Меню Рубрики

Как правильно установить освещение поля зрения микроскопа

1. Осветительная часть

Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах (например, биологические, поляризационные и др.) и перед объектом над объективом в инвертированных. Подробнее о видах световых микроскопов.

Осветительная часть конструкции микроскопа включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

5. Оптическая часть микроскопа. Как определить увеличение объекта?
ОПТИЧЕСКАЯ СИСТЕМА:

Наблюдательная часть:
-объектив
-окуляр(19)
Осветительная часть: (осветительный аппарат)
конденсор с ирисовой диафрагмой (14)
откидная линза в оправе (18)
зеркало (15)

Объектив– самая важная часть микроскопа, который привинчивается к нижней части тубуса. Объектив в микроскопе находится в непосредственной близости от рассматриваемого предмета, за что он и получил свое название. Он состоит из системы оптических линз, вставленных в латунную оправу, и требует весьма бережного обращения и тщательного ухода (никоим образом не следует надавливать объективом на лежащий на предметном столике препарат, так как это может вызвать повреждение или даже выпадение линзы).

Назначение объектива:

1)Строить в трубе микроскопа изображение, геометрически подобное изучаемому предмету.

2)Увеличивать изображение в то или иное число раз.

3)Выявлять подробности, недоступные невооруженному глазу. Объективы в количестве 2-3штук ввинчиваются в особое приспособление, называемое револьвером (4).

Окуляр – вставляется в верхнюю часть тубуса. В него рассматривается изображение предмета (а не предмет), направленное объективом вверх. Он состоит из системы линз, вставленных в металлический цилиндр. Окуляр строит изображение, увеличивает его, но не выявляет подробности строения.

Конденсор – собирает и концентрирует в плоскости препарата весь свет, отраженный от зеркала. Конденсор состоит из цилиндра (оправы) внутри которого расположены 2 линзы. Поднимая и опуская конденсор можно регулировать освещение препарата.

Диафрагма – расположена в нижней части конденсора. Также как и конденсор служит для регулирования силы света.

Зеркало – служит для улавливания света от источника освещения. Оно подвижно прикреплено под столиком, вращаясь вокруг горизонтальной оси. Зеркало с одной стороны — плоское, с друзой — вогнутое.

6. Правила работы с микроскопом.

При работе с микроскопом необходимо соблюдать операции в следующем порядке:

1. Работать с микроскопом следует сидя;

2. Микроскоп осмотреть, вытереть от пыли мягкой салфеткой объективы, окуляр, зеркало или электроосветитель;

3. Микроскоп установить перед собой, немного слева на 2-3 см от края стола. Во время работы его не сдвигать;

4. Открыть полностью диафрагму, поднять конденсор в крайнее верхнее положение;

5. Работу с микроскопом всегда начинать с малого увеличения;

6. Опустить объектив 8 — в рабочее положение, т.е. на расстояние 1 см от предметного стекла;

7. Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;

8. Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;

9. Смотреть одним глазом в окуляр и вращать винт грубой наводки на себя, плавно поднимая объектив до положения, при котором хорошо будет видно изображение объекта. Нельзя смотреть в окуляр и опускать объектив. Фронтальная линза может раздавить покровное стекло, и на ней появятся царапины;

Тема: Устройство микроскопа и правила работы с ним

Материалы и оборудование. Микроскопы: МБР-1, БИОЛАМ, МИКМЕД-1, МБС-1; комплект постоянных микропрепаратов «Анатомия растений».

Микроскоп — это оптический прибор, позволяющий получить обратное изображение изучаемого объекта и рассмотреть мелкие детали его строения, размеры которых лежат за пределами разрешающей способности глаза.

Разрешающая способность микроскопа дает раздельное изображение двух близких друг другу линий. Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.

Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.

Различают полезное и бесполезное увеличения. Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения. Бесполезное — это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения. Например, если изображение, полученное с помощью микроскопа (полезное!), увеличить еще во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.

В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.

В микроскопе выделяют две системы: оптическую и механическую (рис. 1). К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).

Рис. 1. Устройство световых микроскопов:

А — МИКМЕД-1; Б — БИОЛАМ.

1 — окуляр, 2 — тубус, 3 — тубусодержатель, 4 — винт грубой наводки, 5 — микрометренный винт, 6 — подставка, 7 — зеркало, 8 — конденсор, ирисовая диафрагма и светофильтр, 9 — предметный столик, 10 — револьверное устройство, 11 — объектив, 12 — корпус коллекторной линзы, 13 — патрон с лампой, 14 — источник электропитания.

Объектив — одна из важнейших частей микроскопа, поскольку он определяет полезное увеличение объекта. Объектив состоит из металлического цилиндра с вмонтированными в него линзами, число которых может быть различным. Увеличение объектива обозначено на нем цифрами. В учебных целях используют обычно объективы х8 и х40. Качество объектива определяет его разрешающая способность.

Окуляр устроен намного проще объектива. Он состоит из 2-3 линз, вмонтированных в металлический цилиндр. Между линзами расположена постоянная диафрагма, определяющая границы поля зрения. Нижняя линза фокусирует изображение объекта, построенное объективом в плоскости диафрагмы, а верхняя служит непосредственно для наблюдения. Увеличение окуляров обозначено на них цифрами: х7, х10, х15. Окуляры не выявляют новых деталей строения, и в этом отношении их увеличение бесполезно. Таким образом, окуляр, подобно лупе, дает прямое, мнимое, увеличенное изображение наблюдаемого объекта, построенное объективом.

Для определения общего увеличения микроскопа следует умножить увеличение объектива на увеличение окуляра.

Осветительное устройство состоит из зеркала или электроосветителя, конденсора с ирисовой диафрагмой и светофильтром, расположенных под предметным столиком. Они предназначены для освещения объекта пучком света.

Зеркало служит для направления света через конденсор и отверстие предметного столика на объект. Оно имеет две поверхности: плоскую и вогнутую. В лабораториях с рассеянным светом используют вогнутое зеркало.

Электроосветитель устанавливается под конденсором в гнездо подставки.

Конденсор состоит из 2-3 линз, вставленных в металлический цилиндр. При подъеме или опускании его с помощью специального винта соответственно конденсируется или рассеивается свет, падающий от зеркала на объект.

Ирисовая диафрагма расположена между зеркалом и конденсором. Она служит для изменения диаметра светового потока, направляемого зеркалом через конденсор на объект, в соответствии с диаметром фронтальной линзы объектива и состоит из тонких металлических пластинок. С помощью рычажка их можно то соединить, полностью закрывая нижнюю линзу конденсора, то развести, увеличивая поток света.

Кольцо с матовым стеклом или светофильтром уменьшает освещенность объекта. Оно расположено под диафрагмой и передвигается в горизонтальной плоскости.

Механическая система микроскопа состоит из подставки, коробки с микрометренным механизмом и микрометренным винтом, тубуса, тубусодержателя, винта грубой наводки, кронштейна конденсора, винта перемещения конденсора, револьвера, предметного столика.

Подставка — это основание микроскопа.

Коробка с микрометренным механизмом, построенном на принципе взаимодействующих шестерен, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.

Тубус или трубка — цилиндр, в который сверху вставляют окуляры. Тубус подвижно соединен с головкой тубусодержателя, его фиксируют стопорным винтом в определенном положении. Ослабив стопорный винт, тубус можно снять.

Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда. Центрированное положение объектива обеспечивает защелка, расположенная внутри револьвера.

Тубусодержатель несет тубус и револьвер.

Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.

Предметный столик предназначен для расположения на нем препарата. В середине столика имеется круглое отверстие, в которое входит фронтальная линза конденсора. На столике имеются две пружинистые клеммы — зажимы, закрепляющие препарат.

Кронштейн конденсора подвижно присоединен к коробке микрометренного механизма. Его можно поднять или опустить при помощи винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.

Правила работы с микроскопом

При работе с микроскопом необходимо соблюдать операции в следующем порядке:

1. Работать с микроскопом следует сидя;

2. Микроскоп осмотреть, вытереть от пыли мягкой салфеткой объективы, окуляр, зеркало или электроосветитель;

3. Микроскоп установить перед собой, немного слева на 2-3 см от края стола. Во время работы его не сдвигать;

4. Открыть полностью диафрагму, поднять конденсор в крайнее верхнее положение;

5. Работу с микроскопом всегда начинать с малого увеличения;

6. Опустить объектив 8 — в рабочее положение, т.е. на расстояние 1 см от предметного стекла;

7. Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;

8. Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;

9. Смотреть одним глазом в окуляр и вращать винт грубой наводки на себя, плавно поднимая объектив до положения, при котором хорошо будет видно изображение объекта. Нельзя смотреть в окуляр и опускать объектив. Фронтальная линза может раздавить покровное стекло, и на ней появятся царапины;

10. Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;

Читайте также:  Мир объясняется с антропоморфной точки зрения

11. Если изображение не появилось, то надо повторить все операции пунктов 6, 7, 8, 9;

12. Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение. При помощи микрометренного винта добиться хорошего изображения объекта. На коробке микрометренного механизма имеются две риски, а на микрометренном винте — точка, которая должна все время находиться между рисками. Если она выходит за их пределы, ее необходимо возвратить в нормальное положение. При несоблюдении этого правила, микрометренный винт может перестать действовать;

13. По окончании работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.

Микроскоп биологический стереоскопический МБС-1 (рис. 2) дает прямое и объемное изображение объекта в проходящем или отраженном свете. Он предназначен для изучения мелких объектов и препарирования их, так как имеет большое рабочее расстояние (расстояние от покровного стекла до фронтальной линзы).

Рис. 2. Устройство микроскопа МБС-1:

1 — окуляр, 2 — винт грубой наводки, 3 — подставка, 4 — зеркало, 5 — предметный столик, 6 — стойка, 7 — оптическая головка, 8 — объектив, 9 — рукоятка переключения увеличения, 10 — бинокулярная насадка, 11 — лампа.

Основная часть микроскопа — оптическая головка. В нижнюю часть ее вмонтирован объектив, состоящий из системы линз, которые можно переключать при помощи рукоятки и этим менять увеличение. Увеличения объектива обозначены цифрами на рукоятке — х0,6, х1, х2, х4, х7. На корпусе головки имеется точка. Для установки нужного увеличения объектива надо цифру на рукоятке совместить с точкой на корпусе головки.

На верхнюю часть головки установлена бинокулярная насадка. Окуляры имеют увеличения х6, х8, х12,5. Для установки удобного для глаз расстояния между окулярами надо раздвинуть или сдвинуть тубусы.

К задней стенке корпуса головки прикреплен кронштейн с реечным механизмом передвижения. Подъем и опускание корпуса головки осуществляется вращением винта. Кронштейн надет на стойку, прикрепленную к подставке.

Для работы в проходящем свете, в корпус подставки вмонтирован отражатель света, с зеркальной и матовой поверхностями. С передней стороны корпуса имеется окно для доступа дневного света. Для искусственного освещения предназначена лампа, которую вставляют или в отверстие с задней стороны корпуса (для проходящего света), или в кронштейн, укрепленный на объективе (для отраженного света).

Столик установлен в круглом окне на верхней поверхности корпуса подставки. Он может быть либо стеклянным (при проходящем свете), либо металлическим, с белой и черной поверхностями (при отраженном свете).

Электронный микроскоп (рис. 3) позволяет рассмотреть строение очень мелких структур, невидимых в световом микроскопе, например, тилакоид в хлоропластах. Его разрешающая способность в 400 раз больше, чем у светового микроскопа. Это достигается за счет потока электронов, вместо видимого света. Различают два типа электронных микроскопов: трансмиссионный (просвечивающий) и сканирующий (дающий объемное изображение микропрепаратов) (рис. 4).


Рис. 3. Электронный микроскоп.

Рис. 4. Снимки, сделанные на электронных микроскопах:

А — тилакоиды в клетках листа кукурузы (трансмиссионный электронный микроскоп); Б — амилопласты в клетках клубня картофеля (сканирующий микроскоп).

Задание 1. Используя микроскопы, таблицы и практикумы, изучить устройство световых микроскопов (МИКМЕД-1, БИОЛАМ и МБС-1) (рис. 1, 2). Запомнить названия и назначение их частей.

Задание 2. При малом и большом увеличениях микроскопа научиться быстро находить объекты на постоянных микропрепаратах.

1. Что такое разрешающая способность микроскопа?

2. Как можно определить увеличение рассматриваемого под микроскопом объекта?

3. В чем отличие микроскопов БИОЛАМ и МБС-1?

4. Перечислить главные части микроскопа БИОЛАМ и МИКМЕД-1. В чем их назначение?

Санитарный контроль

в пищевой промышленности

Правила пользования микроскопом

Работая с микроскопом, необходимо соблюдать определенные правила обращения с ним.

1. Микроскоп вынимают из футляра и переносят к рабочему месту, держа его одной рукой за ручку штатива, а другой поддерживая за ножку штатива. Наклонять микроскоп в сторону нельзя, так как окуляр может выпасть из тубуса.

2. Микроскоп помещают на рабочем столе на расстоянии 3—5 см от края стола ручкой к себе.

3. Устанавливают правильное освещение поля зрения микроскопа. Для этого, смотря в окуляр микроскопа, зеркалом направляют луч света от настольного осветителя (являющегося источником света) в объектив. Настройка освещения производится с объективом 8 х . При правильной установке поле зрения микроскопа будет выглядеть в виде круга, хорошо и равномерно освещенного.

4. На предметный столик помещают препарат и закрепляют его клеммами.

5. Сначала препарат рассматривают с объективом 8 х , затем переходят к большим увеличениям.

Для получения изображения объекта необходимо знать фокусное расстояние (расстояние между объективом и препаратом). При работе с объективом 8 х расстояние между препаратом и объективом составляет около 9 мм, с объективом 40 х — 0,6 и с объективом 90 х —около 0,15 мм.

Тубус микроскопа необходимо осторожно опускать вниз с помощью макрометрического винта, наблюдая за объективом сбоку, и приблизить его к препарату (не касаясь его) на расстояние, несколько меньшее фокусного. Затем, глядя в окуляр, тем же винтом, медленно вращая его на себя, поднимают тубус до тех пор, пока в поле зрения не появится изображение изучаемого объекта.

После этого вращением микрометрического винта фокусируют объектив так, чтобы изображение объектива стало четким. Микрометрический винт нужно вращать осторожно, но не более чем на полоборота в ту или другую сторону. При работе с иммерсионным объективом на препарат предварительно наносят каплю кедрового масла и, глядя сбоку, макрометрическим винтом осторожно опускают тубус микроскопа так, чтобы кончик объектива погрузился в каплю масла. Затем, глядя в окуляр, тем же винтом очень медленно поднимают тубус до тех пор, пока не появится изображение. Точную фокусировку производят микрометрическим винтом.

6. При смене объективов следует вновь отрегулировать интенсивность освещения объекта. Опуская или поднимая конденсор, получают желаемую степень освещенности. Например, при просмотре препарата с объективом 8 х конденсор опускают, при переходе на объектив 40 х — несколько поднимают, а при работе с объективом 90 х конденсор поднимают вверх до предела.

7. Препарат рассматривают в нескольких местах, передвигая предметный столик боковыми винтами или передвигая стекло с препаратом вручную. При изучении препарата следует все время пользоваться микрометрическим винтом, с тем чтобы рассмотреть препарат во всей его глубине. Перед заменой слабого объектива более сильным место препарата, где расположен изучаемый объект, необходимо поставить точно в центр поля зрения и только после этого, повернуть револьвер с объективом.

8. Во время микроскопирования нужно держать оба глаза открытыми и пользоваться ими попеременно.

9. После окончания работы следует снять препарат с предметного столика, опустить конденсор, поставить под тубус объектив 8 х , мягкой тканью удалить иммерсионное масло с фронтальной линзы объектива 90 х и убрать микроскоп в футляр.

Как настроить микроскоп и основные правила работы с прибором

Световые микроскопы одни из самых популярных, недорогих и простых в эксплуатации увеличительных аппаратов. Для освещения исследуемого препарата в них используется простая система – конденсор и диафрагмы. Также они снабжены лампой накаливания, диодным или другим дополнительным источников света. Световые микроскопы бывают монокулярными, например, Микромед С-13 или С-12, Levenhuk Rainbow 2L, и биокулярными, например, Levenhuk LabZZ M4 или стерео Микромед MC-1 вар. 1А (1x/3x). Настройка обоих видов аппарата проста и не займет много времени.

Настройка прибора

В большинстве микроскопов есть несколько объективов с разной степенью увеличения. Первую настройку микроскопа производят на объективе с наименьшим увеличением:

  • Закрепите рассматриваемый слайд на предметном столике. Приблизьте его к объективу так, чтобы расстояние между ними было 3-4 мм.
  • Поворачивая винт грубой настройки, медленно опускайте вниз столик для слайдов. Это нужно делать до тех пор, пока изучаемый объект не будет хорошо виден в окуляр.
  • Аккуратно вращая винт микронастройки, сделайте изображение четким и качественным.

Если в процессе работы с микроскопом нужно будет изменить степень увеличения, достаточно повернуть револьверную головку до щелчка. Нужно помнить, что объектив с большим увеличением длиннее. Поэтому при повороте можно повредить окуляр или столик.

Биокулярные микроскопы настраиваются так же, как и монокуляры. Только все действия производятся с использованием 1-го окуляра. Второй подстраивается при помощи специального регулировочного кольца. Важно, чтобы, глядя в оба окуляра, исследователь видел 1 четкое изображение.

Работа с микроскопом

Перед началом изучения слайдов нужно подготовить рабочее место. Стол и стул должны быть удобными и соответствовать по высоте возрасту и росту исследователя. Если у микроскопа нет дополнительного источника освещения, то аппарат нужно расположить у окна.

  • Перемещают увеличительный прибор держа за низ и тубусодержатель.
  • Микроскоп устанавливают на ровную поверхность в 30-50 мм от края.
  • Мягкой тканью очищают окуляры и объективы.
  • Открывают диафрагму и опускают конденсор.
  • Настраивают освещение так, чтобы источник света не слепил.
  • При работе с химическими препаратами нужно надевать перчатки и защитные очки.
  • С предметным стеклом обращаются аккуратно. Оно очень хрупкое и может расколоться.
  • В монокуляр лучше смотреть каждым глазом попеременно. Так они не будут уставать.

Если объект исследования прозрачный и бесцветный, его можно подкрасить, например, йодом. Это позволит хорошо его рассмотреть. По окончанию работы микроскоп протирают. Объектив устанавливают на наименьшее увеличение. Прибор хранят в коробке или чехле, чтобы не попадала пыль и влага.

Дополнительные возможности

Некоторые микроскопы, например, Kromatech 60x мини и Bresser National Geographic 40–640x, снабжены подставками и адаптерами для мобильного телефона. С их помощью выполняют фотосъемку исследуемых слайдов.

Есть модели, которые подключаются к компьютеру. Например, цифровой USB-микроскоп МИКМЕД 2.0 или цифровой Levenhuk DTX 720 WiFi. Такие микроскопы укомплектованы дисками с ПО. Они совместимы с ПК, ноутбуком, а иногда и с планшетом или смартфоном. Изображение выводится на экран. Можно снимать видео или делать фото слайдов.

С микроскопом можно исследовать недоступные глазу частицы. Главное, правильно обращаться с прибором и препаратами!

Настройка микроскопа

Настройка микроскопа (по Келлеру)

Настройка столика. Настроить усилие по перемещению координатного столика по осям Х и У так, чтобы перемещение осуществлялось при нормальном усилии, не слишком легко и не слишком туго.

Настройка окуляров. Окуляры бывают двух типов — с регулировкой или без регулировки. Как правило, микроскоп комплектуется одним окуляром с регулировкой и одним окуляром без регулировки. Считаем, что левый окуляр с регулировкой, а правый окуляр без регулировки. Установите окуляр с регулировкой в нейтральное положение ( метка против риски 0). Закроем левый глаз и с помощью перемещения столика сфокусируем изображений в правом глазу. Затем закрываем правый глаз и сфокусируем изображений в левом глазу с помощью вращения кольца настройки левого окуляра. После этого изображений будет одинаково комфортно видно двумя глазами, даже в случае если глаза обладают различными свойствами.

Настройка яркости лампы. Убрать сильный свет при работе с объективами с малым увеличением можно разными путями. Можно уменьшить диафрагму. Можно уменьшить накал лампы. Однако при этом изображение приобретает более желтый оттенок, так как уменьшается цветовая температура лампы. Другой способ состоит в том, чтобы использовать нейтральный фильтр. В этом случае световой поток уменьшится, а цветовая температура лампы не изменится. Можно использовать набор нейтральных фильтров с различными коэффициентами поглощения, и один раз выбрать такой фильтр, который наиболее удобен для работы.

Читайте также:  Безрисковые инновационные проекты с точки зрения количественной оценки риска

Правильно используйте фильтры. При работе с препаратами, для которых цвет не особенно важен (например, хромосомы) использование синего фильтра позволяет повысить разрешающую способность микроскопа и улучшить качество изображения. Это объясняется тем, что разрешающая способность оптики зависит от длины волны падающего света. У синего света длина волны более короткая, и разрешающая способность более высокая.

Не касайтесь линз объективов пальцами. Наличие следов от пальцев резко ухудшает контрастность изображения. В случае касания объектива тщательно протрите объектив мягкой салфеткой и чистым спиртом. Так же не допускайте загрязнения масляных объективов остатками масла и обязательно протирайте их после работы.

Правильно выставить освещение по Келлеру.

Установите объектив среднего увеличения, например, 10х или 20х.

Установите конденсор в крайнее верхнее положение.

С помощью перемещения столика сфокусируйте изображение препарата.

Закройте полевую диафрагму (которая внизу).

Путем перемещения конденсора вниз и вверх установите резкий край полевой диафрагмы.

С помощью регулировочных винтов установите конденсор в середину поля.

Откройте полевую диафрагму до наружного края поля зрения.

Для получения качественного изображений необходимо использовать качественные предметные и покровные стекла. Для объективов с большой апертурой очень важно, чтобы покровное стекло имело стандартную толщину — 0,17 мм. Если на объективе имеется надпись 0,17 , значит он рассчитан на работу с покровным стеклом. Если вы обычно работаете с объективом 40х (0,17) без покровного стекла ( например — гематологические препараты) — просто поместите на предметное стекло покровное, изображение должно существенно улучшиться.

Необходимо отдыхать 3 минуты через каждые 30 минут работы.

После работы с микроскопом выключите осветитель и накройте микроскоп чехлом.

Правила работы с микроскопом (осветитель зеркало)

При работе с микроскопом необходимо соблюдать операции в следующем порядке:

1. Работать с микроскопом следует сидя;

2. Микроскоп осмотреть, вытереть от пыли мягкой салфеткой объективы, окуляр, зеркало или электроосветитель;

3. Микроскоп установить перед собой, немного слева на 2-3 см от края стола. Во время работы его не сдвигать;

4. Открыть полностью диафрагму, поднять конденсор в крайнее верхнее положение;

5. Работу с микроскопом всегда начинать с малого увеличения;

6. Опустить объектив 8 — в рабочее положение, т.е. на расстояние 1 см от предметного стекла;

7. Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;

8. Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;

9. Смотреть одним глазом в окуляр и вращать винт грубой наводки на себя, плавно поднимая объектив до положения, при котором хорошо будет видно изображение объекта. Нельзя смотреть в окуляр и опускать объектив. Фронтальная линза может раздавить покровное стекло, и на ней появятся царапины;

10. Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;

11. Если изображение не появилось, то надо повторить все операции пунктов 6, 7, 8, 9;

12. Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение. При помощи микрометренного винта добиться хорошего изображения объекта. На коробке микрометренного механизма имеются две риски, а на микрометренном винте — точка, которая должна все время находиться между рисками. Если она выходит за их пределы, ее необходимо возвратить в нормальное положение. При несоблюдении этого правила, микрометренный винт может перестать действовать;

13. По окончании работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.

Настройка освещения и фокусировка микроскопа

Качество изображения в значительной мере зависит также от правильного освещения. Существует несколько различных способов освещения препарата при микроскопии. Наиболее распространенным является способ установки света по Кёллеру:
1). устанавливают осветитель против зеркала микроскопа;
2). включают лампу осветителя и направляют свет на плоское (!) зеркало микроскопа;
3). помещают препарат на предметный столик микроскопа;
4). закрывают зеркало микроскопа листком белой бумаги и фокусируют на нем изображение нити лампы, передвигая патрон лампы в осветителе;
5). убирают лист бумаги с зеркала;
6). закрывают апертурную диафрагму конденсора. Перемещая зеркало и слегка передвигая патрон лампы, фокусируют изображение нити на апертурной диафрагме. Расстояние осветителя от микроскопа должно быть таким, чтобы изображение нити лампы было равно диаметру апертурной диафрагмы конденсора (наблюдать апертурную диафрагму можно с помощью плоского зеркала, помещенного с правой стороны основания микроскопа).
7). открывают апертурную диафрагму конденсора, уменьшают отверстие полевой диафрагмы осветителя и значительно уменьшают накал лампы;
8). при малом увеличении (10х), глядя в окуляр, получают резкое изображение препарата;
9). слегка поворачивая зеркало, переводят изображение полевой диафрагмы, которое имеет вид светлого пятна, в центр поля зрения. Опуская и поднимая конденсор, добиваются получения резкого изображения краев полевой диафрагмы в плоскости препарата (вокруг них может быть видна цветная каемка);
10). раскрывают полевую диафрагму осветителя до краев поля зрения, увеличивают накал нити лампы и слегка (на 1/3) уменьшают раскрытие апертурной диафрагмы конденсора;
11). при смене объектива необходимо проверить настройку света.

После окончания настройки света по Кёллеру нельзя изменять положение конденсора, раскрытие полевой и апертурной диафрагмы. Освещенность препарата можно регулировать только нейтральными светофильтрами или изменением накала лампы с помощью реостата. Излишнее открытие апертурной диафрагмы конденсора может привести к значительному снижению контраста изображения, а недостаточное — к значительному ухудшению качества изображения (появлению диффракционных колец). Для проверки правильности раскрытия апертурной диафрагмы необходимо удалить окуляр и, глядя в тубус, открыть ее таким образом, чтобы она закрывала светящееся поле на одну треть. Для правильного освещения препарата при работе с объективами малого увеличения (до 10х) необходимо отвинтить и снять верхнюю линзу конденсора.

Внимание! При работе с объективами, дающими большое увеличение — с сильными сухими (40х) и иммерсионными (90х) системами, чтобы не повредить фронтальную линзу, при фокусировке пользуются следующим приемом: наблюдая сбоку, опускают объектив макровинтом почти до соприкосновения с препаратом, затем, глядя в окуляр, макровинтом очень медленно поднимают объектив до появления изображения и с помощью микровинта производят окончательную фокусировку микроскопа.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 8556 — | 6842 — или читать все.

Настройка освещения по Кёлеру

Настройка освещения по Кёлеру — простая процедура настройки микроскопа и его компонентов для получения наилучшего возможного сочетания контраста и разрешения. У человека, знакомого с этой процедурой, длительность настройки составляет не более двух-трех минут.

Предположим, что осветитель включён, прогрет и бинокулярная насадка настроена, то есть расстояние между окулярами выставлено.

Поместите знакомый препарат на предметный столик и настройте фокусировку при использовании объектива 10х. Апертурная и полевая диафрагмы должны быть широко открыты, светофильтр и дополнительная линза выдвинуты из оптического пути, конденсор поднят до упора и затем опущен на расстояние примерно 0,5 мм.

Прикройте полевую диафрагму так, чтоб её было видно в поле зрения, и настройте фокусировку конденсора, чтобы в фокусе оказался внутренний край ирисовой диафрагмы в плоскости препарата. Когда она будет в фокусе, поставьте её изображение в центр поля зрения и откройте её так, чтобы наружный диаметр находился несколько за пределами поля зрения. Вытащите один окуляр, и глядя в пустой тубус, прикройте апертурную диафрагму, оставив открытыми 2/з в центре наблюдаемого при этом поля. Верните на место окуляр. Настройка освещения по Кёлеру завершена.

Вы начали с объектива 10х. Препарат должен оставаться в фокусе при любом методе настройки и при любых регулировках.

Теперь обратимся к осветителю. Нить лампы должна находиться на расстоянии минимум 7″ (предпочтительно 10″) от апертурной диафрагмы. Осветитель располагается позади микроскопа. Среднюю позицию занимает полевая диафрагма, затем зеркало для отражения света под углом 90° на конденсор. Если нить находится на оптимальном расстоянии, то она будет в фокусе в плоскости апертурной диафрагмы; в противном случае её необходимо сфокусировать в этой плоскости путём передвижения по горизонтали коллекторной линзы осветителя. Закрыв полевую диафрагму, можно посмотреть, центрирована лампа или нет (если нет, её нужно центрировать).

Следует проверить настройку конденсора для данного препарата, фокусирует ли конденсор полевую диафрагму в поле зрения. Для этого, при прикрытой полевой диафрагме перемещением конденсора по вертикали подкорректируйте её фокусировку в плоскости препарата. Затем полевая диафрагма раскрывается до краёв поля зрения. Следовательно, при применении разных объективов ее раскрытие будет различным. Таким образом, название «полевая диафрагма» отражает её назначение.

Поясним выражение «настройка конденсора для данного препарата». Конденсор устанавливается в положении на 0,5 мм ниже столика по двум причинам: 1) если мы не сможем пройти фокальную точку, как мы узнаем, что мы её нашли?; 2) показатель преломления воздуха равен 1,0. Если мы оставим воздух между поверхностью конденсора и нижней поверхностью предметного стекла, то вся система освещения будет работать с А = 1,0. Однако апертура конденсора должна быть равна 1,25, как и А иммерсионного объектива 100х. Как сделать так, чтобы система работала с А = 1,25, а не с А = 1,0? Ответ: поместите на конденсор каплю иммерсионного масла и подведите его к нижней части предметного стекла. Тогда у вас будет достаточно места для капли масла и конденсор установится в правильном положении. Вы когда- нибудь наносили масло между конденсором и предметным стеклом? Скорее всего, нет. Почему? Потому что у вас не было в этом необходимости. Вы и без того видели всё, что нужно. Значит ли это, что иммерсионный объектив 100х с А = 1,0 или даже А = 0,95 в сочетании с конденсором с А = 1,0 даёт нормальный результат? Именно так.

Рассмотрим масляную иммерсию — как и почему она применяется. Все иммерсионные объективы, предусматривающие наличие масла, используют масло типа А. После фокусировки с объективом 40х поверните револьвер так, чтобы убрать объектив с оптического пути, и нанесите одну или две капли иммерсионного масла на участок покровного стекла, через который проходит свет. Затем установите объектив 100х.

Рис. 8. Освещение по Кёлеру

Поскольку микроскоп парфокален, нет опасности повредить покровное стекло. При необходимости подстройте фокусировку конденсора. Вы можете настроить фокусировку для объектива 100х без использования масла на конденсоре, а просто при помощи правильной настройки апертурной диафрагмы и яркости освещения.

Читайте также:  Исторической науке существуют различные точки зрения

В чем преимущество использования масла? Оно позволяет устранить рассеянный свет, вызванный освещением в комнате, что влияет на контраст изображения препарата. Второе и главное преимущество — обеспечивает лучший сбор лучей света, выходящих из конденсора, и соответствующее повышение яркости изображения.

Увеличивает ли использование масла разрешающую способность микроскопа? Вероятно нет, хотя благодаря устранению размытости мы видим препарат с надлежащим контрастом при правильном применении апертурной диафрагмы. (Это предположение автора неверно. Иммерсионное масло позволяет увеличить апертуру объектива, что, в свою очередь повышает разрешающую способность микроскопа. — Прим. ред.)

Другими словами, мы теперь используем апертурную диафрагму только для того, для чего она предназначена, — регулировки контраста.

Рабочее расстояние обычного объектива 100х составляет около 0,3 мм. Иммерсионное масло типа А хорошо подходит для данного расстояния и благодаря высокой вязкости легко счищается со стекла и объектива. Масло типа Б гуще и предназначено для конденсоров, потому что иногда расстояние между конденсором и стеклом должно составлять 0,5 мм или более. Оба типа масла высыхают медленно или не высыхают совсем за то время, пока вы используете их. Не забывайте очистить объектив перед тем, как закончить работу, даже если вы собираетесь отойти всего на 10 минут.

Теперь посмотрим, что зависит от того, левша вы или правша. При выводе объектива 100х из оптического пути для его чистки — 40х или с низким увеличением оказывается в оптическом ходе? Если это объектив 40х — то поменяйте порядок объективов: объектив 40х довольно длинный и задевает масло, однако его линза не предназначена для работы с ним.

Микроскоп позволяет поворачивать револьвер с объективами и по часовой стрелке, и в противоположном направлении. Поэтому, если вы единственный пользователь микроскопа, выберите тот порядок, который вам удобен для очистки иммерсионного объектива.

Две самые большие проблемы при чистке микроскопа — масло и грязь на объективах 40х и 100х. Масла на объективе 40х не должно быть, но вы можете не обратить на это внимание; также вы можете не заметить масляную плёнку и грязь на объективе 100х, поскольку фронтальная линза очень маленькая.

Фронтальная линза иммерсионного объектива герметично закрыта с краев для предотвращения попадания масла в объектив и на внутреннюю поверхность самой линзы. Наличие масла внутри объектива исключает возможность нормальной работы, а очистка стоит дорого.

Теперь повторно обратимся к освещению по Кёлеру.

Поместите знакомый препарат на столик и настройте фокусировку при использовании объектива 10х. Апертурная и полевая диафрагмы должны быть широко открыты, светофильтр и вспомогательная линза выдвинуты из оптического пути, конденсор поднят до упора. Прикройте полевую диафрагму так, чтобы ее было видно, и настройте фокусировку конденсора, таким образом, чтобы в фокусе оказался внутренний край ирисовой диафрагмы на плоскости препарата. Когда она будет в резком фокусе, откройте её, так, чтобы край находился как раз за полем зрения. Вытащите один окуляр и, глядя в пустой тубус, прикройте апертур- ную диафрагму, оставив открытыми 2/3 в центре поле зрения. Верните на место окуляр.

Проверьте, чему равна апертура объектива 40х. Обычно она равна 0,65. Значение очень близко к 2/3 апертуры конденсора. Поэтому мы настраиваем микроскоп, используя объектив 10х, что подходит также и для работы с объективом 40х. Последний называют сухим объективом с высоким увеличением. Сейчас уже есть сухие объективы 60х, 80х и даже 100х, однако термин «сухой объектив» по- прежнему относится к объективу 40х. Причина использования объектива 10х для настройки в том, что у него самое низкое увеличение среди хорошо скоррегированных объективов высокого качества. Объективы с увеличением меньше 10х хуже, вне зависимости от производителя.

Некоторые микроскопы имеют название «микроскоп типа Кёлера» или «полу- Кёлер». Если лампа находится прямо под конденсором и нет необходимого расстояния 7″ — 10″, такие приборы не относятся к микроскопам по Кёлеру. Если есть полевая диафрагма, её можно использовать для ограничения освещённого поля, но не для настройки конденсора.

Можно ли провести настройку освещения по Кёлеру для такого микроскопа? не совсем, но попробуйте. Поместите знакомый препарат на предметный столик и настройте фокусировку при использовании объектива 10х. Апертурная диафрагма должна быть широко открыта, светофильтр и вспомогательная линза выдвинуты из оптического пути. Переместите конденсор до упора и опустите на 0,5 мм. Вытащите один окуляр и, глядя в пустой тубус, прикройте апертурную диафрагму, так, чтобы открыто было 2/3 в центре поле зрения. Верните на место окуляр. Если есть полевая диафрагма, широко откройте её. После настройки закрывайте её до тех пор пока поле зрения не начнёт становиться тёмным. Теперь поднимите или опустите конденсор, чтобы проверить, подходит ли расстояние 0,5 мм для данного препарата. Очень велика вероятность, что вам редко, если вообще придется работать с микроскопом типа Кёлера. Поэтому научитесь настраивать микроскоп до компромиссного варианта, но так близко к идеалу, как только возможно.

Когда вы освоите работу с микроскопом и научитесь пользоваться всеми его компонентами, вам потребуется две—три минуты на настройку по Кёлеру или полу- Кёлеру. Вы сможете открывать апертурную диафрагму примерно на 2/3, просто глядя на препарат.

Фокусировку конденсора следует выполнять для конкретного препарата, и это единственная причина для изменения положения конденсора после настройки освещения по Кёлеру или полу-Кёлеру (на 0,5 мм ниже стекла).

Представьте себе, что выбраны для работы объектив и окуляр, конденсор установлен в нормальное положение, которое редко требуется менять, и все компоненты чистые. Что вам остаётся делать? Вы настроили апертурную диафрагму для объектива 40х, но можете выбрать объектив 10х или даже с меньшим увеличением или, напротив, объектив 100х. Апертурная диафрагма — единственный регулируемый компонент микроскопа. Ваша компетенция при работе с микроскопом зависит исключительно от того, насколько хорошо вы умеете настраивать апертурную диафрагму. Отверстие в 2/3 — это нормальное положение. Врач- лаборант при работе примерно каждые 4 минуты достаёт окуляр и проверяет положение диафрагмы.

Рутинное исследование и техническая подготовка препаратов ткани в лабораториях, больницах, клиниках проводятся препаратором. Он готовит препараты с клетками и растворы. Сложные препараты смотрит патолог (врач-лаборант со специализацией в области цитологии и гистологии). При исследовании препарата он должен понять, вызваны ли затруднения в работе: (1) неправильной фиксацией объекта в формальдегиде, (2) сжатием ткани микротомом, (3) разрыванием ткани ножом, (4) неправильным окрашиванием и т. д. или (5) неправильной работой микроскопа. Поэтому патолог часто проверяет правильность настройки микроскопа по Кёлеру, чтобы исключить неполадку микроскопа как причину проблемы.

Как настроить школьный микроскоп

Эффективная работа с увеличительной техникой требует базовых навыков и знаний. Понимание основополагающих принципов функционирования прибора поможет быстро и правильно настроить школьный микроскоп для использования по назначению. Новички часто совершают ряд ошибок, существенно влияющих на результаты исследований. Это может привести к разочарованию, снизить интерес к занятиям микробиологией. Данная статья помогает избежать подобных проблем, она станет дополнением к инструкции по эксплуатации (ее также рекомендуется внимательно изучить).

Чтобы настроить школьный микроскоп понадобится: подготовить рабочее место (например, устойчивый письменный стол), определить цель микроскопирования (прозрачная, полупрозрачная или непрозрачная материя), выбрать метод (проходящее или отраженное освещение) и выполнить последовательность действий по построению увеличенного изображения. Рассмотрим обозначенные этапы подробнее.

Условия наблюдений.

Если микроскоп оборудован электрической подсветкой (от сети или батареек), то хорошая освещенность помещения не является принципиальным фактором. Но если вместо светодиода или галогенной лампочки в модели реализовано зеркало, то важно, чтобы комната была ярко освещена, ибо зеркальцем придется ловить лучи от внешних источников. Итак, действует следующее правило, вытекающее из самой сути микроскопии: чтобы человеческие глаза зафиксировали образ исследуемого препарата, надо чтобы он частично пропустил свет или полностью отразил его. Только в этом случае излучение, огибающее неоднородности в следствии явления дифракции, сформируют образ поверхности объекта. Вследствие этого он и будет распознан нашими органами зрения.

Методика просмотра.

Биологические, ботанические, зоологические и анатомические микропрепараты очень малы. Они в виде тонких срезов или мазков распределены и расположены между покровным и предметным стеклами. Поэтому способ их изучения называется «Проходящий свет» — вы должны включить нижнюю подсветку.

Цельные организмы больших насекомых (жуки, бабочки, пчелы), камни, минералы, грунт и песок, продукты, сахар, соль, целые побеги, стебли и листья растений рассматриваются в «Отраженном освещении», при котором включается верхний осветитель. Если он не предусмотрен конструкцией – просто воспользуйтесь обычной настольной лампой или фонарем. Для выполнения задачи подойдет даже фонарик от мобильного телефона, приподнимите его над столиком и направьте падающий косой лучик на изучаемый микрообъект.

В обоих случаях видимое поле вокруг материи будет светлым, а элементы клеточной структуры – затемненными, контрастными, с характерной цветовой гаммой.

Фокусировка и увеличение.

Крутящиеся рукоятки по бокам штатива – это устройство настройки фокуса (четкости картинки), а вращающийся барабан с гнездами и ввинченными в них объективами – револьвер, предназначающийся для смены кратности приближения. В окулярную трубку вставлен окуляр – в него и надо смотреть. Допустим, что надо увеличить простейший «классический» препарат «кожица лука». Зажав ее между стеклышками, положите ровно в центр столика, прижмите металлическими зажимами и активируйте нижнюю подсветку. Посмотрев в линзу окуляра, вы заметите световое пятно. На револьверном механизме выберете объектив 4x (маленький по размерам и маломощный он дает широкий угол обзора). Начните аккуратно и плавно вращать ручки фокусировщика. Через несколько секунд вы увидите очертания микропрепарата. Осторожными медленными вращениями добейтесь четкой детализации границ клеток. Теперь можно последовательно провести замену ведущего объектива на другие – 10x и 40x. Проанализируйте увиденное на большей кратности (100x и 400x соответственно).

Вывод изображения на компьютер.

В современном мире оптические системы удачно дополняются цифровыми девайсами, открывающими для исследователя новые возможности. Одним из значимых аксессуаров считается видеоокуляр – это специальная камера, оснащенная чувствительной фотографической матрицей и позволяющая посредством USB порта передать картинку на экран ноутбука. Технология интеграции следующая: камеру-окуляр надо вставить в монокулярную насадку микроскопа, кабель подключить к системному блоку ПК, загрузить диск CD с программным обеспечением. Пройдет автоматическая установка. После выполнения этих действий на мониторе в реальном времени будет отображаться микроструктура изучаемых материалов. Пользователь, нажимая интерактивные кнопки фото и видеосъемки, получает фотографии микромира или видеоролики передвижения микроорганизмов в субстрате или жидкости (допустим, жизнь инфузории Туфельки в капле воды из лужи).

Заключительные рекомендации.

Прочитав это руководство, вы сможете самостоятельно настроить школьный микроскоп. Для примера были взяты две аналогичные светодиодные биологические модели, которыми оборудуются классы биологии в школах и лицеях: Эврика 40х-400х в кейсе, Levenhuk Rainbow 2L Moonstone. А в качестве альтернативы – зеркальные Биомед-1 или Микромед С-12 с более мощной оптикой и поддержкой иммерсионных стократных S-объективов. Все варианты по-своему хороши, а какой оптимален для вас — решайте в соответствии с бюджетом и конечными целями. Для дополнительной консультации рекомендуем позвонить или написать письмо менеджерам интернет-магазина.

Источники:
  • http://e-lib.gasu.ru/eposobia/papina/bolprak/R_1_1.html
  • http://smikro.ru/?p=1050
  • http://optical-pro.ru/articles/kak-nastroit-mikroskop-i-osnovnye-pravila-raboty/
  • http://studfiles.net/preview/2073242/
  • http://studopedia.ru/3_211036_nastroyka-osveshcheniya-i-fokusirovka-mikroskopa.html
  • http://medinfo.social/farmakognoziya_873/nastroyka-osvescheniya-kleru-49466.html
  • http://oktanta.ru/kak_nastroit_shkolnyj_mikroskop