Меню Рубрики

Нефть химический состав с химической точки зрения

Нефть — один из представителей класса жидких полезных ископаемых (помимо нее в него входит еще артезианская вода). Свое название она получила от персидского «нефт». Вместе с озокеритом и природным газом образует группу полезных ископаемых, называемых петролиты.

Это жирная, маслянистая субстанция, цвет и плотность которой варьируется в зависимости от места добычи. Она может быть ярко зеленая или вишнево-красная, желтая, коричневая, черная, а в редких случаях — бесцветная. Текучесть нефти тоже сильно различается: одна будет как вода, другая — вязкой. Но что роднит между собой столь разные по физическим свойствам вещества, так это их химический состав, который всегда представляет собой сложную смесь углеводородов. За прочие свойства отвечают примеси — серы, азота и других соединений, из которых запах зависит преимущественно от наличия ароматических углеводородов и соединений серы.

Название главной составляющей нефти — «углеводороды» исчерпывающе говорит о ее составе. Это вещества, состоящие из атомов углерода и водорода, чья общая формула записывается как СхНу. Простейшим представителем этого ряда является метан CH4, присутствующий в любой нефти.

Элементарный состав среднестатистической нефти можно представить в процентном виде:

Основные физико-химические свойства нефти и ее состав

Физические и химические свойства, природа происхождения нефти давно интересует ученых. Благодаря успешному изучению физико-химических свойств нефти, человечество получило возможность открывать новые месторождения этого полезного ископаемого, находить ему новое применение и получать максимальный эффект от использования.

Характеристика нефти в глубинных пластах и на поверхности земли сильно отличаются, так как в первом случае она подвергается воздействию экстремальной температуры и высокого давления.

Хотя сегодня мало кто сомневается в органической природе нефтепродуктов, сторонники их минерального происхождения не сдаются. Родоначальником теории о неорганической природе нефти является Д. И. Менделеев. На основе состава нефти он выдвинул гипотезу об ее минеральном происхождении и вывел химическую формулу, согласно которой под воздействием высокой температуры на больших глубинах земли может происходить процесс синтеза углеводородов в результате взаимодействия воды и карбида металлов.

Позднее немецкий ученый К. Шорлеммар, изучая нефть и ее свойства, обнаружил в составе образцов из Пенсильванских месторождений предельные углероды метанового ряда. В 1861 году А. М. Бутлеров представил подробное разъяснение о строении углеводородов, составе и физических свойствах нефти.

Химический состав и формула

В этом разделе рассматриваются основные химические свойства нефти. Постараемся узнать, имеется ли определенная химическая формула нефти. Предельно важными характеристиками для исследования являются: элементарный, фракционный и углеводородный состав нефти.

Начиная изучать химический состав нефти, исходим из ее определения. Нефть – это смесь углеводородов, молекулы которых содержат в своем составе примеси кислорода, серы, азота с чистыми углеводородами (т.е. не содержащими примеси других химических элементов).

Фракционный состав

Качественные показатели сырья определяются лабораторным путем при ее ректификации. Этот процесс основан на разделении первичного сырья на фракции при нагревании. Каждая фракция имеет определенную температуру кипения, после которой она начинает испаряться. Различают следующие виды фракций:

  • Легкие. К таковым относят петролейные и бензиновые фракции с предельной температурой выкипания до 140 °С (при атмосферном давлении).
  • Средние. Их получают путем перегонки при атмосферном давлении. К этим нефтям относят керосиновые, дизельные, лигроиновые фракции, выкипающие в диапазоне температур от 140 до 350 °С.
  • Тяжелые. Подлежат только вакуумной перегонке. При температуре 350-500 °С получают вакуумный газойль, более 500 °С – гудрон.

Легкие и средние фракции относятся к светлым дистиллятам, тяжелые фракции называют мазутом. Обычная нефть содержит 31 % бензина, 10 % керосина, 15 % дизельного топлива, 20 % масел, 24 % мазута.

Групповой углеводородный состав

Согласно исследованиям групповой состав нефти можно выразить тремя большими соединениями углеводородов:

Предельные углеводороды

Очень часто их называют метановыми из-за простого строения, а химическое название группы – алканы. Формула метана по структуре напоминает амебу – в качестве ядра выступает атом углерода, роль протоплазмы играют 4 атома водорода. Цепочку структуры алканов нормального строения можно выразить по формуле CnH2n+2, т.е. каждый последующий углеводород будет иметь больше предыдущего на 1 атом углерода, окруженный оболочкой из атомов водорода. Представители этого ряда встречаются как в газообразном виде – СН4-С4Н10, так и в жидком состоянии – С5Н12-С17Н36. Начиная с С18Н38, углеводороды обретают вид кристалла, входящего в состав парафина. Отсюда происходит их название – парафиновые углеводороды.

Наличие изомеров можно назвать их отличительной особенностью. Начиная с 4-го по порядку члена, углеводороды имеют одинаковые формулы, но отличаются по строению молекул. При этом главный член ряда построен в виде несложной цепочки, а изомеры имеют ветвистую цепь.

Изомеры отличаются от нормальных углеводородов по структуре, а также по прочности связей, что приводит к отличию и в свойствах. У них более низкая температура плавления и кипения. Разнообразие этих углеводородов вызывает повышенный интерес к ним, главным образом, из-за возможности создания новых видов топлива, а также схожестью некоторых изомеров с органическими веществами по строению. Сегодня лучшие бензины получают из изомеров. Несмотря на это изомеры остаются не изученными до конца, так как 11-й член ряда имеет 159 видов, 18-й (октодекан) – более 60 тысячи разновидностей изомеров.

Непредельные углеводороды

Они имеют структуру по формуле CnH2n. Они представляют собой циклические насыщенные углеводороды, у молекул которых не достает 2-х атомов водорода. Эти углеводороды называются нафтеновыми кислотами или алкенами. В природной нефти они отсутствуют, их образование связано со вторичной обработкой сырья. Нафтены могут иметь несколько колец. Этим объясняется название полициклических аренов (ароматических углеводородов) со структурными формулами CnH2n2, CnH2n_4. Эта группа углеводородов имеет и другое название – циклопарафины в связи с тем, что их кольца способны удерживать вокруг себя цепочки метановых углеводородов. Этим вызваны их большая плотность, высокая температура кипения и плавления в сравнении с метановыми углеводородами. Циклопарафины легко вступают во взаимодействие с галогенами и кислородом. В обычных условиях они находятся в жидком состоянии.

Ароматические углеводороды

Название этих углеводородов происходит из греческого «арома», т.е. пахучее вещество. Их структурная формула представлена в виде CnH2n-m, где m – четное число. Характерным представителем этих углеводородов является бензол – С6Н6 и его гомологи (производные). В ароматических углеводородах имеет место сильный дефицит атомов водорода. Несмотря на это они химически не активны, в нормальных условиях находятся в жидком состоянии с температурой застывания от -25 до -88 °С.

От соотношения этих 3-х групп углеводородов происходит название нефти: метановый, нафтеновый или ароматический. Возможно и комбинированное название, если в составе нефти к преобладающей группе имеется не менее 25% другого углеводорода. Например, метанонафтеновый бензин.

Хотя существует множество видов углеводородов, элементарный состав нефти не отличается многообразием. Элементный состав нефти состоит из следующих компонентов:

  • углерода – 83-87%;
  • водорода – 11-14%;
  • смолисто-асфальтовых веществ – 2-6%.

Последние из перечисленного компонентного состава нефти представляют собой органические соединения углерода, водорода, серы, азота и различных металлов. К ним можно отнести нейтральные смолы, асфальтены, карбены и карбоиды.

При сгорании нефти образуется зола, но на ее долю приходится сотые доли процента. Она состоит из оксидов различных металлов. В нефти имеется небольшое количество сероводорода. Взаимодействуя с металлами, сера вызывает очень сильную коррозию. Она имеет резкий запах. Различают несколько групп нефти по содержанию серы: несернистые (до 0,2 %), малосернистые (0,2 — 1,0 %), сернистые (1,0 — 3,0 %), высокосернистые (более 3 %). Азот является безвредной и инертной примесью, его доля составляет не более 1,7 %.

Физические свойства

Различают следующие основные физические свойства нефти: плотность, вязкость, сжимаемость и другие.

Плотность определяется как соотношение массы к объему. Различают легкую и тяжелую нефть, в зависимости от того по какую сторону она находится от плотности 900 кг/м3. Газовые конденсаты, бензин, керосин относятся к легкой, а мазут к тяжелой нефти.

Электрические свойства

Рассматривая электрические свойства нефти необходимо отметить, что во многом они зависят от ее состава. Безводная нефть является диэлектриком, парафины могут выступать в качестве изоляторов, а некоторые масла годятся для заливки трансформаторов. Она также способна удерживать и накапливать электрические заряды, возникающие от ее трения об стенки резервуаров. Эту способность можно отнести к вредным и опасным свойствам нефти, создающим угрозу возникновения пожара от малейшей искры.

Кроме того, определенный интерес вызывают реологические свойства нефти. При определенных условиях некоторые ее виды обладают свойством самопроизвольного повышения прочности с течением времени. К таковым можно отнести нефть с большим содержанием парафинов и асфальто-смолистых веществ. Неньютоновская жидкость не обладает реологическими свойствами.

Вязкость нефти

Вязкость нефти определяется ее подвижностью, т.е. способностью сопротивляться перемещению частиц относительно друг друга. Другим словом, вязкость это свойство, которое отвечает на вопрос, какое ее свойство используют в первую очередь, перекачивая по нефтепроводу. Различают динамическую и кинематическую вязкость. Первая из них зависит от времени и измеряется в паскалях секундах. Кинематическая вязкость характеризует ее изменение в зависимости от температуры.

Все о нефти

ЧТО ТАКОЕ НЕФТЬ?

Нефть — полезное ископаемое, представляющее из себя маслянистую жидкость. Это горючее вещество, часто черного цвета, хотя цвета нефти в разных районах различаются. Она может быть и коричневой, и вишневой, зеленой, желтой, и даже прозрачной. С химической точки зрения нефть — это сложная смесь углеводородов с примесью различных соединений, например, серы, азота и других. Ее запах также может быть различным, так как зависит от присутствия в ее составе ароматических углеводородов, сернистых соединений.

Углеводороды, из которых состоит нефть, — это химические соединения состоящие из атомов углерода (C) и водорода (H). В общем виде формула углеводорода — CxHy. Простейший углеводород, метан, имеет один атом углерода и четыре атома водорода, его формула — CH4 (схематично он изображен справа). Метан — легкий углеводород, всегда присутствует в нефти.

В зависимости от количественного соотношения различных углеводородов, составляющих нефть, ее свойства также различаются. Нефть бывает прозрачной и текучей как вода. А бывает черной и настолько вязкой и малоподвижной, что не вытекает из сосуда, даже если его перевернуть.

С химической точки зрения обычная (традиционная) нефть состоит из следующих элементов:

  • Углерод – 84%
  • Водород – 14%
  • Сера – 1-3% (в виде сульфидов, дисульфидов, сероводорода и серы как таковой)
  • Азот – менее 1%
  • Кислород – менее 1%
  • Металлы – менее 1% (железо, никель, ванадий, медь, хром, кобальт, молибден и др.)
  • Соли – менее 1% (хлорид кальция, хлорид магния, хлорид натрия и др.)

Нефть (и сопутствующий ей углеводородный газ) залегает на глубинах от нескольких десятков метров до 5-6 километров. При этом на глубинах 6 км и ниже встречается только газ, а на глубинах 1 км и выше — только нефть. Большинство продуктивных пластов находятся на глубине между 1 и 6 км, где нефть и газ встречаются в различных сочетаниях.

Залегает нефть в горных породах называемых коллекторами. Пласт-коллектор — это горная порода способная вмещать в себе флюиды, т.е. подвижные вещества (это могут быть нефть, газ, вода). Упрощенно коллектор можно представить как очень твердую и плотную губку, в порах которой и содержится нефть.

ПРОИСХОЖДЕНИЕ НЕФТИ

Образование нефти – процесс весьма и весьма длительный. Он проходит в несколько стадий и занимает по некоторым оценкам 50-350 млн. лет.

Наиболее доказанной и общепризнанной на сегодняшний день является теория органического происхождения нефти или, как ее еще называют, биогенная теория. Согласно этой теории нефть образовалась из останков микроорганизмов, живших миллионы лет назад в обширных водных бассейнах (преимущественно на мелководье). Отмирая, эти микроорганизмы образовывали на дне слои с высоким содержанием органического вещества. Слои, постепенно погружаясь все глубже и глубже (напомню, процесс занимает миллионы лет), испытывали воздействие усиливающегося давления верхних слоев и повышения температуры. В результате биохимических процессов, происходящих без доступа кислорода, органическое вещество преобразовывалось в углеводороды.

Часть образовавшихся углеводородов находилась в газообразном состоянии (самые легкие), часть в жидком (более тяжелые) и какая-то часть в твердом. Соответственно подвижная смесь углеводородов в газообразном и жидком состоянии под воздействием давления постепенно двигалась сквозь проницаемые горные породы в сторону меньшего давления (как правило, вверх). Движение продолжалось до тех пор, пока на их пути не встретилась толща непроницаемых пластов и дальнейшее движение оказалось невозможным. Это так называемая ловушка, образуемая пластом-коллектором и покрывающим ее непроницаемым пластом-покрышкой (рисунок справа). В этой ловушке смесь углеводородов постепенно скапливалась, образовывая то, что мы называем месторождением нефти. Как видите, месторождение на самом деле не является местом рождения. Это скорее местоскопление. Но, как бы там ни было, практика названий уже сложилась.

Поскольку плотность нефти, как правило, значительно меньше плотности воды, которая в ней всегда присутствует (свидетельство ее морского происхождения), нефть неизменно перемещается вверх и скапливается выше воды. Если присутствует газ, он будет на самом верху, выше нефти.

В некоторых районах нефть и углеводородный газ, не встретив на своем пути ловушку, выходили на поверхность земли. Здесь они подвергались воздействию различных поверхностных факторов, в результате чего рассеивались и разрушались.

ИСТОРИЯ НЕФТИ

Нефть известна человеку с древнейших времен. Люди уже давно обратили внимание на черную жидкость, сочившуюся из-под земли. Есть данные, что уже 6500 лет назад люди, жившие на территории современного Ирака, добавляли нефть в строительный и цементирующий материал при строительстве домов, чтобы защитить свои жилища от проникновения влаги. Древние египтяне собирали нефть с поверхности воды и использовали ее в строительстве и для освещения. Нефть также использовалась для герметизации лодок и как составная часть мумифицирующего вещества.

Во времена древнего Вавилона на Ближнем Востоке велась довольно интенсивная торговля этим «черным золотом». Некоторые города уже тогда буквально вырастали на торговле нефтью. Одно из семи чудес света, знаменитые Висячие сады Серамиды (по другой версии — Висячие сады Вавилона), также не обошлись без использования нефти в качестве герметизирующего материала.

Не везде нефть собирали только с поверхности. В Китае более 2000 лет назад при помощи стволов бамбука с металлическим наконечником бурили небольшие скважины. Изначально скважины предназначались для добычи соленой воды, из которой извлекалась соль. Но при бурении на бОльшую глубину из скважин добывали нефть и газ. Неизвестно нашла ли нефть применение в древнем Китае, известно только, что газ поджигали для выпаривания воды и извлечения соли.

Примерно 750 лет назад известный путешественник Марко Поло в описании своих путешествий на Восток упоминает использование нефти жителями Апшеронского полуострова в качестве лекарства от кожных болезней и топлива для освещения.

Первые упоминания о нефти на территории России относятся к XV веку. Нефть собирали с поверхности воды на реке Ухта. Также как и другие народы, здесь ее использовали в качестве лекарственного средства и для хозяйственных нужд.

Хотя, как мы видим, нефть была известна с древнейших времен, она находила довольно ограниченное применение. Современная история нефти начинается с 1853 года, когда польский химик Игнатий Лукасевич изобрел безопасную и удобную в обращении керосиновую лампу. Он же по данным некоторых источников открыл способ извлекать из нефти керосин в промышленных масштабах и основал в 1856 году нефтеперегонный завод в окрестностях польского города Ulaszowice.

Еще в 1846 году канадский химик Абрахам Геснер придумал, как получать керосин из угля. Но нефть позволяла получать более дешевый керосин и в гораздо большем количестве. Растущий спрос на керосин, использовавшийся для освещения, породил спрос на исходный материал. Так было положено начало нефтедобывающей промышленности.

По данным некоторых источников первая в мире нефтяная скважина была пробурена в 1847 году в районе города Баку на берегу Каспийского моря. Вскоре после этого в Баку, входящем в то время в состав Российской империи, было пробурено столько нефтяных скважин, что его стали называть Черный город.

Тем не менее, рождением российской нефтяной промышленности принято считать 1864 год. Осенью 1864 года в Кубанской области был осуществлен переход от ручного способа бурения нефтяных скважин к механическому ударно-штанговому с использованием паровой машины в качестве привода бурового станка. Переход к этому способу бурения нефтяных скважин подтвердил свою высокую эффективность 3 февраля 1866 года, когда было закончено бурение скважины 1 на Кудакинском промысле и из нее забил фонтан нефти. Это был первый в России и на Кавказе фонтан нефти.

Читайте также:  Освоение европейцами америки с точки зрения горожанина

Датой начала промышленной мировой нефтедобычи, по данным большинства источников, принято считать 27 августа 1859 года. Это день, когда из пробуренной «полковником» Эдвином Дрейком первой в США нефтяной скважины был получен приток нефти с зафиксированным дебитом. Эта скважина глубиной 21,2 метра была пробурена Дрейком в городе Тайтусвиль, штат Пенсильвания, где бурение водяных скважин часто сопровождалось проявлениями нефти.

Новость об открытии нового источника нефти с помощью бурения скважины разнеслась по округе Тайтусвиля со скоростью лесного пожара. К тому времени переработка, опыт обращения с керосином и подходящий тип лампы для освещения уже были отработаны. Бурение нефтяной скважины позволило получить достаточно дешевый доступ к необходимому сырью, дополнив, таким образом, последний элемент в зарождение нефтяной отрасли.

Химическая формула нефти и описание составляющих

Нефть является природным полезным ископаемым, которое представляет собой маслянистую горючую жидкость, нередко – черного цвета, хотя встречаются нефти и других цветовых оттенков (коричневого, вишневого, зеленоватого, желтоватого и прозрачного). Её добывают с помощью такой горной выработки, как нефтяная скважина, для формирования которой применяется бурение горных пород.

По своему химическому составу нефть представляет собой сложную смесь углеводородов с различными примесями. В её состав включены соединения таких хим. элементов, как сера, азот и так далее.

Запах этого хим. вещества также различается, в зависимости от содержания в нем сернистых соединений и углеводородов ароматической группы.

Из чего состоит нефть? Хим. состав нефти

Нефть состоит из углеводородов, которые с химической точки зрения представляют собой соединения атомов углерода и водорода. В общем виде нефть – формула, описываемая как CxHy.

К примеру, такой самый простой углеводород, как метан, состоит из одного атома углерода, связанного с четырьмя атомами водорода. Другими словами, формула метана – CH4. Он относится к так называемым легким углеводородам и всегда есть в составе любой нефти.

В зависимости от того, какова концентрация в этом веществе различных видов углеводородных соединений, хим. и физические свойства нефти могут быть различны. Другими словами, компоненты нефти влияют на её свойства и внешний вид. Она может быть как текучей и прозрачной, так и черной и малоподвижной, причем настолько, что из-за высокой вязкости не выливается даже из перевернутого из сосуда.

Хим. состав обычной нефти представлен следующими хим. элементами:

  • углеродом (около 84-х процентов);
  • водородом на уровне 14-ти процентов;
  • серой и её соединениями в количестве от одного до трех процентов (сульфиды, дисульфиды, сероводород и сама сера);
  • азотом, доля которого – меньше процента;
  • кислородом (также меньше 1-го %);
  • различными металлами, общая концентрация которых также меньше 1 % (железо, ванадий, никель, хром, медь, молибден, кобальт и так далее);
  • различными солями, доля которых также менее процента (например, хлоридом кальция, хлоридом магния, хлоридом натрия и прочими).

Нефть и сопутствующий ей, как правило, углеводородный газ могут залегать на глубине от десятков метров до пяти-шести километров. Стоит сказать, что при глубине залегания более шести километров находят только газ, а если глубина залегания продуктивного слоя менее одного километра, то встречается только нефть. В основном продуктивные пласты находятся глубже одного, но выше шести километров, и там бывают как нефтеносные, так и газоносные слои.

Породы, в которых залегает углеводородное сырье, называются коллекторы. Если описать коллектор простыми словами, то нефть как бы находится в плотной и твердой губке, состоящей из нефтеносных слоев различной пористости.

Общая химическая структура нефти

Состав и свойства нефти оказывают большое влияние на её дальнейшую переработку. Содержание углеводорода в нефти может варьироваться от 83-х до 87-ми процентов, водорода – от 12-ти до 14-ти %, а содержание серы колеблется в районе 1-го – 3-х %. Эту сложную химическую смесь в основном представляют различные соединения углерода и водорода: парафиновые, нафтеновые и ароматические.

Основные компоненты нефти – это углеводородные соединения, которые бывают следующих видов:

Парафиновые углеводороды

Этот компонент нефти имеет и другое название – алканы. Общая химическая формула – СnН2n+ 2.

Если в парафинах менее четырех атомов углерода, то это – газы, известные нам как этан, метан, бутан. пропан, изобутан. Их отличает высокий показатель детонационной стойкости. Другими словами, их октановое число (если считать по моторному методу) – более 100.

Если в таких углеводородах от пяти до пятнадцати углеродных атомов, то это – жидкости. Если атомов углерода больше 15-ти, то это – твердые вещества.

В различных видах топлива и смазочных материалов концентрация алканов весьма высока, вследствие чего для этих нефтепродуктов характерна высокая стабильность. Для автомобильных бензинов высокого качества крайне желательно наличие в их составе изопарафиновых соединений, поскольку они весьма устойчивы к кислородному воздействию в условиях высоких температур.

Наличие в составе топлива нормальных парафинов, которые при высоких температурных значениях легко окисляются, значительно уменьшает уровень детонационной стойкости бензина, однако одновременно уменьшает время, которое проходит с момента подачи бензина в двигатель внутреннего сгорания до воспламенения топливной смеси, а это позволяет наращивать давление более плавно, что благотворно влияет на работу двигателя. В связи с этим наличие нормальных парафиновых соединений желательно в более тяжелом дизельном топливе, хотя в его зимних сортах количество таких парафинов ограничивается.

Углеводороды нафтеновой группы

Другое название – цикланы. Представляют собой насыщенные циклические углеводородные соединения, общая формула которых выглядит как СnН2n. В нефти цикланы представлены как циклопентан(С5Н10) и циклогексан(С6Н12 ).

Благодаря своему циклическому строению, цикланы отличаются высокой химической прочностью. Углеводороды нафтеновой группы при сгорании выделяют меньше теплоты (если сравнивать их с парафиновыми соединениями), однако также обладают высокой детонационной стойкостью. В связи с этим желательно их присутствие в топливах, используемых в карбюраторных двигателях, а также и зимних сортах дизтоплива.

Смазочные нефтепродукты, содержащие нафтеновые углеводороды, более вязкие и маслянистые.

Ароматические углеводороды

Другое название – арены. Их эмпирическая формула – СnН2n6. В нефти они представлены как бензол (формула С6Н6 ) и его гомологи.

Благодаря высокому показателю своей термической устойчивости, арены являются желательными компонентами в карбюраторных топливах, октановое число которых должно быть как можно выше. Однако, поскольку арены обладают высокой нагарообразующей способностью, их содержание в бензинах допустимо до отметки 40 – 45 процентов.

Из-за своей высокой термической стабильности наличие аренов в дизельных видах топлива нежелательно.

Непредельные углеводороды

Другое название – олефины. В сырой нефти они не содержатся, а образуются во время нефтепереработки. Непредельные углеводородные соединения – это важнейшее сырье, необходимое для получения топлива с помощью нефтехимических методов и основным органическим синтезом.

Общая эмпирическая формула таких углеводородов – СnН2n (к примеру, С2Н4 – это всем известный этилен).

Низкий уровень химической стойкости олефинов негативно сказывается на практической эксплуатации нефтепродуктов, поскольку снижает уровень их стабильности. К примеру, бензины, получаемые с помощью термического крекингового процесса, в результате окисления содержащихся в них олефинов осмоляются в процессе хранения и загрязняют карбюраторные жиклеры и впускные трубопроводы. Другими словами, присутствие олефиновых соединений в любых видах нефтепродуктов нежелательно.

Соединения серы

На большом числе месторождений добывают сернистую или высокосернистую нефть.

При переработке такого сырья необходимы дополнительные затраты, поскольку увеличение концентрации серы в бензине с 0,033 до 0,15 процентов приводит к:

  • снижению мощности двигателя на 10,5 процентов;
  • увеличению расхода топлива на 12 процентов;
  • возрастанию количества необходимых капремонтов вдвое.

Помимо этого, того, сернистое топливо сильно вредит экологии окружающей нас среды.

Соединения серы делятся на активные и не активные. Активные вызывают коррозию металлов в нормальных атмосферных условиях. К ним относятся:

Полезная информация
1 Н2S (сероводород)
2 R — SН (меркаптановые соединения; R – это углеводородный радикал)
3 S (сера)

И в растворенном, и во взвешенном состоянии, они оказывают сильное коррозионное воздействие на металлы практически при любых температурах, поэтому их присутствие в нефтепродуктах – недопустимо.

Неактивные соединения серы в нормальных условиях коррозию не вызывают.

Однако, после полного сгорания топлива они образуют в двигателе серные и сернистые ангидриды, которые в соединении с водой образуют серную и сернистую кислоту.

Малосернистая нефть содержит от 0,1 до 0,5 процента соединений серы, а сернистая – до 4-х %.

Кислородные соединения

В сырой нефти это – кислоты, фенолы, эфиры и прочие соединения. Большую часть таких веществ содержат высококипящие нефтяные фракции.

Способны вызывать сильную коррозию некоторых видов цветных металлов (цинк, свинец и так далее), из-за чего их содержание в различных нефтепродуктах строго ограничивается стандартами.

Смолисто-асфальтовые компоненты

Представляют собой сложные высокомолекулярные смеси таких элементов, как азот, кислород, сера и некоторые металлы. В сырой нефти их может быть от долей процента до десятков целых процентов.

Обладая высокой красящей способностью, именно эти соединения и определяют цвет нефти. Они очень неустойчивы, легко изменяются и крайне плохо испаряются, что негативно сказывается качестве топлива и различных видов масел.

Соединения азота

Заметного влияния на качество получаемых нефтепродуктов не оказывают, поскольку их содержание в сырой нефти – крайне мало.

Основные физические свойства нефти

Физические свойства нефти, так же, как и её химические характеристики, изменяются в достаточно широком диапазоне, в зависимости от её состава. Например, консистенция этой жидкости меняется от легкой и газонасыщенной до тяжелой и густой, с высоким содержанием смол. Цвет этого полезного ископаемого также меняется от светлого, почти прозрачного, до темно-коричневого, почти черного.

Эти нефтяные свойства определяет преобладание в составе этой углеводородной смеси либо легких низкомолекулярных соединений, либо сложно построенных тяжелых соединений с высокой молекулярной массой. Нефть и её применение для производства различных товаров, которые называются нефтепродукты, делают это полезное ископаемое важнейшим энергоносителем в современном мире.

Химический состав нефти

Химические свойства нефти и газа зависят от химической структуры их состава. Этот состав достаточно прост. Основные его элементы – это углерод (С) и водород (Н). Углерода в нефтях содержится от 83-х до 89-ти процентов, водорода – от 12-ти до 14-ти процентов.

Также в нефтях присутствует небольшое количество серы, азота и кислорода, а также примеси различных металлов. Соединения углерода и водорода называются углеводородами (СН).

Нефть – это горючая маслянистая жидкость, цвет которой варьируется от светло-желтого до черного, состав которой в основном представлен углеводородными соединениями.

Из курса школьной химии известно, что все химические элементы образуют между собой различные соединения, соотношения элементов в которых зависит от их валентности. К примеру, вода (Н2О) – это два одновалентых атома водорода и одни двухвалентный – кислорода.

Самый простой с химической точки зрения углеводород – это метан (СН4), который является горючим газообразным веществом, составляющим основу всех природных газов. Обычно в природном газе содержание метана составляет от 90 до 95 процентов и более.

Начиная с пентана, углеводороды из газообразного состояния переходят в жидкое, то есть – в нефть.

Углерод при соединении с водородом образует огромное количество соединений, различных по своему химическому строению и свойствам.

Для удобства все нефтяные углеводороды разделены на три группы:

  • Алканы (метановая группа) с общей формулой СnH2n+2. Эта группа представляет собой насыщенные углеводороды, поскольку все их валентные связи задействованы. С химической точки зрения они – самые инертные, другими словами – не способны вступать в реакции с другими химическими соединениями. Структура алканов может быть или линейной (нормальные алканы), или разветвленной (изоалканы).
  • Цикланы (нафтеновая группа) с общей формулой СnH2n. Их главный признак – пяти – или шестичленное кольцо, состоящее из атомов углерода. Другими словами, цикланы, в отличие от алканов, имеют замкнутую в цепь циклическую структуру. Эта группа тоже представляет предельные (насыщенные) соединения и в реакции с другими химическими элементами они также почти не вступают.
  • Арены (ароматическая группа) с общей формулой СnH2n-6. Их структура – шестичленные циклы, в основе которых лежит ароматическое бензольное ядро (С6Н6). Их отличает наличие между атомами двойных связей. Арены бывают моноциклическими (одно бензольное кольцо), бициклическими (сдвоенные кольца бензола) и полициклическими (кольца соединены по принципу пчелиных сот).

Нефть и природный газ веществами с постоянным и строго определенным химсоставом не являются. Это сложные смеси природных углеводородов, находящихся в газообразном, жидком и твердом состоянии. Однако эта смесь не является простой в привычном понимании. Ей ближе определение «сложный раствор углеводородов», где в качестве растворителя выступают легкие соединения, а растворенные вещества – это высокомолекулярные углеводороды (в том числе асфальтены и смолы).

Основное отличие раствора от простой смеси заключается в том, что компоненты, входящие его состав, могут вступать во взаимодействие друг с другом как с химической, так и с физической точки зрения, и приобретать в результате таких взаимодействий новые свойства, которых не было в первоначальных соединениях.

Основные физические характеристики нефти

Физические свойства нефти достаточно разнообразны, но самым важным среди них является её плотность (по-другому – удельный вес). Этот параметр зависит от молекулярных весов входящих в её состав компонентов.

Значение плотности нефти варьируется от 0,71 до 1,04 грамм на кубический сантиметр.

В нефтеносных коллекторах в нефти много растворенного газа, поэтому в природных условиях её плотность меньше (в 1,2 – 1,8 раза), нежели в добытом дегазированном сырье.

По значению этого параметра нефть делится на следующие классы:

  • класс очень легких нефтей (плотность – менее 0,8 грамм/см 3 );
  • легкие нефти (от 0,80 до 0,84 грамм/см 3 );
  • класс средних нефтей (от 0,84 до 0,88 грамм/см 3 );
  • тяжелые нефти (плотность – от 0,88 до 0,92 грамм/см 3 );
  • нефти очень тяжелого класса (> 0,92 грамм на кубический сантиметр).

Вязкость этого полезного ископаемого является свойством этого вещества оказывать сопротивление при перемещении относительно друг друга нефтяных частиц при движении нефти. Другими словами, этим параметром характеризуется подвижность этого углеводородного раствора.

Измеряют вязкость специальным прибором – вискозиметром. Единица измерения в системе СИ – миллипаскаль в секунду, в системе СГС – грамм на сантиметр в секунду (Пуаз).

Вязкость бывает динамической и кинематической.

Динамическая показывает значение силы сопротивления перемещению жидкостного слоя, площадь которого – один квадратный сантиметр, на 1 сантиметр при скорости движения 1 сантиметр в секунду. Кинематическая вязкость характеризует свойство нефти сопротивляться перемещению одной жидкой части относительно другой, учитывая при этом силу тяжести.

Поднятая на поверхность нефть по этому параметру делится на:

Полезная информация
1 маловязкую (вязкость – менее 5 мПа/с)
2 с повышенной вязкостью (от 5-ти до 25-ти мПа/с)
3 высоковязкую (большее 25-ти мПа/с)

Чем легче углеводородная жидкость, тем меньше значение её вязкости. В пласте этот параметр нефти в меньше (причем – в десятки раз), чем вязкость этой же нефти, поднятой на поверхность и дегазированной. Значение этого физического параметра велико, поскольку позволяет определить масштабы миграции в процессе формирования залежей.

Величину, обратную вязкости, называют текучестью.

Содержание серы в нефти

Это – весьма значимый параметр, который влияет на окислительные свойства этого полезного ископаемого. Чем больше в нем сернистых соединений – тем выше коррозионная агрессивность сырья и получаемых их него нефтепродуктов.

По этому показателю нефть бывает:

  • малосернистой (до 0,5 процента);
  • сернистой (от 0,5-ти до 2-х процентов);
  • высокосернистой (> 2-х процентов серы).

Парафинистость

Эта важная характеристика нефти, которая напрямую влияет на технологии, применяемые при ее добыче, а также на её трубопроводную транспортировку. Парафинистость – это содержание в сырье твердых углеводородов, называемых парафинами (формулы – от С17Н36 до С35Н72) и церезинами (от С36Н74 до С55Н112).

Их концентрация в некоторых случаях доходит до 13-14 процентов, а, к примеру, нефть казахского месторождения Узень вообще имеет этот показатель на уровне 35-ти процентов. Чем больше парафинистость, тем труднее добывать и транспортировать сырье. Парафины отличаются способностью к кристаллизации, что приводит к их выпадению в твердый осадок, а это закупоривает поры в продуктивном пласте, появляются отложения на стенках НКТ, в задвижках и на прочем технологическом оборудовании.

По значению этого параметра нефть бывает:

  • малопарафинистая ( 6-ти процентов).

Газосодержание

Этот параметр по-другому называется газовый фактор.

Он характеризует количество кубометров газа в одной тонне дегазированной нефти. Другими словами, газосодержание – это количественная характеристика того, сколько растворенного газа было в нефти, которая находилась в коллекторе, и какое его количество перейдет в свободное состояние в процессе извлечения сырья на поверхность.

Значение газового фактора может доходить до 300 – 500 кубометров на тонну, хотя среднее его значение варьируется от 30-ти до 100 кубометров на одну тонну.

Давление насыщения

Этот параметр (давление, при котором начинается парообразование) является значение давления, по достижению которого из нефти начинает выделяться газ.

В естественных условиях продуктивного слоя это давление или равно внутрипластовому, иди меньше его. В первом газ полностью растворяется в жидкости, а во втором наблюдается газовая недонасыщенность.

Читайте также:  Лазерная стимуляция зрения что это такое

Сжимаемость

Этот параметр обусловлен упругостью нефти и характеризуется коэффициентом сжимаемости (βН). Этот параметр показывает величину изменения объема сырья в пласте в случае изменения давления на 0,1 МПа.

Коэффициент сжимаемости учитывают на ранних этапах разработки, когда упругость газа и жидкости в пласте еще растрачена , вследствие чего играет в энергетике пласта существенную роль.

Коэффициент теплового расширения

Этот параметр показывает, как изменяется первоначальный объем сырья в случае изменения температуры на 1 градус Цельсия.

Его используют в процессе проектирования и практического применения методов теплового воздействия на продуктивные пласты.

Объемный коэффициент

Этот показатель характеризует – какой объем в коллекторе занимает кубометр дегазированного сырья, пока оно насыщено газом.

Значение этого показателя, как правило, больше единицы. Средние значения колеблются от 1,2 до 1,8, хотя могут доходить и до двух-трех единиц. Объемный коэффициент применяется в расчетах для определения количества запасов, а также при вычислении коэффициента нефтеотдачи продуктивного слоя.

Температура застывания

Температура застывания показывает, при каком температурном значении в пробирке уровень охлажденной нефти не меняется при её наклоне на 45-ть градусов.

Чем больше в нефти твердых парафинов и чем меньше смол – тем выше этот показатель.

Оптические нефтяные свойства

Основным оптическим свойством этого вещества является его способность вращать вправо (изредка–влево) плоскость поляризованного светового луча.

Основные носители оптической активности в этом полезном ископаемом – молекулы ископаемых животных и растений, которые называются хемофоссилиями.

При облучении нефтей ультрафиолетом они начинают светиться, что говорит об их способности к люминесценции.

Легкие сорта «черного золота» люминесцируют в голубом и синем спектре, а тяжелые – в желтом и желтовато-буром.

Нефть и ее токсичность

Физические свойства нефти и ее химический состав

Нефть представляет собой природную маслянистую горючую жидкость со специфическим запахом, состоящую в основном из сложной смеси углеводородов различной молекулярной массы и некоторых других химических соединений. Нефть может быть и коричневой, и вишневой, зеленой, желтой, и даже прозрачной. С химической точки зрения нефть — это сложная смесь углеводородов с примесью различных соединений, например, серы, азота и других. Ее запах также может быть различным, так как зависит от присутствия в ее составе ароматических углеводородов, сернистых соединений.

Углеводороды, из которых состоит нефть, — это химические соединения состоящие из атомов углерода (C) и водорода (H). В общем виде формула углеводорода — CxHy. Простейший углеводород, метан, имеет один атом углерода и четыре атома водорода, его формула — CH4. Метан — легкий углеводород, всегда присутствует в нефти.

В зависимости от количественного соотношения различных углеводородов, составляющих нефть, ее свойства также различаются. Нефть бывает прозрачной и текучей как вода. А бывает черной и настолько вязкой и малоподвижной, что не вытекает из сосуда, даже если его перевернуть.

Нефть является экологически опасным веществом, которое при попадании в окружающую среду (в почву, в водоемы) нарушает, угнетает и заставляет протекать иначе все жизненные процессы. Степень воздействия зависит от ее количественного и качественного состава.

С химической точки зрения обычная (традиционная) нефть состоит из следующих элементов: углерод — 84%, водород — 14%, сера — 1-3% (в виде сульфидов, дисульфидов, сероводорода и серы как таковой), азот — менее 1%, кислород — менее 1%, металлы — менее 1% (железо, никель, ванадий, медь, хром, кобальт, молибден и др.), соли — менее 1% (хлорид кальция, хлорид магния, хлорид натрия и др.)

Нефть (и сопутствующий ей углеводородный газ) залегает на глубинах от нескольких десятков метров до 5-6 километров. При этом на глубинах 6 км и ниже встречается только газ, а на глубинах 1 км и выше — только нефть. Большинство продуктивных пластов находятся на глубине между 1 и 6 км, где нефть и газ встречаются в различных сочетаниях.

Залегает нефть в горных породах называемых коллекторами. Пласт-коллектор — это горная порода способная вмещать в себе флюиды, т.е. подвижные вещества (это могут быть нефть, газ, вода). Упрощенно коллектор можно представить как очень твердую и плотную губку, в порах которой и содержится нефть.

Плотность нефти, как и других углеводородов, сильно зависит от температуры и давления. Она содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов (обычно >28 °C, реже ?100 °C в случае тяжёлых нефтей) и фракционным составом — выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом в определённых температурных пределах, как правило до 450—500 °C (выкипает

80 % объёма пробы), реже 560—580 °C (90—95 %). Так же нефть — это легковоспламеняющаяся жидкость, растворяемая в органических растворителях, в обычных условиях не растворяемая в воде, но образующая с ней стойкие эмульсии. В технологии для отделения от нефти воды и растворённой в ней соли проводят обезвоживание и обессоливание.

2.2. Химический состав нефти

Главные элементы, из которых состоят компоненты нефти – углерод и водород. Содержание углерода и водорода в различных нефтях колеблется в сравнительно узких пределах и составляет в среднем для углерода 83,5-87% масс., для водорода 11,5-14% масс. По высокому содержанию водорода нефть занимает исключительное положение среди остальных каустобиолитов. В гумусовых углях содержание водорода в среднем 5% масс., в твердых сапропелитовых образованиях – 8% масс. Повышенное содержание водорода объясняет жидкое состояние нефти.

Наряду с углеродом и водородом во всех нефтях присутствуют сера, кислород и азот. Азота в нефтях от 0.001-0,3 до 1,8% масс. Содержание кислорода колеблется в пределах 0,1-1,0% масс. Однако в некоторых высокосмолистых нефтях оно может быть и выше.

Значительно отличаются нефти по содержанию серы. В нефтях многих месторождений серы сравнительно мало 0,1-1,0% масс. Но доля сернистых нефтей с содержанием серы от 1 до 3% масс. в последнее время значительно возросла. Существуют и сильно осерненные нефти с содержанием серы выше 3% масс.

В очень малых количествах в нефтях присутствуют другие элементы, главным образом, металлы (ванадий, никель, магний, хром, титан, кобальт, калий, кальций, натрий и др.). Обнаружены также фосфор и кремний. Содержание этих элементов выражается незначительными долями процента. В различных нефтепродуктах был найден германий с содержанием 0,15 — 0,19 г/т.

В соответствии с элементным составом основная масса компонентов нефти – углеводороды. В низкомолекулярной части нефти, к которой мы условно можем отнести вещества с молекулярной массой не более 250 — 300 и перегоняющиеся до 300-350 о С, присутствуют наиболее простые по строению углеводороды. Они принадлежат к следующим гомологическим рядам:

СпН2п+2 – парафины, метановые углеводороды, алканы;

СпН2п — циклопарафины, моноциклические полиметиленовые

углеводороды, нафтены, цикланы (алкилциклопентаны и алкилциклогексаны);

СпН2п-2— дициклопарафины, бициклические полиметиленовые

углеводороды (пятичленные, шестичленные и смешанные);

СпН2п-4 – трициклопарафины, трициклические полиметиленовые углеводороды (пятичленные, шестичленные и смешанные);

СпН2п-6 – моноциклические ароматические углеводороды, бензольные углеводороды, арены;

СпН2п-8 – бициклические смешанные нафтено-ароматические углеводороды;

СпН2п-12 – бициклические ароматические углеводороды.

В бензиновой фракции практически присутствуют только три класса углеводородов: алканы, цикланы и ароматические ряда бензола. В керосиновой

и газойлевой фракциях значительную долю составляют би- и трициклические углеводороды.

Непредельных углеводородов с ненасыщенными связями в цепи, как правило, в сырых нефтях нет. Имеются отдельные нефти с незначительным содержанием непредельных углеводородов (Бредфорд, США).

Помимо углеводородов в низкомолекулярной части нефти присутствуют: — кислородные соединения – нафтеновые кислоты, фенолы;

— сернистые соединения – меркаптаны, сульфиды, дисульфиды, тиофены;

— азотистые соединения – пиридиновые основания и амины.

Количество всех этих гетероатомных веществ, перегоняющихся в пределах 300-350 о С невелико, так как основная масса кислорода, серы и азота концентрируется в высокомолекулярной части нефти.

При заводской перегонке сернистых нефтей, вследствие термического разложения сложных гетероатомных соединений, в товарных светлых дистиллятах может накопиться до 5% масс. и более низкомолекулярных сернистых соединений.

При оценке содержания гетероатомных соединений надо учитывать, что в сернистых, кислородных и азотистых соединениях сера, кислород и азот связаны с различными углеводородными радикалами и на 1ч (масс.) этих элементов приходится 10 — 20 ч (масс.) углерода и водорода.

Мало изучен химический состав высокомолекулярной части нефти, к которой условно относят вещества, перегоняющиеся выше 350 о С. Речь идет о мазуте, масляных фракциях и гудроне. Молекулярная масса компонентов этой части нефти колеблется от 300 до 1000. Эта часть нефти представляет собой смесь веществ разнообразного состава и строения.

Основные типы соединений, входящие в эту смесь:

— высокомолекулярные парафиновые углеводороды СпН2п+2;

— моно- и полициклические циклопарафиновые углеводороды с длинными или короткими боковыми парафиновыми цепями от СпН2п до СпН2п-10 ;

— моно- и полициклические ароматические углеводороды с боковыми парафиновыми цепями от СпН2п-6 до СпН2п-36 ;

— смешанные (гибридные) полициклические нафтено-ароматические углеводороды с боковыми парафиновыми цепями от СпН2п-8 до СпН2п-22;

— разнообразные органические соединения полициклического гибридного характера, молекулы которых состоят из чисто углеродных колец, циклов, содержащих гетероатомы – серу, кислород или азот, а также длинных или коротких парафиновых цепей;

— смолисто-асфальтеновые вещества – смолы и асфальтены; эти наиболее сложные по строению вещества нефти характеризуются полициклическим строением и обязательным присутствием кислорода, в них также концентрируется основная масса азота и металлов; содержание смол в некоторых нефтях доходит до 30-40%масс.

Основные типы соединений, входящие в нефть. Парафиновые углеводороды. Углеводороды этого класса органических соединений присутствуют во всех нефтях и являются одной из основных составных ее частей. Распределяются они по фракциям неравномерно, концентрируясь в нефтяных газах и бензиново-керосиновых фракциях. В масляных дистиллятах их содержание резко падает. Для некоторых нефтей характерно полное отсутствие парафинов в высококипящих фракциях.

Газообразные углеводороды метан, этан, пропан, бутан, изобутан, 2,2-диметилпропан при нормальных условиях находятся в газообразном состоянии. Все они входят в состав природных и нефтяных попутных газов.

Газы нефтяных месторождений называются попутными нефтяными газами. Эти газы растворены в нефти и выделяются из нее при выходе на поверхность. Состав нефтяных попутных газов отличается от сухих содержанием этана, пропана, бутанов и высших углеводородов.

Жидкие углеводороды. По своим температурам кипения углеводороды от пентана до декана и все их изомеры должны попасть при разгонке нефти в бензиновый дистиллят.

Твердые углеводороды. Твердые парафины в нефтях находятся в растворенном или взвешенном кристаллическом состоянии. В парафинистых и высокопарафинистых нефтях их содержание повышается до 10-20% масс. При перегонке мазута в масляные фракции попадают парафины, имеющие состав С1835. В гудронах концентрируются более высокоплавкие углеводороды С3653 – церезины.

Присутствие твердых углеводородов в смазочных и специальных маслах недопустимо, так как они повышают температуру застывания и уменьшают подвижность масел при низких температурах. Поэтому масла подвергают специальной очистке – депарафинизации.

Метановые углеводороды относятся к ряду С„Н2п+2, они занимают исключительно важное место среди углеводородов нефти. Так, при­родные газы представлены исключительно метановыми углеводоро­дами и чаще всего почти целиком самим метаном. Легкие фракции лю­бых жидких нефтей также почти целиком состоят из метановых угле­водородов. Правда, по мере повышения среднего молекулярного веса фракций нефти содержание в них метановых углеводородов резко уменьшается. В средних фракциях, выкипающих в пределах 200— —300° С, метановых углеводородов содержится обычно уже не более 25—33%, а к 500° С метановые углеводороды нефти практически полностью выклиниваются. В высших фракциях нефти метановые углеводороды представляют собой твердые вещества — парафин и час­тично церезин. Кроме того, большое влияние на структуру и свой­ства сложных полиметиленовых, ароматических и так называемых гибридных углеводородов оказывают боковые цепи из радикалов ме­танового ряда.

ВЫВОД: В конкретных нефтях метановых углеводородов может содержаться больше или меньше. В общем очевидно, что метановые углеводороды составляют основу большинства природных газов и легких фракций жидкой нефти, что заслуживает особого внимания, так как именно эти составляющие в наибольшей мере являются исходными веществами для современного органического и нефтехимического синтеза.

Циклоалканы (СпН2п) — нафтеновые углеводороды — входят в состав всех фракций нефтей, кроме газов. В среднем в нефтях различных типов они содержатся от 25 до 80% масс. Бензиновые и керосиновые фракции представлены в основном гомологами циклопентана и циклогексана, преимущественно с короткими (С1 — СЗ) алкилзамещенными цикланами. Высококипящие фракции содержат преимущественно полициклические гомологи цикланов с 2 — 4 одинаковыми или разными цикланами сочлененного или конденсированного типа строения. Распределение цикланов по фракциям нефти самое разнообразное. Их содержание растет по мере утяжеления фракций и только в наиболее высококипящих масляных фракциях падает. Можно отметить следующее распределение изомеров цикланов: среди С7 — циклопентанов преобладают 1,2 — и 1,3-диметилзамещенные; С 8 — циклопентаны представлены преимущественно триметилзамещенными; среди алкилциклогексанов преобладает доля ди- и триметилзамещенных, не содержащих четвертичного атома углерода.

Под нафтеновыми углеводородами стали понимать не только моноциклические, но и полициклические полиметиленовые углеводороды нефтяного происхождения.

Нафтены входят в состав всех нефтей и присутствуют во всех фракциях. Их содержание растет по мере утяжеления фракций. Только в наиболее высококипящих масляных фракциях их количество уменьшается за счет увеличения ароматических структур.

Моноциклические нафтены представлены циклопентановыми и циклогексановыми структурами. В бензиновых и керосиновых фракциях обнаружено более 80 индивидуальных представителей этого класса углеводородов состава С512. В относительно больших количествах в нефтях присутствуют: метилциклогексан, циклогексан, метилциклопентан, некоторые диметильные гомологи циклопентана. В незначительных количествах обнаружены циклогептан и метилциклогептан. Во фракциях выше 200 о С присутствуют бициклические и полициклические нафтены с числом циклов не более шести.

ВЫВОД: Нафтеновые углеводороды являются наиболее высококачественной составной частью моторных топлив и смазочных масел. Моноциклические нафтеновые углеводороды придают автобензинам, реактивным и дизельным топливам высокие эксплуатационные свойства и являются более качественным сырьем в процессах каталитического риформинга.

Арены представлены в нефти моноциклическими и полициклическими. Обычно нефти содержат 15—20% аренов. В ароматических (смолистых) нефтях их содержание доходит до 35%. В зависимости от распределения ароматических углеводородов по фракциям нефти можно подразделить на три группы:

нафтено-ароматические — нефти, ароматические углеводороды которых (в основном, полициклические) концентрируются в высших фракциях. Это тяжелые смолистые нефти с плотностью > 0,9;

нафтеновые — нефти, ароматические углеводороды которых концентрируются в основном в средних фракциях. Плотность таких нефтей 0,85—0,9;

3) парафинистые нефти — нефти, ароматические углеводороды которых сконцентрированы в легких фракциях (до 300°С).

Во фракциях до 200°С (бензиновые фракции) содержатся только гомологи бензола. В нефтях найдены все гомологи бензола, включая С9. Монозамещенные гомологи бензола, содержащие 4 и более атомов углерода в боковой цепи, встречаются редко. Наиболее распространенными являются толуол, этилбензол, ксилолы (м-ксилол преобладает как более термодинамически устойчивый), затем триметилбензолы, далее идут кумол, пропилбензол, метилэтилбензолы.

Во фракциях 200-350°С преобладают алкилбензолы, главным образом ди- и тризамещенные, молекулы которых содержат метальные группы и алкильную группу состава C7-Cg. Кроме гомологов бензола, в этих фракциях содержатся гомологи нафталина (моно-, би-, три- и тетрамети л нафталины). Найдены также гомологи дифенила. Нафталин встречается редко.

Во фракциях >350°С, кроме высших гомологов бензола и гомологов нафталина, содержатся диарилалканы — углеводороды, в молекулах которых

изолированные ароматические ядра связаны с углеводородным мостиком, например:

В высших фракциях содержатся в небольшом количестве также гомологи полициклических углеводородов с конденсированными кольцами, таких как:

Основная же часть этих углеводородов концентрируется в гудроне. Широко представлены в высших фракциях нефтей углеводороды смешанного строения, молекулы которых содержат наряду с ароматическими

Читайте также:  С точки зрения классификации социальных действий

В нефтях обнаружены многие ближайшие гомологи бензола с одним, двумя, тремя и четырьмя заместителями в ядре. Заместителем чаще всего является радикал метил, доказано наличие и таких углеводородов как изопропил бензол (кумол), пропилбензол, бутилбензолы, диэтилбензол и гомологи с различными заместителями в боковых цепях.

В средних фракциях нефти (200-350 о С) наряду с производными бензола присутствуют также нафталин и его ближайшие гомологи, т.е. бициклические конденсированные ароматические углеводороды.

В высших фракциях нефти обнаружены более сложные полициклические ароматические углеводороды с тремя, четырьмя и пятью конденсированными кольцами. Они являются гомологами нафталина, дифенила, аценафтена, антрацена, фенантрена, пирена, бензантрацена, хризена, фенантрена, перилена.

Присутствие ароматических углеводородов в бензинах весьма желательно, так как они обладают высокими октановыми числами. Наоборот, наличие их в значительных количествах в дизельных топливах (средние фракции нефти) ухудшает процесс сгорания топлива. Полициклические ароматические углеводороды с короткими боковыми цепями, попадающие при разгонке нефти в масляные фракции, должны быть удалены в процессе очистки, так как их присутствие вредно отражается на эксплуатационных качествах смазочных масел. Индивидуальные ароматические углеводороды: бензол, толуол, ксилолы, этилбензол, изопропилбензол и нафталин – ценное сырье для многих процессов нефтехимического и органического синтеза.

Углеводороды смешанного строения. Значительная часть углеводородов нефти имеет смешанное или гибридное строение. Это означает, что в молекулах таких углеводородов имеются разные структурные элементы: ароматические кольца, пяти- и шестичленные циклопарафиновые циклы и алифатические парафиновые цепи.

Масляные фракции почти целиком состоят из углеводородов смешанного строения. Их можно разделить на три типа: парафино-циклопарафиновые; парафино-ароматические; парафино-циклопарафино-ароматические.

Кислородные соединения. Основная часть кислорода, находящегося в нефти, входит в состав смолистых веществ, и только около 10% его приходится на долю кислых органических соединений — карбоновых кислот и фенолов. Нейтральных кислородных соединений в нефтях очень мало. В свою очередь, среди кислых соединений преобладают соединения, характеризующиеся наличием карбоксильной группы — нефтяные кислоты.

Среди них преобладают кислоты изостроения, включая и изопреноидные, и с четным числом углеродных атомов. Карбоновые кислоты — производные моноциклических нафтенов с общей формулой СпН2п-1СООН или СпН2п2О2 получили название нафтеновых кислот.

Промышленное значение из всех кислородных соединений нефти имеют только нафтеновые кислоты и их соли-нафтенаты, обладающие хорошими моющими свойствами. Отходы щелочной очистки нефтяных дистиллятов –мылонафт используются при изготовлении моющих средств для текстильного производства.

Технические нефтяные кислоты (асидол), выделяемые из керосиновых и легких масляных дистиллятов, находят применение в качестве растворителей смол, каучука и анилиновых красителей, для пропитки шпал, для смачивания шерсти др. Натриевые и калиевые соли нафтеновых кислот служат в качестве деэмульгаторов для обезвоживания нефти.

Сернистые соединения. Сера является наиболее распространенным гетероэлементом в нефтях и нефтепродуктах. Содержание ее в нефтях колеблется от сотых долей до 5-6% масс. реже до 14% масс. Богаты серосодержащими соединениями нефти Урало-Поволжья и Сибири: количество серы в арланской нефти достигает до 3,0% масс., а в Усть-Балыкской до 1,8% масс. Из зарубежных наиболее высоким содержанием серы отличаются нефти: албанская (5-6% масс.), месторождения Эбано-Пануко (Мексика, 5,4% масс.), Роузл-Пойнт (США — до 14% масс.). В последнем случае практически все соединения нефти являются серосодержащими.

Распределение серы по фракциям зависит от природы нефти и типа сернистых соединений. Как правило, их содержание увеличивается от низко- к высококипящим и достигает максимума в остатке от вакуумной перегонки нефти-гудроне. В нефтях идентифицированы следующие типы серосодержащих соединений:

— элементарная сера и сероводород — не являются непосредственно сероорганическими соединениями, но появляются в результате деструкции последних;

— меркаптаны-тиолы, обладающие, как и сероводород, кислотными свойствами и наиболее сильной коррозионной активностью;

— алифатические сульфиды (тиоэфиры)- нейтральны при низких температурах, но термически мало устойчивы и разлагаются при нагревании свыше 130-160°С с образованием сероводорода и меркаптанов;

— моно- и полициклические сульфиды — термически наиболее устойчивые.

Сероводород обнаруживается в сырых нефтях не так часто и значительно в меньших количествах, чем в природных газах, газоконденсатах и нефтях

Меркаптаны (тиолы) имеют строения RSН, где R — углеводородный заместитель всех типов (алканов, цикланов, аренов, гибридных) разной молекулярной массы. Температура кипения индивидуальных алкилмеркаптанов С16 составляет при атмосферном давлении 6-140°С. Они обладают очень неприятным запахом. Это свойство их используется в практике газоснабжения городов и сел для предупреждения о неисправности газовой линии. В качестве одоранта бытовых газов используется этилмеркаптан.

По содержанию тиолов нефти подразделяют на меркаптановые и безмеркаптановые. В аномально высоких концентрациях меркаптаны содержатся в газоконденсатах и нефтях Прикаспийской низменности. Так, во фракции 40-200°С Оренбургского газоконденсата на долю меркаптанов приходится 1% из 1,24%масс. общей серы. Обнаружена следующая закономерность: меркаптановая сера в нефтях и газоконденсатах сосредоточена главным образом в головных фракциях.

Элементная сера, сероводород и меркаптаны как весьма агрессивные сернистые соединения являются наиболее нежелательной составной частью нефтей. Их необходимо полностью удалять в процессах очистки всех товарных нефтепродуктов.

Сульфиды (тиоэфиры) составляют основную часть сернистых соединений в топливных фракциях нефти (от 50 до 80%масс. от общей серы в этих фракциях). Нефтяные сульфиды подразделяют на 2 группы: диалкилсудьфиды (тиоалканы) и циклические диалкилсульфиды RSR’ (где R и R’ — алкильные заместители). Тиалканы содержатся преимущественно в парафинистых нефтях, а циклические — в нафтеновых и нафтено-ароматических. Тиоалканы С27 имеют низкие температуры кипения (37-150°С) и при перегонке нефти попадают в бензиновые фракции. С повышением температуры кипения нефтяных фракций количество тиоалканов уменьшается, и во фракциях выше 300°С они практически отсутствуют. В некоторых легких и средних фракциях нефтей в небольших количествах (менее 15% масс. от суммарной серы в этих фракциях) найдены дисульфиды RSSR’ . При нагревании они образуют серу, сероводород и меркаптаны.

Моноциклические сульфиды представляют собой пяти- или шестичленные гетероциклы с атомом серы. Кроме того, в нефтях идентифицированы полициклические сульфиды и их разнообразные гомологи.

В средних фракциях многих нефтей преобладают тиоцикланы. Среди тиоцикланов, как правило, более распространены моноцикличеекие сульфиды. Полициклические сульфиды при разгонке нефтей преимущественно попадают в масляные фракции и сконцентрированы в нефтяных остатках.

Все серосодержащие соединения нефтей, кроме низкомолекулярных меркаптанов, при низких температурах химически нейтральны и близки по свойствам аренам. Промышленного применения они пока не нашли из-за низкой эффективности методов их выделения из нефтей. В ограниченных количествах выделяют из средних (керосиновых) фракций некоторых нефтей сульфиды для последующего окисления в сульфоны и сульфокислоты. Сернистые соединения нефтей в настоящее время не извлекают, а уничтожают гидрогенизационными процессами. Образующийся при этом сероводород перерабатывают в элементную серу или серную кислоту. В то же время в последние годы во многих странах мира разрабатываются и интенсивно вводятся многотоннажные промышленные процессы по синтезу сернистых соединений, аналогичных нефтяным, имеющих большую ценность. Среди них наибольшее промышленное значение имеют меркаптаны. Метилмеркаптан применяют в производстве метионина — одорант топливных газов.

Тиолы С14 — сырье для синтеза агрохимических веществ, применяются для активации (осернения) некоторых катализаторов в нефтепереработке. Тиолы от бутилмеркаптана до октадецилмеркаптана используют в производстве присадок к смазочным и трансформаторным маслам, к смазочно-охлаждающим эмульсиям, применяемым при холодной обработке металлов, в производстве детергентов, ингредиентов резиновых смесей. Тиолы С816 являются: регуляторами радикальных процессов полимеризации в производстве латексов, каучуков, пластмасс. В качестве регуляторов полимеризации наибольшее применение нашли третичный додецилмеркаптан и нормальный додецилмеркаптан. Меркаптаны применяют для синтеза флотореагентов, фотоматериалов, красителей специального назначения, косметики,в фармакологии, и многих других областях.

Сульфиды служат компонентами при синтезе красителей, продукты их окисления — сульфоксиды, сульфоны и сульфокислоты используют как эффективные экстрагенты редких металлов и флотореагенты полиметаллических руд, пластификаторы и биологически активные вещества. Перспективно применение сульфидов и их производных в качестве компонентов ракетных топлив, инсектицидов, фунгицидов, гербицидов, пластификаторов, комплексообразователей и т.д. За последние годы резко возрастает применение полифениленсульфидных полимеров. Они характеризуются хорошей термической стабильностью, способностью сохранять отличные механические характеристики при высоких температурах, высокой химической стойкостью и совместимостью с различными наполнителями. Твердые покрытия из полифенилсульфида легко наносятся на металл, обеспечивая надежную защиту его от коррозии, что уже подхвачено зарубежной нефтехимической промышленностью, где наблюдается полифенилсульфидный «бум». Важно еще подчеркнуть, что в этом полимере почти одна треть массы состоит из серы.

Тиофен и 2-метилтиофен являются эффективными выносителями соединений марганца из карбюраторных двигателей при использовании в качестве антидетонатора циклопентадиенилкарбонилмарганца. В настоящее время этот антидетонатор широко применяется в США, где около 40% неэтилированных бензинов содержат не свинцовые антидетонаторы.

Учитывая наличие значительных ресурсов серосодержащих соединений в нефтях, исключительно актуальной является проблема их извлечения и рационального применения в народном хозяйстве.

Азотистые соединения.. Органических азотистых соединений в нефтях в среднем не более 2-3% масс. и максимально (в высокосмолистых нефтях) до 10% масс. Большая часть азота концентрируется в тяжелых фракциях и в остаточных продуктах.

Смолисто-асфальтеновые вещества (САВ) концентрируются в тяжелых нефтяных остатках (ТНО) — мазутах, полугудронах, гудронах, битумах, крекинг-остатках и др. Суммарное содержание САВ в нефтях в зависимости от их типа и плотности колеблется от долей процентов до 45%масс. а в ТНО достигает до 70% масс. Наиболее богаты САВ молодые нефти нафтено-ароматического и ароматического типа.

САВ представляют собой сложную многокомпонентную исключительно полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих, кроме углерода и водорода, серу, азот, кислород и металлы, такие как ванадий, никель, железо, молибден и т.д. Выделение индивидуальных САВ из нефтей и ТНО исключительно сложно. Молекулярная структура их до сих пор точно не установлена. Современный уровень знаний и возможности инструментальных физико-химических методов исследований позволяют лишь дать вероятностное представление о структурной организации, установить количество конденсированных нафтено-ароматических и других характеристик и построить среднестатистические модели гипотетических молекул смол и асфальтенов.

В практике исследования состава и строения нефтяных, угле- и коксохимических остатков широко используется сольвентный способ Ричардсона, основанный на различной растворимости групповых компонентов в органических растворителях (слабых, средних и сильных). По этому признаку различают следующие условные групповые компоненты:

— растворимые в низкомолекулярных (слабых) растворителях (изооктане, петролейном эфире) — масла и смолы.

Смолы извлекают из мальтенов адсорбционной хроматографией (на силикагеле или оксиде алюминия);

— нерастворимые в низкомолекулярных алканах С58, но растворимые в толуоле, четыреххлористом углероде — асфальтены ;

— нерастворимые в бензине, толуоле и четыреххлористом углероде, но растворимые в сероуглероде и хинолине — карбены;

— нерастворимые ни в каких растворителях – карбоиды.

В нефтях и нативных ТНО (т.е. не подвергнутых термодеструктивному воздействию) карбены и карбоиды отсутствуют. Под термином «масла» принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300-500 смешанного (гибридного) строения. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в том числе легкие (моноциклические), средние (бициклические) и полициклические (три и более циклические). Наибольшее значение представляют смолы и асфальтены, которые часто называют коксообразующими компонентами и которые создают сложные технологические проблемы при переработке ТНО. Смолы — вязкие малоподвижные жидкости или аморфные твердые тела от темно-коричневого до темно-бурого цвета с плотностью около единицы или несколько больше. Они представляют собой плоско конденсированные системы, содержащие 5-6 колец ароматического, нафтенового и гетероциклического строения, соединенные посредством алифатических структур. Асфальтены — аморфные, но кристаллоподобной структуры твердые тела темно-бурого или черного цвета с плотностью несколько больше единицы. При нагревании не плавятся, а переходят в пластическое состояние при температуре около 300° С, а при более высокой температуре разлагаются с образованием газообразных и жидких веществ и твердого остатка — кокса. Они в отличие от смол образуют пространственные конденсированные кристаллоподобные структуры. Наиболее существенные отличия смол и асфальтенов проявляются по таким основным показателям, как растворимость в низкомолекулярных алканах, отношение С:Н, молекулярная масса.

Смолы образуют истинные растворы в маслах и топливных дистиллятах, а асфальтены в ТНО находятся в коллоидном состоянии. Растворителем для асфальтенов в нефтях являются ароматические углеводороды и смолы. Благодаря межмолекулярным взаимодействиям асфальтены могут образовывать ассоциаты — надмолекулярные структуры. На степень их ассоциации сильно влияет среда. Так, при низких концентрациях в бензоле и нафталине (менее 2 и 16% масс. соответственно) асфальтены находятся в молекулярном состоянии. При более высоких значениях концентраций в растворе формируются ассоциаты, состоящие из большого числа молекул. Именно способностью к ассоциатообразованию обусловливается разнобой на 1-2 порядка в результатах определения молекулярной массы асфальтенов в зависимости от метода ее определения.

Строение и свойства асфальтенов существенно зависят от происхождения ТНО. Так, асфальтены из остатков деструктивного происхождения характеризуются по сравнению с нативными «рыхлыми» асфальтенами меньшей молекулярной массой, преимущественной конденсированностью в плоскости, меньшим количеством и длиной алифатических структур и в связи с этим большей компактностью (и обладают меньшей вязкостью).

Соотношение смол к асфальтенам в нефтях и ТНО колеблется в широких пределах — (7-9):1 в остатках прямой перегонки, до (1-7):1 — в окисленных остатках (битумах).

В ТНО термодеструктивных процессов появляются карбены и карбоиды.

Карбены — линейные полимеры асфальтеновых молекул с молекулярной массой (100-185) тыс., растворимые лишь в сероуглероде и хинолине.

Карбоиды являются сшитым трехмерным полимером (кристаллитом), вследствие чего они не растворимы ни в одном из известных органических растворителей.

Все САВ отрицательно влияют на качество смазочных масел (ухудшают цвет, увеличивают нагарообразование, понижают смазывающую способность и т.д.) и подлежат удалению. В составе нефтяных битумов они обладают рядом ценных технических свойств и придают им качества, позволяющие широко использовать их. Главные направления использования: дорожные покрытия, гидроизоляционные материалы, в строительстве, производство кровельных изделий, битумно-асфальтеновых лаков, пластиков, пеков, коксов, связующих для брикетирования углей, порошковых ионитов и др.

В основу классификации нейтральных смолистых веществ положено их отношение к различным растворителям. По этому признаку принято различать следующие группы:

— нейтральные смолы, растворимые в легком бензине (петролейном эфире), пентане, гексане;

— асфальтены, нерастворимые в петролейном эфире, но растворимые в горячем бензоле;

— карбены, частично растворимые только в пиридине и сероуглероде;

— карбоиды — вещества, практически ни в чем нерастворимые.

Смолы обладают сильной красящей способностью. Темная окраска дистиллятов, как и сырой нефти, обусловлена в основном присутствием в них нейтральных смол. Характерная особенность нейтральных смол — их способность уплотняться в асфальтены под воздействием таких факторов, как нагревание, обработка адсорбентами или серной кислотой. Особенно легко этот процесс протекает при нагревании и одновременном продувании воздуха.

Асфальтены — это наиболее высокомолекулярные гетероорганические соединения нефти. По внешнему виду асфадьтены — порошкообразные вещества бурого или черного цвета. Относительная плотность их выше единицы, молекулярная масса около 2000. По элементному составу асфальтены отличаются от нейтральных смол меньшим содержанием водорода и большим – углерода и гетероатомов.

Все САВ отрицательно влияют на качество смазочных масел и подлежат удалению. В составе нефтяных битумов они обладают рядом ценных технических свойств. Главные направления их использования: дорожные покрытия, гидроизоляционные материалы, производство кровельных изделий, коксов.

Нейтральные смолы и асфальтены представляют собой сложные смеси высокомолекулярных гетероатомных соединений. Они различаются между собой по молекулярной массе, элементному составу и степени ненасыщенности. В общей формуле (без гетероатомов) Сn Н2nx значение x в нейтральных смолах колеблется в пределах 10-34, а для асфальтенов может достигать 100-120.

ВЫВОД: При рассмотрении группового химического со­става нефти можно грубо разделить нефть на две части соедине­ний: выкипающие приблизительно до 360° С, состоящие в основном из углеводородов и лишь в незначительной части из гетероатомных соединений (кислородные — фенолы, нафтеновые кислоты; серни­стые — меркаптаны, сульфиды, дисульфиды, тиофены; азотистые — пиридиновые основания и имины), и кипящие выше 360° С, состоящие в основном из гетероатомных соединений, содержащих в составе мо­лекул О, S и N, и в меньшей мере из углеводородов (парафины, гиб­ридные углеводороды).

Вопросы для самопроверки

Каков состав парафиновых углеводородов нефти?

Какими структурами представлены в нефти моноциклические нафтены?

3. Почему нафтены являются желательными компонентами моторных топлив и смазочных масел?

4. Какие арены обнаружены в нефтях?

5. Какие фракции нефти почти целиком состоят из углеводородов смешанного строения?

Какими классами соединений представлены в нефти кислородсодержащие соединения?

Как распределяется сера по фракциям нефти?

Что представляют собой азотистые соединения нефти?

Что представляют собой смолы?

10. Главные направления использования смолисто-асфальтеновых веществ.

11. Что представляют собой асфальтены по углеводородному составу?

Источники:
  • http://oilgazinfo.ru/himiya-nefti/osnovnye-fiziko-himicheskie-svojstva-nefti-i-ee-sostav
  • http://vseonefti.ru/neft/
  • http://neftok.ru/raznoe/neft-formula.html
  • http://neftok.ru/raznoe/fizicheskie-svojstva-nefti.html
  • http://studbooks.net/981677/ekologiya/neft_toksichnost
  • http://studfiles.net/preview/2827109/page:9/