Меню Рубрики

Дисцилированная вода поле зрения без кюветы

В настоящее время в технохимическом контроле бродильных производств применяют два основных метода определения содержания углеводов: поляриметрический и химический. Известны также колориметрический, хроматографический и полярографический методы определения углеводов, изложенные в следующих разделах этой главы.

Свет представляет собой электромагнитные колебания, распространяющиеся от источника света во все стороны по прямым линиям (лучам). Различают лучи естественные и поляризованные. Луч, колебания которого происходят во всех плоскостях, перпендикулярных его направлению, называется естественным лучом (рис. 27). Поляризованным лучом называется такой луч, колебания которого происходят только в какой-либо одной плоскости. Плоскость, в которой происходят колебания луча, называется плоскостью колебаний поляризованного луча, а плоскость, перпендикулярная ей, — плоскостью поляризации.

Способность веществ и растворов изменять (вращать) плоскость поляризации света называется оптической активностью. Вещества, способные вращать плоскость поляризации света, являются оптически активными. В противоположность им вещества, не способные изменять плоскость поляризации света, оптически неактивны. Углеводы относятся к оптически активным веществам. Оптическая активность углеводов обусловлена наличием в их молекуле асимметрических атомов углерода, т.е. таких, все четыре валентные связи которых соединены с различными атомами или группами атомов. Углеводы, как и другие органические вещества, содержащие асимметрический углерод, проявляют оптическую активность в растворенном состоянии. На свойстве оптической активности углеводов основан поляриметрический метод их определения.

Различают вещества, изменяющие плоскость поляризации света по часовой стрелке — правовращающие — и изменяющие ее против часовой стрелки — левовращающие. К правовращающим веществам относятся глюкоза, сахароза, раффиноза, крахмал, к левовращающим — фруктоза. Если через раствор оптически активного вещества проходит поляризованный луч, то он вращает плоскость поляризации. Плоскость поляризации вышедшего луча оказывается повернутой на некоторый угол, называемый углом вращения плоскости поляризации. Величина этого угла зависит от природы вещества, толщины слоя раствора (длина пути луча), концентрации раствора, длины волны поляризуемого света и температуры.

Для сравнения оптической активности различных оптически активных веществ и использования этого явления в аналитической практике введено понятие удельного вращения. Удельным вращением называют угол, на который поворачивается плоскость поляризации под действием раствора, содержащего 100 г вещества в 100 мл раствора при толщине слоя этого раствора 1 дм (100 мм); условились удельное вращение измерять при температуре 20° С в желтом свете натриевого пламени и обозначать индексом [a]20D . Каждое оптически активное вещество характеризуется определенной величиной удельного вращения при растворении его в определенном растворителе. Ниже приведены величины удельного вращения некоторых углеводов [a]20D

Знак «+» означает правое вращение, знак «-» -левое.

Свежеприготовленные растворы некоторых сахаров не сразу проявляют свойственное им удельное вращение. Вращательная способность таких растворов изменяется на холоде медленно, а при известных условиях (нагревание, незначительное добавление щелочи) — быстро. Это явление постепенного изменения удельного вращения называется мутаротацией и объясняется наличием а- и b-форм молекул сахаров. Например, a-d-глюкоза имеет удельное вращение [а]20D = +110°, а a-d-глюкоза +19°. Свежеприготовленный раствор одной из этих форм постепенно изменяет вращение, пока величина его не достигнет среднего значения, соответствующего удельному вращению +52,5°, при котором обе формы глюкозы находятся в равновесии.

Удельное вращение оптически активного вещества в растворе выражается формулой

где а — наблюдаемый угол поворота плоскости поляризации; С — концентрация оптически активного вещества, г/100 мл раствора; l — толщина слоя раствора, дм.

Пользуясь указанной формулой, можно по величине угла поворота плоскости поляризации а найти концентрацию оптически активного вещества С. Прибор, при помощи которого можно измерить угол поворота плоскости поляризации, производимого оптически активным веществом, называется поляриметром.

Устройство поляриметра

Основными частями поляриметра являются поляризатор и анализатор. Поляризатор служит для получения поляризованного света, анализатор — для его исследования и обнаружения. В качестве поляризатора и анализатора обычно пользуются призмами Николя (рис. 28). Такая призма выпиливается из кристалла исландского шпата и состоит из двух частей abd и bcd, склеенных по плоскости bd. Луч света l, входя в кристалл, делится на два поляризованных луча mp и mo. Луч mo, обладающий большим коэффициентом преломления, претерпевает полное внутреннее отражение от слоя склеивающего вещества bd и уходит в сторону or. Луч mpqs с меньшим коэффициентом преломления проходит сквозь призму. Таким образом, первая призма Николя (поляризатор) дает возможность получить поляризованный свет. Призма Николя пропускает лишь световые колебания, лежащие в одной определенной плоскости; колебания, лежащие в перпендикулярной плоскости, она совершенно не пропускает. Поэтому, если пропустить луч света последовательно через две призмы Николя, расположенные одна за другой, то могут наблюдаться различные явления в зависимости от того, как повернута вторая из призм. Когда поляризатор и анализатор установлены взаимно параллельно, то лучи света проходят через обе призмы (рис. 29, а). Если же анализатор повернуть на 90° (рис. 29, б), то он не пропустит лучей, полученных в поляризаторе; в этом случае после анализатора свет не будет наблюдаться. Такое положение называется постановкой николей «на темноту».

Оптическую активность можно наблюдать в простейшем поляриметре (рис. 30) следующим образом. Между поляризатором Р и анализатором А, поставленными «на темноту», помещают оптически активное вещество R. Поляризованный луч после прохождения через это вещество повернется на угол, соответствующий оптической активности вещества, и подойдет к анализатору не под углом 90°, а под другим. После анализатора виден будет свет. Чтобы погасить его, придется повернуть анализатор на некоторый угол, равный углу поворота плоскости поляризации при прохождении его через вещество R. Таким образом можно определить угол поворота плоскости поляризации. Однако такой поляриметр не может быть использован для точных работ, так как человеческий глаз не способен четко отличить полную темноту от очень слабого света. Глаз легко и точно различает разницу в интенсивности освещения двух лежащих рядом слабоосвещенных плоскостей. Для этого в поляриметре должно быть так называемое «полутеневое» устройство; поляриметр с таким устройством называется полутеневым. Можно получить полутеневой поляриметр, применив вместо обычного поляризатора поляризатор Корню.

Устройство этого поляризатора следующее. Призму Николя распиливают вдоль пополам по линии АВ (рис. 31); затем от каждой половины удаляют острый клин Aba и Abc, обе оставшиеся половины вновь склеивают. Поляризованные лучи, выходящие из правой и левой половин призмы, не будут параллельны один другому, а расположатся под некоторым углом. Поворотом анализатора можно погасить только один из пучков этих лучей, а другой пройдет через анализатор и поле зрения будет состоять из двух половин — светлой и темной (рис. 32, а и в). Если поставить анализатор под одинаковым углом (близким к 90°) к обеим половинам призмы Корню, то получим одинаковое слабое освещение — «полутень» (рис. 32, б).

Призма Корню не совсем удобна, так как в ней видна линия, по которой склеены половины призмы, что мешает наблюдению. Этот недостаток устранен в поляризаторе Липпиха (рис. 33), который состоит из двух призм Николя — большой Р и малой H, расположенных так, что меньшая из них закрывает половину поля зрения и повернута на небольшой угол относительно большой призмы. При этом, если анализатор установлен «на темноту» относительно большой призмы, то одна половина поля будет освещена, а вторая слабо освещена. Если же его установить «на темноту» относительно малой призмы, то первая половина поля будет освещена, а вторая затемнена. Между этими двумя положениями анализатора можно найти такое, при котором оба поля будут слабо и равномерно освещены (см. рис. 32, б).

В контроле бродильных производств применяют поляриметры, предназначенные для определения сахарозы, — так называемые сахариметры. В поляриметрах-сахариметрах анализатор устанавливают неподвижно и вместо вращения анализатора применяют кварцевые компенсаторы. Кварц является оптически активным веществом; существуют две разновидности кварца — право- и левовращающий. Если между поляризатором и анализатором поместить два кварцевых клина — один правовращающий, а другой — левовращающий — так, чтобы толщина слоя одного равнялась толщине слоя другого, то вращательная способность их будет равна нулю.

Кварцевый компенсатор состоит из правовращающей кварцевой пластинки Р и двух левовращающих клиньев К1 и K2 (рис. 34, а), из которых более длинный — К2 может двигаться параллельно клину К1. Если оба клина сложить плотно, то они составят пластинку с параллельными сторонами, вращающую влево. Толщину этой пластинки можно менять, вдвигая более или менее клин К2: если его вдвинуть больше, то левовращающий слой кварца станет толще, чем правовращающая кварцевая пластинка Р, и вся кварцевая система (в целом) будет вращать влево, что даст возможность компенсировать правое вращение исследуемого сахарного раствора. Если выдвигать постепенно назад клин К2, то сначала получится система, не вращающая ни вправо, ни влево (сумма толщин К1 и К2 станет равна толщине Р). Затем, при дальнейшем движении клина, перевесит правая вращательная способность пластинки Р и получится правовращающая система, способная компенсировать левое вращение.

Применяют и другую систему кварцевой компенсации (см. рис. 34,б), которая состоит из двух клиньев K1 и К2. Клин К2 из левовращающего кварца — подвижный, клин К1 из правовращающего кварца — неподвижный. Клинья своими более тонкими концами направлены в одну сторону. Луч света проходит через большую толщину клина К2 и через малую толщину клина K1; в этом случае клиновая система вращает влево и может компенсировать вращение раствора правовращающего вещества. Если же подвижный клин К2 передвинуть так, чтобы на пути света оказалась тонкая часть его, то перевесит правое вращение клина К1 и клиновая система будет вращать вправо, компенсируя вращение какого-либо раствора левовращающего вещества.

Луч света, проходя через клинья К1 и К2, направленные суженными концами в одну сторону, конечно, будет преломляться и изменит свое направление и, кроме того, еще разложится в спектр. Чтобы этого не произошло, ставят дополнительную компенсирующую стеклянную призму С, которая направлена тонким концом в другую сторону по сравнению с клиньями К1 и К2 и поэтому восстанавливает прежнее направление луча света (см. рис. 34, б).

Описанная клиновая кварцевая компенсация называется одинарной. Часто применяются поляриметры с двойной клиновой компенсацией. Двойная компенсация имеет две пары клиньев (рис. 35). Одна пара так называемых контрольных клиньев К изготовлена из правовращающего кварца и служит для измерения вращения левовращающих веществ; вторая пара клиньев, так называемых рабочих клиньев А, изготовлена из левовращающего кварца и служит для измерения вращения правовращающих веществ. Преимущество поляриметров с кварцевым компенсатором заключается в увеличении точности отсчетов, так как толщину кварцевого клина при изменении его положения можно измерить точнее, чем угол поворота анализатора.

Светофильтр. При поляризации бесцветных или слабоокрашенных растворов одна половина поля зрения сахариметра имеет слегка желтоватый оттенок, а другая — голубоватый. Для поглощения и тем самым устранения возможности появления различных окрасок устанавливают светофильтр. В качестве светофильтра применяют трубку с раствором двухромовокислого калия (К2Сг2О7) или желтое стекло. При поляризации окрашенных растворов, например мелассы, которые сами имеют желтую окраску и поглощают лучи нежелательной части спектра, пользоваться светофильтром необязательно. Поэтому при работе с окрашенными растворами в целях улучшения освещения поля зрения иногда выводят светофильтр из оптической системы поляриметра.

Освещение поляриметра. При применении поляриметра с подвижным анализатором необходимо пользоваться монохроматическим (одноцветным) светом, например желтым светом натриевого пламени. Пользоваться в этом случае сложным белым светом нельзя, так как лучи разной длины волны поворачиваются на различные углы и получается вращательная дисперсия: у лучей с короткой волной, например фиолетовых, плоскость поляризации поворачивается на больший угол, чем у лучей с длинной волной, например красных. Поэтому при пользовании сложным белым светом в таком поляриметре нельзя добиться поворотом анализатора слабого равномерного освещения обеих половин поля зрения. Наличие в сахариметре кварцевого компенсатора дает возможность пользоваться обычным белым, а не монохроматическим светом. Вращательная дисперсия для кварца почти такая же, как и для сахарных растворов. Поэтому белый поляризованный свет, разложенный при прохождении через сахарный раствор на составные лучи с различным поворотом плоскости поляризации, при дальнейшем прохождении через кварцевый компенсатор вновь превращается в первоначальный белый свет, а разложенные лучи вновь складываются в первоначальный луч. В качестве источника света для сахариметров применяют матовые лампы накаливания 100 вт; в настоящее время выпускают сахариметры, у которых лампа вставлена в прибор.

Читайте также:  Две точки зрения на причины возвышения москвы в 14 веке

Шкалы поляриметра. Существуют поляриметры с круговой и линейной (эмпирической) шкалой. Круговая шкала градуирована в угловых градусах линейная — в процентах сахарозы. В бродильной промышленности применяют поляриметры с линейной шкалой. Эта шкала дает отсчет 100 в том случае, если в 100 мл водного раствора содержится 26,00 г чистой сахарозы и раствор поляризуют в трубке длиной 200 мм; все операции выполняют при 20° С. Навеска 26,00 г называется нормальной. Таким образом, если нормальную навеску х. ч. сахарозы растворить в воде и довести объем раствора до метки в колбе на 100 мл, то такой раствор в трубке длиной 200 мм даст по шкале отсчет, равный 100,0%. Если взять нормальную навеску какого-либо продукта (например, мелассы или сахарного сиропа), содержащего n% сахарозы, то очевидно, по шкале получится отсчет n%. Следовательно, для того чтобы получить непосредственно на шкале поляриметра процент сахарозы в исследуемом продукте, следует соблюдать следующие условия: 1) навеска исследуемого продукта должна быть точно 26,00 г; 2) эта навеска должна быть растворена до объема 100 мл; 3) поляризация раствора проводится в трубке длиной 200 мм.

Линейная шкала поляриметра дает возможность вести отсчет с точностью до 0,1 деления. Для отсчета десятых долей служит нониус. На рис. 36,а показано положение шкалы относительно нониуса, соответствующее отсчету +12,7. При этом нуль нониуса расположен после 12 полных делений шкалы, а седьмое деление нониуса совпадает с одним из делений шкалы. На рис. 36,б показано положение нониуса, соответствующее отсчету -3,2. В этом случае нуль нониуса расположен левее шкалы на три полных деления шкалы, а второе деление нониуса совпадает с делением шкалы.

Поляриметрические трубки и пользование ими. При поляриметрических определениях исследуемый раствор наливают в поляриметрическую трубку (рис. 37). Трубки изготовляют из металла (латунь, медь) и стекла. При исследовании растворов с кислой реакцией следует пользоваться только стеклянными трубками. Длина трубок 100, 200 и 400 мм. Трубка длиной 200 мм считается нормальной. Длину трубок проверяют специальными штангенциркулями, дающими показание с точностью до 0,1 мм. Трубки закрывают покровными стеклами, прижимая их к концам трубок гайками; для уплотнения между покровными стеклами и гайками прокладывают резиновые кольца. Перед употреблением покровные стекла следует вымыть и вытереть досуха. Трубка должна быть чистой и сухой. Высушивают трубку, проталкивая сквозь нее деревянной палочкой тампон из фильтровальной бумаги. Если перед наполнением трубка не была высушена, то ее ополаскивают 2 раза исследуемым раствором. Наполняют трубки следующим образом: трубку закрывают с одного конца стеклом и гайкой, берут ее двумя пальцами, держат наклонно (чтобы в трубку не увлекались пузырьки воздуха) и наливают в нее столько жидкости, чтобы она выступала поверх краев трубки в виде капли. Затем закрывают трубку сверху покровным стеклом, двигая его с одной стороны в горизонтальном направлении по бортику трубки, как бы срезая выступающую каплю жидкости; закрывать трубку надо быстро и аккуратно так, чтобы под покровным стеклом не осталось пузырька воздуха. Если это не удалось сделать сразу, то, вытерев досуха стекло и долив трубку, следует повторить эту операцию. Покровные стекла нельзя прижимать слишком сильно, так как при этом они могут стать оптически активными.

Схема сахариметра. Выпускаемые в настоящее время Киевским заводом КИП сахариметры СУ-1 и СУ-2 имеют следующую схему (рис. 38). Свет от электролампы 1 проходит через матовое стекло 2 или светофильтр 3, затем через конденсаторную линзу 4 и поступает в поляризатор 5. Поляризованный луч из поляризатора проходит два защитных стекла 6 и 7, между которыми помещается поляриметрическая трубка с исследуемым раствором. За защитным стеклом 7 установлен кварцевый компенсатор, состоящий из трех клиньев: подвижного кварцевого клина 8, стеклянного контрклина 9 и неподвижного кварцевого клина 10. Далее установлен анализатор 11 и зрительная труба, состоящая из двухлинзового объектива 12, 13 и окуляра 14. От электролампы 1 свет попадает также в отражательную призму 15 и, отражаясь, падает на защитное стекло 16. Это стекло рассеивает свет, который затем освещает шкалу 17 и нониус 18. Цифры и деления на шкале и нониусе рассматривают в увеличенном виде при помощи окуляра, состоящего из двух линз 19 и 20. Шкала 17 связана с подвижным кварцевым клином 8. Таким образом, смещение подвижного кварцевого клина 8, пропорциональное углу вращения плоскости поляризации, передается на шкалу 17 и отсчитывается при помощи окуляра шкалы 19-20.

Установка сахариметра. Сахариметр должен быть установлен на столе в темной комнате длиной около 2 и шириной 1,2 м со стенами, окрашенными в черный цвет. Если такой комнаты нет, над поляриметром устанавливают колпак из фанеры. Длина колпака 1,2, ширина 0,9 и высота 0,8 м. Изнутри колпак окрашивают в черный цвет. На отверстие колпака, обращенное к наблюдателю, навешивают портьеру из темной и плотной материи. Для удобства работы стол с прибором должен быть расположен так, чтобы поляризующий сидел спиной к окну. Это исключает проникновение дневного света в глаз наблюдателя и уменьшает утомляемость глаз при наблюдении. У стола, на котором установлен сахариметр, должны быть два выключателя: один — к электролампе, освещающей поляриметрическую комнату, а второй — к электролампе прибора.

Практика пользования сахариметром. Поляризацию проводят следующим образом. Окуляр анализатора 1 (рис. 39) устанавливают на ясную видимость и вращением винта 2 добиваются одинаковой интенсивности освещения обеих половин поля зрения; показания сахариметра при этом должны быть равны нулю. Затем в камеру сахариметра 3 помещают поляриметрическую трубку, наполненную исследуемым раствором. Поле зрения сахариметра разделяется по вертикальной линии на две половины (см. рис. 32, а) — темную и светлую. Тогда вращением винта 2 вновь добиваются одинаковой интенсивности освещения обеих половин поля зрения, после чего проводят отсчет. Для большей точности следует проводить поляризацию 2-3 раза подряд (не вынимая трубки) и из полученных отсчетов выводить среднее.

Сахариметр следует содержать в абсолютной чистоте. Поляриметрическая трубка, помещенная в сахариметр, должна быть совершенно сухой и чистой. Правильность показаний сахариметра проверяют специальными контрольными трубками.

Осветлители

Растворы исследуемых продуктов для поляризации должны быть совершенно прозрачны и возможно меньше окрашены. Чем интенсивнее окраска раствора, тем труднее проводить определение содержания крахмала или сахара, так как меньше заметна разница в интенсивности освещения обеих половин поля зрения. Поэтому окрашенные продукты перед поляризацией осветляют. При осветлении удаляются также другие оптически активные вещества, например белки. Так, при исследовании мелассы ее осветляют реактивом Герлеса. Этот реактив состоит из двух растворов: Герлес I и Герлес II. Герлес I представляет собой раствор азотнокислого свинца, Герлес II — раствор едкого натра. При исследовании сахарной свеклы и других сахарсодержащих продуктов в качестве осветлителя применяют основной уксуснокислый свинец, для крахмалсодержащих продуктов — молибденовокислый аммоний.

Автоматический сахариметр

В настоящее время Киевский завод КИП выпускает фотоэлектрический автоматический поляриметр типа СА конструкции В. И. Кудрявцева. Этот поляриметр выполняет автоматически компенсацию вращения плоскости поляризации раствором и дает отсчет процентного содержания сахара. Основная схема сахариметра конструкции Кудрявцева (рис. 40) такова. Свет от электролампы 1 через конденсор 2 поступает в поляризатор 3. Поляризованный свет, плоскость поляризации которого приводится в колебание магнитооптическим модулятором 4, проходит через светофильтр 5, поляриметрическую трубку с исследуемым раствором 6, диафрагму 7, кварцевый компенсатор 8, 10, стеклянный контрклин 9, анализатор 11 и попадает на фотоэлемент 12. Фотоэлемент преобразует колебания интенсивности света в переменный электрический ток.

В отличие от обычного поляриметра роль поляризатора и анализатора выполняют не призмы Николя, а поляроиды, состоящие из пластинки с нанесенным слоем органических соединений йода; поляроиды устанавливаются в положении «накрест». При отсутствии трубки с раствором оптически активного вещества свет из анализатора не выходит. Когда между поляриметром и анализатором помещают трубку с исследуемым раствором, то на фотоэлемент падает свет, интенсивность которого зависит от угла вращения плоскости поляризации. Вращение плоскости поляризации исследуемым раствором компенсируется перемещением подвижного клина 8 кварцевого компенсатора, причем это перемещение пропорционально углу вращения плоскости поляризации, следовательно, пропорционально и концентрации раствора.

Отсчет показаний прибора проводится по шкале 19, связанной с подвижным клином 8 кварцевого компенсатора и снабженной нониусом 18. Для удобства отсчета показаний деления и цифры шкалы и нониуса проецируются на полупрозрачный экран 21 оптической проекционной системы, состоящей из осветителя 16, конденсора 17 и объектива 20. Подвижный клин и связанная с ним шкала перемещаются реверсивным двухфазным двигателем 13 через редуктор 14 и кремальерную передачу 15. Одна из обмоток электродвигателя питается через понижающий трансформатор 26 и стабилизатор напряжения 27 от сети переменного тока с частотой 50 гц. Вторая обмотка питается от усилителя переменного тока 22, на входе которого включен фотоэлемент 23. Ток на усилитель поступает через выпрямители 24 и 25. Электродвигатель вращается при подаче на обмотки переменного напряжения с частотой 50 гц.

Определение содержания сахарозы в мелассе

Содержание сахарозы в мелассе определяют следующим образом. Нормальную навеску мелассы (26,00 г) с помощью теплой воды (здесь и далее, где специально не оговорено, имеется в виду дистиллированная вода) переводят в мерную колбу на 100 мл, охлаждают до 20° С, прибавляют для осветления 8-10 мл растворов реактива Герлеса. Растворы Герлеса добавляют в 4-5 приемов; после каждого прибавления раствора азотнокислого свинца добавляют такое же количество раствора едкого натра, смесь перемешивают легким вращением колбы в течение 1,5-2 мин, затем опять в том же порядке прибавляют осветлитель. Содержимое колбы доводят до метки водой (при температуре 20° С), взбалтывают и после 2-5 минутного стояния фильтруют и поляризуют в трубке длиной 200 мм. Показание поляриметра дает непосредственно процент сахарозы в исследуемой мелассе.

Определение содержания крахмала в зерне

Содержание крахмала в зерне определяют по методу Эверса, который предусматривает превращение нерастворимого крахмала зерна в растворимый путем нагревания с разбавленной соляной кислотой. Навеску размолотого зерна 5,0000 г (т.е. с точностью до 0,0001 г) количественно переносят (через воронку с отрезанным концом) в сухую мерную колбу на 100 мл, приливают 25 мл 1,124%-ной соляной кислоты, ополоснув ею стаканчик, в котором взвешивали. Следующими 25 мл кислоты смывают частицы зерна со стенок колбы. Смесь перемешивают и колбу помещают на 15 мин в кипящую водяную баню, причем в тёчение первых трех минут содержимое колбы размешивают плавными круговыми движениями. Необходимо наблюдать, чтобы вода в бане покрывала всю колбу, а кипение было энергичным и не прекращалось при погружении колбы.

По истечении 15 мин колбу вынимают, вливают в нее 40 мл воды, взбалтывают и быстро охлаждают до 20° С. Для осветления раствора и осаждения белков прибавляют 4-6 мл раствора молибденовокислого аммония, доливают до метки водой, взбалтывают и фильтруют через сухой фильтр в чистую сухую колбу. Во избежание испарения воронку покрывают стеклом. Первые 20 мл фильтрата выливают, а последующие немедленно поляризуют в стеклянной трубке длиной 200 мм.

При исследовании крахмалсодержащих продуктов (зерна, картофеля) поляриметр не покажет непосредственного содержания крахмала. Для того чтобы рассчитать содержание крахмала, поступают следующим образом. Из формулы удельного вращения находим С:

При пользовании поляриметром с линейной шкалой формула приобретает следующий вид:

где П — показания поляриметра с линейной шкалой; 0,3468 — коэффициент перехода от линейной шкалы поляриметра к круговой.

Для определения крахмалистости зерна применяют навеску 5 г и растворяют крахмал до объема 100 мл разбавленной соляной кислотой. Пользуясь приведенной формулой, получают содержание крахмала в 100 мл раствора или (что то же) в 5 г навески. Процентное содержание крахмала в зерне находят умножением результата расчета на 20 (100:5 = 20).

Следовательно, крахмалистость зерна К можно рассчитать по формуле

В указанной формуле все величины, кроме П (показания поляриметра), постоянные. Поэтому можно написать К = kП, где k — постоянный коэффициент. Коэффициенты k для разных видов крахмала несколько различны, так как различны значения удельного вращения крахмала отдельных зерновых культур. Коэффициенты k были вычислены Эверсом и называются коэффициентами Эверса. Эти коэффициенты вычислены для навески 5 г при применении мерной колбы на 100 мл и поляриметрической трубки длиной 200 мм.

Читайте также:  Как правильно пишется с точки зрения

Приводим значения удельного вращения и коэффициента Эверса для различных видов крахмала.

Процентное содержание крахмала получают умножением показания шкалы поляриметра на соответствующий коэффициент Эверса.

Пример. При анализе пробы кукурузы показания поляриметра 28,4. Содержание крахмала составит 28,4 * 1,849 = 52,51%.

А. Н. Бондаренко и В. А. Смирнов считают, что удельное вращение крахмалов, выделенных из зерна хлебных и крупяных культур, при растворении в 1,124%-ной соляной кислоте и определении по методу Эверса одинаково и равно 181,0°. Соответственно будет одинаков и коэффициент Эверса, равный 1,910.

Пользование поляриметрическими кюветами

Измерения производят, помещая в камеру сахариметра поляриметрические кюветы, наполненные исследуемым раствором. Вращением кюветы устанавливают в такое положение, чтобы линия раздела делила поле зрения прибора примерно на две равные половины. Кюветы закрываются с обоих концов поляриметрическими стеклами, которые прижимаются к торцам трубки с помощью гаек. Для более эластичного прижима между стеклом и гайкой вкладывается резиновое кольцо.

Перед наполнением кювету промывают испытуемым раствором 2–3 раза. В кювету, закрытую с одной стороны стеклом и гайкой, наливают столько жидкости, чтобы она выступила поверх краев трубки. Выждав некоторое время, пока пузырьки газа, содержащегося в жидкости, поднимутся вверх, закрывают кювету сверху стеклом (предварительно вымытым или вытертым насухо), надвигая его на торец трубки со стороны, как бы срезая выступающую жидкость.

Закрывать кювету надо быстро и аккуратно, чтобы под стеклом не оставалось воздушного пузырька. Если же это сделать сразу не удастся, то, вытерев насухо стекло и долив кювету, повторить закрывание.

Не следует сильно прижимать поляриметрические стекла, так как в результате этого может возникнуть дополнительное вращение плоскости поляризации, что влияет на точность результатов измерений.

Проточная поляриметрическая кювета наполняется исследуемым раствором через воронку, причем наливать раствор следует медленно, чтобы избежать образования воздушных пузырьков, которые потоком жидкости могут быть вовлечены внутрь кюветы и затруднят проведение измерений.

При инверсионной поляризации через кожух инверсионной поляриметрической кюветы пропускают воду необходимой температуры от термостатирующей установки. Вода подводится и отводится при помощи резиновых трубок, надетых на штуцеры инверсионной кюветы. Перед употреблением кюветы должны быть вымыты, вытерты с помощью деревянного шомпола, которым проталкивают неплотный комок фильтровальной бумаги через кювету, а затем ее высушивают.

Поляриметрические кюветы подлежат ежегодной проверке, так как износ торцов и изгиб трубок влияют на точность измерений.

Предел минимальных размеров поляриметрических кювет по длине следующие: для кювет с номинальной длиной 100 мм – 99,95мм, для кювет с номинальной длиной 200 мм – 199,95 мм, для кювет с номинальной длинной 400 мм – 399,90 мм. Поляриметрические кюветы, длина которых выходит за указанные пределы, не пригодны к употреблению. Измерять длину необходимо микрометром с соответствующими пределами измерений в четырех направлениях.

Кроме того, каждая поляриметрическая кювета должна быть проверена на отсутствие в поляриметрическом стекле натяжении. Для этого кювета заполняется дистиллированной водой и вкладывается в камеру сахариметра, настроенного на полную однородность поля зрения.

Если при вращении поляриметрических кювет вокруг своей оси не происходит заметного изменения однородности поля зрения, то кювета считается годной.

Хранить поляриметрические кюветы следует в условиях, исключающих их прогиб, т.е. на подставках с опорами под трубки кювет.

Категорически запрещается использоватъ случайные поляриметрические стекла.

Дата добавления: 2015-09-11 ; просмотров: 6 | Нарушение авторских прав

УСТРОЙСТВО И РАБОТА ПОЛЯРИМЕТРА СМ-2

Поляриметр настольного типа, закрытой конструкции, визуальный, с наклонной осью состоит из следующих узлов: головки анализатора с отчетным устройством и лупой, поляризационного устройства, основания в сборе и набора кювет. Общий вид поляриметра изображен на рис.6: 1 — втулка наблюдательной трубки, 2 — кюветное отделение, 3 — окуляр, 4 — ручка анализатора, 5 — шкала лимба, 6 — наглазник, 7 — лупа.

Рис. 6. Общий вид поляриметра

Принципиальная оптическая схема поляриметра приведена на рис. 7.

1-лампочка накаливания, 2-светофильтр, 3-конденсор, 4-поляризатор, 5-хроматическая фазовая пластинка, 6-защитное стекло, 7-покровные стекла кюветы (трубки), 8-трубка, 9-анализатор, 10-объектив, 11- окуляр, 12-лупы.

Свет от источника 1 проходит через желтый светофильтр 2. конденсор 3 и падает параллельным пучком на поляризатор 4. Поляризованный свет попадает на активное вещество, находящееся в кювете 8.

В поляриметре применен принцип уравнивания яркостей разделенного на части поля зрения. Разделение поля зрения осуществлено введением в оптическую схему поляриметра хроматической фазовой пластинки 5. Яркости полей сравнения уравнивают вблизи полного затемнения поля зрения. Плоскости поляризации поляризатора и анализатора составляют угол 86,5 0

Свет от лампы, пройдя через поляризатор одной частью пучка проходит через хроматическую фазовую пластинку, защитное стекло, кювету и анализатор, а другой частью пучка только через защитное стекло, кювету и анализатор. Вид поля зрения показан на рис.8. Уравнивание яркостей полей зрения производится путём вращения анализатора.

Если между анализатором и поляризатором ввести кювету с оптически активным веществом, то равенство яркостей полей зрения нарушается (рис.9). Оно может быть восстановлено поворотом анализатора на угол, равный ушу поворота плоскости поляризации оптически активным раствором (рис.10).

Следовательно, разностью двух отсчётов, соответствующих равенству двух яркостей полей сравнения с оптически активным раствором и без него, определяется угол вращения плоскости поляризации раствором.

Зная угол вращения плоскости поляризации в градусах (см формулу 7), можно определить концентрацию вещества в г/см 3 :

Рис.8. Положение лимба и поле зрения при установке анализатора на равную яркость полей зрения в чувствительном положении при введенной кювете, наполненной дистиллированной водой (нулевое положение)


РИС.9. Положение лимба и поле зрения после ввода кюветы, наполненной раствором и вторичной установки окуляра на резкость) изображения линий раздела полей зрения

РИС.10. Положение лимба и поле зрения при установке анализатора на равную яркость полей сравнения в чувствительном ] положении с кюветой, наполненной раствором.

Отсчеты углов ф по шкале снимают следующим образом. Шкала поляриметра состоит из двух частей: подвижная шкала лимба (левая часть на рис. 8-10) и неподвижная шкала нониуса (правая часть). Цена деления шкалы лимба 0,5°, нониуса — 0,02°. Оцифровка нониуса «10» соответствует 0,10°; «20» — 0,20° и т.д. Определяют на сколько градусов повернута шкала лимба по отношению к «нулю» нониуса. Затем смотрят, какие два деления (одно на лимбе, другое на нониусе) совпадают и по совпадающему делению на нониусе отсчитывают сотые доли Градуса (принцип такой же, как и для штангенциркуля) Например, шкала лимба сдвинута на 3 деления относительно «нуля»‘ нониуса и совпадает 6-ое деление на нониусе с каким-то делением на лимбе. Тогда нам это дает:

3 деления * 0,5°= 1,5° + 6 делений * 0,02° = 0.12° Угол ф = 1 ,5° + 0,12° = 1,62°

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Включите поляриметр в сеть переменного тока.

2 Вращением втулки 1 (см рис.6) установите окуляр тек, чтобы видеть резкое изображение линии раздела полей сравнения как на рис 8

3 Откройте крышку кюветного отделения 2 и выньте кювету (трубку) Перед началом измерений трубку для растворов необходимо отчистить от всяких загрязнений. С этой целью ее промывают дистиллированной водой. Затем трубку заполните раствором или водой Заполнение трубки ведется до тех пор, пока на верхнем конце трубки не появится выпуклый мениск. Выпуклый мениск сдвигается в сторону при надвигании на него покровного стекла. Затем на покровное стекло наложите резиновую прокладку и наверните колпачок. После этого покровные стекла с наружной стороны тщательно протираются мягкой салфеткой.

В трубке не должно быть пузырьков воздуха. Если они имеются, то наклонами трубки их необходимо завести в утолщенную часть, чтобы они не мешали наблюдению.

4. Определите нулевое положение на лимбе (фо). Для этого «полните трубку дистиллированной водой. Поместите ее в кюветное отделение. Поворотом анализатора установите зрительное поле на световое равновесие в чувствительном положении.

ПРИМЕЧАНИЕ. Вращением анализатора можно уравнивать яркости полей зрения при различных углах, но измерение следует проводить только при чувствительном положений анализатора, при котором незначительное вращение анализатора вызывает резкое нарушение равенства яркостей полей сравнения.

Снимите отсчет нулевого положения (фо) по лимбу 5. При этом на основной шкале (левая шкала) отсчитываются целые и десятые доли градуса, а по нониусу (правая шкала) — десятые и сотые доли градуса. Цена деления нониуса 0,02°. Показаний фо снимают не менее пяти раз и определяют среднее из них.

5. Определите угол вращения плоскости поляризаций раствором (фi) Для этого заполните трубку раствором. Затем установите втулкой окуляр наблюдательной трубки на резкое изображение линии раздела попей сравнения. Плавным и медленным поворотом ручки анализатора установите равенство яркостей полей сравнения и снимите отсчет по шкале лимба фi угол вращения плоскости помири >ации исследуемым раствором находится из выражении

6. Подобные измерения провести для всех растворов с известной концентрацией и одного раствора с неизвестной концентрацией.

7. Построить график зависимости угла поворота плоскости поляризации от концентрации раствора ф= f(C).

8. Пользуясь графиком, определите постоянную удельного вращения [у].

9. Зная угол поворота фx плоскости поляризации раствором неизвестной концентрации, определите по графику концентрацию сахара в растворе.

10. Все экспериментальные и расчетные данные занести в таблицу:

Читайте также:
  1. I.Себестоимость и использование продукции производителей
  2. RAID 2. Отказоустойчивый дисковый массив с использованием кода Хемминга (Hamming Code ECC).
  3. V. Обыск, связывание, взаимовыручка, использование подручных средств
  4. Анализ бизнес среды: практическое использование моделей STEP/PEST, SLEPT
  5. Бессознательный брендинг. Использование в маркетинге новейших достижений нейробиологии
  6. Биологические следы: классификация, обнаружение, изъятие и использование в раскрытии преступлений.
  7. Виды рекламы и использование рекламных средств
  8. Вопрос 2. Установление и использование структуры ВП
  9. Гадание с использованием домино
  10. Глава 5. Определение и их использование.
Раствор № изм С, г/см 3 Ф град фi’ град фi град [у]. (град см 3 )/(г дм) Сх %
сред

1. Какой свет называется плоско поляризованным?

2. Какие способы поляризации естественного света Вы знаете?

3. Чем отличаются обыкновенный и необыкновенный лучи?

4. 4.Как соотносятся интенсивности поляризованного света, падающего на анализатор, и света, прошедшего через него?

5. Какова зависимость угла поворота плоскости поляризации от концентрации и толщины слоя?

в. Чем объясняется вращение плоскости поляризации с точки зрения теории Френеля?

7. 7.Какова принципиальная схема поляриметра?

8. В чем состоит смысл полутеневого метода, используемого в поляриметре?

1. Ландсберг Г.С. Оптика.- M.: Наука, 1976.

2. Савельев И В. Курс общей физики. — М.: Наука, т.2,1978.

3. Борисенко В.Е , Дерябин В.М. Оптика. Основы атомной и ядерной физики Тюмень 1968

4. Физпрактикум «Электричество и оптика» под ред. проф. В.И. Ивероновой М- Наука, 1968.

5. Описание конструкции и методики работы на поляриметре СМ-2.

Дата добавления: 2017-03-18 ; просмотров: 511 | Нарушение авторских прав

Экспериментальная часть. Цель работы — определение углов поворота плоскости поляризации растворами оптически активной сахарозы

Цель работы — определение углов поворота плоскости поляризации растворами оптически активной сахарозы.

Количественной мерой оптической активности является угол вращения плоскости колебаний поляризованного луча, называемый углом вращения плоскости поляризации. Угол вращения плоскости поляриза­ции a прямо пропорционален концентрации активного вещества с и толщине слоя l, потому что суммарное вращение определяется числом молекул, которые встречает на своем пути поток света (Био, 1831 г.):

где [al] — коэффициент пропорциональности (или удельное вращение) оптически активного вещества, зависящий от длины волны, температуры и природы растворителя. Если концентрацию c выразить в граммах на 100 см 3 , l = 10 см, тогда:

Молярное вращение [M] определяют из уравнения [M] = ([al]M)/100, где М — молярная масса оптически активного вещества. Для определения концентрации оптически активного вещества по углу вращения считают, что удельное вращение равно углу вращения (выраженному в градусах) в слое раствора толщиной 0,1 М, содержащего 1 г вещества в 1 см 3 раствора при 20°С (293 К) и при длине волны l=589 нм. Зная угол вращения, удельное вращение и

тол­щину слоя раствора, легко рассчитать концентрацию раствора.

Рис. 15. Схема поляриметра.

Определение углов вращения al проводится при помощи поляриметра (рис.15.).

Основными частями поляриметра являются поляризатор 1 и анали­затор 3, которые состоят из призм Николя. Анализатор может вращать­ся вокруг оптической оси прибора, что позволяет измерить угол пово­рота плоскости поляризации. В поляриметре типа П-161 применен прин­цип уравнения яркостей разделенного нa три части поля, которые от­личаются по яркости (см. рис. 15. а-в). Если между анализатором и по­ляризатором ввести кювету 2 с оптически активным веществом, то равенство яркостей поля нарушится. Вращая анализатор 3, выравнивают яркость поля. Разностью двух отсчетов, соответствующих равенству яркостей трех частей поля с оптически активной жидкостью и без нее, определяется угол поворота анализатора, который совпадает с углом поворота плоскости колебаний поляризованного луча.

Оборудование и реактивы:

2. Стандартные растворы оптически активного вещества; 5, 10, 15, 20-мас.% растворы сахарозы.

3. X1, Х2, X3, Х4 — растворы сахарозы, с концент­рацией, подлежащей определению.

4. Фильтровальная бумага, химический стакан для слива растворов.

5. Дистиллированная вода.

Порядок выполнения работы:

1. Ознакомиться с устройством поляриметра. Проверить поло­жение нулевой точки в отсутствие поляриметрической кюветы в приборе. Полутеневое положение (рис. 15,б) должно соответ­ствовать нулю по шкале поляриметра (нулевое положение поляриметpa.).

2. При наполнении кюветы необходимо следить за тем, чтобы в нее не попал воздух. Чтобы правильно заполнять кювету без пузырьков возду­ха, предварительно необходимо научиться наполнять ее водой. Кювету следует наполнять так, чтобы жидкость образовывала у верхнего среза трубки выпуклый мениск, затем осторожно надвинуть сбоку покровное стеклышко и на­винтить кольцо, прижимающее стекло к торцу трубки. Повторить опыт по заполнению кюветы водой 2-3 раза, добиваясь отсутствия пузырьков через некоторое время после заполнения. Осторожно вращая анализатор, добиться равномерного затем­нения оптических полей. Отсчет угла вращения (a) следует проводить только после получения четкого изображения шкалы и поля зрения при повороте соответствующих колец на зрительной трубке поляриметра.

3. Снять нулевой отсчет, для чего необходимо, промыть кювету небольшим количеством 5%-ного раствора сахарозы и заполнить кювету этим раствором. Заполненную трубку протереть сна­ружи фильтровальной бумагой, обращая особое внимание на чистоту, сухость и прозрачность стекол, закрывающих концы трубки. Помес­тить в поляриметр. Измерение углов вращения 5, 10, 15 и 20%-но­го растворов сахарозы повторить несколько раз и определить сред­нее значение aср для каждого стандартного раствора.

Угол поворота анализатора отсчитывается следующим образом (см. рис.16.).

Рис.16. Шкала прибора анализатора.

Число целых градусов определяют по последнему делению шкалы (а) справа от нуля (положительный угол вращения «+») или слева (отрицательный угол вращения, «-«). Десятые доли градуса на правой (левой) части шкалы (б) по делению, совпадающему в данном положении с каким-либо делением шкалы (а). Определение угла повторить 2-3 раза.

4. В полученные значения углов ввести поправку, найденную при заполнении кюветы водой. Получить у преподавателя растворы сахарозы неизвестной концентрации. Измерив угол вращения исследуемого раствора, определить его концентрацию по калибровоч­ному графику.

5. Рассчитав средние значения углов для стандартных растворов сахаро­зы (5, 10, 15, 20%) построить калибровочный график зависимости углов вращения от концентрации растворов сахарозы.

6. Рассчитать неизвестную концентрацию сахарозы, используя среднюю концентрацию с10 и измеренный угол вращения раствора с неизвестной концентрацией (например сХ2). Так как a10 = [a]с10l и aХ2 = [a]сХ2l, то a10 /aХ2 = ([a]с10l) / ([a]сХ2l), откуда CХ2 =(с10 aХ2)/ a10.

Оценить отклонение расчетного значения cХ от величины, оп­ределенной графически.

Литература:

1. Карапетьянц М.Х., Дракин С.И. Строение вещества, М, Высшая школа,

2. Глинка Н.Л. Общая химия. —Л, Химия, 1986.

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Устройство и принцип работы сахариметра СУ-4

Рис. 6. Сахариметр универсальный СУ-4:

1 – лупа; 2 – измерительная головка; 3 – механизм установки нониуса; 4 – ключ; 5 – кюветное отделение; 6 – траверса; 7 – оправа поляризатора; 8 – поворотная обойма; 9 – осветительный узел; 10 – регулировочный винт; 11 – винт заземления; 12 – вилка разъема; 13 – вставка плавкая; 14 – крышка; 15 – кнопка; 16 – ручка резистора; 17 – стойка; 18 – основание; 19 – рукоятка клинового компенсатора; 20 – зрительная труба.

На основании установлены кнопки 15 для включения осветителя и ручка 16 резистора для регулирования яркости поля зрения. На основании смонтирован понижающий трансформатор. На тыльной стороне основания находится винт 11 заземления, вилка 12 разъема для подключения осветителя сахариметра к трансформатору и вставка плавкая 13.

Принцип работы сахариметра основан на способности сахарных растворов вращать плоскость поляризации проходящего через них поляризованного луча света. Угол вращения плоскости поляризации луча света раствором в объеме определенной толщины пропорционален концентрации раствора:

, (2)

где – угол поворота плоскости поляризованного луча света;

– толщина слоя раствора сахара;

– концентрация раствора сахара в дистиллированной воде;

– постоянная сахариметра.

На этой зависимости и основана работа сахариметра – визуального оптико-механического прибора.

Световой поток, идущий от источника света через светофильтр 2 или диафрагму 3, конденсор 4 и 5,проходит через поляризатор 6, который преобразует его в поляризованный поток света (рис. 7). Затем поток света проходит через полутеневую пластину 7, разделяющую его на две половины линией раздела. Анализатор пропускает равные по яркости обе половины светового потока и в поле зрения зрительной трубы, состоящей из объектива 13 и окуляра 14, установленного после анализатора, наблюдаются две одинаковой яркости половины поля, разделенные тонкой линией и называемые полями сравнения.

Рис. 7. Схема оптическая:

1 – источник света; 2 – светофильтр; 3 – диафрагма; 4, 5 – конденсор; 6 – поляризатор; 7 – полутеневая пластина; 8, 9 – защитное стекло; 10 – подвижный кварцевый клин; 11 – неподвижный контрклин; 12 – анализатор; 13 – объектив; 14 – окуляр; 15 – отражательная призма; 16 – светофильтр; 17 – шкала; 18 – нониус; 19 – лупа.

При установке кюветы с раствором между поляризатором и анализатором нарушается равенство яркостей полей сравнения, так как исследуемый раствор поворачивает плоскость поляризации на угол, пропорциональный концентрации раствора.

Для уравнивания яркостей полей сравнения в сахариметре применен клиновый компенсатор, состоящий из подвижного кварцевого клина 10 левого вращения и неподвижного контрклина 11 правого вращения. Перемещением подвижного клина относительно контрклина устанавливают такую суммарную толщину клиньев по оптической оси, при которой компенсируется угол поворота плоскости поляризации раствора. При этом происходит уравнивание яркостей полей сравнения. Одновременно с подвижным клином перемещается шкала 17.

По нулевому делению нониуса 18 фиксируют значение шкалы, соответствующее состоянию одинаковой яркости полей сравнения. Шкала и нониус наблюдаются через лупу 19 и освещаются лампой через отражательную призму 15 и светофильтр 16.

Итак, для определения концентрации раствора сахара достаточно измерить угол вращения плоскости колебаний поляризованного луча света, проходящего через слой раствора определенной толщины . При этом необходимо вычислить значение постоянной прибора.

Устройство и принцип работы поляризационного микроскопа

Описание прибора.Поляризационный микроскоп состоит из штатива а (рис. 8) с тубусом б, в котором помещаются верхний николь-анализатор в и линза г, применяемая для изучения явлений поляризации в сходящемся световом пучке (линза Бертрана). Анализатор и линза г могут выдвигаться из прорезей тубуса. В тубусе имеется также и третья прорезь д, служащая для введения компенсаторов e в оптическую систему микроскопа. Тубус можно поднимать и опускать при помощи винта ж и микрометрического винта з. Перемещение последнего отсчитывается по делениям, нанесенным на головке винта. Обычно одно деление соответствует перемещению тубуса на 0,002—0,003мм. Для удобства штатив можно ставить в любое наклонное положение, закрепляя его соответствующим винтом.

Объектив зажимается в пружинные щипцы, захватывающие своей вилкой шпенек на кольце объектива. В этом же кольце имеется приспособление для центрировки объектива.

Объектив считается центрированным, если пересечение креста окуляра совпадает с осью вращения предметного столика u, на котором помещается исследуемый объект.

Столик может вращаться вокруг своей оси, причем угол поворота отсчитывается по лимбу на краю столика: достаточная точность отсчета 1°. Сбоку находится винт, позволяющий закреплять предметный столик неподвижно. На столике находятся лапки Л, служащие для закрепления объекта на столике.

Осветительная система, находящаяся под столиком, состоит из зеркальца (плоского и вогнутого) М, поляризатора Н с осветительной линзой и диафрагмой О и конденсора П, который применяется для получения сходящегося пучка света. Включение и выключение конденсора производятся при помощи рычажка, не показанного на рис. 8. Дополнительныйконденсор, прилагаемый к микроскопу (апертура 0,5—1,3), применяется с объективами, дающими большие увеличения. Винт С служит для закрепления поляризатора в требуемом положении для наблюдений в скрещенных и параллельных николях. Вся осветительная система опускается при помощи бокового винта р и этим же винтом может быть отведена в сторону.

Установка микроскопа. Для освещения исследуемого объекта в большинстве случаев применяется специальный осветитель или сильная электрическая лампа с матовым стеклом для получения рассеянного света. Объектив с увеличением помещается в щипцы тубуса. Анализатор и линза г выдвигаются из тубуса. Не вставляя окуляр, смотрят в тубус микроскопа и, перемещая зеркальце, добиваются наилучшего освещения поля зрения. При этом диафрагма в осветительной системе должна быть открыта полностью. Затем в тубус вставляют окуляр, снабженный крестом, вводят анализатор, отпускают винт С и вращают поляризатор до rex пор, пока поле зрения не будет максимально затемнено. Максимальное затемнение поля зрения указывает на скрещенное положение николей.

Затем следует определить направление световых колебаний пропускаемых поляризатором. Для этого вынимают анализатор, отвинтив винт, закрепляющий его в тубусе микроскопа. Приложив анализатор к глазу, наблюдают отражение света от какой-либо блестящей поверхности (например, ящика микроскопа). Поворачивая николь, отмечают разницу в интенсивности проходящего света. Зная направление колебаний отраженного света, определяют, таким образом, направление колебаний, пропускаемых анализатором, а следовательно, и поляризатором, так как положение скрещенности николей уже проверено.

Для того чтобы во время работы всегда знать направление световых колебаний, пропускаемых николями, проверяют совпадение креста окуляра с направлением световых колебаний, пропускаемых поляризатором и анализатором. Расположение креста проверяется по кристаллу черной слюды (биотита) в шлифе. В слюде хорошо видны трещины спайности — направления, по которым кристалл слюды легко раскалывается на тончайшие листочки. Выдвинув анализатор, поворачивают предметный столик так, чтобы трещины спайности были параллельны одной из ветвей креста окуляра. Затем вдвигают анализатор. При этом должно наступать полное затемнение кристалла, так как плоскость спайности биотита совпадает с одним из главных сечений эллипсоида показателей преломления. Если полное затемнение не достигается, то это означает, что крест нитей окуляра не совпадает с направлением световых колебаний, пропускаемых николями. Подобный дефект в микроскопе является весьма существенным, и его исправление следует поручить специалисту-оптику.

Центрировка объектива. Если объектив не центрирован, то все точки объекта при вращении предметного столика описывают окружности, центр которых не совпадает с крестом в поле зрения окуляра. Задачей центрировки является совмещение центра вращения поля зрения с центром креста окуляра. Быстро вращая столик в обе стороны, отмечают на глаз его центр вращения, затем, действуя перпендикулярными друг к другу центрировочными винтами, находящимися в оправе объектива, стараются совместить центр вращения поля зрения с центром креста: Повторяя последовательно эти действия несколько раз, уточняют центрировку и таким образом совмещают ось объектива с осью вращения столика.

Подготовка образца. В качестве исследуемых объектов можно приготовить препараты растворимых солей различных веществ. Приготовляются препараты следующим образом. На чистом покровном стеклышке делается валик из парафина так, чтобы образовалось подобие коробочки, дном которой служит покровное стекло, а стенками — парафиновый валик. В эту «коробочку» наливается несколько капель насыщенного водного раствора исследуемого вещества. Через некоторое время вода испарится, и на стекле образуются кристаллы. Стекло с кристаллами накрывается вторым таким же стеклом, окантовывается — и препарат готов.

В качестве растворимых веществ, кристаллы которых дают в полярископе прекрасные результаты, можно рекомендовать борную кислоту, виннокаменную кислоту, медный, железный и цинковый купорос, сахар, квасцы, двухромокислый калий, поташ, соду и другие легко кристаллизующиеся вещества.

Применение поляризационного микроскопа. Поляризационный микроскоп может быть применим как для наблюдения различных процессов в поляризационном света (например, кристаллы и их рост), так и для измерения показателей преломления порошков, определения толщены кварцевых пластинок и величины двойного преломления кристаллов. Поляризационные микроскопы позволяют также, изучая тончайшие срезы минералов (шлифы), выяснить структуру вещества.

Дата добавления: 2016-08-23 ; просмотров: 3251 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Читайте также:  Изложите свою точку зрения на положение в современной россии представителей
Источники:
  • http://lektsii.net/4-93091.html
  • http://lektsii.org/16-45004.html
  • http://studopedia.org/9-179833.html
  • http://poznayka.org/s55524t1.html