Меню Рубрики

Теплопередача с точки зрения молекулярного строения

Каждая молекула обладает своей кинетической энергией, заставляющей её двигаться хаотически. При соударении часть этой энергии передаётся другой молекуле (импульс тела), что понижает кол-во энергии у первой и повышает у второй. Но также на молекулу действует закон всемирного тяготения, из-за чего тело не растворяется в пространстве.

Например, при нагревании жидкости, некоторые молекулы получают достаточное кол-во энергии, чтобы преодолеть силу притяжения и покинуть вещество. Это процесс испарения.

Виды теплопередачи: теплопроводность, конвекция, излучение

1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.

Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.

2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества. Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.

Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.

3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.

Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается. На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д. Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).

Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.

Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).

Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха. Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к. плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.

Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.

Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.

Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

ПРИМЕРЫ ЗАДАНИЙ

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность
2) только конвекция
3) излучение и теплопроводность
4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.

Объясните процесс теплопередачи на основе молекулярно-кинетической теории строения вещества

При увеличении температуры тела молекулы на этом участке тела начинают двигаться с большей скоростью.Они сообщают своют энергию остальным молекулам т.к все молекулы в теле взаимодействуют друг с другом.

Читайте также:  С философской точки зрения детерминизм это учение

Другие вопросы из категории

1. Рассмотрите фотографию и найдите треки осколков.

2. Измерьте длины треков осколков с помощью миллиметровой измерительной линейки и сравните их.

3. Пользуясь законом сохранения импульса, объясните, почему осколки, образовавшиеся при делении ядра атома урана, разлетелись в противоположных направлениях.

4. Одинаковы ли заряды и энергия осколков?

5. По каким признакам вы можете судить об этом?

ПРОСТРАНСТВО, оконное стекло, слой льда на окне.

Или подскажите сайт где это уже решено

распоряжении эбонитовую палочку,шерсть и электроскоп

2) Какую работу совершает сила тяжести,действующая на дождевую каплю массой 20мг,при ее падении с высоты 2 км?

Читайте также

заключается в том, что «частицы вещества (атомы или молекулы) находятся в непрерывном
хаотическом движении». Что означают слова «хаотическое движение»?
1) Движение частиц никогда не прекращается.
2) Движение частиц не подчиняется никаким законам.
3) Частицы вещества все вместе движутся то в одном направлении, то в другом.
4) Нельзя выделить какое-либо определённое направление движения частиц вещества.

объём воды, добавить такой же объём ртути, то общий объём жидкостей будет равен сумме объёмов воды и ртути. Как можно объяснить разницу?

Тема: Основные положения молекулярно-кинетической теории.

Объясните давление, оказываемое газом на стенки сосуда, на основе атомно-молекулярного учения о строении вещества.

3. Как при помощи шланга можно налить воду из бочки в ведро? Какова при этом роль атмосферного давления?

4. Какой закон лежит в основе действия гидравлических машин? Какой выигрыш в силе даёт гидравлический пресс?

5. Почему водоплавающие птицы мало погружаются в воду?

1 Почему уменьшается длина рельса при его охлаждении?
2 Возьмите любой мяч.Нажмите на него пальцем и отпустите. Почему исчезла вмятина? Почему не удается, сжимая твердые тела и жидкости, заметно уменьшить их объем?
3 Как можно ускорить процесс диффузии в твердых телах?
4 Объясните процесс склеивания с точки зрения молекулярной теории строения вещества.
5 Вода покрывает чистую поверхность стекла сплошной пленкой, а на жирной поверхности собирается в отдельные капли. Что можно сказать о притяжении между молекулами воды и стекла? Воды и жира?

544. В чем состоит основное различие между тремя способами теплопередачи с точки зрения молекулярного строения?

Решебник по физике за 8 класс (А.В. Перышкин, 2011 год),
задача №544
к главе «29. Способы теплопередачи».

№ 544. Теплопередача происходит за счет передачи кинетической энергии от молекул более теплого тела к молекулам холодного.

Конвекция происходит путем перемещения масс менее плотного вещества за счет выталкивающей силы Архимеда.

Для передачи энергии путем излучения не требуется наличие частиц вещества.

Тепловое расширение с точки зрения молекулярно- кинетической теории

Для простоты ограничимся рассмотрением твердых тел, имеющих кристаллическое строение. Для остальных тел (аморфные и жидкости) молекулярная картина теплового расширения в общих чертах та же. Взаимодействие между частицами, расположенными в узлах кристаллической решетки (ионы, атомы или молекулы), имеет более сложный характер, чем взаимодействие между точечными зарядами. Если на больших расстояниях ионы (например, разноименные) притягиваются, то на достаточно малых расстояниях силы притяжения сменяются быстро растущими силами отталкивания, т.к. при большом сближении электронных оболочек начинают сказываться силы отталкивания между ними.

Зависимость потенциальной энергии взаимодействия U(r) двух соседних частиц от расстояния r между ними позволяет объяснить причину теплового расширения. Для этого достаточно знать лишь приближенный вид потенциальной кривой U(r), которая представлена на рис. 14. Кривая быстро

возрастает от минимального значения в точке r при уменьшении r и сравнительно медленно растет при увеличении r

Из курса механики известно, что сила взаимодействия между частицами F(r) может быть найдена по формуле:

. (5)

Если сила F(r) положительна, то частицы отталкиваются, если отрицательна, то они притягиваются. Из рис. 14 и формулы (5) нетрудно выяснить, что силы притяжения, действующие на участке r > r сменяются при r r. Изменяется именно среднее расстояние между частицами, а не положение равновесия, которое остается по прежнему в точке r. Увеличение среднего расстояния между частицами обусловливает и увеличение размеров всего тела.

Дальнейшее нагревание приводит к увеличению полной энергии до некоторого значения W2 , при этом колебания совершаются с большей амплитудой около нового среднего положения r2 > r1 и т.д. Грубо говоря, с ростом амплитуды колебаний частицы все сильнее «отталкиваются» друг от друга. Итак, мы видим, что при нагревании тела среднее расстояние между частицами увеличивается, поэтому увеличивается и размер тела.

Если знать форму потенциальной кривой, то можно вычислить коэффициент линейного расширения. Расчеты такого рода дают хорошее согласие с опытом.

Экспериментальная установка состоит из термостата ТС-24 и двух трубок из твердых тел. Через эти трубки протекает вода, нагреваемая термостатом. Скорость протекания воды по трубкам настолько велика, что температуру во всех точках трубок можно считать одинаковой и равной температуре воды в термостате, которая измеряется контрольным термометром. Удлинение трубок l измеряется индикатором, ножка которого упирается в пластину, припаянную к трубке, другой конец трубки фиксируется зажимным винтом. Рабочим участком трубки l считается расстояние от центра винта (зажимного) до той грани пластины, которая соприкасается с ножкой индикатора. Это расстояние измеряется линейкой.

Билет № 6. Испарение и конденсация. Объяснение явления испарения на основе представлений о молекулярном строении вещества

Испарение и конденсация. Объяснение явления испарения на основе представлений о молекулярном строении вещества. Удельная теплота парообразования. Ее единицы.

Явление превращения жидкости в пар называется парообразованием.

Испарение-процесс парообразования, происходящий с открытой поверхности.

Молекулы жидкости движутся с разными скоростями. Если какая-нибудь молекула окажется у поверхности жидкости, она может преодолеть притяжение соседних молекул и вылететь из жидкости. Вылетевшие молекулы образуют пар. У оставшихся молекул жидкости при соударении меняются скорости. Некоторые молекулы при этом приобретают скорость, достаточную для того, чтобы вылететь из жидкости. Этот процесс продолжается, поэтому жидкости испаряются медленно.

*Скорость испарения зависит от рода жидкости. Быстрее испаряются те жидкости, у которых молекул притягиваются с меньшей силой..

*Испарение может происходить при любой температуре. Но при высоких температурах испарение происходит быстрее.

*Скорость испарения зависит от площади ее поверхности.

*При ветре (потоке воздуха) испарение происходит быстрее.

При испарении внутренняя энергия уменьшается, т.к. при испарении жидкость покидают быстрые молекулы, следовательно, средняя скорость остальных молекул уменьшается. Значит, что если нет притока энергии из вне, то температура жидкости уменьшается.

Явление превращения пара в жидкость называется конденсацией. Она сопровождается выделением энергии.

Конденсацией пара объясняется образование облаков. Пары воды, поднимающиеся над землей, образуют в верхних холодных слоях воздуха облака, которые состоят из мельчайших капель воды.

Удельная теплота парообразования – физ. величина, показывающая какое кол-во теплоты необходимо, чтобы обратить жидкость массой 1 кг в пар без изменения температуры.

Уд. теплоту парообразования обозначают буквой L и измеряется в Дж/кг

Уд. теплоту парообразования воды:L=2,3×10 6 Дж/кг, спирт L=0,9×10 6

Кол-во теплоты, необходимое для превращения жидкости в пар: Q = Lm

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 9489 — | 6697 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Виды теплопередачи: теплопроводность, конвекция, излучение

1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.

Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.

2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества. Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.

Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.

3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.

Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается. На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д. Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).

Читайте также:  Кто такие мужчины с точки зрения биологии

Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.

Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).

Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха. Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к. плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.

Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.

Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.

Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

ПРИМЕРЫ ЗАДАНИЙ

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность
2) только конвекция
3) излучение и теплопроводность
4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.

Теплопередача с точки зрения молекулярного строения

При наблюдениях за явлениями природы, а также при изучении свойств различных видов вещества наше воображение поражает необыкновенное многообразие видов вещества и различие его свойств. Почему свойства вещества так разнообразны, можно понять, если изучить его внутреннее строение.

В начале прошлого столетия английский ученый Д. Дальтон показал, что многие закономерности явлений природы можно объяснить, используя представления об атомах и молекулах, и научно обосновал молекулярное строение вещества. К началу нашего столетия была окончательно создана и подтверждена множеством опытов молекулярно-кинетическая теория строения вещества. В чем же заключается сущность этой теории?

Всякое вещество состоит из молекул (от латинского «мо-лес» — масса, «кула» — уменьшительный суффикс). Молекулой называют наименьшую частичку вещества, способную к самостоятельному существованию и сохраняющую химические свойства этого вещества.

Молекулы состоят из атомов (от греческого «атомос» — неделимый); например, молекула воды состоит из двух атомов водорода и одного атома кислорода, это записывают так: . Если при каком-либо явлении природы молекулы остаются неизменными, то вещество сохраняет свои химические свойства. Если же молекулы изменяют свое строение или распадаются на отдельные атомы, то получаются новые виды вещества с другими химическими и физическими свойствами. Например, молекулы воды можно разложить на атомы водорода и кислорода. Тогда вместо воды получаются газы водород и кислород. Попытки химически разложить эти газы на более простые вещества не увенчались успехом.

Такие вещества, которые нельзя разложить на более простые составные части, называются химическими элементами, например: кислород, азот, свинец и т. д. Каждому химическому элементу соответствуют атомы, которые имеют определенное место (определенный номер) в таблице Менделеева. Соединение атомов в группу образует молекулу вещества. Совокупность одинаковых молекул составляет определенный вид вещества. Химические

и физические свойства этого вещества определяются числом и видом атомов в его молекулах.

Свойства вещества зависят также от внутреннего расположения атомов относительно друг друга. Например, графит и алмаз состоят из атомов углерода и с точки зрения их внутреннего строения отличаются только относительным расположением этих атомов. Между тем физические свойства этих веществ резко отличаются друг от друга: алмаз обладает большой твердостью, прозрачен для лучей света, очень хороший изолятор, а графит — очень мягкий, непрозрачный материал, проводник.

Наконец, свойства вещества определяются еще и внешними условиями. Все это обусловлено тем, что молекулы и атомы всегда взаимодействуют друг с другом и обладают химической энергией. Именно движением и взаимодействием атомов и молекул объясняется все неисчерпаемое разнообразие огромного большинства наблюдаемых нами явлений природы.

Сформулируем основные положения молекулярно-кинетической теории строения вещества.

1) все виды вещества состоят из молекул, между которыми имеются межмолекулярные промежутки;

2) молекулы в любом веществе непрерывно и хаотически (беспорядочно) движутся;

3) на небольших расстояниях между молекулами (атомами) действуют как силы притяжения, так и силы отталкивания; природа этих сил электромагнитная.

Вспомним некоторые явления, подтверждающие эти положения.

Как показывает опыт, все газы легко сжимаемы. Это доказывает, что между молекулами газа имеются значительные свободные промежутки. Жидкости и твердые тела также сжимаемы, но значительно меньше, чем газы. Это означает, что в жидкостях и твердых телах также имеются межмолекулярные промежутки, но они значительно меньше, чем в газах.

В результате взаимного проникновения молекул одного вещества между молекулами другого вещества происходит смешивание различных газов или жидкостей, растворение твердых тел в жидкостях, испарение жидкостей и твердых тел.

Стремление молекул газа занять весь предоставленный ему объем показывает, что молекулы газа находятся в непрерывном хаотическом движении.

Хаотическое движение молекул часто называют тепловым, так как оно тесно связано с понятием температуры: чем выше температура тела, тем интенсивнее тепловое движение его молекул, тем больше кинетической энергии приходится в среднем на одну его молекулу. Поскольку кинетическая энергия пропорциональна квадрату скорости движения, то при нагревании тела средняя скорость движения его молекул увеличивается, а при охлаждении — уменьшается.

Читайте также:  Что такое любовь с религиозной точки зрения

Следует отметить, что явления, изучаемые в молекулярной физике, определяются движением и взаимодействием огромного числа

молекул; поэтому для описания таких явлений пользуются только средними значениями величин, характеризующих молекулярный мир.

Глоссарий Молекула Диффузия Равновесие Температура Энергия Работа Теплопередача

Название Глоссарий Молекула Диффузия Равновесие Температура Энергия Работа Теплопередача
Дата публикации 01.08.2013
Размер 108.42 Kb.
Тип Документы

odtdocs.ru > Физика > Документы

Теплопроводность Конвекция Излучение

Молекула (новолат. molecula, уменьшительное от лат. moles— масса)— электрически нейтральная частица, образованная из двух или более связанных ковалентными связями атомов, наименьшая частица химического вещества. В физике к молекулам причисляют также одноатомные молекулы, то есть свободные (химически не связанные) атомы (например, инертных газов, ртути и т.п.). Причисление к молекулам одноатомных молекул, то есть свободных атомов, например одноатомных газов, приводит к совмещению понятий «молекула» и «атом». Обычно подразумевается, что молекулы нейтральны (не несут электрических зарядов) и не несут неспаренных электронов (все валентности насыщены); заряженные молекулы называют ионами, молекулы с мультиплетностью, отличной от единицы (то есть с неспаренными электронами и ненасыщенными валентностями) — радикалами.

Молекулы относительно высокой молекулярной массы, состоящие из повторяющихся низкомолекулярных фрагментов, называются макромолекулами.

С точки зрения квантовой механики молекула представляет собой систему не из атомов, а из электронов и атомных ядер, взаимодействующих между собой.

Особенности строения молекул определяют физические свойства вещества, состоящего из этих молекул.

К веществам, сохраняющим молекулярную структуру в твердом состоянии, относятся, например, вода, оксид углерода (IV), многие органические вещества. Они характеризуются низкими температурами плавления и кипения. Большинство же твердых (кристаллических) неорганических веществ состоят не из молекул, а из других частиц (ионов, атомов) и существуют в виде макротел (кристалл хлорида натрия, кусок меди и т.д.)

Состав молекул сложных веществ выражается при помощи химических формул.

Диффузия (лат. Diffusio — распространение, растекание, рассеивание, взаимодействие)— процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (по градиенту концентрации).

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы.

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи, однако иногда диффузионными называют также другие процессы переноса: теплопроводность, вязкое трение и т.п.

Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия. На практике условие изолированности означает, что процессы установления равновесия протекают гораздо быстрее, чем происходят изменения на границах системы (то есть изменения внешних по отношению к системе условий), и осуществляется обмен системы с окружением веществом и энергией. Иными словами, термодинамическое равновесие достигается, если скорость релаксационных процессов достаточно велика (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (этот случай имеет место в геологических процессах).

Температура (от лат. temperatura— надлежащее смешение, нормальное состояние)— скалярная физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Температура всех частей системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различную температуру, происходит теплопередача (переход энергии от более нагретых частей системы к менее нагретым), приводящая к выравниванию температур в системе.

Температура определяет: распределение образующих систему частиц по уровням энергии (см. Статистика Максвелла — Больцмана) и распределение частиц по скоростям (см. Распределение Максвелла); степень ионизации вещества (см. Уравнение Саха); спектральную плотность излучения (см. Формула Планка); полную объёмную плотность излучения (см. Закон Стефана — Больцмана) и т.д. Температуру, входящую в качестве параметра в распределение Больцмана, часто называют температурой возбуждения, в распределение Максвелла— кинетической температурой, в формулу Саха— ионизационной температурой, в закон Стефана— Больцмана— радиационной температурой. Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы.


Энергия (др.-греч. ἐνέργεια— «действие, деятельность, сила, мощь»)— скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется во времени. Это утверждение носит название закона сохранения энергии. Понятие введено Аристотелем в трактате «Физика».

Термодинамическая работа— способ передачи энергии, связанный с изменением внешних параметров системы. Механическая работа определяется как:
, где — сила, а —элементарное (бесконечно малое) перемещение.
Элементарная работа термодинамической системы над внешней средой может быть вычислена так:
, где — нормаль элементарной (бесконечно малой) площадки, — давление и — бесконечно малое приращение объёма.
Величина работы зависит от пути, по которому термодинамическая система переходит из состояния 1 в состояние 2 , и не является функцией состояния системы. Это легко доказать, если учесть, что геометрический смысл определённого интеграла— площадь под графиком кривой. Так как работа определяется через интеграл, то в зависимости от пути процесса площадь под кривой, а значит, и работа, будет различна. Такие величины называют функциями процесса.

Несмотря на то, что до сих пор и в физической химии используется обозначение работы A, в соответствии с рекомендациями ИЮПАК работу в химической термодинамике следует обозначать как. Впрочем, авторы могут использовать какие угодно обозначения, если только дадут им расшифровку.
Теплопередача— физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики

Теплопроводность— это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Конвекция (от лат. convectiō— «перенесение»)— явление переноса теплоты в жидкостях или газах, или сыпучих средах потоками вещества. Существует т.н. естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек. Излучение — процесс испускания и распространения энергии в виде волн и частиц. Любое излучение — это изменение энергетического состояния вакуумного пространства.
Теплоёмкость тела (обычно обозначается латинской буквой C)— физическая величина, определяющая отношение бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT:

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая теплоёмкость (С)— это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг −1 ·К −1 ).

Объёмная теплоёмкость (С′)— это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м −3 ·К −1 ).

Молярная теплоёмкость (Сμ)— это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

Конденсация паров (лат. condense— уплотняю, сгущаю)— переход вещества в жидкое или твёрдое состояние из газообразного. Максимальная температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.

При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона — Клаузиуса определяет параметры этого равновесия— в частности, выделение тепла при конденсации и охлаждение при испарении.

Влажность— показатель содержания воды в физических телах или средах. Для измерения влажности используются различные единицы, часто внесистемные.

Влажность зависит от природы вещества, а в твёрдых телах, кроме того, от степени измельченности или пористости. Содержание химически связанной, так называемой конституционной воды, например гидроокисей, выделяющейся только при химическом разложении, а также воды кристаллогидратной не входит в понятие влажности.

Кристаллизация— процесс фазового перехода вещества из жидкого состояния в твёрдое кристаллическое с образованием кристаллов. Фазой называется однородная часть термодинамической системы отделённая от других частей системы(других фаз) поверхностью раздела, при переходе через которую химический состав, структура и свойства вещества изменяются скачками.

Кристаллизация— это процесс выделения твёрдой фазы в виде кристаллов из растворов или расплавов, в химической промышленности процесс кристаллизации используется для получения веществ в чистом виде.

Источники:
  • http://fizi4ka.ru/ogje-2018-po-fizike/vidy-teploperedachi-teploprovodnost-konvekcija-izluchenie.html
  • http://fizika.neznaka.ru/answer/4297237_obasnite-process-teploperedaci-na-osnove-molekularno-kineticeskoj-teorii-stroenia-vesestva/
  • http://5terka.com/node/15843
  • http://studfiles.net/preview/3962366/page:11/
  • http://studopedia.ru/8_97003_bilet--.html
  • http://fizi4ka.ru/ogje-2018-po-fizike/vidy-teploperedachi-teploprovodnost-konvekcija-izluchenie.html
  • http://lib.sernam.ru/book_t_phis.php?id=11
  • http://odtdocs.ru/fizika/34467/index.html