Меню Рубрики

Происхождение земли с научной точки зрения

Вопрос происхождения Земли, планет и Солнечной системы в целом волновал людей еще с глубокой древности. Мифы о происхождении Земли прослеживаются у многих древних народов. Китайцы, египтяне, шумеры, греки имели свое представление о формировании мира. В начале нашей эры их наивные представления заменили религиозные догматы, не терпящие возражений. В средневековой Европе попытки поиска истины иногда заканчивались костром инквизиции. Первые научные объяснения проблемы относятся только к XVIII в. Даже сейчас нет единой гипотезы происхождения Земли, что дает простор для новых открытий и пищу для пытливого ума.

Человек – существо пытливое. Издревле люди отличались от животных не только желанием выжить в суровом диком мире, но и попыткой понять его. Признавая тотальное превосходство сил природы над собой, люди стали обожествлять происходящие процессы. Чаще всего именно небожителям приписывается заслуга сотворения мира.

Мифы о происхождении Земли в разных уголках планеты значительно отличались друг от друга. По представлениям древних египтян, она вылупилась из священного яйца, слепленного богом Хнумом из обычной глины. Согласно верованиям островных народов, землю выудили боги из океана.

Теория хаоса

Ближе всех к научной теории подошли древние греки. По их понятиям, рождение Земли произошло из первородного Хаоса, наполненного смесью из воды, земли, огня и воздуха. Это стыкуется с научными постулатами теории происхождения Земли. Гремучая смесь элементов хаотично вращалась, заполняя все сущее. Но в какой-то момент из недр первородного Хаоса родилась Земля – богиня Гея, и ее вечный спутник, Небо, – бог Уран. Совместными усилиями они наполнили безжизненные просторы разнообразием жизни.

Похожий миф сформировался и в Китае. Хаос Хунь-тунь, наполненный пятью элементами – деревом, металлом, землей, огнем и водой – кружил в форме яйца по безграничной Вселенной, пока в нем не зародился бог Пань-Гу. Пробудившись, он обнаружил вокруг себя лишь безжизненную тьму. И этот факт его сильно опечалил. Собравшись с силами, божество Пань-Гу разломило скорлупу яйца-хаоса, высвободив два начала: Инь и Ян. Тяжелый Инь опустился вниз, сформировав землю, светлый и легкий Ян взмыл ввысь, образовав небо.

Классовая теория формирования Земли

Происхождение планет, и в частности Земли, современными учеными достаточно изучено. Но есть ряд принципиальных вопросов (например, откуда взялась вода), вызывающих жаркие споры. Поэтому наука о Вселенной развивается, каждое новое открытие становится кирпичиком в фундаменте гипотезы происхождения Земли.

Знаменитый советский ученый Отто Юльевич Шмидт, больше известный по полярным исследованиям, сгруппировал все предложенные гипотезы и объединил их в три класса. К первому относятся теории, исходящие из постулата об образовании Солнца, планет, лун и комет из единого материала (туманности). Это известные гипотезы Войткевича, Лапласа, Канта, Фесенкова, недавно переработанные Рудником, Соботовичем и другими учеными.

Второй класс объединяет представления, согласно которым планеты формировались непосредственно из вещества Солнца. Это гипотезы происхождения Земли ученых Джинса, Джеффриса, Мультона и Чемберлина, Бюффона и других.

И, наконец, к третьему классу относятся теории, не объединяющие Солнце и планеты общностью происхождения. Наиболее известна гипотеза Шмидта. Остановимся на характеристике каждого класса.

Гипотеза Канта

В 1755 году немецкий философ Кант происхождение Земли кратко описал следующим образом: первоначальная Вселенная состояла из неподвижных пылевидных частиц различной плотности. Силы гравитации привели их движение. Происходило налипание их друг на друга (эффект аккреции), в конечном итоге приведшее к образованию центрального раскаленного сгустка — Солнца. Дальнейшие столкновения частиц привели к вращению Солнца, а вместе с ним и пылевого облака.

В последнем постепенно образовывались отдельные сгустки вещества – зародыши будущих планет, вокруг которых по подобной схеме сформировались спутники. Образованная таким путем Земля в начале своего существования представлялась холодной.

Концепция Лапласа

Французский астроном и математик П. Лаплас предложил несколько отличный вариант, объясняющий происхождение планеты Земля и других планет. Солнечная система, по его мнению, образовалась из раскаленной газовой туманности со сгустком частиц в центре. Она вращалась и сжималась под действием всемирного тяготения. При дальнейшем охлаждении скорость вращения туманности росла, по периферии от нее отслаивались кольца, которые распадались на прообразы будущих планет. Последние на начальной стадии представляли собой раскаленные газовые шары, которые постепенно охлаждались и затвердевали.

Недостаток гипотез Канта и Лапласа

Гипотезы Канта и Лапласа, объясняющие происхождение планеты Земля, были господствующими в космогонии вплоть до начала ХХ века. И сыграли прогрессивную роль, служа основой естественным наукам, в особенности геологии. Главным недостатком гипотезы является неспособность объяснить распределение внутри Солнечной системы момента количества движения (МКР).

МКР определяется как произведение массы тела на расстояние от центра системы и скорость его вращения. Действительно, исходя из факта, что Солнце обладает более чем 90% всей массы системы, оно должно иметь и высокий МКР. На самом же деле Солнце имеет лишь 2% общего МКР, планеты же, особенно гиганты, наделены остальными 98%.

Теория Фесенкова

Указанное противоречие в 1960 попытался объяснить советский ученый Фесенков. Согласно его версии происхождения Земли, Солнце с планетами образовались в результате уплотнения гигантской туманности – «глобулы». Туманность обладала очень разреженной материей, составленной в основном из водорода, гелия и небольшого количества тяжелых элементов. Под действием силы гравитации в центральной части глобулы возникло звездообразное сгущение – Солнце. Оно быстро вращалось. В результате эволюции солнечного вещества в окружающую его газово-пылевую среду время от времени осуществлялись выбросы материи. Это приводило к потере Солнцем своей массы и передаче создаваемым планетам значительной части МКР. Формирование планет проходило путем аккреции вещества туманности.

Теории Мультона и Чемберлина

Американские исследователи астроном Мультон и геолог Чемберлин предложили схожие гипотезы происхождения Земли и Солнечной системы, согласно которым планеты образовались из вещества газовых веток спиралей, «вытянутых» из Солнца неизвестной звездой, которая прошла на достаточно близком расстоянии от него.

Учеными было введено в космогонию понятие «планетезималь» – это сгустки, сконденсированные из газов первоначального вещества, которые стали эмбрионами планет и астероидов.

Суждения Джинса

Английский астроном и физик Д. Джинс (1919) предположил, что при сближении с Солнцем другой звезды с последней оторвался сигарообразный выступ, который в дальнейшем распался на отдельные сгустки. Причем из средней утолщенной части «сигары» образовались крупные планеты, а по ее краям – мелкие.

Гипотеза Шмидта

В вопросах теории происхождения Земли оригинальную точку зрения в 1944 году высказал Шмидт. Это так называемая метеоритная гипотеза, впоследствии физико-математически обоснованная учениками известного ученого. Кстати, в гипотезе проблема образования Солнца не рассматривается.

Согласно теории, Солнце на одной из стадий своего развития захватило (притянуло к себе) холодное газово-пылевое метеоритное облако. До этого оно владело очень малым МКР, облако же вращалось со значительной скоростью. В сильном гравитационном поле Солнца началась дифференциация метеоритного облака по массе, плотности и размерам. Часть метеоритного материала попала на светило, другая, в результате процессов аккреции, образовывала сгустки-зародыши планет и их спутников.

В этой гипотезе происхождение и развитие Земли зависимо от воздействия «солнечного ветра» – давления солнечного излучения, которое отталкивало легкие газовые компоненты на периферию Солнечной системы. Образованная таким образом Земля была холодным телом. Дальнейший разогрев связывается с радиогенным теплом, гравитационной дифференциацией и другими источниками внутренней энергии планеты. Большим недостатком гипотезы исследователи считают очень низкую вероятность захвата Солнцем подобного метеоритного облака.

Предположения Рудника и Соботовича

История происхождения Земли до сих пор волнует ученых. Относительно недавно (в 1984 году) В. Рудник и Е. Соботович представили собственную версию происхождения планет и Солнца. Согласно их представлениям, инициатором процессов в газово-пылевой туманности мог послужить близкий взрыв сверхновой звезды. Дальнейшие события, по мнению исследователей, выглядели так:

  1. Под действием взрыва началось сжатие туманности и образование центрального сгустка — Солнца.
  2. От формирующегося Солнца МРК передавался планетам электромагнитным или турбулентно-конвективным путем.
  3. Стали образовываться гигантские кольца, напоминающие кольца Сатурна.
  4. В результате аккреции материала колец сначала появились планетезимали, впоследствии сформировавшиеся в современные планеты.

Вся эволюция проходила очень быстро – на протяжении около 600 млн лет.

Формирование состава Земли

Существует разное понимание последовательности формирования внутренних частей нашей планеты. Согласно одной из них, протоземля представляла собой неотсортированный конгломерат железо-силикатного вещества. В дальнейшем в результате гравитации произошло разделение на железное ядро и силикатную мантию – явление гомогенной аккреции. Сторонники гетерогенной аккреции считают, что сначала аккумулировалось тугоплавковое железное ядро, затем на него налипали более легкоплавкие силикатные частицы.

В зависимости от решения этого вопроса речь может идти и о степени первоначального разогрева Земли. Действительно, сразу же после своего образования планета начала разогреваться вследствие совместных действий нескольких факторов:

  • Бомбардировка ее поверхности планетезималями, что сопровождалось выделением тепла.
  • Распад радиоактивных изотопов, в том числе короткоживущих изотопов алюминия, йода, плутония и др.
  • Гравитационная дифференциация недр (если принять гомогенную аккрецию).

По мнению ряда исследователей, на этой ранней стадии формирования планеты внешние части могли находиться в состоянии, близком к расплаву. На фото планета Земля выглядела бы раскаленным шаром.

Контракционная теория образования материков

Одной из первых гипотез происхождения материков была контракционная, по которой горообразование связывалось с остыванием Земли и сокращением ее радиуса. Именно она служила фундаментом ранних геологических исследований. На ее основании австрийский геолог Е. Зюсс синтезировал все существующие на то время знания о структуре земной коры в монографии «Лик Земли». Но уже в конце XIX в. появились данные, свидетельствующие, что в одной части земной коры происходит сжатие, в другой – растяжение. Окончательно рухнула контракционная теория после открытия радиоактивности и наличия в коре Земли больших запасов радиоактивных элементов.

Дрейф материков

В начале ХХ в. зарождается гипотеза дрейфа материков. Ученые давно заметили сходство береговых линий Южной Америки и Африки, Африки и Аравийского полуострова, Африки и Индостана и др. Первым сопоставил данные Пиллигрини (1858 г.), позднее Биханов. Сама идея дрейфа материков была сформулирована американскими геологами Тейлором и Бейкером (1910) и немецким метеорологом и геофизиком Вегенером (1912). Последний обосновал эту гипотезу в своей монографии «Происхождение материков и океанов», которая вышла в свет в 1915 году. Аргументы, которые приводились в защиту этой гипотезы:

  • Сходство очертаний материков по обе стороны Атлантики, а также материков, окаймляющих Индийский океан.
  • Сходство строения на смежных материках геологических разрезов позднепалеозойских и раннемезозойских пород.
  • Окаменелые останки животных и растений, которые свидетельствуют, что древняя флора и фауна южных материков образовывала единую группировку: особенно об этом свидетельствуют окаменевшие останки динозавров рода листрозавров, найденные в Африке, Индии и Антарктиде.
  • Палеоклиматические данные: например, наличие следов позднепалеозойского покровного оледенения.

Формирование земной коры

Происхождение и развитие Земли неразрывно связано с горообразованием. А. Вегенер утверждал, что материки, состоящие из достаточно легких минеральных масс, как бы плавают на подстилающем их тяжелом пластическом веществе базальтового ложа. Предполагается, что вначале тонкий слой гранитного материала якобы покрывал всю Землю. Постепенно целостность его была нарушена приливными силами притяжения Луны и Солнца, воздействующими на поверхность планеты с востока на запад, а также центробежными силами от вращения Земли, воздействующими от полюсов к экватору.

Из гранита (предположительно) состоял единый суперматерик Пангея. Он просуществовал до середины мезозойской эры и распался в юрском периоде. Сторонником этой гипотезы происхождения Земли был ученый Штауб. Затем возникло объединение материков северного полушария – Лавразия, и объединение материков южного полушария – Гондвана. Между ними оказались зажаты породы дна Тихого океана. Под материками залегало море магмы, по которому они двигались. Лавразия и Гондвана ритмично перемещались то к экватору, то к полюсам. При смещении к экватору суперматерики фронтально сжимались, при этом флангами надавливая на тихоокеанскую массу. Эти геологические процессы многие считают основными факторами образования крупных горных массивов. Движение к экватору происходило трижды: во время каледонского, герцинского и альпийского горообразования.

На тему формирования Солнечной системы выпущено много научно-популярной литературы, детских книг, специализированных публикаций. Происхождение Земли для детей в доступной форме изложено в школьных учебниках. Но если взять литературу 50-летней давности, видно, что на некоторые проблемы современные ученые смотрят уже по-другому. Космология, геология и смежные науки не стоят на месте. Благодаря покорению околоземного пространства люди уже знают, какой видится на фото планета Земля из космоса. Новое знание формирует новое представление о законах Вселенной.

Очевидно, что для создания из первородного хаоса Земли, планет и Солнца были задействованы могучие силы природы. Неудивительно, что древние предки сопоставляли их со свершениями Богов. Даже образно невозможно представить происхождение Земли, картинки реальности наверняка превзошли бы самые смелые фантазии. Но по крупицам знаний, собираемым учеными, постепенно выстраивается целостная картина окружающего мира.

Происхождение Земли

История Земли

Лишь сравнительно не так давно люди получили фактический материал, дающий возможность выдвигать научно обоснованные гипотезы о происхождении Земли, однако этот вопрос волновал умы философов еще с незапамятных времен.

Первые представления

Хоть первые представления о жизни Земли и основывались только на эмпирических наблюдениях природных явлений, тем не менее в них основополагающую роль зачастую занимал фантастический вымысел, чем объективная реальность. Но уже в те времена, возникли идеи и воззрения, которые и в наши дни поражают нас своим сходством с нашими представлениями о происхождении Земли.

Так, к примеру, римский философ и поэт Тит Лукреций Кар, который известен как автор дидактической поэмы «О природе вещей», считал, что Вселенная бесконечна и в ней существует множество миров, подобных нашему. О том же написано у древнегреческого ученого Гераклита (500 лет до н.э.): «Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим».

После того как пала Римская империя для Европы наступила тяжелая пора средневековья – период господства богословия и схоластики. Этот период затем сменился эпохой Возрождения, труды Леонардо да Винчи, Николая Коперника, Джордано Бруно, Галилео Галилея подготовили появление прогрессивных космогонических идей. Они были высказаны в разное время Р.Декартом, И.Ньютоном, Н.Стеноном, И.Кантом и П.Лапласом.

Гипотезы происхождения Земли
Гипотеза Р. Декарта

• Так, в частности, Р.Декарт утверждал что, наша планета прежде была раскаленным телом, подобно Солнцу. А впоследствии она остыла и начала представлять из себя потухшее небесное тело, в недрах которого все же сохранился огонь. Раскаленное ядро покрывала плотная оболочка, которая состояла из вещества, подобного веществу солнечных пятен. Выше находилась новая оболочка – из мелких осколков, возникших в результате распада пятен.

Гипотеза И. Канта

• 1755 год — немецкий философ И.Кант предположил, что вещество, из которого состоит тело Солнечной системы – все планеты и кометы, до начала всех преобразований было разложено на первичные элементы и заполняло весь тот объем Вселенной, в котором движутся теперь образовавшиеся из них тела. Эти представления Канта о том, что Солнечная система могла образоваться в результате скопления первичного дисперсного рассеянного вещества, кажутся в наше время на удивление правильными.

Гипотеза П. Лапласа

• 1796 год — французский ученый П.Лаплас высказывал сходные идеи о происхождении Земли, ничего не зная о имеющемся трактате И.Канта. Появившаяся гипотеза о происхождении Земли получила, таким образом, название гипотезы Канта-Лапласа. По этой гипотезе Солнце и движущиеся вокруг него планеты образовались из единой туманности, которая, при вращении, распадалась на отдельные сгустки вещества – планеты.

Изначально огненно-жидкая Земля остывала, покрывалась коркой, которая коробилась по мере остывания недр и уменьшения их объема. Следует отметить, что гипотеза Канта-Лапласа больше 150 лет преобладала в ряду других космогонических воззрений. Именно исходя из этой гипотезы, геологи объясняли все геологические процессы, происходившие в недрах Земли и на ее поверхности.

Гипотеза Э. Хладни

• Огромное значение для разработки достоверных научных гипотез о происхождении Земли конечно имеют метеориты – пришельцы из далекого космоса. Все по тому, что метеориты падали на нашу планету всегда. Однако далеко не всегда они считались пришельцами из космоса. Одним из первых, объяснивших правильно появление метеоритов, был немецкий физик Э.Хладни, который доказал в 1794 г., что метеориты – это остатки болидов, имеющих неземное происхождение. По его утверждению, метеориты являются странствующими в космосе кусками межпланетной материи, вероятно и осколками планет.

Современной концепции происхождения Земли

Но такого рода мысли в те времена разделяли далеко не все, однако, изучая каменные и железные метеориты, ученые смогли получить любопытные данные, которые использовались в космогонических построениях. Был, к примеру, выяснен химический состав метеоритов – в основном оказалось, что это окислы кремния, магния, железа, алюминия, кальция, натрия. Следовательно, возникла возможность узнать состав других планет, который оказался сродни химическому составу нашей Земли. Определили и абсолютный возраст метеоритов: он находится в пределах 4,2-4,6 миллиардов лет. В настоящий момент к этим данным добавились сведения о химическом составе и возрасте пород Луны, а также атмосфер и пород Венеры и Марса. Эти новые данные показывают, в частности, что наш естественный спутник Луна образовался из холодного газопылевого облака и начал «функционировать» 4,5 миллиарда лет тому назад.

Читайте также:  О предметном мышлении с физиологической точки зрения

Огромная роль в обосновании современной концепции происхождения Земли и Солнечной системы принадлежит советскому ученому, академику О.Шмидту, который внес значительный вклад в решение этой проблемы.

Так по крупицам, по отдельным разрозненным фактам постепенно складывалась научная основа современных космогонических взглядов… Большинство современных космогонистов придерживается следующей точки зрения.

Исходным веществом для образования Солнечной системы послужило газопылевое облако, находившееся в экваториальной плоскости нашей Галактики. Вещество этого облака пребывало в холодном состоянии и содержало как правило летучие компоненты: водород, гелий, азот, пары воды, метан, углерод. Первичное планетное вещество было весьма однородным, а его температура довольно низкой.

Вследствие сил тяготения межзвездные облака начинали сжиматься. Вещество уплотнялось до стадии звезд, в то-же время возрастала его внутренняя температура. Движение атомов внутри облака ускорялось, и, сталкиваясь друг с другом, атомы иногда объединялись. Происходили термоядерные реакции, в процессе которых водород превращался в гелий, при этом выделялось огромное количество энергии.

В неистовстве мощных стихий появилось Протосолнце. Рождение его произошло как результат вспышки сверхновой звезды – явление не такое уж редкое. В среднем такая звезда возникает в любой Галактике каждые 350 миллионов лет. Во время вспышки сверхновой звезды излучается гигантская энергия. Вещество, выброшенное в результате этого термоядерного взрыва, образовало вокруг Протосолнца широкое, постепенно уплотнявшееся газовое плазменное облако. Оно представляло из себя своеобразную туманность в виде диска с температурой в несколько миллионов градусов Цельсия. Из этого протопланетного облака в дальнейшем возникли планеты, кометы, астероиды и другие небесные тела Солнечной системы. Образование Протосолнца и протопланетного облака вокруг него произошло, возможно, около 6 миллиардов лет назад.

Прошли сотни миллионов лет. Со временем газообразное вещество протопланетного облака остывало. Из горячего газа конденсировались наиболее тугоплавкие элементы и их окислы. По мере дальнейшего охлаждения, продолжавшегося миллионы лет, в облаке появились пылевидные твердые частицы, и ранее раскаленное газовое облако снова стало сравнительно холодным.

Постепенно вокруг молодого Солнца в результате конденсации пылевидного вещества образовался широкий кольцеобразный диск, который в последствии распался на холодные рои твердых частиц и газа. Из внутренних частей газопылевого диска стали образовываться планеты типа Земли, состоящие как правило из тугоплавких элементов, а из периферических частей диска – большие планеты, богатые легкими газами и летучими элементами. В самой же внешней зоне появилось огромное количество комет.

Первичная Земля

Так примерно 5,5 миллиарда лет назад из холодного планетного вещества возникли первые планеты, в том числе и первичная Земля. В те времена она была космическим телом, но еще не планетой, у нее не было ядра и мантии и не существовало даже твердых поверхностных участков.

Образование Протоземли было чрезвычайно важной вехой – это было рождение Земли. В те времена на Земле не протекали обычные, хорошо нам известные геологические процессы, потому этот период эволюции планеты называют догеологическим, или астрономическим.

Протоземля представляла из себя холодное скопление космического вещества. Под влиянием гравитационного уплотнения, нагревания от беспрерывных ударов космических тел (комет, метеоритов) и выделения тепла радиоактивными элементами поверхность Протоземли начала нагреваться. О величине разогрева среди ученых нет единого мнения. Как считает советский ученый В.Фесенко, вещество Протоземли нагрелось до 10 000°С и как следствие этого перешло в расплавленное состояние. По предположению же других ученых, температура едва могла достигать 1 000°С, а третьи отрицают даже саму возможность расплавления вещества.

Как бы там ни было, но разогрев Протоземли способствовал дифференциации ее материала, которая продолжалась на протяжении всей последующей геологической истории.

Дифференциация вещества Протоземли привела к концентрации тяжелых элементов во внутренних ее областях, а на поверхности – более легких. Это, в свою очередь, предопределило дальнейшее разделение на ядро и мантию.

Изначально наша планета не имела атмосферы. Это можно объяснить тем, что газы из протопланетного облака были потеряны на первых стадиях образования, потому как тогда еще масса Земли не могла удержать легкие газы вблизи своей поверхности.

Образование ядра и мантии, а в дальнейшем и атмосферы завершило первую стадию развития Земли – догеологическую, или астрономическую. Земля стала твердой планетой. После чего и начинается ее длительная геологическая эволюция.

Таким образом, 4-5 миллиардов лет назад на поверхности нашей планеты господствовали солнечный ветер, жаркие лучи Солнца и космический холод. Поверхность постоянно подвергалась бомбардировке космическими телами – от пылинок до астероидов…

Происхождение Земли

Ученые полагают, что Земля возникла около 4600 млн. лет назад. С тех пор ее поверхность постоянно изменялась под воздействием различных процессов. Земля, видимо, сформировалась спустя несколько миллионов лет после колоссального взрыва в космосе. Взрыв создал огромное облако газа и пыли. Ученые считают, что его частицы, сталкиваясь друг с другом, объединились в гигантские сгустки раскаленного вещества, которые со временем превратились в ныне существующие планеты.

По мнению ученых, Земля возникла после колоссального космического взрыва. Первые материки, вероятно, сформировались из расплавленной породы, вытекавшей на поверхность из жерл вулканов. Застывая, она делала земную кору толще. Океаны могли образоваться в низинах из капелек воды, содержавшейся в вулканических газах. Из этих же газов, вероятно, состояла и первоначальная атмосфера Земли.

Думают, что Земля поначалу была невероятно горячей, с морем расплавленных горных пород на поверхности. Примерно 4 млрд. лет назад Земля начала медленно остывать и разделилась на несколько слоев (см. справа). Самые тяжелые породы опустились глубоко в недра Земли и образовали ее ядро, оставаясь невообразимо горячими. Менее плотное вещество образовало ряд слоев вокруг ядра. На самой поверхности расплавленные породы постепенно затвердели, образовав твердую земную кору, покрытую множеством вулканов. Расплавленная порода, вырываясь на поверхность, застыла, образуя земную кору. Низкие участки заполнялись водой.

Земля сегодня

Хотя земная поверхность кажется твердой и незыблемой, изменения еще происходят. Они вызываются разного рода процессами, одни из которых разрушают земную поверхность, а другие ее воссоздают. Большинство изменений протекает крайне медленно и обнаруживается лишь специальными приборами. Для образования новой горной цепи требуются миллионы лет, по мощное извержение вулкана или чудовищной силы землетрясение могут преобразить поверхность Земли за считанные дни, часы и даже минуты. В 1988 г. землетрясение в Армении, длившееся около 20 секунд, разрушило здания и убило более 25 000 человек.

Строение Земли

В целом Земля имеет форму шара, слегка сплюснутого с полюсов. Она состоит из трех основных слоев: коры, мантии и ядра. Каждый слой образован разными типами горных пород. На рисунке внизу изображена структура Земли, но слои показаны не в масштабе. Внешний слой называется земной корой. Ее толщина от 6 до 70 км. Под корой располагается верхний слой мантии, образованный твердыми породами. Этот слой вместе с корой называется литосферой и имеет толщину около 100 км. Часть мантии, лежащая под литосферой, называется астеносферой. Она имеет толщину примерно 100 км и, вероятно, состоит из частично расплавленных пород. Температура мантии изменяется от 4000°С вблизи ядра до 1000°С в верхней части астеносферы. Нижняя мантия, возможно, состоит из твердых пород. Внешнее ядро состоит из железа и никеля, видимо, расплавленных. Температура этого слоя может достигать 5500°C. Температура субъядра может быть выше 6000°С. Оно твердое из-за колоссального давления всех прочих слоев. Ученые полагают, что оно состоит в основном из железа (подробнее об этом в статье «Строение Земли«).

Происхождение Земли

До сих пор основной теорией происхождения колыбели человечества считается теория Большого Взрыва. По утверждению астрономов, бесконечно долгое время назад в космическом пространстве существовал огромный раскаленный шар, чья температура исчислялась миллионами градусов. В результате химических реакций, происходивших внутри огненной сферы, произошел взрыв, разметавший в пространстве огромное количество мельчайших частиц материи и энергии. Изначально, эти частицы имели слишком высокую температуру. Затем Вселенная остывала, частицы притягивались друг к другу, накапливаясь в одном пространстве. Более легкие элементы притягивались к более тяжелым, возникшим в результате постепенного охлаждения Вселенной. Так образовывались галактики, звезды, планеты.

p, blockquote 1,0,1,0,0 —>

В подтверждение этой теории ученые приводят строение Земли, чья внутренняя часть, называемая ядром, состоит из тяжелых элементов – никеля и железа. Ядро, в свою очередь, покрыто толстой мантией из раскаленных горных пород, являющихся более легкими. Поверхность планеты, другими словами, земная кора, словно плавает на поверхности расплавленных масс, являясь результатом их остывания.

p, blockquote 2,1,0,0,0 —>

Формирование условий для жизни

Постепенно земной шар остывал, создавая на своей поверхности все более плотные участки почвы. Вулканическая деятельность планеты в те времена была достаточно активной. В результате извержений магмы в пространство выбрасывалось огромное количество различных газов. Самые легкие, такие, как гелий и водород моментально улетучивались. Более тяжелые молекулы оставались над поверхностью планеты, притягиваемые ее гравитационными полями. Под влиянием внешних и внутренних факторов, пары выброшенных газов становились источником влаги, появились первые осадки, сыгравшие ключевую роль в появлении жизни на планете.

p, blockquote 3,0,0,1,0 —>

Постепенно внутренние и внешние метаморфозы привели к тому разнообразию ландшафта, к которому человечество давно привыкло:

p, blockquote 4,0,0,0,0 —>

  • образовались горы и долины;
  • появились моря, океаны и реки;
  • сложился определенный климат в каждой местности, давший толчок развитию той или иной форме жизни на планете.

p, blockquote 5,0,0,0,1 —>

Мнение о спокойствии планеты и о том, что она сформирована окончательно, неверно. Под воздействием эндогенных и экзогенных процессов, поверхность планеты формируется до сих пор. Своим разрушительным хозяйствованием человек способствует ускорению этих процессов, что ведет к самым катастрофическим последствиям.

Гипотеза происхождения Земли и Солнечной системы

Вопрос о том, как возникла Земля, занимает умы людей уже не одно тысячелетие. Ответ на него всегда зависел от уровня знаний людей. Первоначально существовали наивные легенды о сотворении мира некоей божественной силой. Затем Земля в работах ученых приобрела очертания шара, который являлся центром Вселенной. Потом в XVI веке появилось учение Н.Коперника, которое поместило Землю в ряд планет, вращающихся вокруг Солнца. Это был первый шаг в подлинно научном решении вопроса о происхождении Земли. В настоящее время есть несколько гипотез, каждая из которых по-своему описывает периоды становления Вселенной и положение Земли в Солнечной системе.

Гипотеза Канта-Лапласа

Это была первая серьезная попытка создать картину происхождения Солнечной системы с научной точки зрения. Она связана с именами французского математика Пьера Лапласа и немецкого философа Иммануила Канта, работавших в конце XVIII века. Они полагали, что прародительницей Солнечной системы является раскаленная газово-пылевая туманность, медленно вращавшаяся вокруг плотного ядра в центре. Под влиянием сил взаимного притяжения туманность начала сплющиваться у полюсов и превращаться в огромный диск. Плотность его не была равномерной, поэтому в диске произошло расслоение на отдельные газовые кольца. В дальнейшем каждое кольцо начало сгущаться и превращаться в единый газовый сгусток, вращающийся вокруг своей оси. Впоследствии сгустки остыли и превратились в планеты, а кольца вокруг них — в спутники.

Основная часть туманности осталась в центре, до сих пор не остыла и стала Солнцем. Уже в XIX веке обнаружилась недостаточность этой гипотезы, так как она не всегда могла объяснить новые данные в науке, но ценность ее все еще велика.

Гипотеза О.Ю.Шмидта

Советский геофизик О.Ю.Шмидт несколько иначе представлял себе развитие Солнечной системы, работая в первой половине XX века. Согласно его гипотезе, Солнце, путешествуя по Галактике, проходило сквозь газопылевое облако и увлекло часть его за собой. Впоследствии твердые частицы облака подверглись слипанию и превратились в планеты, изначально холодные. Разогревание этих планет произошло позже в результате сжатия, а также поступления солнечной энергии. Разогрев Земли сопровождали массовые излияния лав на поверхность в результате вулканической деятельности. Благодаря этому излиянию сформировались первые покровы Земли.

Из лав выделялись газы. Они образовали первичную атмосферу, которая еще не содержала кислорода. Больше половины объема первичной атмосферы составляли пары воды, а температура ее превышала 100°С. При дальнейшем постепенном остывании атмосферы произошла конденсация водяных паров, что привело к выпадению дождей и образованию первичного океана. Это произошло около 4,5-5 млрд. лет назад. Позднее началось формирование суши, которая представляет собой утолщенные, относительно легкие части литосферных плит, поднимающихся выше уровня океана.

Гипотеза Ж.Бюффона

Далеко не все были согласны с эволюционным сценарием происхождения планет вокруг Солнца. Еще в XVIII веке французский естествоиспытатель Жорж Бюффон высказал предположение, поддержанное и развитое американскими физиками Чемберленом и Мультоном. Суть этих предположений такова: когда-то в окрестностях Солнца пронеслась другая звезда. Ее притяжение вызвало на Солнце огромную приливную волну, вытянувшуюся в пространстве на сотни миллионов километров. Оторвавшись, эта волна стала закручиваться вокруг Солнца и распадаться на сгустки, каждый из которых сформировал свою планету.

Гипотеза Ф.Хойла (XX век)

Английским астрофизиком Фредом Хойлом была предложена своя гипотеза. Согласно ей у Солнца была звезда-близнец, которая взорвалась. Большая часть осколков унеслась в космическое пространство, меньшая — осталась на орбите Солнца и образовала планеты.

Все гипотезы по-разному трактуют происхождение Солнечной системы и родственные связи между Землей и Солнцем, но они едины в том, что все планеты произошли из единого сгустка материи, а дальше судьба каждой из них решалась по-своему. Земле предстояло пройти путь в 5 млрд. лет, испытать ряд фантастических превращений, прежде чем мы увидели ее в современном облике. Однако необходимо заметить, что гипотезы, не имеющей серьезных недостатков и отвечающей на все вопросы о происхождении Земли и других планет Солнечной системы, пока еще нет. Но можно считать установленным, что Солнце и планеты образовались одновременно (или почти одновременно) из единой материальной среды, из единого газово-пылевого облака.

Гипотезы о происхождении Земли и краткая характеристика всех ее оболочек

Характеристика основных положений небулярных теорий происхождения Земли, гипотез Канта и Лапласа. Анализ катастрофических теорий, а также гипотезы Джинса. Характеристика некоторых современных гипотез. Описание формы и строения земного шара и его оболочек.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 09.12.2016
Размер файла 37,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Автономная некоммерческая организация высшего образования

«СЕВЕРО-ЗАПАДНЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Гипотезы о происхождении Земли и краткая характеристика всех ее оболочек

студента Ткалич Алексей Михайлович

Направление подготовки: Код 23.03.01.01

Шифр студента 140801

Дата выполнения работы 5.12.2016

    Введение
  • 1. Гипотезы происхождения Земли
    • 1.1 Небулярные теории. Гипотеза Канта и Лапласа
    • 1.2 Катастрофические теории. Гипотеза Джинса
    • 1.3 Современные гипотезы
  • 2. Строение Земли и её оболочек
    • 2.1 Форма и размеры земного шара
    • 2.2 Строение Земли и её оболочек
  • Заключение
  • Список использованной литературы

История Земли описывает наиболее важные события и основные этапы развития планеты Земля с момента её образования и до наших дней. Почти все отрасли естествознания внесли свой вклад в понимание основных событий прошлого Земли. Возраст Земли составляет примерно треть возраста Вселенной. В этот промежуток времени произошло огромное количество биологических и геологических изменений.

Земля образовалась около 4,54 млрд. лет назад путём аккреции из протопланетного диска, дискообразной массы газа, пыли, оставшихся от образования Солнца, которая и дала начало Солнечной системе. Вулканическая дегазация создала первичную атмосферу, но в ней почти не было кислорода и она была бы токсичной для людей и современной жизни в целом. Большая часть Земли была расплавленной из-за активного вулканизма и частых столкновений с другими космическими объектами. Предполагается, что одно из таких крупных столкновений привело к наклону земной оси и формированию Луны. Со временем такие космические бомбардировки прекратились, что позволило планете остыть и образовать твёрдую кору. Доставленная на планету кометами и астероидами вода сконденсировалась в облака и океаны. Земля стала, наконец, гостеприимной для жизни, а самые ранние её формы обогатили атмосферу кислородом. По крайней мере, первый миллиард лет жизнь на Земле существовала в малых и микроскопических формах. Около 580 миллионов лет назад возникла сложная многоклеточная жизнь, а во время кембрийского периода она пережила процесс быстрой диверсификации в большинство основных типов. Около шести миллионов лет назад от гоминидов отделилась линия гоминини, что привело к появлению шимпанзе (наших ближайших родственников), и в дальнейшем к современному человеку.

С момента её формирования на нашей планете постоянно происходят биологические и геологические изменения. Организмы непрерывно развиваются, принимают новые формы или вымирают в ответ на постоянно меняющуюся планету. Процесс тектоники плит играет важную роль в формировании океанов и континентов Земли, а также жизни, которой они дают убежище. Биосфера, в свою очередь, оказала значительное влияние на атмосферу и другие абиотические условия на планете, такие, как образование озонового слоя, распространение кислорода, а также создание почвы. Хотя люди не способны воспринимать это в связи с их относительно коротким периодом жизни, эти изменения продолжаются и будут продолжаться в течение следующих нескольких миллиардов лет.

1. Гипотезы происхождения земли

Первые попытки дать научное обоснование вопросу о происхождении и развитии Солнечной системы были сделаны 200 лет назад.

Все гипотезы о происхождении Земли можно разбить на две основные группы: небулярные ( лат. «небула» — туман, газ) и катастрофические. В основе первой группы лежит принцип образования планет из газа, из пылевых туманностей. В основе второй группы — различные катастрофические явления (столкновение небесных тел, близкое прохождение друг от друга звезд и т.д.).

Одна из первых гипотез была высказана в 1745 году французским естествоиспытателем Ж.Бюффоном. Согласно этой гипотезе, наша планета образовалась в результате остывания одного из сгустков солнечного вещества, выброшенного Солнцем при катастрофическом столкновении его с крупной кометой. Мысль Ж.Бюффона об образовании Земли (и других планет) из плазмы была использована в целой серии более поздних и более совершенных гипотез «горячего» происхождения нашей планеты.

1.1 Небулярные теории. Гипотеза Канта и Лапласа

Среди небулярных теорий, безусловно, ведущее место занимает гипотеза, разработанная немецким философом И.Кантом (1755). Независимо от него другой ученый — француский математик и астроном П. Лаплас — пришел к тем же выводам, но разработал гипотезу более глубоко (1797). Обе гипотезы сходны между собой по существу и часто рассматриваются как одна, а авторов ее считают основоположниками научной космогонии.

Гипотеза Канта — Лапласа относится к группе небулярных гипотез. Согласно их концепции, на месте Солнечной системы располагалась ранее огромная газо-пылевая туманность ( пылевая туманность из твердых частиц, по мнению И. Канта; газовая — по предположению П.Лапласа). Туманность была раскаленной и вращалась. Под действием законов тяготения материя ее постепенно уплотнялась, сплющивалась, образуя в центре ядро. Так образовалось первичное солнце. Дальнейшее охлаждение и уплотнение туманности привелок увеличению угловой скорости вращения, вследствие чего на экваторе произошло отделение наружной части туманности от основной массы в виде колец, вращающихся в экваториальной плоскости: их образовалось несколько. В качестве примера Лаплас приводил кольца Сатурна.

Неравномерно охлаждаясь, кольца разрывались, и вследствие притяжения между частицами происходило образование планет, обращающихся вокруг Слнца. Остывающие планеты покрывались твердой коркой, на поверхности которой стали развиваться геологические процессы.

И.Кант и П.Лаплас верно подметили основные и характерные черты строения Солнечной системы:

1) подавляющая часть массы (99,86%) системы сосредоточена в Солнце;

2) планеты обращаются почти по круговым орбитам и почти в одной и той же плоскости;

3) все планеты и почти все их спутники вращаются в одну и ту же сторону, все планеты вращаются вокруг своей оси в ту же сторону.

Значительной заслугой И.Канта и П. Лапласа явилось создание гипотезы, в основу которой была положена идея развития материи. Оба ученых считали, что туманность обладала вращательным движением, вследствие чего произошло уплотнение частиц и образование планет и Солнца. Они полагали, что движение неотделимо от материи и так же вечно,как и сама материя.

Гипотеза Канта-Лапласа существовала в течене почти двух сотен лет. Впоследствии была доказана ее несостоятельность. Так, стало известно, что спутники некоторых планет, например Урана и Юпитера, вращаются в ином направлении, чем сами планеты. По данным современной физики, газ, отделившийся от центрального тела, должен рассеятьсяи не может сформироваться в газовые кольца, а позднее — в планеты. Другими существенными недостатками гипотезы Канта и Лапласа являются следующие: небулярный катастрофический происхождение земля

1. Известно, что момент количества движения во вращающемся теле всегда остается постоянным и распределяется равномерно по всему телу пропорционально массе, расстоянию и угловой скорости соответствующей части тела. Этот закон распространяется и на туманность, из которой сформировались Солнце и планеты. В Солнечной системе количество движения не соответствует закону распределения количества движения в массе, возникшей из одного тела. В планета Солнечной системы сосредоточено 98% момента количества движения системы, а Солнце имеет только 2%, в то время как на долю Солнца приходится 99,86% всей массы Солнечной системы.

2. Если сложить моменты вращения Солнца и других планет, то при расчетах окажется, что первичное Солнце вращалось с той же скоростью, с какой сейчас вращается Юпитер. В связи с этим Солнце должно было обладать тем же сжатием, что и Юпитер. А этого, как показывают расчеты, недостаточно, чтобы вызвать дробление вращающегося Солнца, которое, как считали Кант и Лаплас, распалось вследствие избытка вращения.

3. В настоящее время доказано, что звезда, обладающая избытком вращения, распадается на части, а не образует семейство планет. Примером могут служить спектрально-двойные и кратные системы.

После гипотезы Канта-Лапласа в космогонии было создано еще несколько гипотез образования Солнечной системы.

Появляются так называемые катострофические, в основе которых лежит элемент случайности, элемент счастливого стечения обстоятельств:

В отличии от Канта и Лапласа, которые «позаимствовали» у Ж.Бюффона лишь идею «горячего» возникновения Земли, последователи этого течения развивали еще и саму гипотезу катасттрофизма. Бюффон полагал, Земля и планеты образовались за счет столкновения Солнца с кометой; Чемберлен и Мультон — образование планет связано с приливным воздействием проходящей мимо Солнца другой звезды.

В качестве примера гипотезы катострофического направления рассмотрим концепцию английского астронома Джинса (1919г.). В основу его гипотезы положена возможность прохождения вблизи Солнца другой звезды. Под действием ее притяжения из Солнца вырвалась струя газа, которая при дальнейшей эволюции превратилась в планеты Солнечной системы. Газовая струя по своей форме напоминала сигару. В центральной части этого вращающегося вокруг Солнца тела образовались крупные планеты — Юпитер и Сатурн, а в концах «сигары» — планеты земной группы: Меркурий, Венера, Земля, Марс, Плутон.

Джинс полагал, что прохождение звезды мимо Солнца, обусловившее образование планет Солнечной системы, позволяет объяснить несоответствие в распределении массы и момента количества движения в Солнечной системе. Звезда, вырвавшая газовую струю из Солнца, придала вращающейся «сигаре» избыток момента количества движения. Таким образом устранялся один из основных недостатков гипотезы Канта-Лапласа.

В 1943 г. русский астроном Н.И.Парийский вычислил, что при большой скорости звезды, проходившей мимо Солнца, газовый протуберанец должен был уйти вместе со звездой. При малой скорости звезды газовая струя должна была упасть на Солнце. Только в случае строго определенной скорости звезды газовый протуберанец мог бы стать спутником Солнца. В этом случае его орбита должна быть в 7 раз меньше орбиты самой близкой к Солнцу планеты — Меркурия.

Таким образом, гипотеза Джинса, так же как и гипотеза Канта-Лапласа, не смогла дать верного объяснения непропорциональному распределению момента количества движения в Солнечной системе

Самым большим недостатком этой гипотезы является факт случайности, исключительности образования семьи планет, что противоречит материалистическому мировоззрению и имеющимся фактам, говорящим о наличии планет в других звездных мирах. Кроме того, расчеты показали, что сближение звезд в мировом пространстве практически исключено, и даже если бы это произошло, проходящая звезда не могла бы придать планетам движение по круговым орбитам.

Принципиально новая идея заложена в гипотезах «холодного» происхождения Земли. Наиболее глубоко разработана метеоритная гипотеза, предложенная советским ученым О.Ю. Шмидтом в 1944 году. Из других гипотез «холодного» происхождения следует назвать гипотезы К.Вейцзекера (1944 г.) и Дж.Койпера (1951г.), во многом близкие к теории О.Ю. Шмидта, Ф. Фойл (Англия), А. Камерон (США) и Э. Шацман (Франция).

Наиболее популярными являются гипотезы о происхождении Солнечной системы, созданные О.Ю. Шмидтом и В.Г. Фесенковым. Оба ученых при разработке своих гипотез исходили из представлений о единстве материи во Вселенной, о непрерывном движении и эволюции материи, являющихся ее основными свойствами, о разнообразии мира, обусловленного различными формами существования материи.

Гипотеза О.Ю. Шмидта

Облако превращалось в плоский уплотненный вращающийся диск, в котором вследствие увеличения взаимного притяжения частиц происходило сгущение. Образовавшиеся сгущения-тела росли за счет присоединяющихся к ним мелких частиц, как снежный ком. В процессе обращения облака, при сталкивании частиц началось их слипание, образование более крупных по массе агрегатов и присоединение к ним — аккреция более мелких частиц, попадающих в сферу их гравитационного влияния. Таким путем образовались планеты и обращающиеся вокруг них спутники. Планеты стали вращаться по круговым орбитам вследствие усреднения орбит малых частиц.

Земля, по мнению О.Ю. Шмидта, также образовалась из роя холодных твердых частиц. Постепенное разогревание недр Земли произошло за счет энергетики радиоактивного распада, что привело к выделению воды и газа, входивших в небольших количествах в состав твердых частиц. В результате возникли океаны и атмосфера, обусловившие появление жизни на Земле.

О.Ю. Шмидт, а позднее его ученики дали серьезное физико-математическое обоснование метеоритной модели формирования планет Солнечной системы. Современная метеоритная гипотеза объясняет не только особенности движения планет(форму орбит, разные направления вращения и др.), но и фактически наблюдаемое распределение их по массе и плотности, а также соотношение планетарных моментов количества движения с солнечным. Ученый считал, что имеющиеся несоответствия в распределении моментов количества движения Солнца и планет объясняются разными первоначальными моментами количества движения Солнца и газово-пылевой туманности. Шмидт расчитал и математически обосновал расстояния планет от Солнца и между собойи выяснил причины образования крупных и мелких планет в разных частях Солнечной системы и разницу в их составе. Посредством расчетов обоснованы причины вращательного движения планет в одну сторону.

Недостатком гипотезы является рассмотрение вопроса о происхождении планет изолированно от образования Солнца — определяющего члена системы. Концепция не лишена элемента случайности: захвата Солнцем межзвездной материи. Действительно, возможность захвата Солнцем лостаточно крупного метеоритного облака очень мала. Более того, по рассчетам, такой захват возможен только при гравитационном содействии дркгой, близко находящейся звезды. Вероятность сочетания таких условий настолько незначительна, что это делает возможность захвата Солнцем межзвездного вещества событием исключительным.

Гипотеза В.Г. Фесенкова

В результате уплотнения газово-пылевого облака сформировалось звездообразное сгущение. Под влиянием быстрого вращения туманности значительная часть газово-пылевой материи все больше удалялась от центра туманности по плоскости экватора, образуя нечто вроде диска. Постепенно уплотнение газово-пылевой туманности обусловило формирование планетных сгущений, образовавших впоследствии современные планеты Солнечной системы. В отличие от Шмидта Фесенков полагает, что газово-пылевая туманность находилась в раскаленном состоянии. Большой его заслугой является обоснование закона планетных расстояний в зависимости от плотности среды. В.Г. Фесенков математически обосновал причины устойчивости момента количества движенияв Солнечной системе потерей вещества Солнца при выборе материи, вследствие чего произошло замедление его вращения. В.Г. Фесенков приводит также доводы в пользу обратного движения некоторых спутников Юпитера и Сатурна, объясняя это захватом планетами астероидов.

Большую роль Фесенков придавал процессам радиоактивного распада изотопов К, U, Th и других, содержание которых тогда было значительно выше.

К настоящему времени теоретически рассчитан ряд вариантов радитогенного разогрева недр, наиболее детальный из которых предложен Е.А.Любимовой (1958 г.). В соответствии с этими расчетами через один миллиард лет температура недр Земли на глубине нескольких сот километров достиглатемпературы плавления железа. К этому времени, по-видимому, относится начало образования ядра Земли, представленного опустившимися к ее центру металлами — железом и никелем. Позже, при дальнейшем повышении температуры, из мантии началось выплавление наиболее легкоплавких силикатов, которые в следствии небольшой плотности поднимались вверх. Этот процесс, теоритически и экспериментально изученный А.П.Виноградовым, объясняет образование земной коры.

Также нужно отметить две гипотезы, развившиеся к концу 20 века. Они рассматривали развитие Земли, не затрагивая развитие Солнечной системы в целом.

1. Земля была целиком расплавлена и в процессе истощения внутренних тепловых ресурсов (радилактивных элементов) постепенно стала остывать. В верхней части образовалась твердая корка. И при уменьшении объема остывшей планеты эта корка ломалась, и формировались складки и другие формы рельефа.

2. Полного плавления вещества на Земле не было. В относительно рыхлой протопланете формировались локальные очаги плавления (этот термин ввел академик Виноградов) на глубине около 100 км.

Постепенно количество радиоактивных элементов уменьшалось, и температура ЛОП снижалась. Из магмы кристализовывались и выпадали на дно первые высокотемпературные минералы. Химический состав этих минералов отличался от состава магмы. Из магмы извлекались тяжелые элементы. И остаточный расплав относительно обогащался легкими. После 1 фазы и дальнейшего понижения температуры из раствора кристализовывалась следующая фаза минералов, также содержащая больше тяжелых элементов. Так происходило постепенное остывание и кристализация ЛОПов. Из первоначального ультраосновного состава магмы образовалась магма основного бальзатового состава.

В верхней части ЛОПа образовывалась флюидная шапка (газово-жидкая). Бальзатовая магма обладала подвижностью и текучестью. Она прорвалась из ЛОПов и излилась на поверхность планеты, сформировав первую жесткую базальтовую корку. Флюидная шапка также прорвалась на поверхность и, смешавшись с остатками превичных газов, сформировала первую атмосферу планеты. В составе первичной атмосферы были окислы азота. Н, Не, инертные газы, СО, СО, НS, HCl, HF, CH, пары воды. Свободного кислорода почти не было. Температура поверхности Земли была около 100 С, жидкой фазы не было. Внутренность довольно рыхлой протопланеты имела температуру близкую к температуре плавления. В этих условиях интенсивно протекалм процессы тепломассопереноса внутри Земли. Они происходили ввиде тепловых конвекционных потоков (ТКП). Особенно важны ТКП, возникающие в поверхностных слоях. Там развивались ячеистые тепловые структуры, которые временами перестраивались в одноячеистую структуру. Восходящие ТКП передавали импульс движения на поверхность планеты (бальзатовая корка), и на ней создавалась зона растяжения. В результате растяжения в зоне подъема ТКП образуется мощный протяженный разлом длиной от 100 до 1000 км. Их назвали рифтовые разломы.

Далее разлом заполняется глубинным бальзатовым веществом, надстраиваются первичные бальзатовые плиты («спрединг»).

Температура поверхности планеты и ее атмосфера остывает ниже 100 С. Из первичной атмосферы конденсируется вода и формируется первичная гидросфера. Ландшафт Земли представляет собой мелководный океан с глубиной до 10 м, с отдельными вулканическими псевдоостровами, обнажающимися во время отливов. Постоянной суши не было.

При дальнейшем понижении температуры ЛОП полностью раскристализовывались и превращались в жесткие кристаллические ядра в недрах довольно рыхлой планеты.

Поверхностный покров планеиы подвергался разрушению со стороны агрессивных атмо- и гидросферы.

В результате всех этих процессов происходило образование магматических, осадочных и метаморфических пород.

Таким образом, гипотезы о происхождении нашей планеты объясняют современные данные о ее строении и положении в Солнечной системе. И освоение космоса, запуски спутников и космических ракет дают много новых фактов для практической проверки гипотез и дальнейшего совершенствования.

2. Строение земли и её оболочек

2.1 Форма и размеры земного шара

Читайте также:  Восстановление зрения после инсульта народными методами

Земля имеет сложную конфигурацию. Ее форма не соответствует ни одной из правильных геометрических фигур. Говоря о форме земного шара, считают, что фигура Земли ограничивается воображаемой поверхностью, совпадающей с поверхностью воды в Мировом океане, условно продолженной под материками таким образом, чтобы отвесная линия в любой точке земного шара была перпендикуляром к этой поверхности. Такую форму называют геоидом, т.е. формой, свойственной только Земле.

Изучение формы Земли имеет довольно длинную историю. Первые предположения о шарообразной форме Земли принадлежат древнегреческому ученому Пифагору (571-497 гг. до н.э.). Однако научные доказательства шарообразности планеты были приведены Аристотелем (384-322 гг. до н.э.), первым объяснившим природу лунных затмений как тень Земли.

В 18 веке И. Ньютон (1643-1727 гг.) рассчитал, что вращение Земли обуславливает отклонение ее формы от точного шара и придает ей некоторцю сплюстнутость у полюсов. Причиной этого является центробежная сила.

Определение размеров Земли тоже издавна занимало умы человечества. Впервые размеры планеты рассчитал александрийский ученый Эратосфен Киренский (около 276-194 гг. до н.э.): по его данным радиус Земли составляет около 6290 км. В 1024-1039 гг. н.э. Абу Рейхан Бируни вычислил радиус Земли, оказавшийся равным 6340 км.

Впервые точное вычисление формы и размеров геоида было произведено в 1940 году А.А. Изотовым. Рассчитанная им фигура названа в честь известного русского геодезиста Ф.Н. Красовского эллипсоидом Красовского. Эти вычисления показали, что фигура Земли представляет собой трехосный эллипсоид и отличается от эллипсоида вращения.

По данным измерений, Земля — сплюснутый с полюсов шар. Экваториальный радиус (большая полуось эллипслида — а) равен 6378 км 245 м, полярный радиус (малая полуось — б) составляет 6356 км 863 м. Разница между экваториальным и полярным радиусами равна 21 км 382 м. Сжатие Земли (отношение разности между а и б к а) составляет (а-б)/а=1/298,3. В тех случаях, когда не требуется большая точность, средний радиус Земли принимают равным 6371 км.

Читайте также:  Что такое цивилизация с точки зрения социологии

Современные измерения показывают, что поверхность геоида несколько превышает 510 млн.км, а объем Земли составляет примерно 1,083 млрд. км. Определение других характеристик Земли — массы и плотности — производится на основании фундаментальных законов физики. Масса Земли равна 5,98•10 т. Значение средней плотности оказалось равным 5,517 г/см.

2.2 Строение Земли и её оболочек

К настоящему времени по сейсмологическим данным в Земле выделяют около десяти границ раздела, свидетельствующих о концентрическом характере ее внутреннего строения. Основными из этих границ являются: поверхность Мохоровичича на глубинах 30-70 км на континентах и на глубинах 5-10 км под дном океана; поверхность Вихерта — Гутенберга на глубине 2900 км. Эти основные границы делят нашу планету на три концентрические оболочки — геосферы:

Земную кору — внешнюю оболочку Земли, расположенную над поверхностью Мохоровичича;

Мантию Земли — промежуточную оболочку, ограниченную поверностями Мохоровичича и Вихерта — Гутенберга;

Ядро Земли — центральное тело нашей планеты, расположеное глубже поверхности Вихерта — Гутенберга.

Кроме основных границ выделяют ряд второстепенных поверхностей внутри геосфер.

Земная кора. Эта геосфера составляет небольшую долю от общей массы Земли.По мощности и составу выделяют три типа земной коры:

1. Континентальная кора характеризуется максимальной мощностью, достигающей 70 км. Она состомт из магматических, метаморфических и осадочных горных пород, которые образуют три слоя. Мощность верхнего слоя (осадочные) обычно не превышает 10-15 км. Ниже залегает гранитно-гнейсовый слой мощностью 10-20 км. В нижней части коры залегает бальзатовый слой мощностью до 40 км.

2. Океаническая кора характеризуется небольшой мощностью — снижающейся до 10-15 км. Она так же состоит из 3 слоев. Верхний, осадочный, не превышает нескольких сот метров. Второй, бальзатовый, общей мощностью 1,5-2 км. Нижний слой океанической коры достигает мощности 3-5 км. В составе данного типа земной коры отсутствует гранитно-гнейсовый слой.

3. Кора переходных областей обычно характерна для периферии крупных континентов, где развиты окраинные моря, имеются архипелаги островов. Здесь происходит замена континентальной коры на океаническую и, естественно, по строению, мощности и плотности пород кора переходных областей занимает промежуточное место между указаными выше двумя типами кор.

Мантия Земли. Эта геосфера является самым крупным элементом Земли — она занимает 83% ее объема и составляет около 66% ее массы. В составе мантии выделяют ряд границ раздела, основными из которых являются поверхности, залегающие на глубинах 410, 950 и 2700 км. По значениям физических параметров эта геосфера делится на две субоболочки:

1. Верхняя мантия (от поверхности Мохоровичича до глубины 950 км).

2. Нижняя мантия (от глубины 950 км до поверхности Вихерта — Гутенберга).

Верхняя мантия в свою очередь подразделяется на слои. Верхний, залегающий от поверхности Мохоровичича до глубины 410 км, называется слоем Гутенберга. Внутри этого слоя выделяют жесткий слой и астеносферу. Земная кора вместе с твердой частью слоя Гутенберга образует единый жесткий слой, лежащий на астеносфере, который называется литосферой.

Ниже слоя Гутенберга залегает слой Голицина. Который иногда называют средней мантией.

Нижняя мантия имеет значительную мощность, почти 2 тыс км, и состоит из двух слоев.

Ядро Земли. Центральная геосфра Земли занимает около 17% ее объема и составляет 34% е массы. В разрезе ядра выделяют две границы — на глубинах 4980 и 5120 км. В связи с чем оно подразделяется на три элемента:

1. Внешнее ядро — от поверхности Вихерта — Гутенберга до 4980 км. Это вещество, находящееся высоких давлений и температур, не является жидкостью в обычном понимании. Но обладает некоторыми ее свойствами.

2. Переходная оболочка — в интерваде 4980-5120 км.

3. Субъядро — ниже 5120 км. Возможно, находится в твердом состоянии.

Химический состав Земли схож с составом других планет земной группы. Преобладают на нашей планете в целом такие элементы как (в порядке убывания): железо, кислород, кремний, магний, никель (рис. справа). Содержание лёгких элементов невелико. Средняя плотность Земли 5,5 г/см 3 .

Различают три оболочки Земли:

· литосфера (кора и самая верхняя часть мантии)

· гидросфера (жидкая оболочка)

· атмосфера (газовая оболочка)

Водой покрыто около 71% поверхности Земли, средняя её глубина примерно 4 км.

Гидросфера (от др.-греч. ?дщс — вода и уцб?сб — шар) — совокупность всех водных запасов Земли.

Наличие жидкой воды на поверхности Земли является уникальным свойством, которое отличает нашу планету от других объектов Солнечной системы. Бомльшая часть воды сосредоточена в океанах и морях, значительно меньше — в речных сетях, озёрах, болотах и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара.

Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, слагая криосферу.

Общая масса воды в Мировом океане примерно составляет 1,35·10 18 тонн, или около 1/4400 от общей массы Земли. Океаны покрывают площадь около 3,618·10 8 км 2 со средней глубиной 3682 м, что позволяет вычислить общий объём воды в них: 1,332·10 9 км 3 . Если всю эту воду равномерно распределить по поверхности, то получился бы слой толщиной более 2,7 км. Из всей воды, которая есть на Земле, только 2,5 % приходится на пресную, остальная — солёная. Бомльшая часть пресной воды, около 68,7 %, в настоящее время находится в ледниках. Жидкая вода появилась на Земле, вероятно, около четырёх миллиардов лет назад.

Средняя солёность земных океанов — около 35 грамм соли на килограмм морской воды (35 ‰). Значительная часть этой соли была высвобождена при вулканических извержениях или извлечена из охлаждённых изверженных горных пород, сформировавших дно океана.

В океанах содержатся растворённые газы атмосферы, которые необходимы для выживания многих водных форм жизни. Морская вода имеет значительное влияние на климат в мире, делая его прохладнее летом, и теплее — зимой. Колебания температур воды в океанах могут привести к значительным изменениям климата, например, Эль-Ниньо.

Атмосфера (от. др.-греч. ?фмьт — пар и уцб?сб — шар) — газовая оболочка, окружающая планету Земля; состоит из азота и кислорода, со следовыми количествами водяного пара, диоксида углерода и других газов. С момента своего образования она значительно изменилась под влиянием биосферы. Появление оксигенного фотосинтеза 2,4-2,5 млрд лет назад способствовало развитию аэробных организмов, а также насыщению атмосферы кислородом и формированию озонового слоя, который оберегает всё живое от вредных ультрафиолетовых лучей. Атмосфера определяет погоду на поверхности Земли, защищает планету от космических лучей, и частично — от метеоритных бомбардировок. Она также регулирует основные климатообразующие процессы: круговорот воды в природе, циркуляцию воздушных масс, переносы тепла. Молекулы атмосферных газов могут захватывать тепловую энергию, мешая ей уйти в открытый космос, тем самым повышая температуру планеты. Это явление известно как парниковый эффект. Основными парниковыми газами считаются водяной пар, двуокись углерода, метан и озон. Без этого эффекта теплоизоляции средняя поверхностная температура Земли составила бы от ?18 до ?23 °C (при том, что в действительности она равна 14,8 °С), и жизнь скорее всего не существовала бы.

Через атмосферу к земной поверхности поступает электромагнитное излучение Солнца — главный источник энергии химических, физических и биологических процессов в географической оболочке Земли.

Атмосфера Земли разделяется на слои, которые различаются между собой температурой, плотностью, химическим составом и т. д. Общая масса газов, составляющих земную атмосферу — примерно 5,15·10 18 кг. На уровне моря атмосфера оказывает на поверхность Земли давление, равное 1 атм (101,325 кПа). Средняя плотность воздуха у поверхности — 1,22 г/л, причём она быстро уменьшается с ростом высоты: так, на высоте 10 км над уровнем моря она составляет 0,41 г/л, а на высоте 100 км — 10 ?7 г/л.

В нижней части атмосферы содержится около 80 % общей её массы и 99 % всего водяного пара (1,3-1,5·10 13 т), этот слой называется тропосферой. Его толщина неодинакова и зависит от типа климата и сезонных факторов: так, в полярных регионах она составляет около 8-10 км, в умеренном поясе до 10-12 км, а в тропических или экваториальных доходит до 16-18 км. В этом слое атмосферы температура опускается в среднем на 6 °С на каждый километр при движении в высоту. Выше располагается переходный слой — тропопауза, отделяющий тропосферу от стратосферы. Температура здесь находится в пределах 190-220 K.

Стратосфера — слой атмосферы, который расположен на высоте от 10-12 до 55 км (в зависимости от погодных условий и времени года). На него приходится не более 20 % всей массы атмосферы. Для этого слоя характерно понижение температуры до высоты

25 км, с последующим повышением на границе с мезосферой почти до 0 °С. Эта граница называется стратопаузой и находится на высоте 47-52 км. В стратосфере отмечается наибольшая концентрация озона в атмосфере, который оберегает все живые организмы на Земле от вредного ультрафиолетового излучения Солнца. Интенсивное поглощение солнечного излучения озоновым слоем и вызывает быстрый рост температуры в этой части атмосферы.

Мезосфера расположена на высоте от 50 до 80 км над поверхностью Земли, между стратосферой и термосферой. Она отделена от этих слоёв мезопаузой (80-90 км). Это самое холодное место на Земле, температура здесь опускается до ?100 °C. При такой температуре вода, содержащаяся в воздухе, быстро замерзает, иногда формируя серебристые облака. Их можно наблюдать сразу после захода Солнца, но наилучшая видимость создаётся, когда оно находится от 4 до 16° ниже горизонта. В мезосфере сгорает бомльшая часть метеоритов, проникающих в земную атмосферу. С поверхности Земли они наблюдаются как падающие звёзды. На высоте 100 км над уровнем моря находится условная граница между земной атмосферой и космосом — линия Кармана.

В термосфере температура быстро поднимается до 1000 К, это связано с поглощением в ней коротковолнового солнечного излучения. Это самый протяжённый слой атмосферы (80-1000 км). На высоте около 800 км рост температуры прекращается, поскольку воздух здесь очень разрежён и слабо поглощает солнечную радиацию.

Ионосфера включает в себя два последних слоя. Здесь происходит ионизация молекул под действием солнечного ветра и возникают полярные сияния.

Экзосфера — внешняя и очень разреженная часть земной атмосферы. В этом слое частицы способны преодолевать вторую космическую скорость Земли и улетучиваться в космическое пространство. Это вызывает медленный, но устойчивый процесс, называемый диссипацией (рассеянием) атмосферы. В космос ускользают в основном частицы лёгких газов: водорода и гелия. Молекулы водорода, имеющие самую низкую молекулярную массу, могут легче достигать второй космической скорости и утекать в космическое пространство более быстрыми темпами, чем другие газы. Считается, что потеря восстановителей, например водорода, была необходимым условием для возможности устойчивого накопления кислорода в атмосфере. Следовательно, свойство водорода покидать атмосферу Земли, возможно, повлияло на развитие жизни на планете. В настоящее время бомльшая часть водорода, попадающая в атмосферу, преобразуется в воду, не покидая Землю, а потеря водорода происходит в основном от разрушения метана в верхних слоях атмосферы.

Заключение

Повышение температуры поверхности Земли ускорит неорганическую циркуляцию CO2, уменьшив его концентрацию до смертельного для растений уровня (10 ppm для C4-фотосинтеза) за 500-900 млн лет. Исчезновение растительности приведёт к снижению содержания кислорода в атмосфере и жизнь на Земле станет невозможной за несколько миллионов лет. Ещё через миллиард лет вода с поверхности планеты исчезнет полностью, а средние температуры поверхности достигнут 70 °С. Бомльшая часть суши станет непригодна для существования жизни, и она в первую очередь должна остаться в океане. Но даже если бы Солнце было вечно и неизменно, то продолжающееся внутреннее охлаждение Земли могло бы привести к потере большей части атмосферы и океанов (из-за снижения вулканической активности). К тому времени единственными живыми существами на Земле останутся экстремофилы, организмы, способные выдерживать высокую температуру и недостаток воды.

Спустя 3,5 миллиарда лет от настоящего времени светимость Солнца увеличится на 40 % по сравнению с современным уровнем. Условия на поверхности Земли к тому времени будут схожи с поверхностными условиями современной Венеры: океаны полностью испарятся и улетучатся в космос, поверхность станет бесплодной раскалённой пустыней. Эта катастрофа сделает невозможным существование каких-либо форм жизни на Земле. Через 7,05 млрд. лет в солнечном ядре закончатся запасы водорода. Это приведёт к тому, что Солнце сойдёт с главной последовательности и перейдёт в стадию красного гиганта. Модель показывает, что оно увеличится в радиусе до величины, равной примерно 120% нынешнего радиуса орбиты Земли (1,2 а. е.), а его светимость возрастет в 2350-2730 раз. Однако к тому времени орбита Земли может увеличиться до 1,4 а. е., поскольку ослабнет притяжение Солнца из-за того, что оно потеряет 28-33 % своей массы вследствие усиления солнечного ветра. Однако существует вероятность, что Земля, возможно, всё-таки будет поглощена Солнцем вследствие приливных взаимодействий с его внешней оболочкой.

Список использованной литературы

2. Еськов К.Ю. Удивительная палеонтология: История Земли и жизни на ней. — М.: Изд-во ЭНАС, 2008.

3. Левин Б.Ю. Происхождение Земли. «Изв. АН СССР Физика Земли», 1972, № 7.

4. Макдугалл Дж.Д. Краткая история планеты Земля. Горы, животные, огонь и лед. — М.: Изд-во Амфора, 2001.

5. Проблемы современной космогонии. / под ред. В.А. Амбарцумяна, 2-е изд. — М.: Наука, 1972.

6. Сафронов В.С. Эволюция допланетного облака и образование Земли и планет. — М.: Наука, 1969.

7. Хейзен Р. История Земли. — М.: Изд-во Альпина Нон-фикшн, 2015

8. Шмидт О.Ю. Четыре лекции о теории происхождения Земли. 3-е изд. — М.: Изд-во АН СССР, 1957.

Размещено на Allbest.ur

Подобные документы

Биосфера — одна из геологических оболочек земного шара. Материально–энергетические процессы и свойства биосферы, человечество как ее составная часть. Средообразующие свойства и биосферно-геологические функции живых организмов в глобальной системе Земли.

реферат [44,4 K], добавлен 17.09.2015

Химическая формула и свойства озона. Роль атмосферного и тропосферного озона в защите живых организмов от действия ультрафиолетового излучения. Дыры в озоновом слое Земли, гипотезы об их происхождении. Международные конвенции по охране озонового слоя.

реферат [23,8 K], добавлен 20.01.2015

Определение понятия «биосфера». Ознакомление с основными процессами развития активной оболочки Земли, образованной частями геологических оболочек Земли, заселенных живыми организмами. Свойства живого вещества. Учение о биосфере В.И. Вернадского.

презентация [2,5 M], добавлен 19.02.2015

Компоненты радиационного фона Земли. Состав космического излучения. Космогенные радионуклиды. Радиоактивные изотопы, изначально присутствующие на Земле. Характеристика и параметры внешнего и внутреннего облучения от радионуклидов земного происхождения.

контрольная работа [181,4 K], добавлен 13.04.2009

Почвенный покров как тонкая, самая поверхностная часть континентов земного шара, которая обеспечивает круговорот веществ и энергии на поверхности Земли. Виды и основные факторы загрязнения почвы. Анализ экологического состояния почв в Санкт-Петербурге.

контрольная работа [28,0 K], добавлен 28.07.2013

Литосфера как внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли. Особенности верхней мантии и строения литосферы. Характеристика радиоактивных отходов. Понятие мусорной цивилизации и рекультивации земель.

презентация [1,2 M], добавлен 11.02.2011

Биосфера как одна из оболочек Земли, ее состав и границы. Источники и основные группы загрязняющих веществ атмосферы России. Роль животных в самоочистке воды и водных экосистемах. Виды мониторинга окружающей среды. Первые договоры по охране природы.

контрольная работа [30,1 K], добавлен 19.02.2011

Развитие теорий возникновения живых организмов на Земле. Суть панспермии, самопроизвольного неоднократного зарождения, гипотезы стационарного состояния, эволюции и креационизма. Противоречия между теологическим и «научным» объяснением сотворения жизни.

реферат [15,8 K], добавлен 13.12.2011

Изучение строения и состава литосферы как твёрдой оболочки Земли: земная кора, мантия, литосферные плиты. Понятие ареала обитания организма и анализ факторов, определяющих его протяженность. Пути сокращения сбросов загрязняющих веществ в водные объекты.

контрольная работа [20,8 K], добавлен 07.12.2012

Использование водных ресурсов. Загрязнение водных ресурсов. Гидросфера – водная оболочка Земли, включающая океаны, моря, реки, озера, подземные воды и ледники, снеговой покров, а также водяные пары в атмосфере. Распределение водных масс в гидросфере Земли

реферат [280,9 K], добавлен 07.12.2004

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Источники:
  • http://shtorm777.ru/proisxozhdenie-zemli.html
  • http://www.polnaja-jenciklopedija.ru/planeta-zemlya/proishozhdenie-zemli.html
  • http://ecoportal.info/proisxozhdenie-zemli/
  • http://geographyofrussia.com/gipoteza-proisxozhdeniya-zemli-i-solnechnoj-sistemy/
  • http://revolution.allbest.ru/ecology/00745425_0.html