Меню Рубрики

Что такое дисперсия с волновой точки зрения

Дисперсия света

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн от их частоты.

Дисперсия света представляется в виде зависимости:

или .

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом .

Рис. 10.1 Рис. 10.2

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

.

Предположим, что углы А и малы, тогда углы , , будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому , , а т.к. , то или .

Отсюда следует, что

, (10.1.1)

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n, а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы. Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим, что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн, поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или .

· Составные цвета в дифракционном и призматическом спектрах располагаются различно. Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина (или ), называемая дисперсией вещества, показывает, как быстро меняется показатель преломления с длиной волны.

Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной. Вблизи линий и полос поглощения, ход кривой дисперсии будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией. Рассмотрим подробнее эти виды дисперсии.

Лекция «Взаимодействие электромагнитных волн с веществом»

2.Электронная теория дисперсии

3.Поглощение света. Закон Бугера

4.Излучение Вавилова- Черенкова

Дисперсия света

Дисперсия – это зависимость показателя преломления среды от частоты или длины волны. Более физично надо сказать, что дисперсия это зависимость фазовой скорости от частоты.

Следствием дисперсии является разложение призмой белого света в спектр. Данное явление впервые обнаружил Ньютон в 1672г. Угол отклонения Д лучей зависит от преломленного угла призмы Р и показатель преломления n. В призме наиболее сильно отклоняются фиолетовые лучи, а наибольшее слабо– красное. Следовательно, угол отклонения зависит от длины волны света.

D=р(n-1)

Призма, как и дифракционная решетка, является спектральным прибором, но в дифракционной решетке наиболее сильно отклоняются красные лучи. При помощи дифракционной решетки непосредственно определять длину волны падающего света. Призма же дает лишь зависимость угла отклонения от длины волны. Отношение называется дисперсией вещества. Она показывает, как быстро изменяется показатель преломления среды с изменением длины волны. Чем больше длина волны, тем меньше n; или чем больше частота, тем больше n.

Д= (1)

В формуле (1) при уменьшении длины волны увеличивается показатель преломления и соответственно увеличивается дисперсия. Такое поведение дисперсии называется нормальной. Вблизи линий и полос поглощения с уменьшением λ, показатель преломления уменьшается, соответственно уменьшается Д и такая дисперсия называется нормальной.

На явлении нормальной дисперсии основана работа спектрометров.

Электронная теория дисперсии

При изучении электромагнитной природы световых волн Максвеллом, им была получена формула, связывающая оптические, магнитные и электрические свойства среды.

(1) — формула Максвелла

Для видимого спектра для всех длин волн магнитная проницаемость µ, µ=1, а это значит, что показатель преломления , так как ε считается . На самом деле n зависит от частоты или λ, то есть электромагнитная теория Максвелла не объясняет явление дисперсии. Трудность объяснения дисперсии с точки зрения теории Максвелла устраняется в электронной теории дисперсии Лоренца. В теории Лоренца дисперсия рассматривается как результат взаимодействия электромагнитной волны с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания под действием переменного электрического поля.

Рассмотрим электронную теорию дисперсии и предположим, что электрическая проницаемость зависит от частоты проницаемости

χ- электрическая восприимчивость вещества

где р — вектор мгновенной поляризации

ε— диэлектрическая проницаемость вакуума

Е- напряженность электрического поля

(2)

(3)

Мы будем рассматривать прозрачный диэлектрик, в котором поляризуются электроны, то есть мы будем рассматривать электронную поляризацию. Электронная поляризация, то есть вынужденные колебания электронов под действием падающей электромагнитной волны будет играть преобладающую роль по сравнению со всеми другими видами поляризации, так как частота падающего света приблизительно 10 15 Гц, то это слишком большая частота, чтобы поляризовать атомы в молекулы. В первом приближении можно считать, что вынужденные колебания совершает только самый внешний электрон. Этот электрон наиболее слабо связан с ядром атома и поэтому под действием оптической электромагнитной волны. Он начинает совершать вынужденные колебания. Внешний электрон в атоме называется оптический электрон, приобретает наведенный дипольный момент, который определяется формулой (4)

(4)

е— заряд электрона

х – смещение электрона

Р — вектор мгновенной поляризации и р- наведенный дипольный момент связаны между собой формулой (5); n— концентрация атомов в диэлектрике. Тогда формула (3) с учетом формул (4), (5) запишется как

(6)

Падающая световая волна описывается выражением E=Ecoswt

E— амплитудное значение напряженности электрического поля. Эта световая волна создает внешнюю вынуждающую силу, которая будет периодическим

Тогда запишем все силы, движущие на электрон и найдем равнодействующую этих сил.

(8)

Формула (8) можно переписать в виде:

(9)

Так как мы рассматриваем прозрачный диэлектрик, то мы предполагаем, что затухание световых волн при прохождении через диэлектрик будет крайне незначительно, а это значит, что γ ≈→0 следовательно уравнение (9) можно записать как:

(9а)

Решением уравнения (9а) получено нами в классической механике и называется уравнение вынужденного колебания, его решением будет выражение

А- амплитуда незатухающего колебания

(11)

m- масса электрона

w— собственная частота внешнего электрона

w- частота падающей электромагнитной волны

Подставим в уравнение (6) формулу (10), (11)

(12)

Формула (12) описывает явления электронной дисперсии учитывающей колебания внешнего электрона. Если усложнить рассмотрение, то есть рассмотрим поляризацию не только внешнего электрона, но и всех имеющихся электрических зарядов, то формула, выражающая дисперсию примет вид:

(13)

N-число разных электрических зарядов

Формула (13) отражает явление дисперсии в наиболее общем виде. Рассмотрим дисперсию для газов, у которых n≈1. Будем работать с (12)

(14) — показатель преломления в газах

Проанализируем графически формулу (12), то есть рассмотрим, как изменится показатель преломления от частоты, падающей электромагнитной волны.

Рассмотрим изменение частоты внешней электромагнитной волны от w=0, w= w

в формуле (12) n 2 >1. При росте частоты от 0 до w знаменатель формулы (12) уменьшится, сама дробь увеличится, соответственно увеличится n. Он больше 1, то есть с ростом w до w увеличиться n среды, следовательно, наблюдается нормальная дисперсия. В точке w= w происходит разрыв функции и . При частоте w> w второе слагаемое в формуле (12) идет со знаком «- » и, следовательно, n 2

Нормальная и аномальная дисперсия волн. Фазовая и групповая скорости

Итак, дисперсия света – это зависимость показателя преломления вещества от частоты световой волны . Эта зависимость не линейная и не монотонная. Области значения ν, в которых

или (10.2.1)

соответствуют нормальной дисперсии света(с ростом частоты ν показатель преломления n увеличивается). Нормальная дисперсия наблюдается у веществ, прозрачных для света. Например, обычное стекло прозрачно для видимого света, и в этой области частот наблюдается нормальная дисперсия света в стекле. На основе явления нормальной дисперсии основано «разложение» света стеклянной призмой монохроматоров.

Дисперсия называется аномальной, если

или , (10.2.2)

т.е. с ростом частоты ν показатель преломления n уменьшается. Аномальная дисперсия наблюдается в областях частот, соответствующих полосам интенсивного поглощения света в данной среде. Например, у обычного стекла в инфракрасной и ультрафиолетовой частях спектра наблюдается аномальная дисперсия.

Зависимости n от ν и λ показаны на рис. 10.4 и 10.5.

Рис. 10.4. Рис. 10.5

В зависимости от характера дисперсии групповая скорость u в веществе может быть как больше, так и меньше фазовой скорости υ (в недиспергирующей среде u=v).

Групповая скорость u связана с циклической частотой ω и волновым числом k соотношением: , где w=2пυ, . Тогда

. Отсюда можно записать:

. (10.2.3)

Таким образом, при нормальной дисперсииu υ, и, в частности, если , то u > c. Этот результат не противоречит специальной теории относительности. Понятие групповой скорости правильно описывает распространение только такого сигнала (волнового пакета), форма которого не изменяется при перемещении сигнала в среде. (Строго говоря, это условие выполняется только для вакуума, т.е. в недиспергирующей среде). В области частот, соответствующих аномальной дисперсии, групповая скорость не совпадает со скоростью сигнала, так как вследствие значительной дисперсии форма сигнала так быстро изменяется, что не имеет смысла говорить о групповой скорости.

Фазовой скоростью v монохроматичной волны принято называть скорость распространения волнового фронта. В среде с показателем преломления n фазовая скорость υ равна

(6.1)

Здесь – круговая частота, k – волновое число, c – скорость света в вакууме.

Как показывает опыт, все без исключения среды обладают дисперсионными свойствами – волны разных частот распространяются в средах с различными фазовыми скоростями. Это явление называют дисперсией. Закон дисперсии можно задать либо в виде зависимости показателя преломления от частоты , либо в виде функции , либо, наконец, в виде зависимости волнового числа от частоты . В качестве аргумента в законе дисперсии может быть вместо использована длина волны в среде.

При распространении монохроматической волны в среде с дисперсией никаких особых явлений не наблюдается; волна распространяется со своей фазовой скоростью, которая определяется значением показателя преломления на частоте волны. Но если в диспергирующей среде одновременно распространяется группа волн разных частот, то по мере распространения волн возникают фазовые сдвиги между отдельными спектральными компонентами. При этом происходит деформация формы суммарного процесса. Если на входе в диспергирующую среду возмущение имело вид импульса (волнового пакета) определенной формы, то после прохождения некоторого слоя форма импульса может существенно измениться. В общем случае наблюдается расплывание волнового пакета. Рис 6.1. иллюстрирует это утверждение.

По теореме Фурье волновой пакет 1 можно представить в виде суперпозиции монохроматических волн разных частот. На выходе все спектральные компоненты будут вновь складываться, образуя новый волновой пакет 2. Деформация волнового пакета происходит вследствие изменения фазовых соотношений.

Рисунок 6.1. Расплывание волнового пакета в диспергирующей среде.

Вопрос о скорости распространения волнового пакета в среде с дисперсией достаточно сложен и неоднозначен. Можно, например, следить за перемещением переднего фронта (точка A на рис. 6.1). Обычно в теории рассматривается так называемая групповая скорость, то есть скорость перемещения центра волновой группы или точки с максимальным значением амплитуды (точка B).

Рассмотрим простой случай – распространение амплитудно-модулированной волны. При z = 0, то есть на входе в диспергирующую среду, колебание можно записать в виде

(6.2)

Этот процесс может быть представлен в виде суперпозиции трех синусоидальных колебаний с частотами , , :

(6.3)

Каждая из этих спектральных компонент будет распространяться в среде со своей фазовой скоростью:

(6.4)

Таким образом при z > 0 можно записать:

(6.5)

Рассмотрим случай достаточно малых значений z, удовлетворяющих условию

(6.6)

В этом случае высокочастотные колебания частоты , описываемые 1-ым и 2-ым слагаемыми в (6.5), практически не отличаются по фазе и могут быть объединены. Тогда

(6.7)

Функцию E(z, t) можно рассматривать как амплитудно-модулированную волну с медленно изменяющейся во времени и пространстве амплитудой

. «Моментальная фотография» этой функции изображена на рис. 6.2.

Рисунок 6.2. Амплитудно-модулированная волна.

Как видно из (6.7) модулируемая волна распространяется с фазовой скоростью . Скорость распространения огибающей, то есть модулирующей волны, есть

(6.8)

Это и есть групповая скорость.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 7964 — | 6581 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

2.6.4. Дисперсия волн

Входы: частота электромагнитных колебаний.

Выходы: скорость волны.

Рис. 2.27. Дисперсия волн на призме

Дисперсия — зависимость фазовой скорости гармонических волн от их частоты. Дисперсия определяется физическими свойствами той среды, в которой распространяются волны. Например, в вакууме электромагнитные волны распространяются без дисперсии, в вещественной же среде, даже в такой разреженной, как ионосфера Земли, возникает дисперсия волн. Ультразвуковые волны также обнаруживают дисперсию. Наличие дисперсии волн приводит к искажению формы сигналов при распространении их в среде. Это объясняется тем, что гармонические волны разных частот, на которые может быть разложен сигнал, распространяются с различной скоростью. Дисперсия света при его распространении в прозрачной призме приводит к разложению белого света в спектр.

Область частот, в которой скорость убывает с увеличением частоты, называется областью нормальной дисперсии, а область частот, в которой при увеличении частоты скорость также увеличивается, называется областью аномальной дисперсии. Дисперсия волн наблюдается, например, при распространении радиоволн в ионосфере, волноводах. При распространении световых волн в веществе также имеет место дисперсия света, (зависимость абсолютного показателя преломления от частоты света). Если вещество прозрачно для некоторой области частоты волн, то наблюдается нормальная дисперсия, а если интенсивно поглощает свет, то в области имеет место аномальная дисперсия. В результате дисперсии узкий параллельный пучок белого света, проходя через призму из стекла или другого прозрачного материала, образует на экране, установленном за призмой, радужную полоску, называемую дисперсионным спектром. Для световых волн единственной недисперсирующей средой является вакуум.

, где

— соответственно диэлектрическая и магнитная проницаемость среды;

c – скорость света.

1. Патент США 3 586 120: Аппаратура передачи звука. Углы, скандируемые световым лучом, увеличиваются посредством введения дисперсионного устройства на пути звуковых волн. Эти углы образованы вследствие взаимодействия света и звука. В одной из модификаций аппарата звуковые волны пропускаются через неподвижную решетку, или другими словами, через среду, которая обладает дисперсией по своей природе. В другой модификации дисперсия достигается вследствие вибрации при образовании продольной волны в ответ на волны растяжения или сжатия.

2. А.с. № 253 408: Устройство для измерения температуры, содержащее измерительный элемент, устанавливаемый на исследуемый материал, и источник белого света, отличается тем, что, с целью расширения интервала измеряемых температур измерительный элемент выполнен в виде прозрачной кювета, заполненной смесью оптически неоднородных веществ, соответствующих заданному интервалу температур, показатели преломления в котором зависят от длины волны и температурные коэффициенты показателей преломления отличаются знаком либо величиной.

ДИСПЕ́РСИЯ ВОЛН

  • В книжной версии

    Том 9. Москва, 2007, стр. 65-66

    Скопировать библиографическую ссылку:

    ДИСПЕ́РСИЯ ВОЛН, за­ви­си­мость фа­зо­вой ско­ро­сти гар­мо­нич. волн от час­то­ты (дли­ны вол­ны) и, как след­ст­вие, из­ме­не­ние фор­мы про­из­воль­ных (не­гар­мо­нич.) вол­но­вых воз­му­ще­ний в про­цес­се их рас­про­стра­не­ния. Тер­мин «дис­пер­сия» был вве­дён в фи­зи­ку И. Нью­то­ном в 1672 при опи­са­нии раз­ло­же­ния пуч­ка бе­ло­го све­та в цве­то­вой спектр при пре­лом­ле­нии в стек­лян­ной приз­ме. Вол­но­вая кон­цеп­ция объ­яс­ня­ет это яв­ле­ние за­ви­си­мо­стью ско­ро­сти рас­про­стра­не­ния мо­но­хро­ма­тич. волн от час­то­ты (цве­та). В ре­зуль­та­те под Д. в. по­ни­ма­ют имен­но эту за­ви­си­мость, от­но­ся к след­ст­ви­ям Д. в. та­кие фи­зич. эф­фек­ты, как рас­плы­ва­ние (или, на­обо­рот, сжа­тие) вол­но­вых па­ке­тов, раз­ли­чие фа­зо­вой и груп­по­вой ско­ро­стей, не­рав­но­мер­ное (ус­ко­рен­ное) дви­же­ние вол­но­вых фрон­тов и т. д.

    Дисперсия и поглощение света. Нормальная и аномальная дисперсия

    Читайте также:

    1. Атомарность значений атрибутов, первая нормальная форма отношения
    2. Вторая нормальная форма
    3. Вторая нормальная форма
    4. Вторая нормальная форма ER-диаграммы
    5. Генеральная дисперсия.
    6. Дисперсия
    7. Дисперсия
    8. Дисперсия альтернативного признака
    9. Дисперсия дискретных случайных величин
    10. Дисперсия ДСВ: определение, сущность, свойства
    11. Дисперсия случайной величины
    Читайте также:  Что такое смерть с точки зрения христианства

    ВЗАИМОДЕЙСТВИЕ СВЕТА С ВЕЩЕСТВОМ.

    1. Дисперсия и поглощение света. Нормальная и аномальная дисперсия.

    2. Электронная теория дисперсии.

    3.Поглощение света.Закон Бугера-Ламберта.

    Дисперсией света называют явление зависимости абсолютного показателя преломления вещества n от частоты света ω (или длины волны λ) или зависимость фазовой скорости V световой волны от ее частоты:

    Следствием дисперсии света является разложение в спектр пучка белого света при прохождении его через одну или несколько преломляющих поверхностей, например, через призму. В вакууме световая волна распространяется с постоянной скоростью, не зависящей от частоты. Дисперсия света называется нормальной в случае, если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны); в противном случае дисперсия называется аномальной, рис.1.

    Рис.1. (см. мой конспект)

    В видимой области спектра с увеличением частоты показатель преломления увеличивается.

    называется дисперсией вещества и характеризует скорость изменения показателя преломления при изменении длины волны.

    Нормальная дисперсия света наблюдается вдали от полос или линий поглощения света веществом, аномальная – в пределах полос или линий поглощения.

    Первое экспериментальное исследование дисперсии света в стеклянной призме было выполнено И. Ньютоном в 1672 г., рис.2.

    Рис.2. (см. мой конспект).

    Пусть монохроматический пучок света падает на прозрачную призму с преломляющим углом θ и показателем преломления n под углом α1. После двукратного отклонения (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол φ. Из геометрических преобразований следует, что

    т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол и показатель преломления вещества призмы. Поскольку n = f(λ), то лучи разных длин волн после прохождения через призму окажутся отклоненными на разные углы, т.е. пучок белого света разлагается в спектр, что и наблюдалось впервые Ньютоном. Значит, с помощью призмы, так же как и с помощью дифракционной решетки, можно определить спектральный состав света.

    Читайте также:  Очки с прозрачными стеклами не для зрения мужские

    Следует помнить, что составные цвета в дифракционном и призматическом спектрах располагаются различно. В дифракционном спектре синус угла отклонения пропорционален длине волны, следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. В призме же для всех прозрачных веществ с нормальной дисперсией показатель преломления n с увеличением длины волны уменьшается, поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

    На явлении нормальной дисперсии основано действие призменных спектрометров, широко используемых в спектральном анализе. Это объясняется тем, что изготовить призму значительно проще, чем дифракционную решетку. Призменные спектрометры имеют также большую светосилу.

    2. Электронная теория дисперсии. Взаимодействие оптического излучения с веществом определяется взаимодействием электромагнитного поля световой волны с системой заряженных частиц, входящих в состав атомов и молекул вещества. Из электромагнитной теории Максвелла следует, что

    n = εμ,

    где ε –диэлектрическая проницаемость среды, μ – магнитная проницаемость. Для всех оптически прозрачных веществ μ ≈ 1, поэтому

    n = ε. (1)

    т.е. зависимость n = f(λ) определяется зависимостью диэлектрической проницаемости от частоты переменного электрического поля световой волны. Но в соответствии с теорией Максвелла величина ε является постоянной, а полученные из этого выражения значения n не согласуются с экспериментальными данными.

    Для объяснения дисперсии света была предложена электронная теория Лоренца,в которой дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами вещества, совершающими вынужденные колебания в переменном электромагнитном поле световой волны.

    Ознакомимся с этой теорией на примере однородного изотропного диэлектрика. Диэлектрическая проницаемость вещества равна

    где χ – диэлектрическая восприимчивость среды, ε – электрическая постоянная, Р – мгновенное значение поляризованности (наведенный дипольный момент единицы объема диэлектрика в поле волны с напряженностью электрического поля Е). Тогда

    т.е. n зависит от Р. Для видимого света частота ω

    10 15 Гц столь велика, что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов под действием электрической составляющей поля волны, а ориентационной поляризации молекул при такой частоте не будет. Эти электроны называются оптическими электронами.

    Для простоты рассмотрим среду, в которой имеется лишь один сорт атомов и в каждом из них возможны колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е – заряд электрона, х – смещение электрона из положения равновесия под действием электрического поля световой волны. Если n – концентрация атомов в диэлектрике, тогда

    Подставив (3) в (2) получим

    т.е. задача сводится к определению смещения х электрона под действием внешнего электрического поля Е = Еcos ωt.

    Вынужденные колебания электрона, удерживаемого в атоме упругой силой, под действием внешней гармонической силы описываются уравнением

    d 2 x/dt 2 +ω 2 x = (F/m)cos ωt = (e/ m) Ecos ωt, (5)

    Читайте также:  Кант антропология с прагматической точки зрения кратко

    где F = еE – амплитудное значение силы, действующей на электрон со стороны поля волны, ω = √k/m – собственная частота колебаний электрона, m – масса электрона. Решив уравнение (5), найдем ε = n 2 в зависимости от констант атома (е, m, ω) и частоты внешнего поля ω, т.е. решим задачу дисперсии.

    Решением (5) является

    Подставим (6) и (7) в (4) и получим

    Если в атоме или молекуле вещества имеются различные заряды с массами mi, способные совершать вынужденные колебания с собственными частотами ωi, то

    Из (8) и (9) видно, что показатель преломления вещества зависит от частоты ω внешнего электрического поля, и что в области частот от ω = 0 до ω ≤ ω значение n 2 больше 1 и возрастает с увеличением частоты ω (нормальная дисперсия). Вблизи собственной частоты (ω = ω) значение n(ω) терпит разрыв, что соответствует поглощению света веществом; в области частот от ω ≥ ω до ω = ∞ значение n 2 меньше 1 и возрастает от — ∞ до 1 (нормальная дисперсия). Перейдя от n 2 к n, получим зависимость n = n(ω), представленную на рис.1. Если учесть силы сопротивления при колебаниях электронов, то график зависимости n(ω) вблизи ω дается штриховой линией АВ – область аномальной дисперсии. Куполообразная штриховая линия на рис.1 изображает зависимость коэффициента поглощения света веществом. Поглощение света в области аномальной дисперсии обусловлено интенсивным поглощением света на резонансной частоте.

    Исследования аномальной дисперсии света в парах натрия были выполнены российским физиком Д.С. Рождественским. Он экспериментально показал справедливость формулы (9) и ввел дополнительную поправку, учитывающую квантовые свойства света и атомов вещества.

    3. Поглощение света. Закон Бугера-Ламберта. Поглощением (абсорбцией) света называется уменьшение энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии в результате ее взаимодействия со средой. Интенсивность света при прохождении через вещество уменьшается.

    С точки зрения электронной теории, при прохождении световой волны через вещество часть энергии волны затрачивается на возбуждение и поддержание колебаний электронов, входящих в состав атомов. Частично энергия колебаний электронов вновь переходит в энергию светового излучения в виде вторичных волн, частично же переходит в другие формы энергии, например, в энергию теплового движения атомов, т.е во внутреннюю энергию вещества (нагревание вещества).

    Поглощение света в веществе можно в общих чертах описать с энергетической точки зрения, не входя в детали механизма взаимодействия световых волн с атомами и молекулами поглощающего вещества.

    Формальное описание поглощения света веществом было дано Бугером, который установил связь между интенсивностью света, прошедшего через конечный слой поглощающего вещества, и интенсивностью падающего на него света

    где Iλ – интенсивность светового излучения с длиной волны λ, падающего на поглощающий слой; I — интенсивность светового излучения, прошедшего поглощающий слой вещества толщиной l; К – коэффициент поглощения, зависящий от λ, т.е. К = f(λ), и индивидуальный для каждого вещества. Например, одноатомные газы и пары металлов (атомы которых можно считать изолированными, так как они находятся на значительных расстояниях друг от друга) обладают близким к нулю коэффициентом поглощения и только для очень узких интервалов длин волн Δλ = 10 -12 – 10 -11 м наблюдаются резкие максимумы поглощения – линейчатый спектр поглощения. Эти спектральные линии поглощения соответствуют частотам собственных колебаний электронов в атомах.

    Спектры поглощения многоатомных газов имеют вид линейчатых полос шириной Δλ = 10 -10 – 10 -7 м, определяемых колебаниями атомов внутри молекул. Молекулы обладают набором близко расположенных собственных частот колебаний, что и обуславливает линейчатые полосы их поглощения, рис.3.

    Рис.3.а)линейчатый спектр поглощения, б)полосатый спектр поглощения, в) сплошной спектр поглощения.

    В диэлектрических веществах нет свободных электронов, поэтому для них коэффициент поглощения мал (К = 10 -3 – 10 -5 см -1 ) и для них наблюдается сплошной спектр поглощения.

    Если поглотителем является вещество в растворе, то поглощение света тем больше, чем больше молекул растворенного вещества встречает свет на своем пути. Поэтому коэффициент поглощения зависит от концентрации С. В случае слабых растворов, когда взаимодействием молекул растворенного вещества можно пренебречь, коэффициент поглощения пропорционален концентрации С:

    где cλ – коэффициент пропорциональности, который также зависит от λ. Учитывая (11), можно закон Бугера (10) переписать в виде:

    где cλ – показатель поглощения света на единицу концентрации вещества. Если концентрация растворенного вещества выражается в [моль/литр], то cλ называют молярным коэффициентом поглощения.

    Соотношение (12) носит название закона Бугера-Ламберта-Бера. Отношение величины светового потока, вышедшего из слоя I , к во­шедшему I носит название коэффициента оптического (или свето-) пропускания слоя Т:

    или в процентах

    Поглощение слоя равно отношению

    Логарифм величины 1/Т называется оптической плотностью слояD

    т.е. оптическая плотность характеризует поглоще­ние света средой. Соотношение (15) может быть использовано как для определения концен- трации растворов, так и для характеристики спек­тров поглощения веществ.

    Зависимость оптической плотности от длины волны D = f(λ) является спектральной характеристикой поглощения данного вещества, а кривая, выражающая эту зависимость, называется спектром поглощения.

    Cогласно модели атома Бора кванты света испускаются и поглощаются при переходе системы (атома) из одного энергетического состояния в другое. Если при этом в оптических переходах меняется только электронная энергия системы, как это имеет место в атомах, то в спектре линия поглощения будет резкой.

    Однако для сложных молекул, энергия которых слагается из электронной Еэл , колебательной Екол и вращательной Евр энергии (Е =Еэл + Екол + Евр ) при поглощении света изменяется не только электронная энергия, но обязательно колебательная и вращательная. Причем поскольку ∆Еэл>>∆Eкол>>∆Евр, то в результате этого набор линий, соответствующих электронному переходу, в спектре поглощения растворов выглядит как полоса поглощения.

    Коэффициент поглощения для металлов имеет большие значения (примерно 10 3 — 10 5 см -1 ) и поэтому металлы являются непрозрачными для света. В металлах вследствие наличия большого количества свободных электронов под действием электрического поля возникают быстропеременные токи. Энергия световой волны быстро уменьшается из-за выделения токами джоулевой теплоты, превращающейся во внутреннюю энергию металла. Чем выше проводимость металла, тем больше в нем свободных электронов и тем сильнее в нем поглощается свет.

    Окрашенность поглощающих тел объясняется зависимостью коэффициента поглощения от длины световой волны.

    Явление поглощения света используется при изготовлении светофильтров, которые в зависимости от химического состава стекол пропускают свет только определенных длин волн, поглощая остальные.

    Большое распространение получил атомно-абсорбционный метод спектрального анализа, основанный на явлении избирательного поглощения света атомными парами химических элементов. При пропускании света через пары элемента (пары получают, например, при распылении раствора анализируемого образца в пламени, при испарении с поверхности образца под действием лазерного излучения, в различного рода атомизаторах: ) атомный пар поглощает свет только той частоты, которая соответствует частоте собственных колебаний электронов. Чувствительность метода составляет 10 -8 % или 10 -12 г.

    Дата добавления: 2014-01-03 ; Просмотров: 5574 ; Нарушение авторских прав? ;

    Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

    Источники:
    • http://megaobuchalka.ru/3/18315.html
    • http://studopedia.ru/7_95150_normalnaya-i-anomalnaya-dispersiya-voln-fazovaya-i-gruppovaya-skorosti.html
    • http://studfiles.net/preview/2652747/page:19/
    • http://bigenc.ru/physics/text/1958786
    • http://studopedia.su/1_46708_dispersiya-i-pogloshchenie-sveta-normalnaya-i-anomalnaya-dispersiya.html