза, приводящие к необратимой, некорригируемой очками потере зрения. Чтобы этого не допустить, нужно соединить опыт и знания врача-окулиста с настойчивостью и волей пациента в вопросах рационального распределения зрительной нагрузки, периодического самоконтроля за состоянием своих зрительных функций.
Дальнозоркость. В отличие от близорукости, это не приобретенное, а врожденное состояние — особенность строения глазного яблока: это либо короткий глаз, либо глаз со слабой оптикой. Лучи при этом состоянии собираются за сетчаткой. Для того, чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие — «плюсовые» очки. Это состояние может долго «скрываться» и проявиться в 20-30 лет и более позднем возрасте; все зависит от резервов глаза и степени дальнозоркости.
Правильный режим зрительного труда и систематические тренировки зрения позволят значительно отодвинуть срок проявления дальнозоркости и пользования очками. Пресбиопия (возрастная дальнозоркость). С возрастом сила аккомодации постепенно падает, за счет уменьшения эластичности хрусталика и цилиарной мышцы. Наступает состояние, когда мышца уже неспособна к максимальному сокращению, а хрусталик, потеряв эластичность, не может принять максимально шаровидную форму — в результате человек теряет возможность различать мелкие, близко расположенные предметы, стремится отодвинуть книгу или газету от глаз (чтобы облегчить работу цилиарных мышц). Для коррекции этого состояния назначаются очки для близи с «плюсовыми» стеклами. При систематическом соблюдении режима зрительного труда, активном занятии тренировкой глаз можно значительно отодвинуть время пользования очками для близи на многие годы.
Астигматизм — особый вид оптического строения глаза. Явление это врожденного или, большей частью приобретенного характера. Обусловлен астигматизм чаще всего неправильностью кривизны роговицы; передняя поверхность ее при астигматизме представляет собой не поверхность шара, где все радиусы равны, а отрезок вращающегося эллипсоида, где каждый радиус имеет свою длину. Поэтому каждый меридиан имеет особое преломление, отличающееся от рядом лежащего меридиана. Признаки болезни могут быть связаны с понижением зрения как вдаль, так и вблизь, снижением зрительной работоспособности, быстрой утомляемостью и болезненными ощущениями при работе на близком расстоянии.
Итак, мы видим, что наш зрительный анализатор, наши глаза — это исключительно сложный и удивительный дар природы. Весьма упрощенно можно сказать, что глаз человека — это, в конечном счете, прибор для приема и переработке световой информации и его ближайшим техническим аналогом является цифровая видеокамера. Относитесь к своим глазам бережно и внимательно, так же бережно, как Вы относитесь к своим дорогим фото- и видеоустройствам!

Не нашли то, что искали? Воспользуйтесь поиском:

Краткие анатомо-физиологические особенности органов зрения и слуха детей

Орган зрения. Глазное яблоко помещается в глазнице и имеет не совсем правильную шаровидную форму. Стенки глазного яблока образованы тремя оболочками. Снаружи оно покрыто белочной оболочкой, или склерой. Она самая толстая, прочная и обеспечивает глазному яблоку определенную форму. Эта оболочка непрозрачна и лишь в переднем отделе в склеру как бы врезано крошечное окошечко диаметром около 12 мм – роговица. Изнутри к склере прилегает вторая оболочка глаза – сосудистая. Она обильно снабжена кровеносными сосудами и пигментом, содержащим красящее вещество.

Часть сосудистой оболочки, находящейся за роговицей, образует радужную оболочку, или радужку. Радужная оболочка окрашена и просвечивает через роговицу. Окраска радужки зависит от количества пигмента. Когда его много – глаза карие, а когда мало – серые, зеленоватые или голубые. У некоторых людей (альбиносы) в радужной оболочке пигмент не содержится. Глаза таких людей имеют красный цвет (просвечивают только кровеносные сосуды). В центре радужки есть небольшое отверстие – зрачок, который, суживаясь или расширяясь, пропускает то меньше, то больше света. Радужка отделяется от собственно сосудистой оболочки ресничным телом.

В толще его находится ресничная мышца, на тонких упругих нитях которой подвешен хрусталик – крошечная двояковыпуклая линза диаметром 10 мм. При сокращении или расслаблении ресничной мышцы хрусталик меняет свою форму – кривизну поверхностей. Это свойство хрусталика позволяет четко видеть предметы как на близком, так и на далеком расстоянии. При чтении или любой другой работе на близком расстоянии хрусталик становится более выпуклым, а при взгляде вдаль уплощается (аккомодация). Она осуществляется за счет цилиарной (ресничной) мышцы. Хрусталик не имеет ни сосудов, ни нервов, его питание обеспечивается специальной жидкостью, которую продуцирует ресничное тело. У детей и молодых людей до 25–35 лет хрусталик эластичен и представляет собой прозрачную массу полужидкой консистенции, заключенную в капсулу. С возрастом хрусталик плотнеет.

Вся внутренняя полость глаза заполнена прозрачной желеобразной массой – стекловидным телом. При помутнении стекловидного тела зрение резко ухудшается.

Сетчатка имеет очень сложное строение. В ней различают 10 слоев клеток. Особенно важное значение имеют клетки, получившие название колбочек и палочек, они расположены неравномерно. Палочки (числом около 130 млн.) отвечают за восприятие света, а колбочки (их около 7 млн.) – за цветовое восприятие. Самым важным местом сетчатки является так называемая центральная ямка, расположенная в центре желтого пятна. Это – область наилучшего восприятия зрительных ощущений. В пределах центральной ямки плотность колбочек достигает от 113 тыс. до 147 тыс. на 1 мм, а палочки полностью отсутствуют. По мере удаления от центральной ямки плотность колбочек уменьшается, а палочек – возрастает, и на расстоянии 5–6 мм от центральной ямки количество палочек достигает наибольшей плотности (до 170 тыс. на 1 мм).

Колбочки являются клетками, обеспечивающими дневное и цветное зрение. Они возбуждаются при солнечном и ярком электрическом свете. Палочки же обеспечивают сумеречное и ночное зрение. Под влиянием света в колбочках и палочках происходят определенные физические и химические процессы. В палочках находится особое вещество, получившее название зрительного пурпура (родопсин), в колбочках – фотореагент (йодопсин), природа которого не установлена. В результате воздействия света зрительный пурпур подвергается изменениям: на свету он распадается, а в темноте восстанавливается при участии витамина А и других веществ. Нарушение нормальной деятельности палочек вызывает заболевание – «куриная слепота». Нарушение цветового зрения – дальтонизм.

От палочек и колбочек отходят нервные волокна, образующие затем зрительный нерв, выходящий из глазного яблока и направляющийся в головной мозг. Зрительный нерв состоит примерно из 1 млн. волокон. В центральной части зрительного нерва проходят сосуды. В месте выхода зрительного нерва палочки и колбочки отсутствуют, вследствие чего свет этим участком сетчатки не воспринимается. Это место называют слепым пятном в отличие от желтого пятна.

Защитными приспособлениями глаза являются веки и слезная жидкость. Веки закрываются рефлекторно. При этом они изолируют сетчатку от действия света, а роговицу и склеру – от каких-либо вредных воздействий. При моргании происходит равномерное распределение слезной жидкости по всей поверхности глаза, благодаря чему глаз предохраняется от высыхания.

Слезная жидкость вырабатывается специальными слезными железами. Она содержит 97,8% воды, 1,4% органических веществ и 0,8% солей. Слезы увлажняют роговицу и способствуют сохранению ее прозрачности. Кроме того, они смывают с поверхности глаза, а иногда и век попавшие туда инородные тела соринки, пыль и т.д. В слезной жидкости содержатся вещества, убивающие микробы. Благодаря этому слезная жидкость играет особо важную защитную роль. Слезная жидкость через слезные канальцы, отверстия которых расположены во внутренних углах глаз, попадает в так называемый слезный мешок, а уже отсюда – в носовую полость. Когда слезная железа производит избыточное количество жидкости (а это бывает, когда человек плачет), то она не успевает уходить в слезные канальцы и стекает через край нижнего века.

Глаз – самый подвижный из всех органов человеческого организма. Он совершает постоянные движения, даже в состоянии кажущегося покоя. Мелкие движения глаз (микродвижения) играют значительную роль в зрительном восприятии. Без них невозможно было бы различать предметы. Кроме того, глаз совершает заметные движения (макродвижения) – повороты, перевод взора с одного предмета на другой, слежение за движущимся предметом. Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательные мышцы, расположенные в глазнице.

Итак, глаз человека представляет собой сложную оптическую систему, которая состоит из роговицы, хрусталика и стекловидного тела. Преломляющая сила глаза (прохождение луча света через прозрачные среды и изменение его направления) зависит от состояния оптической системы глаза у данного человека. Попадающие в глаз световые лучи претерпевают преломление и, собираясь в фокусе этой системы, дают изображение предметов, от которых они идут.

Анатомо-физиологические особенностиоргана зрения детей и прежде всего продолжающееся интенсивное развитие многих его функций обусловливают своеобразие патологии глаз в раннем и дошкольном возрасте. В этот период происходит формирование глазницы, в основном завершается увеличение глазной щели, достигает нормальных размеров роговая оболочка, значительно увеличивается размер хрусталика, продолжается развитие циллиарной мышцы. В этот же период заметно увеличивается размер глаза, вес глазного яблока, преломляющая сила глаза. Также постепенно развивается и такая важная функция, как острота зрения, т.е. способность глаза воспринимать на расстоянии форму, очертания, размеры предметов.

Орган слуха состоит из трех основных частей – наружного, среднего и внутреннего уха. Наружное ухо служит для улавливания звуков. Оно состоит из ушной раковины и наружного слухового прохода, ведущего в толщу височной кости; там расположены среднее и внутреннее ухо. Тонкая, но очень плотная барабанная перепонка отделяет слуховой проход от полости среднего уха, где находятся три связанные друг с другом слуховые косточки: молоточек, наковальня и стремечко. Молоточек соединен с внутренней поверхностью барабанной перепонки, а стремечко – с перепонкой, закрывающей отверстие, которое ведет во внутреннее ухо.

Для нормальной передачи звуковых колебаний чрезвычайно важно, чтобы давление воздуха в среднем ухе было таким же, как и атмосферное. Выравнивание давления происходит через слуховую трубу, т. е, канал, который соединяет полость среднего уха с полостью глотки. Обычно наружное отверстие этого канала закрыто и открывается в момент глотания. Когда атмосферное давление быстро меняется, например, при резком спуске самолета, рекомендуется производить частые глотательные движения для выравнивания давления в среднем ухе.

Схема строения уха человека:

1 – наружный слуховой проход; 2 – барабанная перепонка; 3 – полость среднего уха (барабанная полость); 4 – молоточек; 5 – наковальня; 6 – стремечко; 7 – полукружные каналы; 8 – преддверие;

9 – улитка; 10 – овальное окно; 11 – евстахиева труба.

Периферический отдел слухового анализатора находится в передней части лабиринта внутреннего уха, а именно в улитке – спирально извивающемся канале, который делает два с половиной оборота. От центрального костного стержня улитки по всей ее длине отходит спиральная пластинка, вдающаяся внутрь канала. Между пластинкой и наружной стенкой канала натянута основная перепонка, состоящая из тончайших эластических соединительнотканных волокон. На верхней стороне основной пластинки находится рецепторный аппарат слухового анализатора – спиральный орган.

Воздушные звуковые волны, попадая в наружный слуховой проход, вызывают колебания барабанной перепонки. Система слуховых косточек, действуя как рычаг, усиливает звуковые колебания в 30–40 раз и передает их жидкости, находящейся между костным и перепончатым лабиринтом улитки. Разрушение барабанной перепонки ведет не к потере слуха, а лишь к его снижению. Это объясняется тем, что звуковые колебания могут передаваться через воздух, находящийся в среднем ухе, без участия слуховых косточек, а, следовательно, без усиления звука.

Колебания жидкости в костном канале улитки передаются основной перепонке, а тем самым и слуховым рецепторам спирального органа, чувствительным к звуковым колебаниям. Возникшие в рецепторах импульсы направляются в центральную нервную систему, достигая коры больших полушарий.

Из анатомо-физиологических особенностей следует обратить особое внимание на те, которые влияют на большую частоту заболеваний уха у детей, особенно первого года жизни. У новорожденных и грудных детей наружный слуховой проход короткий, вследствие недоразвития его костной части, имеет вид узкой щели. Барабанная перепонка новорожденного толще, чем у взрослого, лежит почти горизонтально. Евстахиева труба у детей раннего возраста широкая и короткая, занимает горизонтальное положение, что облегчает проникновение инфекции из носоглотки в среднее ухо.

Механизм восприятия звука. Для слухового анализатора звук является адекватным раздражителем. Звуковые волны возникают как чередование сгущений и разрежений воздуха и распространяются во все стороны от источника звука. Все вибрации воздуха, воды или другой упругой среды распадаются на периодические (тоны) и непериодические (шумы). Тоны бывают высокие и низкие. Низким тонам соответствует меньшее число колебаний в секунду. Каждый звуковой тон характеризуется длиной звуковой волны, которой соответствует определенное число колебаний в секунду: чем больше число колебаний, тем короче длина волны. У высоких звуков волна короткая, она измеряется в миллиметрах. Длина волны низких звуков измеряется метрами.

Верхний звуковой порог у взрослого человека составляет 20.000 Гц; самый низкий – 12–24 Гц. Дети имеют более высокую верхнюю границу слуха – 22.000 Гц; у пожилых людей она ниже – около 15.000 Гц. Наибольшей восприимчивостью обладает ухо к звукам с частотой колебаний в пределах от 1000 до 4000 Гц. Ниже 1000 Гц и выше 4000 Гц возбудимость уха сильно понижается.

Развитие реакций на звуковые раздражения. Установлено, что 6–7-месячный плод реагирует на звуковые раздражения общей двигательной активностью. У новорожденных, даже недоношенных, уже в первые часы жизни удалось наблюдать различные реакции в ответ на звуковое раздражение, как, например, мигание, закрывание глаз (а при закрытых глазах их открывание), прекращение крика, мимические движения, изменение ритма дыхательных движений и др. Сильное звуковое раздражение вызывает «реакцию испуга» и общие движения. Применение набора камертонов позволило выявить повышенную чувствительность к высоким тонам. Если один и тот же звук с небольшими промежутками повторять многократно, то реакция на него быстро ослабевает, а затем и совсем исчезает.

У новорожденных полость среднего уха заполнена амниотической жидкостью. Это затрудняет колебания слуховых косточек. В первый день жизни новорожденный обычно плохо слышит. Со временем жидкость рассасывается, и вместо нее из носоглотки через евстахиеву трубу проникает воздух.

Более четким слух у детей становится к концу 2 – началу 3 месяца.

Через 2 месяца ребенок дифференцирует качественно различные звуки.

В 3–4 месяца различает высоту звука.

В 4–5 месяцев звуки становятся условно-рефлекторными раздражителями.

К 1–2 годам дети различают звуки с разницей в один-два.

К 45 годам – даже 3/4 и 1/2 музыкального тона.

Острота слуха определяется наименьшей силой звука, вызывающей звуковое ощущение. Это так называемый порог слышимости. У взрослого человека порог слышимости составляет 10–12 дБ, у детей 6–9 лет он равен 17–24 дБ, у детей 10–12 лет – 14–19 дБ. Наибольшая острота слуха достигается к 14–19 годам.

Лекция № 2 АнатомО-физиологические особенности органов зрения с клинических позиций

Знания анатомо-физиологических особенностей органов зрения и их вспомогательного аппарата необходимы Вам для последующего изучения их функций и клиники глазных болезней; для осмысления того, как возникают и развиваются патологические процессы в глазах, возможной взаимосвязи их с общесоматической и стоматологической патологией.

Прежде всего, следует отметить, что, несмотря на доступность глаз к воздействию самых разнообразных экзогенных факторов, органы зрения благодаря особенностям анатомического строения как самих глазных яблок, так их защитного и вспомогательного аппарата довольно надёжно защищены от этих воздействий.

Глазница (orbita)с её содержимым является не только вместилищем глазного яблока, но и выполняет защитные функции по отношению к нему. При изучении строения орбиты обратите внимание на то, что со всех сторон она топографически тесно граничит с различными анатомическими образованиями. Кроме непосредственной близости лобной, решётчатой, верхнечелюстной пазух; нижневисочной, крылонёбной, передней черепной ямок и мозга, через отверстия и щели в орбиту и из неё входят и выходят многочисленные сосуды и нервы, связывающие глазницу с этими образованиями, полостью черепа и мозгом.

Верхняя стенкаглазницы анатомически граничит с лобной пазухой, а средняя и задняя треть стенки отделяет её от передней черепной ямки и её содержимого. В связи с этим, различные патологические процессы (воспалительные, опухолевые) могут легко распространяться в орбиту. Травматические же повреждения целостности верхней стенки следует рассматривать не только, как орбитальные, но и как черепно-мозговые ранения со всеми вытекающими последствиями их.

Латеральная стенкаотделяет глазницу от височной ямки и является наиболее прочной из всех стенок. С клинической точки зрения эта стенка может рассматриваться как наиболее «благополучная», т.к. она не граничит с придаточными пазухами носа. Но, в то же время, в силу своего топографического положения латеральная стенка может более часто подвергаться травматическим воздействиям. В образующих эту стенку костях могут развиваться патологические процессы: остеомиелит скуловой кости, различные опухоли большого крыла клиновидной кости.

Нижняя стенкаслужит как бы «крышей» верхнечелюстной (гайморовой) пазухи и далеко не всегда является достаточно надёжной преградой для различных патологических процессов, протекающих в ней. При острых и хронических гайморитах возможно вовлечение в воспалительный процесс и содержимого орбиты. Могут прорастать в неё и новообразования из верхнечелюстной пазухи.

Медиальная стенкасамая тонкая из всех стенок глазницы, она отделяет её от решётчатой пазухи и сзади – от клиновидной пазухи. На этой стенке глазницы имеется множество отверстий, через которые проходят кровеносные сосуды и нервы. Указанные особенности обуславливают относительную лёгкость повреждений медиальной стенки и вовлечение содержимого глазницы при воспалительных и др. заболеваниях решётчатого лабиринта. При тупых травмах черепа и глазницы возможен своеобразный клинический симптом – эмфизема век и глазницы, обусловленная проникновением воздуха из ячеек решетчатого лабиринта.

Глазница довольно широко сообщается с пограничными областями через большие и малые отверстия, щели и каналы, пронизанные сосудами и нервами. На вершине глазницы имеется отверстие зрительного канала, которое открывается в среднюю черепную ямку. Через этот канал из глазницы в полость черепа проходит зрительный нерв, а из неё входит глазная артерия.

На границе между верхней и латеральной стенками глазницы в её заднем отделе имеется верхняя глазничная щель, соединяющая глазницу со средней черепной ямкой. Через эту щель проходят: глазной нерв – первая ветвь тройничного нерва, обеспечивающая чувствительную иннервацию всем внутриорбитальным структурам и придаточного аппарата глаза; глазодвигательный, блоковый и отводящий нервы, обеспечивающие двигательную иннервацию экстрабульбарных мышц глазного яблока; верхняя глазная вена. Поэтому при патологических процессах в области верхней глазничной щели может развиться полный или неполный симптомокомплекс, носящий название «синдрома верхней глазничной щели». Он включает опущение верхнего века (птоз), ограничение подвижности или неподвижность глазного яблока, широкий зрачок, расстройства чувствительности в зоне иннервации глазного нерва, а также расстройство венозного оттока в глазнице и экзофтальм.

Между латеральной и нижней стенками глазницы в её заднем отделе располагается нижняя глазничная щель. Она соединяет глазницу с крылонёбной и нижневисочной ямками и в норме закрыта соединительнотканной перегородкой. Через нижнюю глазничную щель проходят анастомозы между венами глазницы с венозным сплетением крылонёбной ямки и глубокой веной лица. Кроме того, через эту же щель в глазницу проходят подглазничный нерв с одноименной артерией и скуловой нерв.

На медиальной стенке орбиты имеются решётчатые отверстия, через которые в решётчатый лабиринт и полость носа из глазницы проходят передние и задние решётчатые артерии, вены и нервы. Указанные отверстия сообщают глазницу с передней черепной ямкой, ячейками решётчатого лабиринта и полостью носа.

В самой переднемедиальной части глазницы располагается слёзный канал, который сообщает её с нижним отделом полости носа, и в этом канале проходит носослёзный проток.

Таким образом, разнообразные патологические процессы (в первую очередь воспалительные) могут легко распространяться с окружения глазницы в неё и наоборот. Например, при экстракции верхнего 1-го или 2-го премоляра инфекция из верхнечелюстной пазухи может быть довольно быстро занесена в орбиту и даже в мозг.

Изнутри все стенки глазницы выстланы тонкой, но довольно плотной соединительнотканной пластинкой – надкостницей. Она имеет следующие особенности, которые могут иметь клиническое значение: надкостница плотно срастается с костями глазницы только у входа в неё и по краям отверстия зрительного канала. На остальном же протяжении надкостница соединена со стенками глазницы рыхло, и это создает амортизирующий эффект надкостницы.

Во многих местах надкостница пронизана сосудами и нервами. При травмах орбиты и воспалительных процессах в ней надкостница может легко отслаиваться. К надкостнице прикрепляются эластичные, тонкие, соединительнотканные связки, вплетающиеся в склеру глазного яблока. Это обеспечивает стабилизацию его в глазнице и в то же время не ограничивает подвижность глаз.

От костных границ входа в глазницу начинается тарзоорбитальная (глазничная) фасция, которая прикрепляется в толще верхнего и нижнего век, выполняя защитную роль в виде своеобразного «занавеса». Он выполняет защитную функцию: при сомкнутых веках предохраняет глаз от отрицательных внешних воздействий. Кроме того, тарзоорбитальная фасция служит барьером для воспалительных процессов, которые могут переходить со вспомогательного аппарата на глазное яблоко (в т.ч. со слёзной железы и слёзного мешка, которые отделяются этой фасцией от содержимого орбиты).

Содержимое глазницывключает: в переднем отделе расположено глазное яблоко, отделённое от заднего отдела её теноновой капсулой (фасцией). В заднем, ретробульбарном отделе, расположены 6 глазодвигательных мышц, крупные артериальные и венозные сосуды, нервы, а также довольно выраженная жировая клетчатка, которая выполняет защитную и амортизирующую функции по отношению к глазному яблоку.

Глазное яблоко (bulbus oculi)имеет шаровидную форму, слегка вытянутую в передне-заднем направлении, что при целостности глаза определяет равномерное распределение давления как с внутренней, так и с наружной стороны его. Это в немалой степени защищает глазное яблоко от повреждений при значительных отрицательных внешних воздействиях. Схематически глазное яблоко включает три оболочки и содержимое его. К оболочкам глаза относятся: наружная, включающая роговицу и склеру; сосудистая система (сосудистый тракт) состоит из радужки, цилиарного тела и собственно сосудистой оболочки — хориоидеи; внутренняя оболочка – сетчатка. Содержимое глазного яблока составляют водянистая влага передней и задней камер, хрусталик и стекловидное тело.

Наружная фиброзная капсула глазного яблока – склера состоит из плотной соединительной ткани, содержащей большое количество коллагеновых и эластических волокон. Она выполняет формообразующую и защитную функции, непрозрачна, бедна собственными кровеносными сосудами. К склере прикрепляются 6 глазодвигательных мышц, передняя часть склеры покрыта конъюнктивой.

С клинической точки зрения следует отметить три физиологических места истончения склеры. Средняя толщина её составляет 1,0 – 1,2 мм; в месте перехода склеры в роговицу (лимб) она истончается до 0,6 мм, т.к. здесь под склерой проходит тонкостенный венозный синус – шлеммов канал, являющийся началом переднего пути оттока внутриглазной жидкости. В области экватора глазного яблока склера ещё тоньше – 0,3 – 0,4 мм.

В указанных местах при сильной контузии глазного яблока могут происходить разрывы его, сопровождающиеся значительным кровотечением. В заднем полюсе толщина склеры составляет около 1,0 мм. Однако, в том месте, где через неё проходит зрительный нерв, она представлена лишь тонкой решётчатой пластинкой, толщина которой составляет всего 0,2 – 0,3 мм. За счёт этого происходит удлинение передне-заднего размера глаза при прогрессирующей близорукости высокой степени и возможна экскавация (углубление) соска зрительного нерва при значительно повышенном внутриглазном давлении.

Роговица (cornea)– передняя, прозрачная часть фиброзной оболочки глазного яблока, диаметром 10,5 – 11,5 мм. Основные физиологические свойства её: прозрачность, высокая преломляющая способность в 40,0 – 42,0 диоптрии и очень высокая чувствительность. При различных патологических состояниях роговицы в первую очередь нарушаются указанные свойства её. Кроме того, в норме роговица не имеет сосудов, сферична, гладкая, блестящая, влажная; эти свойства её также могут нарушаться в результате различных заболеваний и травм роговицы. Прозрачность роговицы обусловлена в первую очередь тем, что в норме в ней преобладают водорастворимые фракции белков. При патологических состояниях белковая структура и химический состав роговицы нарушаются, вследствие чего страдает прозрачность её.

В роговице различают 5 слоёв: самый поверхностный – передний эпителий, является продолжением конъюнктивы глазного яблока. Отличительной клинической особенностью его является хорошая регенерация при повреждениях. Кроме того, именно в этом слое располагается очень большое количество нервных окончаний из первой ветви тройничного нерва.

Следующий слой роговицы – передняя пограничная пластинка (боуменова оболочка). Она обладает хорошей сопротивляемостью к травматическим воздействиям, но относительно слабой резистентностью к патогенным возбудителям. Этот слой роговицы не способен к восстановлению своей целостности после разрушения.

Основной слой, «каркас» роговицы составляет строма– 90 % всей её толщины. Она состоит из параллельно расположенных коллагеновых волокон, образующих соединительнотканные пластинки. Ткань стромы богата водой и мукоидным веществом, которое как бы «склеивает» эти пластинки, что придает прочность и эластичность роговице. Дефекты стромы восстанавливаются за счёт пролиферации её клеток с образованием рубцовой ткани и утерей прозрачности роговицы.

Четвёртый слой роговицы представлен задней пограничной пластинкой (десцеметовой мембраной). Она отличается прочностью, резистентностью к инфекции и химическим воздействиям. Задняя пограничная пластинка может отслаиваться от стромы и собираться в складки при глубоких ранениях роговицы, операциях на ней или воспалительных процессах. Этот слой роговицы также способен к самовосстановлению.

К задней пограничной пластинке примыкает самый внутренний слой роговицы – задний эпителий или эндотелий. Сохранность его имеет большое значение в морфологии роговицы, т.к. нарушение целостности эндотелия может привести к помутнению её за счёт дистрофических процессов во всех слоях роговицы.

Питание роговицы осуществляется в основном путём диффузии из сети капилляров, которые образуют поверхностную и глубокую окололимбальную (перикорнеальную) сосудистую сеть. Она образована веточками передних ресничных, мышечных и конъюнктивальных артерий, широко анастомозирующих между собой. Инъекция перикорнеальных сосудов является одним из первых клинических признаков патологических процессов (в первую очередь – воспалительных) в роговице, радужке и цилиарном теле.

Кроме указанного сосудистого питания роговица получает питательные вещества (в т.ч. водорастворимые белки) за счёт осмоса их из влаги передней камеры и из прекорнеальной слёзной пленки. Кровь от роговицы оттекает по передним ресничным венам в глазные вены – основные венозные коллекторы глазницы.

Сосудистая система или сосудистый трактглазного яблока включает радужку, цилиарное (ресничное) тело и собственно сосудистую оболочку – хориоидею.

Радужка (iris) является передним отделом сосудистого тракта, расположена во фронтальной плоскости примерно в 3,0 мм от роговицы, впереди хрусталика и отделяет переднюю камеру глаза от задней. Благодаря наличию в строме радужки большого количества пигмента, рыхлых коллагеновых фибрилл, хроматофор и трабекул с множеством сосудов, а также зрачкового отверстия в центре радужки она защищает сетчатку и хориоидею от избыточного засвета их. Величина зрачка при обычном освещении – около 3,0 мм и зависит от кровенаполнения сосудов радужки и взаимодействия двух мышц: сфинктера и дилятатора. Первая иннервируется парасимпатическими волокнами глазодвигательного нерва и суживает зрачок, вторая – симпатическими нервами и расширяет зрачок.

Радужка толще на границе зрачкового и ресничного кольца – от 0,3 до 0,5 мм и тоньше у корня её, где радужка переходит в ресничное тело; здесь толщина составляет всего 0,2 мм. В этом месте при тупых травмах глаза может происходить отрыв радужки, что сопровождается значительным кровотечением.

Кровоснабжение радужки обильное и осуществляется передними и задними длинными ресничными артериями. Широко анастомозируя между собой, они образуют в прикорневой зоне радужки большой артериальный круг, а у зрачкового края – малый артериальный круг. Венозная кровь от радужки оттекает в вортикозные вены, впадающие в верхнюю глазную вену. Чувствительная иннервация радужки осуществляется ветвями глазного нерва – первой ветви тройничного нерва.

Ресничное или цилиарное тело (corpus ciliare) является средним отделом сосудистого тракта глаза. Оно находится между радужкой и собственно сосудистой оболочкой в виде кольцевидного утолщения шириной около 6,0 мм. В передней трети ресничное тело более утолщено и на его внутренней поверхности расположены 70 – 80 ресничных отростков. К ним прикрепляются волокна ресничного пояска (цинновы связки); они вплетаются с одной стороны в ресничную мышцу, а с другой – в капсулу хрусталика. За счёт этого при повышении или понижении тонуса ресничной мышцы происходит изменение кривизны и преломляющей силы хрусталика, что позволяет глазу аккомодировать, т.е. чётко видеть на разных расстояниях. Ресничная мышца иннервируется парасимпатическими волокнами глазодвигательного нерва и симпатическими – из шейных узлов симпатического ствола.

Каждый ресничный отросток содержит сосудистые клубочки с множеством широких капилляров и мелких вен. Они входят в клубочки как со стороны радужки, так и хориоидеи. Такая особенность в строении ресничных отростков обусловлена другой их функцией: эпителий этих отростков продуцирует внутриглазную жидкость (ВГЖ). Кровоснабжение и чувствительная иннервация цилиарного тела такая же, как и радужки.

Собственно сосудистая оболочка (chorioidea) это самая обширная часть сосудистого тракта глаза. Она простирается от ресничного тела до места выхода зрительного нерва, где хориоидея довольно плотно сращена с ним. На остальном протяжении связь хориоидеи со склерой довольно непрочная. Изнутри к хориоидеи вплотную прилежит оптическая часть сетчатки, с которой она взаимосвязана не только анатомически, но и функционально.

Сосудистая система хориоидеи образована ветвями задних коротких ресничных артерий, которые создают густую сосудистую сеть. Она обеспечивает активную энергетическую функцию хориоидеи и в первую очередь – питание наружных слоёв сетчатки. Кроме того, хориоидея играет важную роль в восстановлении непрерывно распадающегося зрительного пурпура – йодопсина и родопсина, а также в поддержании офтальмотонуса. Венозные сосуды хориоидеи, сливаясь между собой, образуют 4 крупные вортикозные вены. По ним кровь оттекает в глазные вены, а из них – в кавернозный венозный синус. Чувствительных нервов хориоидея не имеет, поэтому воспалительные процессы в ней протекают безболезненно.

Сетчатка (retina) является периферическим отделом зрительного анализатора. Она выстилает всю внутреннюю поверхность сосудистого тракта глаза. Соответственно структуре и функции в сетчатке различают два отдела: оптический, который простирается от зрительного нерва до места перехода хориоидеи в цилиарное тело; отсюда сетчатка продолжается до зрачкового края радужки в виде «слепого отдела». В нём, в отличие от оптического отдела, практически нет световоспринимающих фоторецепторов.

Оптический отдел сетчатки представляет собой тонкую прозрачную плёнку, которая крепко соединена с подлежащей хориоидеей лишь в месте перехода её в цилиарное тело (на склере проекция этого места называется «зубчатой линией») и у выхода зрительного нерва. На остальном протяжении сетчатка плотно прилегает к хориоидее и удерживается давлением стекловидного тела, а также достаточно прочной связью пигментного эпителия и слоя палочек и колбочек сетчатки со стекловидной пластинкой хориоидеи.

На расстоянии около 4,0 мм кнаружи от диска зрительного нерва, лишённого светочувствительных элементов, расположено овальной формы жёлтое пятно (macula) сетчатки диаметром 5,0 мм. В центре его имеется углубление – центральная ямка жёлтого пятна. В макулярной области сетчатки отмечается наибольшая концентрация колбочек – их около 7 – 8 млн. По направлению к периферии сетчатки количество колбочек уменьшается, а палочек (их 130 – 170 млн.) – увеличивается. Колбочки обеспечивают функцию центрального (форменного) зрения, а палочки – сумеречного и периферического зрения.

Кровоснабжение сетчатки происходит из центральной артерии сетчатки – ветви глазничной артерии и сосудов хориоидеи. Чувствительной иннервации сетчатка не имеет, поэтому воспалительные и другие патологические процессы в ней протекают безболезненно.

Зрительный нерв (n. opticus)образован осевыми цилиндрами ганглиозных клеток сетчатки. Он обеспечивает передачу нервных импульсов, вызванных световым раздражением фоторецепторов сетчатки, к зрительному центру в коре головного мозга. По выходе в полость черепа зрительные нервы обоих глаз перекрещиваются в области турецкого седла и образуют хиазму. После перекреста зрительные волокна продолжаются в виде зрительных трактов, которые заканчиваются в наружных коленчатых телах и переднем четверохолмии. Затем зрительные пути достигают корковых ядер зрительного анализатора в затылочной доле головного мозга, где происходит синтез и анализ поступающей от сетчатки информации.

Содержимое глазного яблока включает переднюю и заднюю камеры, хрусталик и стекловидное тело. Передняя камера – это пространство между задней поверхностью роговицы и радужкой, заполненное водянистой влагой. Место, где роговица переходит в склеру, а радужка – в ресничное тело, носит название угла передней камеры (УПК). Через него осуществляется основной отток внутриглазной жидкости, и нарушение его может приводить к повышению внутриглазного давления (ВГД). В норме передняя камера равномерной глубины 3,0 – 3,5 мм, она заполнена прозрачной водянистой жидкостью. При различной патологии глаза эти характеристики передней камеры могут быть нарушены.

Задняя камера расположена позади радужки, заднюю стенку камеры образуют передняя поверхность хрусталика и стекловидного тела. По глубине и объёму она значительно меньше, чем передняя камера. Через зрачковое отверстие в радужке обе камеры сообщаются между собой.

Хрусталик (lens crystallina) у взрослого человека представляет собой слегка желтоватого цвета двояковыпуклую линзу преломляющей силы в 18,0 – 20,0 диоптрий. От остальных внутриглазных структур хрусталик изолирован эластичной капсулой. Он не имеет сосудов и нервов, поэтому воспалительные процессы в хрусталике не развиваются. Расположен хрусталик между радужкой и стекловидным телом в углублении на передней поверхности последнего.

Удерживают его в «подвешанном» состоянии волокна ресничного пояска, которые вплетаются в капсулу хрусталика, а другим концом они крепятся к внутренней поверхности ресничного тела. Хрусталик является исключительно эпителиальным белковым образованием, состоит из капсулы, хрусталиковых волокон и ядра. С возрастом (особенно после 40 – 45 лет) они становятся плотнее, что ведёт к ослаблению преломляющей способности хрусталика.

Стекловидное тело (corpus vitreum) заключено в очень тонкую, эластичную капсулу и выполняет полость глазного яблока за исключением передней и задней камер глаза. Основными функциями стекловидного тела являются поддержание формы и тонуса глазного яблока, обеспечение тесного контакта сетчатки с хориоидеей, светопроводящая, а также участие во внутриглазном обмене веществ. Объём стекловидного тела – около 4,0 мл, оно представляет собой жидкий гель, содержащий почти 99 % воды, особые белки и гиалуроновую кислоту.

Стекловидное тело надёжно крепится в области зубчатой линии к эпителию ресничных отростков, к задней капсуле хрусталика и в области диска зрительного нерва. Стекловидное тело не регенерирует и при потере частично замещается внутриглазной жидкостью (ВГЖ). Изменение структуры стекловидного тела при различных патологических процессах и потеря значительной части его может привести к отслойке хориоидеи и сетчатки, субатрофии и даже к атрофии глазного яблока.

Вспомогательный аппарат глаза– к нему следует отнести веки, конъюнктиву и слёзные органы. С клинических позиций следует обратить внимание на их непосредственное анатомо-топографическое соседство между собой и всех вместе – с глазным яблоком. Особенности анатомического строения, общее и довольно обильное кровоснабжение, множество анастомозов; общая иннервация этих структур, а также отток крови от них в вены лица и глазницы, отсутствие клапанов в венах – всё это обуславливает не только защитную и барьерную роль вспомогательного аппарата глаза, но в то же время и возможность перехода различных патологических процессов с одной структуры на другую, на глазное яблоко, глазницу и даже в полость черепа.

Векипредставляют собой кожно-мышечно-соединительнотканные образования, которые в виде подвижных заслонок защищают глазные яблоки от вредных внешних воздействий. Рефлекторные мигательные движения век способствуют равномерному распределению слезы и поддерживают необходимую влажность роговой оболочки и конъюнктивы. Сложность строения век обуславливает разнообразие возможной патологии в них, учитывая анатомо-физиологические особенности кожи, мышц, хряща и конъюнктивы век.

Конъюнктиваили слизистая оболочка морфологически единое образование век, глазных яблок и слёзных органов. Этим опять-таки объясняется возможность перехода патологических процессов с одной структуры на другую и одновременность поражения их. Конъюнктива богата аденоидными элементами и сосудами, на раздражение и воспаление она реагирует усиленной инъекцией сосудов (конъюнктивальный тип инъекции) и клеточной пролиферацией в виде экссудата или слизи. В конъюнктиве верхней переходной складки имеется большое количество слёзных желёзок.

Высокий уровень чувствительной иннервации конъюнктивы обеспечивает защитную функцию её: при попадании мельчайшей соринки усиливается секреция слезы, учащаются мигательные движения век, в результате чего инородное тело механически удаляется с конъюнктивы. Секрет конъюнктивальных желёз выполняет роль смазки при движениях глазных яблок и, кроме того, этот секрет выполняет трофическую функцию по отношению к роговой оболочке.

Слёзные органыпо выполняемой функции и анатомо-топографическому расположению делятся на слёзосекреторный и слёзоотводящий аппараты. К первому относятся слёзная железа и добавочные слёзные желёзки в верхнем конъюнктивальном своде; ко второму – слёзные точки, слёзные канальцы, слёзный мешок и носослёзный канал. Продуцируемая железами слеза необходима для постоянного увлажнения роговицы и конъюнктивы, а также для вымывания попадающих в глаза мелких инородных тел. Кроме того, белок лизоцим, содержащийся в слезе, обладает бактерицидным действием.

По ходу слёзоотводящих образований имеются изгибы, сужения и клапанные складки. Они имеются в устье канальцев, в месте перехода слёзного мешка в носослёзный канал и у устья последнего под нижней носовой раковиной. Этим объясняется локализация стриктур и облитераций в указанных местах.

Следует помнить, что слёзный мешок находится вне глазницы и воспалительные процессы в нём довольно редко дают орбитальные осложнения, т.к. слёзный мешок отделен от орбиты тарзоорбитальной фасцией, являющейся надежной защитой от инфекции. Слезоотведение тесно связано с мигательными движениями век, насосообразным действием слёзных канальцев и присасывающим действием слёзного мешка.

Нарушение слезоотведения может быть обусловлено не только воспалительными процессами в слезоотводящих структурах, но и воспалением слизистой носа; у детей – не рассосавшейся к моменту рождения плода соединительнотканной перепонки, закрывающей устье носослёзного протока, а также механическим прижатием последнего гипертрофированной нижней носовой раковиной, полипом или искривленной носовой перегородкой. В норме для прохождения слезы по слезовыводящим путям требуется 3 – 5 минут. Задержка слезы в слёзном мешке создает благоприятные условия для развития в нём воспалительного процесса.

Таким образом, морфологические особенности органов зрения и их вспомогательного аппарата, которые в данной лекции целенаправленно представлены с клинических позиций, необходимо учитывать при оценке функционального состояния глаз и различных патологических процессов в них.

Источники:
  • http://studopedia.ru/2_42500_anatomo-fiziologicheskie-osobennosti-organa-zreniya.html
  • http://cyberpedia.su/18xfbc.html
  • http://studfiles.net/preview/542995/page:4/
Читайте также:  Куда можно сдать очки для зрения за деньги