Меню Рубрики

Зрение сложный нейрофизиологический процесс в организме

Нейрофизиологический подход исходит их того, что такие явления, как ощущение и восприятие, лучше всего объясняются известными нейронными и физиологическими механизмами функционирования сенсорных систем. Сторонники этого подхода придерживаются взглядов, отчасти напоминающих основные идеи редукционизма, в соответствии с которыми понимание разнообразных, безусловно сложных форм поведения возможно только при изучении лежащих в их основе биологических процессов (некая реминисценция структурализма, но в данном случае сведенная к физиологическим механизмам). Одним из наиболее ярких приверженцев идеи о том, что восприятие (так же, как и связанное с ним, но более неуловимое сознание) может быть понято только с позиций нейрофизиологии, является биохимик-теоретик, лауреат Нобелевской премии Френсис Крик, установивший структуру ДНК (в соавторстве с Джеймсом Уотсоном). Он весьма красноречиво изложил свою точку зрения в книге « Поразительная гипотеза» (Crick, 1994).

Часть аргументов в пользу этого подхода базируется на том, что все аспекты поведения основаны на нейронных и физиологических механизмах и пронизаны ими. Более важной, однако, является мысль о том, что структуры и процессы сенсорной системы анализируют входящие сенсорные сигналы (как правило, ослабленные и искаженные), за счет чего и снабжают нас информацией об окружающем мире. Как будет ясно из последующего изложения, аналитические механизмы на нейронном уровне позволяют нам выявлять специфические особенности среды обитания и происходящих в ней событий. Например, нервные клетки разных элементов зрительной системы так же, как и сам мозг, способны избирательно и точно реагировать на специфические признаки предметов — форму, длину, цвет, расположение в пространстве и т. д. (см.: Hubel & Wiesel, 1962, 1968). Определенные нервные клетки мозга обезьяны активируются только под влиянием сложной комбинации раздражителей, например под влиянием лица в профиль или руки, вытянутой в определенном направлении (Desimone et al., 1984; Gross, Rocha-Miranda & Bender, 1972).

Иными словами, некоторые нейронные механизмы зрительной системы извлекают когерентные черты из относительно размытого зрительного образа.

Другим примером является то, что знание сложной нейронной структуры глаза позволяет понять как необыкновенную остроту нашего зрения при ярком свете и способность различать цвета, так и впечатляющую способность видеть при плохом освещении. Как мы увидим при обсуждении зрения, эти разные зрительные функции обеспечиваются разного рода фоторецепторами внутри глаза и их нейронными связями.

Этот подход вполне обоснован, поскольку наше понимание сенсорной системы выводится преимущественно из нейрофизиологических механизмов. Нейрофизиологические механизмы играют решающую роль в объяснении явлений на сенсорном уровне. Ни один психолог-экспериментатор не поставит под сомнение тот факт, что открытия нейрофизиологии внесли значительный вклад в решение фундаментальных проблем ощущения и восприятия. При изучении ощущения и восприятия нейрофизиология неизменно играет значительную роль. (В последнем разделе этой главы мы постараемся изложить или повторить некоторые из ее базовых понятий.) Однако одних нейрофизиологических механизмов недостаточно для объяснения огромной разницы, существующей, скажем, между действием раздражителя на глаз и возникающим в результате этого сознательным восприятием. Большинство психологов-экспериментаторов далеки от мысли свести все аспекты ощущения и восприятия к биологическим или нейрофизиологическим механизмам, ибо это не соответствует стоящим перед ними целям и задачам.

Строение и функциональная организация нервной системы.

Психика человека — социально обусловленный феномен, а не естественный продукт мозга. Однако реализуется она естественным физиологическим субстратом — мозгом. Функционирование организма как единого целостного образования обеспечивается нервной системой — совокупностью нервных образований.

Вся нервная система делится на центральную, периферическую и вегетативную. К центральной нервной системе относятся головной и спинной мозг. От них по всему телу расходятся нервные волокна — периферическая нервная система. Она соединяет мозг с органами чувств и исполнительными органами — мышцами. Вегетативная нервная система обслуживает мышцы внутренних органов и железы.

Рис. 1. Нервно-психическая реакция на укус комара. Сигнал от рецептора (1) отправляется к спинному мозгу (2), и включившаяся рефлекторная дуга может вызвать отдергивание руки (3). Сигнал тем временем идет дальше к головному мозгу (4), направляясь по прямому пути в таламус и кору (5) и но непрямому пути к ретикулярной формации (6). Последняя активирует кору (7) и побуждает ее обратить внимание на сигнал. Внимание к сигналу проявляется в движениях головы и глаз (8), что ведет к опознанию раздражителя (9), а затем к программированию реакции другой руки с целью прогнать нежеланного гостя (10) [1] .

Все живые организмы обладают способностью реагировать на физические и химические изменения в окружающей среде. Воздействия среды, которые вызывают ответные реакции организма, называются раздражителями или стимулами. Раздражители среды (свет, звук, запах, прикосновение и т. п.) преобразуются специальными чувствительными клетками-рецепторами в нервные импульсы — серию электрических и химических изменений в нервном волокне. Нервные импульсы по приносящим (афферентным) нервным волокнам передаются в спинной и головной мозг. Здесь вырабатываются соответствующие командные импульсы, которые передаются по выносящим (эфферентным) нервным волокнам к исполнительным органам (мышцам, железам).

Нервная система обеспечивает интеграцию внешнего воздействия с соответствующей реакцией организма (рис. 1).

Структурной единицей нервной системы является нервная клетка — нейрон. Он состоит из пяти частей: тела клетки, ядра, разветвленных отростков — дендритов (по ним нервные импульсы идут к телу клетки) и одного длинного отростка — аксона (по нему нервный импульс переходит от тела клетки к другим клеткам или эффекторам — мышцам или железам). Аксон имеет множество отростков. Они соединены с дендритами соседних нейронов особыми образованиями — синапсами, которые играют существенную роль в фильтрации нервных импульсов: пропускают одни импульсы и задерживают другие.

Рис. 2. Схема строения нейрона. Возбуждение рецептора и других нейронов изменяет мембранный потенциал дендритов (1) и тела клетки (2). Эффекты этих изменений сходятся на аксонном холмике (3). В результате этого нервный импульс начинает распространяться по аксону (4) и его концевым разветвлениям. Это активизирует синаптические концевые луковички — синапсы (5), которые в свою очередь изменяют мембранный потенциал других нейронов или мышечных волокон.

Нейроны, связываясь друг с другом, совершают объединенную деятельность. Различают три вида нервных клеток: чувствительные, двигательные, центральные (интернейроны) (рис. 5.). Центральные нейроны осуществляют информационные связи между чувствительными и двигательными нейронами. В человеческом мозге они образуют основную его массу, которую составляют около 20 млрд нервных клеток, соединенных множеством синапсов.

Кодирование информации в нервной системе происходит в виде биоэлектрохимичес-ких импульсов. Поступая от рецепторов или других нейронов, эти импульсы проходят через тело нейрона и, попадая на синаптическую бляшку аксона, открывают проходы через синаптическую щель (промежуток между аксоном одного нейрона и дендритом другого) для нейрогормонов (нейромедиаторов). В зависимости от соответствия возбужденных нейрогормонов одного нейрона нейрогормонам другого биоэлектрический потенциал переходит или не переходит от аксона на дендрит другой клетки. Таким образом, нейрогормоны позволяют возбуждать постсинаптический нейрон или блокируют передачу импульса. Закодированная в нервном импульсе информация избирательно направляется в определенные нервные ансамбли — функциональные системы (по теории П.К. Анохина).

Рис. 3. Три типа нейронов, составляющих нервную систему: двигательные, чувствительные, центральные. 1 — дендриты, 2 — тело клетки, 3 — аксон

Рис. 5. Синаптические области коры. Движение процесса возбуждения может осуществляться во многих направлениях. Это зависит от сформированности функциональных систем.

Рис. 4. Схема синапса. Пришедший по аксону (1) импульс не оказывает прямого электрического воздействия на нейрон, с которым этот аксон контактирует, а вызывает освобождение некоторого числа синаптических пузырьков (2), в которых заключен медиатор; эти пузырьки диффундируют через пресицаптическую мембрану (3) и синаптическую щель (4) и деполяризуют (или гиперполяризуют) постсинаптическую мембрану (5). Эффект каждой) синаптического возбуждения можете быть слабым, но совокупный эффект множества синапсов может оказаться выше порогового.

Сигналы внешней среды анализируются и синтезируются в многочисленных нейронных сетях. В коре мозга имеются связанные между собой сенсорные (чувствительные) и эффекторные (двигательные) зоны. Мозг человека — грандиозная система взаимосвязанных нейронов, материальный субстрат психики: приемник, преобразователь и передатчик биологической и социокультурной информации.

Рис. 6. Головной и спинной мозг. Белым шнуром расположился в канале позвоночной) столба спинной мозг. Его длина около полуметра. Справа и слева от него отходят 32 пары нервов. Они идут вглубь тела, образуя крупные сплетения. От них отходят новые ветви нервов, расходясь по всему телу тонкими нитями. В верхней своей части спинной мозг переходит в продолговатую часть головного мозга. Спинной мозг — отдел центральной нервной системы, центр многих безусловно-рефлекторных реакций: мышечно-двигательных, сосудо-двигательных и др.

Строение мозга.

Простейшие автоматизированные реакции, связанные с самосохранением и простейшими движениями, регулируются спинным мозгом, находящимся в позвоночном столбе (рис.). Спинной мозг переходит в продолговатый мозг головного мозга, регулирующий различные процессы жизнеобеспечения в организме (дыхание и др.). Здесь находится сетевидное образование — ретикулярная формация. Импульсы от органов чувств как бы заряжают эту формацию, и она оказывает активизирующее (тонизирующее) влияние на кору головного мозга.

Следующее образование — средний мозг, через который проходят все нервные пути от органов чувств к большим полушариям. Средний мозг регулирует работу органов чувств. Проявление врожденных ориентировочных рефлексов (прислушивание, всматривание) — результат деятельности среднего мозга. Над средним мозгом расположен промежуточный мозг, контролирующий сложные функции жизнеобеспечения (питание, защиту, размножение). Он включает в себя таламус, гипоталамус, лимбическую систему (рис. 6.).

По строению мозга ныне живущих животных, но находящихся на различных ступенях эволюционного развития, можно судить об эволюционном процессе формирования мозга человека: в нем представлены все структуры мозга, имеющиеся у нижестоящих организмов. Наиболее развита кора головного мозга человека, но ее зачатки имеются уже у рыб и рептилий.

В мозге человека имеются все те структуры, которые возникли на различных этапах эволюции живых организмов. Они содержат «опыт», накопленный в процессе всего эволюционного развития. Это свидетельствует об общем происхождении человека и животных.

Особенно развита у человека кора больших полушарий — орган высших психических функций. Общая площадь коры мозга в среднем равна 0,25 м². Ее толщина — 3-4 мм. Кора состоит из 6 слоев. Нервные клетки каждого слоя имеют специфическое строение и колонкообразное расположение. Они выполняют различные функции. Одна группа нейронов выполняет функцию анализа (дробления, расчленения нервного импульса), другая — осуществляет синтез, объединяет импульсы, идущие от различных органов чувств и отделов мозга (ассоциативные нейроны). Существует система нейронов, удерживающая следы от прежних воздействий и сличающая новые воздействия с имеющимися следами.

Рис. 7. Поперечный разрез головного мозга, показывающий степень развития больших полушарий у человека и других животных: снизу вверх: мозг акулы, мозг ящерицы, мозг кролика, мозг человека; I — обонятельные доли; II — большие полушария; III — промежуточный мозг; IV — средний мозг; V — мозжечок; VI — продолговатый мозг.

Читайте также:  Как восстановить зрение после операции отслоение сетчатки глаза

По особенностям микроскопического строения всю кору мозга делят на несколько десятков структурных единиц — полей (поля Бродмана). Различают также четыре доли коры головного мозга: затылочную, височную, теменную и лобную, а также функциональные зоны.

Кора головного мозга человека — целостно работающий орган, хотя отдельные его части (области) функционально специализированы. Так, затылочная область коры выполняет сложные зрительные функции, лобно-височные — речевые, височная — слуховые. Различные части тела имеют свое «представительство” в коре мозга. Все отделы коры мозга взаимосвязаны. Обширные специализированные зоны коры обеспечивают речевую деятельность человека (рис. 9.).

В филогенетическом отношении кора головного мозга человека подразделяется на новую (неокортекс), старую (архикортекс) и древнюю (палеокортекс). В филогенезе у человека произошло абсолютное и относительное увеличение размера новой коры (95% всей площади коры).

Различаются три функциональных типа корковых зон: сенсорные, моторные и ассоциативные. Сенсорные (проекционные) корковые зоны осуществляют прием и анализ афферентных нервных импульсов, идущих от многообразных рецепторов через релейные ядра таламуса. Сенсорные зоны локализованы в различных частях коры: зрительная сенсорная зона расположена в затылочной области коры (17, 18, 19-е поля по Бродману); слуховая зона расположена в верхних отделах височной области (поля 41, 42); соматосенсорная зона, анализирующая нервные импульсы от рецепторов кожи, мышц, сухожилий и суставов, — в области постцентральной извилины (поля 1, 2, 3).

Рис. 8. Строение головного мозга.

В прецентральной извилине находится моторная (двигательная) зона (поле 4), которая имеет двусторонние связи со всеми сенсорными зонами (рис. 9.). Значительная часть коры не имеет афферентных и эфферентных связей с периферией — это вторичные и третичные ассоциативные зоны коры, обеспечивающие интракортикальные связи. В передних отделах коры они занимают основное место (25%). Особенно развиты верхние ассоциативные слои коры с полисенсорными нейронами — они связаны со всеми сенсорными зонами. В ассоциативной зоне коры расположены центры, связанные с речевой деятельностью (центр Брока и центр Вернике). Здесь происходит словесно-знаковое кодирование поступающей в мозг информации, осуществляются нервные процессы, лежащие в основе интеллектуальноволевой деятельности человека, происходит декодирование сложных знаковых изображений, формируются программы поведения, происходит выделение наиболее значимых сигналов, осуществляется их сопоставление с прошлым опытом и на этой основе осуществляется опережающее отражение действительности.

Рис. 9. Цитоархитектопические поля коры больших полушарий у человека («карта» полей, составленная Институтом мозга Министерства здравоохранения СССР): а — латеральная поверхность полушария мозга; б — медиальная поверхность.

Подкорковые образования, регулируя врожденную безусловно-рефлекторную деятельность, являются областью тех процессов, которые субъективно ощущаются в виде эмоций (они, по выражению И.П. Павлова, являются «источником силы для корковых клеток»).

В настоящее время установлено, что различные участки коры мозга характеризуются различиями тонкого строения клеток (так называемая цитоархитектоника) и различным расположением и распределением нервных волокон (так называемая миэлоархитектоника). Исследованиями Фогта, Бродмана, Экономо и сотрудников Московского института мозга, руководимого С. А. Саркисовым, удалось выявить до 50 различных (обычно обозначаемых номерами) участков коры — корковых, цитоархитектонических полей, каждое из которых отливается от других по тонким, иногда, правда, с трудом уловимым особенностям формы, густоте расположения и распределению нервных клеток и волокон. На рис. 9 показана новая «карта» полей мозговой коры человека, использование которой весьма удобно как в клинической работе, так и в экспериментальных исследованиях.

Надо сказать, что само по себеописание различных цитоархитектонических полей (вдобавок нередко разбиваемых на более мелкие подразделения) еще ничего не позволяет сказать о функциях соответственного участка коры мозга. Задача заключается в углублении исследований, которые дадут возможность установить, каким функциональным особенностям соответствуют определенные различия в строении того или иного коркового поля (пока это удалось в общей форме сделать лишь для немногих полей, например для 4, 17).

Последствия полного удаления коры головного мозга.

Полное удаление коры мозга у млекопитающих (собаки) впервые осуществил Ф. Гольц. После ряда последовательных операций у собак Гольца в черепе сохранялись лишь продолговатый мозг, средний мозг с мозжечком, четверохолмие, зрительные бугры и часть полосатого тела. Одни из таких собак прожили 1,5 года, причем сохранить жизнь собак с удаленной корой можно было лишь при тщательнейшем уходе, искусственном кормлении (вкладывании пищи в рот), оберегании от вредоносных агентов. Самостоятельно питаться, уклоняться от вредных раздражений, реагировать на пищу, на кличку собака, лишенная коры мозга, не могла.

На основании этих опытов Гольц (как ранее Флюранс на основании опытов с полным удалением больших полушарий у птиц) подчеркнул, что удаление коры высшего отдела мозга ведет к полной потере нормальной ориентировки собаки в окружающей среде. Трактуя результаты своих исследований в понятиях и терминах, заимствованных из психологии, Гольц говорил о потере у бескорковой собаки способности понимать, узнавать, помнить события и предметы. Подкрепив своими опытами материалистический тезис об обусловленности психических функций деятельностью мозга, Гольц «не нашел в физиологии своего времени готовыми те понятия и термины, которыми можно было бы охарактеризовать потерянные и сохранившиеся функции собаки без коры больших полушарий» (А.Ф. Самойлов) [2] . Лишь после развития И.П. Павловым учения об условных рефлексах глубокие нарушения поведения, наступающие после полного удаления мозговой коры, могли быть объяснены как следствие потери всех ранее выработанных рефлексов и невозможности выработки новых временных связей.

Удаление коры мозга приводит не только к исчезновению всех приобретенных в течение жизни реакций организма на сигнальные раздражения внешней среды — вследствие выпадения условных рефлексов, особенно условных рефлексов на интероцептивные раздражения, входящих в стереотип ряда сложнорефлекторных актов, меняется и деятельность внутренних органов. Б.И. Баяндуров показал (на птицах и грызунах), что удаление высшего отдела мозга значительно отражается на трофике, т. е. на питании тканей, их снабжении питательными веществами, на усвоении последних. После удаления больших полушарий резко замедляется рост молодых животных, меняется обмен веществ; наступает нарушение нормальной суточной периодики (А.Д. Слоним).

Все корковые зоны мозга функционируют в иерархической взаимосвязи — первичные зоны осуществляют раздробление, первичный анализ поступающей сенсорной информации; вторичные зоны выполняют функцию синтеза — объединения, интегрирования поступающей информации одной и той же модальности; третичные зоны — объединение информации, поступающей от отдельных анализаторов. Программирование, регуляцию и контроль деятельности осуществляют передние отделы мозга.

Рис. 10. Локализация основных функций в коре головного мозга: 1 — двигательный центр; 2 — чувствительный центр; 3 — центр зрения; 4 — центр слуха; 5 — моторный центр речи; 6 — слуховой центр речи.

Существуют различия в функциях правого и левого полушарий (функциональная асимметрия мозга). Функцией левого полушария является оперирование вербально-знаковой информацией (логические операции, чтение, счет). Функция правого полушария — оперирование наглядными образами, распознание объектов, образное мышление. Оба полушария функционируют взаимосвязанно.

Основными методами изучения работы головного мозга являются запись биотоков мозга — электроэнцефалограмма (ЭЭГ) [3] и метод анализа динамики условных рефлексов. Термин «рефлекс», как уже отмечалось, был введен французский ученым Рене Декартом в XVII в. Но для объяснения психической деятельности он был применен основоположником русской материалистической физиологии И.М. Сеченовым. Развивая учение И.М. Сеченова, И.П. Павлов экспериментально исследовал особенности функционирования рефлексов и использовал условный рефлекс как метод изучения высшей нервной деятельности. Все рефлексы были разделены им на две группы — безусловные и условные.

Безусловные рефлексы — врожденные реакции организма на жизненно важные раздражители (пишу, опасность и т. п.). Они не требуют каких-либо условий для своей выработки (например, выделение слюны при виде пиши). Безусловные рефлексы представляют собой природный запас готовых, стереотипных реакций организма. Они возникли в результате длительного эволюционного развития данного вида животных. Безусловные рефлексы одинаковы у всех особей одного вида. Они осуществляются с помощью спинного и низших отделов головного мозга. Сложные комплексы безусловных рефлексов проявляются в виде инстинктов.

Рис. 11. Схема образования условного рефлекса: 1 — слюноотделение вызывается безусловным раздражителем — пищей; 2 — возбуждение от пищевой» раздражителя связывается с предшествующим индифферентным раздражителем (светом лампочки); 3 — свет лампочки стал сигналом возможного появления нищи — на него выработался условный рефлекс.

Но поведение высших животных и человека характеризуется не только врожденными, то есть безусловными реакциями, но и такими реакциями, которые приобретены данным организмом в процессе индивидуальной жизнедеятельности, то есть условными рефлексами. Биологический смысл условного рефлекса состоит в том, что многочисленные внешние раздражители, окружающие животное в естественных условиях и сами по себе не имеющие жизненно важного значения, предшествуя в опыте животного пище или опасности, удовлетворению других биологических потребностей, начинают выступать в роли сигналов, по которым животное ориентирует свое поведение.

Итак, механизм наследственного приспособления — безусловный рефлекс, а механизм индивидуально изменчивого приспособления — условный рефлекс, вырабатываемый прижизненно при сочетании жизненно значимых явлений с сопутствующими сигналами (рис. 11.).

Открытие Павловым основного механизма высшей нервной деятельности — условного рефлекса — стало одним из революционизирующих завоеваний естествознания, историческим поворотным пунктом в понимании связи физиологического и психического. Однако наряду с условным рефлексом — основным механизмом поведенческого приспособления к условиям среды существуют и другие психофизиологические механизмы адаптации организма к среде — привыкание, латентное научение, запечатление (импритинг) и др. [4]

С познания динамики образования и изменения условных рефлексов началось раскрытие сложных механизмов деятельности человеческого мозга, Выявление закономерностей высшей нервной деятельности. С понятием условного рефлекса И.П. Павлов связывал принцип сигнальности высшей нервной деятельности, принцип синтеза внешних воздействий и внутренних состояний. С открытых Павловым принципов и законов высшей нервной деятельности мы и рассмотрим нейрофизиологические основы психики.

Принципы и законы высшей нервной деятельности.

Деятельность коры головного мозга подчинена ряду принципов и законов. Основные из них впервые установлены И.П. Павловым. В настоящее время некоторые положения Павловского учения уточнены, развиты, а отдельные из них пересмотрены. Однако для овладения основами современной нейрофизиологии необходимо ознакомиться с фундаментальными положениями учения Павлова.

Аналитико-синтетический принцип высшей нервной деятельности. Как установлено И.П. Павловым, основным фундаментальным принципом работы коры больших полушарий головного мозга является аналитико-синтетический принцип. Ориентация в окружающей среде связана с вычленением отдельных ее свойств, сторон, признаков (анализ) и объединением этих признаков с тем, что полезно или вредно для организма (синтез). Синтез, как отмечал ученый, — замыкание связей, а анализ — все более тонкое отчленение одного раздражителя от другого.

Аналитико-синтетическая деятельность коры головного мозга осуществляется взаимодействием двух нервных процессов — возбуждения и торможения и подчинена следующим законам:

  • закону образования временной нервной связи — при многократном подкреплении нейтрального раздражителя безусловным (жизненно значимым) раздражителем между корковыми центрами этих воздействий образуется временная нервная связь;
  • закону угасания временной нервной связи — при многократном неподкреплении условного раздражителя безусловным временная нервная связь между ними угасает;
  • закону иррадиации возбуждения — очень сильные (как и очень слабые) раздражители при длительном воздействии на организм вызывают иррадиацию — распространение возбуждения по значительной части коры больших полушарий.

Так, наблюдая за спором двух людей, мы можем заметить внешнее проявление того, как возбуждение их речедвигательных зон постепенно нее более и более захватывает и другие двигательные зоны. Люди нередко начинают усиленно жестикулировать, быстро передвигаться с места па место, а при недостатке воспитания и воли некоторые переходят и к более «энергичным» действиям.

Иррадиация возбуждения вызывает значительное повышение тонуса коры мозга. В результате даже незначительные раздражители вызывают повышенную реакцию; нормальное течение мышления сменяется «скачкой мыслей». Только оптимальные раздражители средней силы вызывают строго локализированные очаги возбуждения, что и является важнейшим условием успешной деятельности;

  • закону взаимной индукции нервных процессов — на периферии очага одного процесса всегда возникает процесс с обратным знаком. Если в одном участке коры головного мозга сконцентрирован процесс возбуждения, то вокруг него индуктивно возникает процесс торможения. Чем интенсивнее возбуждение, тем интенсивнее и более широко распространен вокруг него процесс торможения.
Читайте также:  Обратная связь с точки зрения повышения эффективности коммуникации

Наряду с одновременной индукцией существует последовательная индукция нервных процессов — последовательная смена нервных процессов в одних и тех же участках мозга.

Только оптимальное соотношение процессов возбуждения и торможения обеспечивает поведение, адекватное (соответствующее) окружающей среде. Нарушение баланса между этими процессами, преобладание одного из них вызывает значительные нарушения в психической регуляции поведения. Так, преобладание торможения, недостаточное взаимодействие его с возбуждением приводят к снижению активности организма (вплоть до сна наяву). Преобладание возбуждения может выразиться в беспорядочной активности, ненужной суетливости, снижающей результативность деятельности.

Процесс торможения ограничивает и направляет в определенное русло процесс возбуждения, содействует сосредоточению, концентрации возбуждения. Торможение бывает внешним и внутренним. Если внезапно подействует какой-либо новый сильный раздражитель, то прежняя деятельность затормозится. Это — внешнее (безусловное) торможение. В данном случае возникновение очага возбуждения по закону отрицательной индукции вызывает торможение других участков коры.

Одним из видов внутреннего или условного торможения является угасание условного рефлекса, если он не подкрепляется безусловным раздражителем (угасательное Торможение). Этот вид торможения вызывает прекращение ранее выработанных реакций, если они в новых условиях становятся бесполезными. Торможение возникает и при чрезмерном перевозбуждении мозга. Оно защищает нервные клетки от истощения. Этот вид торможения называется охранительным. Торможение, лежащее в основе анализа, называется дифференцировочным — оно уточняет действия, делает их более приспособленными к окружающей среде;

  • закону системности в работе коры головного мозга (динамическому стереотипу) — реакция организма на тот или иной раздражитель зависит от сложившейся в коре системы связей (внешнее опосредовано внутренним). Опыты показывают, что если выработать ряд рефлексов на разные раздражители, которые повторяются в определенной последовательности, то со временем организм воспроизводит всю систему ответных реакций при воздействии лишь одного первоначального раздражителя. Устойчивое закрепление определенной последовательности реакций Павлов называл динамическим стереотипом. (Термин «стереотип» происходит от двух греческих слов stereos — твердый и typos — отпечаток.)

К стереотипно повторяющимся внешним воздействиям организм приспосабливается выработкой устойчивой системы реакций. Динамический стереотип — физиологическая основа многих навыков и привычек, приобретенных потребностей и др. Комплекс динамических стереотипов представляет собой физиологическую основу устойчивых особенностей поведения личности.

Динамический стереотип — выражение особого принципа работы мозга — системности. Этот принцип состоит в том, что на сложные комплексные воздействия среды мозг реагирует не как на ряд отдельных изолированных раздражителей, а как на целостную систему, в которой отдельные раздражители находятся в определенных взаимоотношениях.

Внешний стереотип — закрепление последовательности воздействий — отражается во внутреннем нейродинамическом стереотипе. К внешним стереотипам относятся все целостные предметы и явления (они всегда представляют собой определенную совокупность признаков), привычная обстановка, устойчивая последовательность событий, уклад жизни и т. д.

Ломка привычного стереотипа — тяжелое нервное напряжение (субъективно это выражается в тоске, унынии, раздражительности и т. п.). Как ни сложна ломка старого стереотипа, новые условия формируют новый стереотип (поэтому он и назван динамическим). В результате многократного функционирования он все более и более закрепляется и в свою очередь становится все более труднозаменяемым. Динамические стереотипы особенно устойчивы у пожилых людей и у лиц со слабым типом нервной деятельности, с пониженной подвижностью нервных процессов.

Рассмотренные выше основные положения учения И.П. Павлова о высшей нервной деятельности не утратили значимости и в наши дни. Однако некоторые из них были уточнены и развиты учениками и последователями великого физиолога. Одно из самых перспективных направлений в развитии учения И.П. Павлова возглавил его ученик, академик П.К. Анохин. Механизм условных рефлексов — фундаментальная, но не единственная основа работы головного мозга. Сам И.П. Павлов отмечал, что когда обезьяна строит вышку, чтобы достать плод, то это условным рефлексом назвать нельзя.

Современная наука о мозге — нейрофизиология — базируется на концепции функционального объединения механизмов мозга для осуществления различных поведенческих актов [5] . Функциональной системой П.К. Анохин назвал единство центральных и периферических нейрофизиологических механизмов, которые в совокупности обеспечивают результативность того или иного поведенческого акта.

Первоначальная стадия формирования любого поведенческого акта названа П.К. Анохиным афферентным синтезом (в пер. с лат. — «соединение приносимого»). В его процессе из многочисленных образований мозга извлекается все то, что было связано в прошлом с удовлетворением данной потребности, т. е. решается вопрос: какой полезный результат должен быть получен в данной ситуации, при данной комбинации исходных возбуждений. В результате афферентного синтеза принимается решение — выбирается один из возможных вариантов действия, который больше всего удовлетворяет требованиям данной ситуации.

Нейрофизиологический механизм принятия решения основан на способности мозга прогнозировать параметры будущего результата действия. Этот механизм назван П.К. Анохиным акцептором результатов действия (от лат. acceptor — принимающий), представляющий собой нейрофизиологический механизм предвидения результатов будущего действия на основе обобщения ранее полученных результатов от аналогичных действий. Предвидение результатов действия — формирование цели действия. «Так как во всех наших действиях получение того или иного результата связано с заранее поставленной целью, то совершенно очевидно, что аппарат акцептора результатов действия практически является и аппаратом цели. Из этого положения вытекает, что цель в нашем понимании и в наших экспериментах не является чем-то изначальным, а подготавливается сложной работой нервной системы в стадии афферентного синтеза» [6] .

На основе предвидения результатов готовящегося действия создается программа действия. И только после этого совершается само действие.

Ход действия, результативность его этапов, соответствие результатов сформированной программе действия постоянно контролируются путем получения сигналов о достижении цели. Механизм постоянного получения информации о результатах совершаемого действия назван П.К. Анохиным обратной афферентацией (афферентация — возбуждение под влиянием внешнего воздействия.) Осуществление каждого действия постоянно сопровождается сличением двух комплексов возбуждения: возбуждений, прогнозирующих действие, и возбуждений, поступающих по ходу совершения действия. Эти нейрофизиологические звенья регуляции деятельности представлены П.К. Анохиным в его схеме функциональной системы (рис. 12.).

В отличие от Павлова П.К. Анохин трактует подкрепление поведенческих актов не только эффектом действия безусловного раздражителя. Действие, по Анохину, подкрепляется его правильностью — афферентными сигналами о его адекватности ранее сформированной программе благодаря механизму сопоставления полученных результатов с заранее сформированным психическим образом этого результата (рис. 12.).

Рис. 12. Схема функциональной системы как модели поведенческого акта (по П.К. Анохину)

П.К. Анохин постулировал фундаментальный принцип системной работы мозга — принцип опережающего отражения действительности, частным проявлением которого служит и условный рефлекс.

Теория функциональных систем включила в единую систему такие компоненты поведения, как мотивация, память, эмоции, предвидение событий, программирование будущих результатов поведения. Отказавшись от упрощенно-универсальной схемы «стимул — реакция», П.К. Анохин раскрыл нейрофизиологический механизм активной деятельности. «Вряд ли можно сомневаться в том, что многие поведенческие акты формируются не в ответ на какой-то внешний стимул по типу «стимул — реакция», а на основе внутренних изменений и постепенно нарастающих возбуждений определенных структурных образований на уровне подкорки. Мы знаем много состояний, когда именно это состояние, а не внешний стимул определяет форму поведения животного и человека…» [7] .

Раскрыв механизмы целенаправленных поведенческих актов, П.К Анохин поднял нейрофизиологию на современный системный уровень, содействовал ее интеграции с психологией. Ученики и последователи Анохина интенсивно развивают различные отрасли нейрофизиологии [8] .

Типологические особенности высшей нервной деятельности.

В опытах И.П. Павлова было установлено, что действие тех или иных раздражителей зависит не только от их качества, но и от типологических особенностей высшей нервной деятельности. Под типологическими особенностями высшей нервной деятельности имеется в виду динамика протекания нервных процессов (возбуждения и торможения) у отдельных индивидуумов. Тип нервной деятельности характеризуется следующими тремя физиологическими свойствами нервной системы:

  • силой нервных процессов — работоспособностью нервных клеток при возбуждении и торможении;
  • уравновешенностью нервных процессов — соотношением между силой процессов возбуждения и торможения, их сбалансированностью или преобладанием одного процесса над другим;
  • подвижностью нервных процессов — скоростью смены процессов возбуждения и торможения [9] .

В зависимости от сочетания вышеуказанных свойств выделяются четыре типа высшей нервной деятельности.

Первый тип характеризуется повышенной силой нервных процессов, их уравновешенностью и высокой подвижностью (живой тип).

Второй тип характеризуется повышенной силой нервных процессов, но они неуравновешенны, возбудительный процесс преобладает над тормозным (безудержный тип).

Третий тип характеризуется повышенной силой нервных процессов, их уравновешенностью, но малой подвижностью (спокойный тип).

Четвертый тип характеризуется пониженной силой нервных процессов, пониженной их подвижностью (слабый тип).

Различные типы высшей нервной деятельности лежат в основе четырех темпераментов: сангвинического, холерического, флегматического, меланхолического.

Сила, уравновешенность и подвижность нервных процессов обеспечивают эффективность приспособления к среде. Если сила нервных процессов недостаточна, то организм страдает от значительных внешних воздействий и неадекватно реагирует на них (преувеличивается их значение, возникают срывы нервной деятельности, неврозы). При недостаточной подвижности или уравновешенности нервных процессов организм не может быстро приспособиться к внешним условиям, для него болезненна ломка стереотипа; он нередко впадает в невротическое состояние.

Однако, как показали исследования И.П. Павлова, сила и подвижность нервных процессов могут возрастать под влиянием тренировки, воспитания, соответствующих условий жизни. Природные конституционные особенности организма могут быть изменены — такой оптимистический вывод сделал И.П. Павлов исходя из научно-экспериментальных данных.

Читайте также:  Как поддержать зрение при сахарном диабете

Особенности высшей нервной деятельности человека.

Рассмотренные выше принципы, закономерности и типы высшей нервной деятельности являются общими как для животных, так и для людей. Однако высшая нервная деятельность человека имеет существенные отличия. «В развивающемся животном мире на фазе человека произошла чрезвычайная прибавка к механизмам нервной деятельности. Для животного действительность сигнализируется почти только раздражениями и следами их в больших полушариях, непосредственно приходящими в специальные клетки зрительных, слуховых и других рецепторов организма. Это то, что и мы имеем в себе как впечатления, ощущения и представления от окружающей внешней среды… Это — первая сигнальная система действительности, общая у нас с животными. Но слово составило вторую, специальную нашу сигнальную систему действительности, будучи сигналом первых сигналов. Многочисленные раздражения словом, с одной стороны, удалили нас от действительности, и поэтому мы постепенно должны помнить это, чтобы не исказить наши отношения к действительности. С другой стороны, именно слово сделало нас людьми» [10] .

Итак, первая сигнальная система действительности — система наших непосредственных ощущений, восприятий, впечатлений от конкретных предметов и явлений окружающего мира. Слово (речь) — вторая сигнальная система. Она возникла и развивалась на основе первой сигнальной системы и имеет значение лишь в тесной взаимосвязи с ней.

Благодаря второй сигнальной системе у человека более быстро, чем у животных, образуются временные связи, ибо слово несет в себе общественно выработанное значение предмета. Как отмечает И.П. Павлов, со словом «вводится новый принцип нервной деятельности — отвлечение и вместе обобщение бесчисленных сигналов… — принцип, обусловливающий безграничную ориентировку в окружающем мире и создающий высшее приспособление человека — науку» [11] .

Действие слова в качестве условного раздражителя может иметь такую же силу, как непосредственный первосигнальный раздражитель. Под влиянием слова находятся не только психические, но и физиологические процессы (это лежит в основе терапевтического внушения и самовнушения). Слово возникло с появлением общества и является важнейшим общественным достоянием. Благодаря ему отдельный индивидуум может овладеть опытом всего человечества. Даже непосредственное восприятие человеком окружающей действительности опосредовано словом и носит обобщенный характер. Но слово, оторванное от его конкретных первосигнальных истоков, теряет смысл и перестает быть средством Ориентации человека в окружающей действительности. (Не понимая значения слова, мы воспринимаем лишь его звуковую оболочку.)

Вторая сигнальная система имеет две функции — коммуникативную (обеспечивает общение между людьми) и функцию отражения объективных закономерностей. Слово не только дает наименование предмету, но и содержит в себе обобщение.

Специфические человеческие типы высшей нервной деятельности.

Выше были рассмотрены типологические особенности высшей нервной деятельности, общие у человека и высших животных (4 типа). Но у людей имеются специфические типологические особенности, связанные со второй сигнальной системой. У всех людей вторая сигнальная система преобладает над первой. Но степень преобладания неодинакова. Это дало И.П. Павлову основание разделить высшую нервную деятельность человека на три типа: 1) мыслительный; 2) художественный; 3) средний (смешанный).

К мыслительному типу относятся лица со значительным преобладанием второй сигнальной системы над первой. У них более развито абстрактное мышление (математики, философы); непосредственное отражение действительности происходит у них не в ярких образах, а синтетически, обобщенно.

К художественному типу относятся люди с меньшим преобладанием второй сигнальной системы над первой. Им присущи живость, яркость конкретных образов (художники, писатели, артисты, конструкторы, изобретатели и др.).

Средний, или смешанный, тип людей занимает промежуточное положение между двумя первыми (около 80% всех людей).

Чрезмерное преобладание второй сигнальной системы, граничащее с отрывом от первой сигнальной системы, является негативным качеством, уводящим человека к бесплодной теоретизации, схоластике.

У людей с преобладанием первой сигнальной системы, как правило, менее развита склонность к абстрагированию, теоретизации. В основе «мыслительного» и «художественного» типов лежит доминирование у различных людей одного из полушарий мозга. Левое полушарие, как уже отмечалось, реагирует преимущественно на сигналы второй сигнальной системы, правое — на сигналы первой. Правое полушарие — орган образного мышления, образной памяти, левое — орган абстрактно-теоретического мышления.

Познание психики человека и деятельности его мозга взаимообусловлено. «Преждечем ответить на вопрос о том, каковы мозговые основы того или иного психического процесса, необходимо тщательно изучить строение того психического процесса, мозговую организацию которого мы хотим установить, и выделить в нем те звенья, которые в той или иной степени могут быть отнесены к определенным системам мозга» [12] .

Психофизиологическая проблема — соотношение психического и физиологического.

Понимание психики как явления, с одной стороны, идеального, а с другой — как «продукта» высокоорганизованной материи порождает сложную проблему соотношения психического и физиологического — психофизиологическую проблему. Психику нельзя отрывать от работы мозга, но ее нельзя сводить и к нейрофизиологическим процессам. Взаимоотношение психики и физиологических процессов — взаимоотношение идеального и материального. Идеальное выступает как система субъективных образов объективного мира, как явление общественно-историческое. Нейрофизиология — естественное условие функционирования психического, но само психическое социально детерминировано. Нейрофизиология подчинена биологическим закономерностям; психика подчинена всеобщим законам объективных взаимосвязей явлений внешнего мира.

Условные рефлексы, функциональные системы по способу совершения — явления физиологические, а по итоговым результатам — психические. Психика не является прямым продуктом работы мозга. Мозг социально изолированного человека не может дать этого «продукта». Психика — социально опосредованный продукт мозговой деятельности. Идеальное — социально нормированное отражение действительности посредством нейрофизиологических процессов. Еще в начале XX в. известный английский нейрофизиолог Шерингтон заметил: «Рефлекторное действие и сознание как бы взаимно исключают друг друга — чем больше рефлекс является рефлексом, тем меньше он осознается» [13] .

Как отмечает известный американский нейропсихолог Карл Прибрам, «результат поведения зависит от воздействия внешних условий на внутреннюю компетентность организма» [14] . Эту «внутреннюю компетентность» мы и называем сознанием.

Чем же отличается мозг человека от мозга высших животных? — Способом кодирования поступающей извне информации. Механизм человеческого мозга — механизм кодирования речевых знаков, символов. Знак несет информацию о каком-либо общем свойстве действительности. То или иное свойство, признак предмета становится знаком, кодируется в мозге в качестве знака в результате обобщающей, аналитико-синтетической деятельности человеческого мозга.

Мозговые модели человека отражают не только внешние стороны действительности, но и ее внутренние, сущностные связи. Психическое отражение действительности человеком — отражение, опосредованное знаком, человеческим понятием, сформированным в общественно-исторической практике человека [13] .

[1] Рисунок заимствован из книги Ж. Годфруа «Что такое психология?». М., 1992;

[3] Мозг человека состоит из колоссальной) множества клеток, каждая из которых в возбужденном состоянии создает электрический потенциал. Электрическая активность мозга впервые была зарегистрирована в виде электроэнцефалограммы Бергером в 1924 г. При низкой активности мозга масса клеток разряжается одновременно. На электроэнцефалограмме (ЭЭГ) это записывается в виде медленных волн (волн низкой частоты и большой амплитуды). К медленным волнам относятся альфа-волны (8-12 Гц), тета-волны (4 — 7 Гц) и дельта-волны (0,5 — 3 Гц). Все эти волны характерны для различных стадий сна.

В период активной работы мозга каждая клетка разряжается в соответствии со своей специфической функцией — в результате электрическая активность мозга становится асинхронной, она регистрируется в виде волн высокой частоты и малой амплитуды. Эти быстрые волны называются бета-волнами (13-26 Гц). Их амплитуда уменьшается по мере интенсивности мозговой деятельности, что и позволяет судить об уровне психической активности субъекта.

[4] Не имея возможности рассмотреть здесь псе указанные адаптационные механизмы, поясним лишь явление импритинга. Введенный в науку известным этологом Конрадом Лореицом в 1935 г. термин «импритинг» (запечатление) означает внезапное устойчивое запечатление отдельных объектов в качестве побудителей определенных форм поведения. Так, импритиг у гусят, выращенных в инкубаторе, проявляется в том, что они неотступно следуют за первым увиденным ими сразу после рождения движущимся предметом.

[9] Наряду с подвижностью нервных процессов в 60-х гг. стали выделять лабильность нервных процессов (В.Д. Небылицын), под которой понимается скорость возникновения и прекращения нервных процессов.

[15] В отечественной нейрофизиологии эта проблема интенсивно исследуется Н.П. Бехтеревой. См.: Бехтерева Н.П., Гоголицин Ю.Л., Кропотов Ю.Г., Медведев С.В. Нейрофизиологические механизмы мышления. Л., 1988.

Нейрофизиология зрения.

Зрительный анализатор.

Это совокупность органов и тканей, обеспечивающая восприятие, кодирование и декодирование зрительной информации.

Зрительный анализатор обеспечивает.

1) кодирование длины волны и интенсивности света.

2) восприятие формы предмета.

3) ясное видение за счет работы аккомодационного аппарата.

4) зрачок обеспечивает глубину резкости.

5) адаптацию к различной освещенности.

Характеристика раздражений: частоты видимого спектра, интенсивности действия света.

Свет – это электромагнитные колебания, которые характеризуются частотой и длиной волны, интенсивностью.

1)Частота колебаний видимой части спектра 10 – 15 гц. Для характеристики излучения используют длину волны в нм. Это расстояние, которое проходит свет за время, необходимое для одного колебания.

Спектральные компоненты с большой длиной волны кажутся красным светом, с меньшей длиной – синефиолетовыми. Невидимая часть спектра – инфракрасное и ультрафиолетовое излучение.

Видимая часть спектра находится в диапазоне 400 – 700 нм.

2) Интенсивность – это яркость выражается в децибелах.

Психологические корреляты интенсивности:

160 дб – болевой порог.

140 дб – солнечный свет.

60 дб – экран телевизора.

40 – 20 дб – различные цвета при наименьшей освещенности.

Кодирование параметров света начинается в фоторецепторе. Это частотное кодирование.

Нейрофизиология зрения.

Кодирование информации в сетчатке.

Сетчатка – отдел мозга, вынесенный на периферию. Состоит из рецепторов и нейронов.

В сетчатке различают 2 нейронные сети.

I «Вертикальная» сеть воспринимает информацию и передает в мозг. Образована:

2) биполярными клетками.

3) ганглиозными, образующими зрительный нерв. Вертикальная сеть представляет собой сходящуюся воронку: 130 млн. фоторецепторов и 1,3 млн. волокон зрительного нерва. Т.е. явление конвергенции фоторецепторов на биполярных клетках и биполярных клеток на ганглиозных.

II Горизонтальная сеть.

Модифицирует передачу информации. Образована:

1) горизонтальными клетками.

Это тормозные нейроны, ограничивают распространение зрительного возбуждения внутри сетчатки. Обеспечивают латеральное торможение.

Горизонтальные соединяют фоторецепторы с одной биполярной клеткой, изменяя величину рецептивного поля биполярной клетки.

Амакриновые клетки обеспечивают подключение различного количества биполярных клеток к одной ганглиозной, регулируя ее рецептивное поле. Горизонтальная нейронная сеть участвует в обеспечении процессов световой и темновой адаптации, обеспечивает восприятие формы предмета через латеральное торможение.

Электроретинограмма – суммарный электрический потенциал сетчатки при действие света.

Различают несколько волн.

А – возбуждение фоторецепторов — гипероляризационный потенциал.

В – активность глиальных клеток.

С – активность клеток пигментного эпителия.

D – активность горизонтальных клеток.

Дата добавления: 2016-09-20 ; просмотров: 351 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источники:
  • http://wiki.1vc0.ru/enciklopediya/fiziologiya/nejrofiziologicheskie-osnovy-psixicheskoj-deyatelnosti.html
  • http://helpiks.org/8-59370.html