Меню Рубрики

Явление электризации с точки зрения электронной теории

Теория, объясняющая электрические свойства тел наличием в них электронов и их движением, носит название электронной теории. Эта теория очень просто и наглядно объясняет многие электрические явления; и поэтому при изучении электричества целесообразно с самого же начала ввести электронные представления. Разберем с этой точки зрения некоторые опыты, описанные выше.

В § 2 мы видели, что через металлы и другие проводники заряды могут легко переходить с одного тела на другое. Это значит, что в проводниках электрические частицы могут свободно перемещаться. И обратно: всякое тело, в котором электрические частицы могут легко перемещаться, должно оказаться хорошим проводником. Наоборот, из того факта, что стекло плохо проводит электричество, мы можем заключить, что внутри стекла (и других диэлектриков) перемещение электрических частиц от одного места к другому весьма затруднено. В хорошо проводящих растворах, например в растворах поваренной соли, легко перемещаются как положительные, так и отрицательные ионы. В металлах же ионы передвигаться не могут, и единственными переносчиками заряда в металлах являются электроны. Эти электроны, свободно перемещающиеся по металлу, называют свободными электронами или электронами проводимости.

Когда мы заряжаем какое-либо тело, то мы создаем на нем либо недостаток, либо избыток электронов по сравнению с их нормальным числом, при котором тело не заряжено. При этом электроны заимствуются у какого-либо другого тела или удаляются из тела, но отнюдь не уничтожаются и не создаются вновь. Таким образом, явление зарядки и разрядки тел сводится к перераспределению электронов без изменения общего числа их.

Мы знаем, что при соединении заряженного проводника с незаряженным заряд распределяется между обоими телами. С электронной точки зрения это происходит следующим образом. Если первое тело заряжено отрицательно, то электроны под действием взаимного отталкивания переходят на второе тело. Если же первое тело заряжено положительно, то оно притягивает к себе электроны второго тела. В обоих случаях заряд будет уменьшаться на первом теле и увеличиваться на втором до тех пор, пока вновь не наступит равновесие.

Наконец, мы видели (§ 4), что положительные и отрицательные заряды компенсируют друг друга, так что, соединяя равные по модулю разноименные заряды, мы получаем отсутствие заряда. С электронной точки зрения это очевидно: соединяя два проводника, в одном из которых не хватает стольких же электронов, сколько их содержится в избытке в другом, мы получим нормальное число электронов в каждом из проводников, т. е. каждый из проводников окажется незаряженным. Появление положительных и отрицательных зарядов при электризации тел трением представляет более сложный процесс, в деталях еще не вполне выясненный; но и в этом случае дело сводится именно к разделению зарядов, а не к образованию их.

Теория, объясняющая электрические свойства тел наличием в них электронов и их движением, носит название электронной теории. Эта теория очень просто и наглядно объясняет многие электрические явления; и поэтому при изучении электричества целесообразно с самого же начала ввести электронные представления. Разберем с этой точки зрения некоторые опыты, описанные выше.

В § 2 мы видели, что через металлы и другие проводники заряды могут легко переходить с одного тела на другое. Это значит, что в проводниках электрические частицы могут свободно перемещаться. И обратно: всякое тело, в котором электрические частицы могут легко перемещаться, должно оказаться хорошим проводником. Наоборот, из того факта, что стекло плохо проводит электричество, мы можем заключить, что внутри стекла (и других диэлектриков) перемещение электрических частиц от одного места к другому весьма затруднено. В хорошо проводящих растворах, например в растворах поваренной соли, легко перемещаются как положительные, так и отрицательные ионы. В металлах же ионы передвигаться не могут, и единственными переносчиками заряда в металлах являются электроны. Эти электроны, свободно перемещающиеся по металлу, называют свободными электронами или электронами проводимости.

Когда мы заряжаем какое-либо тело, то мы создаем на нем либо недостаток, либо избыток электронов по сравнению с их нормальным числом, при котором тело не заряжено. При этом электроны заимствуются у какого-либо другого тела или удаляются из тела, но отнюдь не уничтожаются и не создаются вновь. Таким образом, явление зарядки и разрядки тел сводится к перераспределению электронов без изменения общего числа их.

Мы знаем, что при соединении заряженного проводника с незаряженным заряд распределяется между обоими телами. С электронной точки зрения это происходит следующим образом. Если первое тело заряжено отрицательно, то электроны под действием взаимного отталкивания переходят на второе тело. Если же первое тело заряжено положительно, то оно притягивает к себе электроны второго тела. В обоих случаях заряд будет уменьшаться на первом теле и увеличиваться на втором до тех пор, пока вновь не наступит равновесие.

Наконец, мы видели (§ 4), что положительные и отрицательные заряды компенсируют друг друга, так что, соединяя равные по модулю разноименные заряды, мы получаем отсутствие заряда. С электронной точки зрения это очевидно: соединяя два проводника, в одном из которых не хватает стольких же электронов, сколько их содержится в избытке в другом, мы получим нормальное число электронов в каждом из проводников, т. е. каждый из проводников окажется незаряженным. Появление положительных и отрицательных зарядов при электризации тел трением представляет более сложный процесс, в деталях еще не вполне выясненный; но и в этом случае дело сводится именно к разделению зарядов, а не к образованию их.

© 2019 Научная библиотека

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт

Явление электризации

Скачать
презентацию

Сумма положительных и отрицательных элементарных частиц >>

В чем состоит явление электризации, объясните это явление с точки зрения электронной теории? Электризация — это нарушение электрической нейтральности тела для электризации тела необходимо, чтобы на нем был создан избыток или недостаток электронов или ионов одного знака. С точки зрения электронной теории: небольшая часть электронов переходит с одного вещества, у которого связь электронов с телом относительно слаба, на другое.

Слайд 9 из презентации «Физика «Электростатика»» к урокам физики на тему «Электростатика»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке физики, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Физика «Электростатика».ppt» можно в zip-архиве размером 742 КБ.

Электростатика

«Электризация» — Обкладки плоского конденсатора. Объясни поподробнее. Правая пластина заряжается отрицательно, а левая- положительно. Что такое молния? Ручки из изолятора. Как взаимодействуют тела, заряженные одноименно? Часть А заряжается положительно, часть В –отрицательно. Почему притягиваются мелкие бумажки, мелкие кусочки фольги к наэлектризованной палочке?

«Электростатическое поле» — Электризация соприкосновением с заряженным телом. Создаем ли мы заряды при электризации тел? Какие виды материи вы знаете? Энергетическая характеристика электрического поля. Электростатика. Напряженность электрического поля. Закон Кулона. Способы электризации тел. Силовые линии электрического поля. Может ли заряд существовать независимо от частицы?

«Физика «Электростатика»» — Вычисления. Векторная сумма сил. Можно ли электрический заряд делить бесконечно. Отрицательный заряд. Электрическое поле. Напряженность электрического поля. Закон сохранения электрического заряда. Кулон. Сумма положительных и отрицательных элементарных частиц. Явление электризации. Элементарные заряды.

«Статическое электричество» — Ковровые покрытия. Накопление статического электричества. Результаты заземления. В наши дни большинство людей практически лишены возможности «сбросить» лишнее электричество. Железобетонные стены. На протяжении тысячелетий наши предки ходили по земле босиком, заземляясь естественным путем. Лишнее электричество обязательно должно выводиться из организма способом заземления.

«Электроскоп» — Сила. Электроскоп. Вид материи. Действие. Заряженная пылинка. Проводники и диэлектрики. Эбонитовые палочки. Стержень электроскопа. Электрический заряд. Познакомиться с устройством электроскопа. Тела. Вопрос. Палочки из резины. Взаимодействие зарядов. Два типа зарядов.

«Элементарные частицы» — Электромагнитное поле. Определение электростатики. Электрический заряд. Основной закон электростатики — Закон Кулона! Электродинамика — раздел физики, изучающий взаимодействие электрических зарядов. Схема опыта Кулона. Положительный и отрицательный заряд тел. При электризации тел вещества, из которых состоят электризующиеся тела, в другие вещества не превращаются.

Всего в теме «Электростатика» 14 презентаций

Электростатика: элементы учебной физики

Валерий Вильгельмович Майер окончил физико-математический факультет Удмуртского ГПИ в 1967 г. С момента публикации первой статьи в журнале «Физика в школе» в 1966 г. основная область интересов – совместная исследовательская деятельность учителя и ученика, направленная на решение конкретных проблем учебной физики, т.е. на разработку новых учебных физических теорий, учебных экспериментов и методик их изучения. Ныне – профессор кафедры физики и дидактики физики, декан физического факультета ГГПИ им. В.Г.Короленко, д.п.н., автор девяти книг и более четырёхсот публикаций в журналах «Успехи физических наук», «Физика в школе», «Квант», «Учебная физика» и в газете «Физика». Руководит научной работой студентов, аспирантов и преподавателей, многие годы непосредственно руководил учебными исследованиями школьников. Один из организаторов ежегодной научно-практической конференции «Учебный физический эксперимент: Актуальные проблемы. Современные решения», ответственный редактор сборников научных работ «Проблемы учебного физического эксперимента», главный редактор журнала «Учебная физика».

ЛЕКЦИЯ 1. ЯВЛЕНИЕ ЭЛЕКТРИЗАЦИИ ТЕЛ

В настоящее время основным источником электричества в учебных экспериментах по электростатике остаётся эбонитовая палочка, натираемая мехом. Нам могут возразить, что ничего подобного, промышленность давно выпускает электрофорные машины и высоковольтные источники питания, которые с успехом используются для изучения электростатических явлений.

Однако упомянутые источники не удовлетворяют основополагающему требованию дидактики физики: их принцип действия даже в общих чертах непонятен учащимся. Игнорирование этого требования вынуждает учащихся принимать физические знания на веру, лишает их возможности самостоятельной познавательной деятельности, ведёт к догматизму в преподавании и в конечном итоге снижает интерес школьников к физике.

Поэтому естественно начать с рассмотрения хорошо известных из школьного курса явлений электризации. Дидактическое исследование этих явлений позволит отработать технику постановки традиционных демонстрационных опытов, сравнить различные способы электризации тел, получить новые источники электричества для учебных экспериментов, организовать познавательную деятельность школьников. Содержание этой и последующих лекций в максимальной степени соответствует школьному курсу физики, поэтому учитель без особых трудностей сможет использовать его в своей повседневной урочной и внеурочной работе.

1.1. Явление электризации тел. Эбонитовой палочкой прикоснёмся к маленьким кусочкам бумаги, лежащим на столе, и поднимем палочку – бумажные кусочки останутся лежать на столе. Это свидетельствует о том, что сила гравитационного взаимодействия между бумажными кусочками и палочкой недостаточна для притяжения их к палочке.

Потрём эбонитовую палочку о мех (или шёлк) и поднесём её к тем же кусочкам бумаги – они подскочат и прилипнут к палочке, а спустя некоторое время, отскочат от неё.

Значит, в результате соприкосновения и трения о мех (или шёлк) эбонитовая палочка приобрела новое качество, выражающееся, в частности, в том, что она стала способной притягивать к себе лёгкие тела с силой, значительно превышающей силу гравитационного притяжения. Тела, соприкоснувшиеся с потёртой о мех эбонитовой палочкой, приобретают способность притягиваться и отталкиваться от неё. Наблюдаемые явления и есть электризация тел. При электризации тела приобретают электрический заряд.

Если поднести потёртую о мех палочку к щеке, возникнет ощущение прикосновения к лёгкой паутине. Прикоснувшись в темноте к натёртой мехом эбонитовой палочке, мы увидим слабую искру и услышим лёгкий треск. Всё это проявления электризации тел.

1.2. Любые тела взаимодействуют с наэлектризованными телами и сами электризуются.

Наэлектризуем эбонитовую палочку, например, трением о мех, и поднесём её к уравновешенному на острой опоре деревянному стержню – стержень повернётся и притянется к палочке. После соприкосновения с наэлектризованной палочкой стержень оттолкнётся от неё.

В стенке пластмассового сосуда закрепим сопло с тонким отверстием и нальём в сосуд воду. Поднесём к вытекающей из сопла струе наэлектризованную эбонитовую палочку и обнаружим, что струя и капли воды притягиваются к палочке и отталкиваются друг от друга.

В стеклянный сосуд с трубкой в днище, насыпем немного медных стружек, зальём их азотной кислотой и закроем крышку сосуда. Из отверстия будет выходить бурая струя оксида азота NO2. Поднесём к ней наэлектризованную палочку и обнаружим, что газовая струя притягивается к палочке.

Эта серия опытов доказывает, что газы, жидкости и твёрдые тела взаимодействуют с наэлектризованными телами и сами электризуются.

1.3. Проводники и изоляторы.

Наэлектризуем эбонитовую палочку и прикоснёмся ею к одному концу эбонитового стержня, другой конец которого находится возле легкоподвижных тел, например, кусочков бумаги. Обнаруживаем, что притяжение этих тел к эбонитовому стержню отсутствует. Значит, эбонит не передаёт электрический заряд, т.е. не проводит электричество. Подобные вещества называют диэлектриками или изоляторами.

К металлическому стержню прикрепим эбонитовую ручку, которая не проводит электричество и за которую можно держать стержень. Приблизим конец металлического стержня к легкоподвижным телам, а к другому концу прикоснёмся наэлектризованной эбонитовой палочкой – лёгкие тела притянутся к концу стержня. Значит, металлы проводят электричество, т.е. являются проводниками.

1.4. Электроскоп – прибор, позволяющий обнаружить даже слабую электризацию тел.

Внутрь прозрачного сосуда из хорошего изолятора введём металлический стержень, на верхнем конце которого закреплён небольшой шарик, а на нижнем – тонкие лёгкие лепестки из проводника. Поднесём к шарику наэлектризованное тело и обнаружим, что лепестки расходятся, свидетельствуя о наличии электричества. Поэтому прибор называют электроскопом. Электроскоп, снабжённый шкалой, позволяет судить о степени электризации тел, поэтому называется электрометром.

1.5. Два вида электричества.

Подготовим три одинаковые эбонитовые палочки. Палочку 1 подвесим на нити так, чтобы она могла легко поворачиваться, и потрём о мех. Палочку 2 потрём также о мех, а палочку 3 – о шёлк. Приближая две другие палочки к первой, обнаружим, что подвешенная палочка 1 отталкивается от палочки 2 и притягивается к палочке 3. Но палочка 2 наэлектризована так же, как палочка 1, а палочка 3 наэлектризована не мехом, а шёлком.

Читайте также:  Таблица для проверки зрения оригинальный размер распечатать

Отсюда следует, что существует электричество двух видов, причём одноимённо наэлектризованные тела отталкиваются, а разноимённо наэлектризованные – притягиваются.

К висящей на нити наэлектризованной эбонитовой палочке 1 прикоснёмся палочкой 2, наэлектризованной одноимённо, – отталкивание между палочками не уменьшится. Сколько бы мы ни приводили в соприкосновение одноимённо заряженные палочки, они всё равно будут отталкиваться.

Если к висящей наэлектризованной палочке 1 прикасаться палочкой 3, наэлектризованной разноимённо с ней, то после каждого касания притяжение будет уменьшаться, пока не исчезнет совсем. Из опыта следует, что разноимённые электричества способны нейтрализовать друг друга, поэтому одно из них называют положительным, а другое – отрицательным. Для определённости принято считать, что трением о шёлк эбонитовая палочка электризуется положительно, а трением о мех – отрицательно.

1.6. Модели физической теории электричества. В чём физическая сущность явления электризации тел? Чем объясняется это явление? Почему при трении двух разных тел друг о друга происходит электризация?

Ответ на этот вопрос можно получить только в рамках теоретической модели. На заре изучения электричества одна из таких моделей была предложена американским учёным Б.Франклином. Он полагал, что электричество представляет собой особую жидкость. Пользуясь этой моделью, удалось объяснить целый ряд явлений, но ещё больше явлений не укладывались в её рамки.

В настоящее время физики придерживаются совершенно другой модели. В основе её надёжно установленный экспериментально факт: вещество состоит из нейтральных атомов, сами атомы состоят из заряженных частиц, все существующие электрические заряды кратны наименьшему, или элементарному, заряду. Положительный элементарный заряд несёт элементарная частица протон – ядро атома водорода. Равным ему по модулю отрицательным зарядом обладает другая элементарная частица – электрон.

В состав атома входят элементарные частицы трёх сортов: нейтральные нейтроны, положительно заряженные протоны и отрицательно заряженные электроны. Заряды электронов и протонов по модулю равны, но противоположны по знаку. Масса нейтрона и масса протона почти одинаковы и примерно в 1836 раз больше массы электрона. Протоны и нейтроны образуют ядро, в котором сосредоточена почти вся масса атома. Ядро атома стабильно благодаря полю ядерных сил, которое действует между его частицами и удерживает одноимённо заряженные протоны от разлёта. В целом атом пуст, т.к. радиус ядра примерно в 10 000 раз меньше радиуса атома. Но в объёме движутся отрицательно заряженные электроны. Их ровно столько, сколько протонов в ядре, поэтому суммарный отрицательный заряд электронов компенсирует положительный заряд ядра, и атом в целом нейтрален.

На рисунке в качестве примера схематически изображены стакан с жизненно важным для нас веществом – водой; молекула воды H2O; атомы водорода Н и кислорода О, из которых состоит молекула воды; электроны e и ядра, из которых состоят атомы; протоны p и нейтроны n, из которых состоят ядра.

Чтобы построить и обосновать эту модель, многим поколениям учёных потребовалось почти триста лет напряжённой работы. Учащиеся должны не только понять и запомнить добытое ими знание, но, главным образом, усвоить метод, каким оно получено. Поэтому основной задачей учителя является теоретическое и экспериментальное обоснование справедливости кратко представленной здесь модели. Иными словами, вы должны уметь доказать каждое её положение или следствие. Например, положение, что в состав атома действительно входят электроны или что электроны несут на себе элементарный заряд, меньше которого не существует, и т.д.

Конечно, можно было бы начать с модели Франклина и повторить весь путь, пройденный физической наукой. Но это долгий и нелёгкий путь, который ведёт в никуда. Школьникам нужно двигаться вперёд, чтобы как можно быстрее оказаться на уровне современной физики. Вот почему необходимо сразу начать с современной теоретической модели. Её нельзя просто выучить, т.к. школьник не сможет понять, каким образом она была получена, а значит, не будет способен строить новые модели, в которых нуждаются вновь открытые явления. Именно поэтому основная цель изучения электрических явлений – обоснование этой теоретической модели. Такое обоснование в физике может быть только экспериментальным. Выполняя эксперименты, необходимо понимать и описывать их результаты, а для этого, конечно, нужен особый физический язык. Но его может дать только теоретическая модель. Если отказаться от современной теоретической модели при изучении явлений электродинамики, то результаты экспериментов придётся описывать на языках устаревших моделей. Это нас никоим образом не устраивает, значит, без современной теоретической модели строения вещества нам никак не обойтись.

Итак, единство теории и эксперимента – вот залог успеха в овладении физическим знанием и в усвоении метода, которым оно было получено.

1.7. Электризация соприкосновением. В рамках изложенной модели электризация трением или соприкосновением может быть объяснена следующим образом. Все вещества состоят из атомов и молекул. Отрицательные заряды электронов в точности компенсируют положительные заряды ядер атомов. Поэтому в целом вещество нейтрально, т.е. имеет суммарный электрический заряд, равный нулю.

Однако степень связи электронов в атомах разных веществ различна. При соприкосновении тел часть электронов, слабо связанных с атомами вещества одного тела, переходит к атомам другого. При этом первое тело приобретает избыточный положительный, а второе – избыточный отрицательный заряд. Трение при электризации просто увеличивает число соприкасающихся участков различных тел.

1.8. Электризация через влияние (электростатическая индукция).

К продолговатому проводнику с закруглёнными концами вблизи концов и в его центре подвесим три одинаковые пары лёгких проводящих лепестков. К одному из концов проводника поднесём заряженное тело. При этом обнаружим, что лепестки на концах проводника разошлись, а в центре остались вместе. Уберём заряженное тело – все лепестки опять опадут. Итак, при поднесении заряженного тела проводник в целом остаётся нейтральным, но на его концах возникают заряды.

Одновременно с заряженным телом поднесём поочерёдно на нити к концам проводника пробный заряд того же знака, какой имеет заряженное тело. Обнаружим, что от дальнего конца проводника он отталкивается, а к ближнему – притягивается. Значит, расположенный вблизи заряженного тела проводник, оставаясь нейтральным, на ближайшем к телу конце приобретает заряд противоположного, а на удалённом конце – одноимённого с зарядом тела знака.

1.9. Наличие в проводнике сводных носителей заряда.

Шары одинаковых электрометров соединим металлическим стержнем, снабжённым ручкой из диэлектрика. К одному из шаров, например, левому, поднесём заряженную эбонитовую палочку. При этом стрелки электрометров отклонятся. Шары разомкнём и затем уберём заряженное тело. Стрелки обоих электрометров останутся отклонёнными на равные углы. Если эбонитовой палочкой коснуться левого электрометра, его показания уменьшатся, следовательно, он заряжен положительно. Если той же палочкой коснуться правого электрометра, его показания увеличатся, значит, он заряжен отрицательно.

Таким образом, под действием внешнего электрического заряда в нейтральном проводнике произошло разделение зарядов. Отсюда следует, что в проводнике имеются свободные носители заряда. Так как после отделения проводника обе части оказались заряженными противоположно, то, видимо, в проводнике произошло перераспределение свободных заряженных частиц.

1.10. Электризация давлением. Кроме рассмотренных способов электризации существует ещё один доступный способ получения электричества – электризация давлением, или пьезоэлектрический эффект (от гр. – давлю). Суть этого явления заключается в том, что при деформации некоторых кристаллов на их противоположных гранях появляются электрические заряды противоположных знаков. Если деформация прекращается, заряды на гранях исчезают.

На рисунке схематически изображена ячейка кристалла кварца SiO2: положительно заряженные ионы кремния вместе с отрицательно заряженными ионами кислорода образуют симметричный шестигранник.

В силу симметрии расположения одинаковых по модулю зарядов ячейка в целом электрически нейтральна. Кристалл находится между параллельными проводящими пластинами (электродами) – проводниками, соединёнными с проводящими шариками (полюсами источника). В настоящее время вместо кварца используют более доступные и эффективные пьезоэлектрические материалы. В частности, в пьезоэлектрических зажигалках применяется пьезокерамика, полученная спеканием мелких пьезокристаллов, выращенных искусственно.

На рисунке показано, как модернизированная пьезоэлектрическая зажигалка может быть использована в качестве источника электричества в демонстрационных опытах.

Исследование 1.1. Учебный эксперимент для урока физики

Задание. Детально разработайте технику постановки на уроках физики демонстрационных вариантов описанных выше опытов, показывающих существование явления электризации, электризацию твёрдых, жидких и газообразных тел, существование проводников и изоляторов, двух видов электричества, наличие в проводниках свободных носителей заряда.

Оцените время, необходимое для демонстрации экспериментов, усвоения учащимися их условий и анализа полученных результатов. Разработайте оптимальную методику изучения физических явлений, обеспечивающую формирование понятия «электрический заряд».

Исследование 1.2. Электризация соприкосновением

Информация. В школьных опытах по электростатике для получения небольшого отрицательного заряда эбонитовую палочку натирают мехом, а для получения положительного заряда стеклянную палочку натирают шёлком.

Проблема. Неужели и в наши дни эбонит и мех, стекло и шёлк – это наилучшие материалы для взаимной электризации соприкосновением или трением? Можно ли в учебном эксперименте доказать, что электризация тел действительно происходит в соответствии с изложенной теорией?

Задание. Исследуйте окружающие вас естественные и искусственные вещества, стараясь найти более совершенные источники электричества. Определите знаки возникающих при электризации соприкосновением зарядов.

Вариант выполнения. Пенопласт и прозрачные полимерные плёнки (полиэтилен, целлофан) даже в условиях повышенной влажности хорошо электризуются шерстью. В опытах удобно использовать, например, пенопластовую пластину, вырезанную из упаковки от бытовой техники, и шерстяную варежку. При натирании шерстью пенопласт приобретает отрицательный заряд, в чём нетрудно убедиться, имея мех и эбонитовую палочку. Способ определения знака заряда показан на рисунке (1 и 2 – электрометры с положительным и отрицательным зарядами, 3 – наэлектризованная шерстью пластина пенопласта).

Исследование 1.3. Жидкие и газообразные проводники

Задание. Докажите, что некоторые жидкости и газы являются хорошими проводниками.

Вариант выполнения. Зарядите электроскоп и прикоснитесь к его шарику белой ниткой – листочки не опадают. Теперь смочите нитку водой и вновь прикоснитесь к электроскопу. Объясните наблюдаемое явление.

Из полиэтиленовой плёнки вырежьте полоску размером 2 20 см. Сложите полоску пополам, место сгиба держите в левой руке, а пальцами правой сожмите лепестки полоски и проведите сверху вниз. Вы обнаружите, что висевшие рядом лепестки полоски разойдутся, оттолкнувшись друг от друга. Значит, в результате трения произошла электризация полиэтиленовых лепестков, и они приобрели одноимённые заряды. Так как лепестки не опадают, одноимённые заряды на них сохраняются, т.е. воздух не проводит электричество.

На расстоянии 20–30 см от заряженных полиэтиленовых лепестков зажгите пламя газовой зажигалки. Лепестки немедленно опадут. Значит, воздух стал проводить электричество. Это объясняется тем, что в пламени при высокой температуре появляются свободные носители заряда: отрицательные электроны и положительные ионы. Именно они делают воздух проводником.

Исследование 1.4. Индикатор движения электрических зарядов

Информация. Предыдущее исследование показало, что при определённых условиях сухой воздух становится проводником электричества. Известно, что электрические заряды могут перемещаться и сквозь разреженные газы. Промышленность выпускает так называемые неоновые лампы – стеклянные баллоны с двумя электродами, заполненные неоном при низком давлении. Если неоновую лампу через постоянный резистор подключить к регулируемому источнику, то при небольших напряжениях ток через неё не пойдёт. По достижении так называемого напряжения зажигания газ в лампе начинает светиться, причём свечение происходит возле катода. По мере увеличения напряжения увеличивается площадь катода, которая светится. Если убрать балластный резистор, в лампе возникнет дуговой разряд, и она прекратит своё существование.

Проблема. Нельзя ли использовать неоновую лампу в опытах по электризации тел?

Задание. Докажите, что неоновая лампа может выполнять функцию индикатора движения электрических зарядов, т.е. индикатора электрического тока.

Вариант выполнения. Для решения проблемы в принципе подойдёт любая неоновая лампа, но мы предпочитаем лампу типа ВМН-02. Это стеклянный цилиндр диаметром 5 мм и длиной 40 мм, заполненный неоном при низком давлении и снабжённый двумя электродами в виде изогнутых стержней. Электроды изнутри соединены с металлическими колпачками, которые расположены снаружи на концах цилиндра и представляют собой выводы лампы.

Наэлектризуйте трением эбонитовую палочку и, взяв неоновую лампу за один вывод, другим прикоснитесь к поверхности палочки – вы увидите кратковременную вспышку света. Прикоснитесь неоновой лампой к эбонитовой палочке в другом месте, и вы вновь увидите вспышку. Из опыта следует, что наэлектризованное тело вызывает свечение неона. Но почему оно происходит?

Зарядите шар электрометра и прикоснитесь к нему одним выводом неоновой лампы, держа другой в руке. При этом произойдёт довольно яркая вспышка лампы, и электрометр потеряет заряд. Из опыта следует, что свечение неона происходит тогда, когда через него проходит электрический заряд. Таким образом, неоновая лампа может служить индикатором движения заряда. Чтобы окончательно убедиться в этом, держите неоновую лампу в руке за один вывод, а к другому медленно приближайте наэлектризованную палочку. Никакого свечения при этом не происходит. Теперь быстро переместите заряженную палочку вблизи вывода неоновой лампы, не касаясь её, – вы увидите свечение газа.

Исследование 1.5. Электрофор

На рисунке показана последовательность действий, приводящая к электризации через влияние металлического шара, установленного на электрометре. Эта последовательность знакома любому учителю, проводящему демонстрационные опыты по электростатике. Но далеко не всегда внимание учащихся обращают на тот факт, что при электризации через влияние заряд наэлектризованного тела не расходуется.

Проблема. Рассмотренные опыты по электростатической индукции показывают, что однажды наэлектризованное тело в состоянии обеспечить многократную электризацию других тел. Нельзя ли использовать это явление для создания простого и надёжного источника электричества?

Задание. Используя современные материалы, доступные любому школьнику, сконструируйте простой прибор, обеспечивающий многократную электризацию, например, металлической пластины.

На сухой пластиковый стакан положите металлический диск, например, алюминиевую крышку. Шерстяной рукавицей наэлектризуйте целлофановую плёнку. Наложите плёнку на диск и поднесите к его краю согнутый палец – проскочит искра. Снимите плёнку с диска и вновь поднесите к нему палец – снова проскочит искра. Наэлектризовав плёнку один раз, опыт можно повторять многократно.

Читайте также:  Какую точку зрения физиков или химиков вы разделяете по вопросу ее природы

Результат эксперимента объясняется тем, что при наложении на металлическую пластину наэлектризованной полимерной плёнки в пластине происходит перераспределение зарядов. На ближайшей к плёнке поверхности пластины появляется заряд противоположного знака, а на удалённой от плёнки поверхности пластины появляется заряд того же знака, которым наэлектризована плёнка. Прикоснувшись к пластине пальцем, отводим этот заряд того же знака, что и заряд плёнки, на землю. Сняв полимерную плёнку с металлической пластины, на пластине оставляем заряд противоположного знака, чем тот, который несёт наэлектризованная плёнка.

Если прикоснуться непосредственно к поверхности наэлектризованной плёнки, то появится слабая искра или её вообще не будет. Это объясняется тем, что плёнка из диэлектрика несёт связанные заряды, которые не могут свободно перемещаться по ней. В проводящей наэлектризованной пластине находится свободный заряд, который в принципе можно полностью передать другому телу.

Рассмотренный прибор является современной версией старинного прибора под названием электрофор.

Если же замкнуть полюсы проводником или продолжить сжатие кристалла до тех пор, пока между полюсами источника не проскочит искра, то система уже не сможет вернуться в исходное состояние. Дело в том, что при разряде источника заряды на полюсах нейтрализуют друг друга. Снятие деформации приводит к тому, что кристалл вновь становится нейтральным, а оставшиеся на пластинах заряды переходят на полюсы, но их полярность изменяется на противоположную: теперь положительным станет верхний полюс, а отрицательным – нижний.

Таким образом, при работе с пьезоэлектрическим источником электричества нужно помнить, что если давление вызывает появление на полюсах источника зарядов определённой полярности, то снятие давления приводит к исчезновению этих зарядов. Однако если давление продолжается до тех пор, пока не произойдёт разряд или кратковременное соединение электродов проводником, то снятие давления приведёт к смене полярности источника.

Вопросы и задания для самоконтроля

1. В чём физическая сущность явления электризации тел?

2. Почему твёрдые, жидкие и газообразные тела электризуются?

3. Как доказать, что существуют проводники и изоляторы, не вводя понятия электрического тока?

4. В чём суть экспериментального доказательства существования двух видов электричества?

5. Нужна ли учащимся на начальном этапе изучения электростатики современная теоретическая модель строения вещества?

6. Почему при соприкосновении тел происходит их взаимная электризация? Покажите, что общепринятое в учебной литературе теоретическое объяснение электризации тел соприкосновением небезупречно как с физической, так и с дидактической точек зрения.

7. В чём суть явления электростатической индукции?

8. Как доказать, что в проводнике действительно имеются свободные носители заряда?

Майер В.В. Пьезоэлектрический источник для опытов по электростатике. – Физика в школе, 1994, № 6.

Майер В.В., Майер Р.В. Наблюдение электростатической индукции. – Квант, 1987, № 12.

Майер В.В. Электризация давлением в школьном курсе физики. – Учебная физика, 2004, № 1.

Мэрион Дж.Б. Физика и физический мир. – М.: Мир, 1975.

Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика: Электродинамика. 10–11 кл.: Учеб. для углублённого изучения физики. – М.: Дрофа, 2002.

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учеб. для 10 кл. общеобразоват. учреждений. – М.: Просвещение, 2004.

Орир Дж. Популярная физика. – М.: Мир, 1969.

Проказов А.В. Пенопласт в опытах по электростатике. – Учебная физика, 2001, № 3.

Презентация на тему: Физика «Электростатика»

Урок повторения по теме: Электорстатика (Закон Кулона. Напряженность электрического поля ) Учитель: Поленова Т.Г. 900igr.net

Тип урока: Урок повторения, оценки и коррекции знаний и способов деятельности. Цель урока: Обеспечить повторение знаний и способов деятельности учащихся на уровне применения их в разнообразных ситуациях Задачи: Образовательная Воспитательная Развивающая Обеспечить повторение опорных элементов теории, знание которых необходимо для решения задач этого раздела, алгоритмов, используемых при решении задач. Воспитание внимания, ответственности и самостоятельности при выполнении заданий. Развитие логического мышления, формирование творческих способностей учащихся.

Структура урока: Организационный этап. Проверка домашнего задания, направленного на повторение основных понятий, умозаключений, основополагающих знаний, умений, способов деятельности. Актуализация знаний, постановка цели урока. Организация деятельности учащихся по применению знаний в стандартных и измененных ситуациях. Самостоятельное применение знаний. Контроль, самоконтроль. Коррекция Информация о домашнем задании Рефлексия

Какие взаимодействия называются электромагнитными? Это взаимодействия между заряженными телами

Что такое электрический заряд? Физическая величина, характеризующая свойство тел или частиц вступать в электромагнитные взаимодействия и определяющая значения сил и энергий при таких взаимодействиях.

Заряды каких знаков находятся на изображении? + —

Как взаимодействуют одноименные и разноименные элементарные заряды? Одноименные заряды отталкиваются, разноименные — притягиваются.

Какой заряд называется элементарным? Каково его значение? Наименьшими устойчивыми частицами, которые обладают отрицательным (положительным) электрическим зарядом, являются электроны (протоны). Заряды электрона и протона по абсолютному значению равны 1,6*10-19 Кл. Этот заряд называют элементарным зарядом (обозначается е).

Электризация — это нарушение электрической нейтральности тела для электризации тела необходимо, чтобы на нем был создан избыток или недостаток электронов или ионов одного знака. С точки зрения электронной теории: небольшая часть электронов переходит с одного вещества, у которого связь электронов с телом относительно слаба, на другое. В чем состоит явление электризации, объясните это явление с точки зрения электронной теории?

Когда тело является электрически нейтральным, а когда заряженным? Нейтральным, когда сумма положительных и отрицательных элементарных частиц равна нулю, а заряженным — не равна нулю.

Произойдет ли электризация двух тел, состоящих из совершенно одинакового вещества, при их соприкосновении? Нет, так как связи внутри одинаковых веществ одинаковые.

Сформулируйте закон сохранения электрического заряда. В замкнутой системе алгебраическая сумма электрических зарядов сохраняется постоянной.

Как формулируют и записывают закон Кулона для взаимодействия зарядов в вакууме? Сила взаимодействия двух точечных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними F1,2 r F2,1

Какая величина характеризует влияние среды на силу взаимодействия между зарядами? Чему она равна? ε – относительная диэлектрическая проницаемость среды. о = 8,85 ∙10-12 Ф/м

Чему равен коэффициент пропорциональности в законе Кулона в системе СИ? В СИ k=9 109 Н м2/Кл2

Установите единицу электрического заряда в СИ, сформулируйте ее определение. Кулон – электрический заряд, проходящий через поперечное сечение проводника за 1 секунду при силе тока в 1 Ампер.

Можно ли электрический заряд делить бесконечно? Нет, так как любой заряд состоит из N элементарных зарядов. q=N*e

Что такое электрическое поле? Электрическое поле — особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Назовите основные свойства электрического поля. Действие на другие электрические заряды независимо от того, движутся они или нет

Какое поле называют электростатическим? Электрическое поле неподвижных в данной системе отсчета электрически заряженных частиц или тел называется электростатическим.

Что называется напряженностью электрического поля? Какая формула выражает суть этого понятия? Напряженность электрического поля – силовая характеристика поля, физическая величина, равная отношению силы, действующей на помещенный в данную точку точечный электрический заряд, к этому заряду

Чему равна напряженность поля точечного заряда?

Что называют линиями напряженности электрического поля? Линиями напряженности электрического поля называются непрерывные воображаемые линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности в этой точке электрического поля. Е1 Е3 Е2

Какое электрическое поле называют однородным? Электрическое поле называется однородным, если вектор его напряженности одинаков во всех точках поля.

Какое направление имеет вектор напряженности электрического поля? Направление вектора напряженности электрического поля совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.

В чем заключается принцип суперпозиции полей? Вектор напряженности поля, создаваемого системой зарядов, равен векторной сумме напряженностей полей каждого из зарядов в отдельности.

Решение ключевых задач:

Задачи Два заряда 9q и –q закреплены на расстоянии l = 50 см друг от друга. Третий заряд q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда q1, при котором он будет находиться в равновесии.

Задача № 1 Два заряда 9q и –q закреплены на расстоянии l = 50 см друг от друга. Третий заряд q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда q1, при котором он будет находиться в равновесии. Решение:

(1) Выражая в равенстве (1) F1 и F2 в соответствии с законом Кулона, получим . (2) Сокращая на qq1 и извлекая из обеих частей равенства (2) квадратный корень, найдем l+x=±3x, откуда и Корень x2 не удовлетворяет физическому условию задачи (в этой точке силы F1 и F2 хотя и равны по модулю, но направлены в одну сторону).

Задачи Два шарика одинакового объема, обладающие массой m=0,6·10-3г каждый, подвешены на шелковых нитях длиной l=0,4 м так, что их поверхности соприкасаются. Угол, на который разошлись ни ти при сообщении шарикам одинаковых зарядов, равен . Найти величину зарядов q и силу электрического отталкивания Fэ. Три одинаковых положительных заряда q1=q2=q3=1нКл расположены по вершинам равностороннего треугольника. Какой отрицательный заряд q4, нужно поместить в центре треугольника, чтобы сила притяжений с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах?

Задача № 2 Два шарика одинакового объема, обладающие массой m=0,6·10-3г каждый, подвешены на шелковых нитях длиной l=0,4 м так, что их поверхности соприкасаются. Угол, на который разошлись нити при сообщении шарикам одинаковых зарядов, равен . Найти величину зарядов q и силу электрического отталкивания Fэ. Решение: (1) (2) По закону Кулона Решая систему уравнений (1), относительно q, с учетом выражения (2), получим: Произведя вычисления по формуле 3, а затем по формуле 2 получим: (3)

Задача № 3 Три одинаковых положительных заряда q1=q2=q3=1нКл расположены по вершинам равностороннего треугольника. Какой отрицательный заряд q4, нужно поместить в центре треугольника, чтобы сила притяжений с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах? Решение: Заряд q1 будет находиться в равновесии, если векторная сумма сил, действующих на него со стороны зарядов q2, q3 и q4, равна нулю: (1) В проекциях на оси: (2)

Из геометрических построений в равностороннем треугольнике следует, что Учитывая, что F2=F3 и α=600, из выражения (2) получим: . Применяя закон Кулона и учитывая выражение (3), из формулы (4) получаем : (3) (4) Следовательно, и Подставив сюда значение q2, получим q4= 0,3(3) нКл.

Объяснение электризации

В § 8-а мы рассмотрели строение атома (положительно заряженное ядро и электронные оболочки) и строение металлов (положительно заряженные ионы и электронный газ). Это позволит нам объяснить явление электризации. Сделаем это.

При трении тел друг о друга «трутся» именно электронные оболочки атомов, из которых тела состоят. А так как электроны слабо связаны с ядрами атомов, то электроны могут отделяться от «своих» атомов и переходить на другое тело. В результате на нём возникает избыток электронов (отрицательный заряд), а на первом теле – недостаток электронов (положительный заряд).

Итак, электризация трением объясняется переходом части электронов от одного тела к другому, в результате чего тела заряжаются разноимённо. Поэтому тела, наэлектризованные трением друг о друга, всегда притягиваются (см. § 8-б). Но, кроме электризации трением, существует электризация индукцией (лат. «индукцио» – наведение). Рассмотрим её на опыте:

В начале опыта имеются два металлических шара, которые касаются друг друга (а). К одному из них подносят, не касаясь его, заряженную стеклянную палочку (б), после чего второй шар отодвигают (в). Теперь палочку можно убрать, – шары будут разноимённо заряжены (г).

Объясним этот опыт с точки зрения электронно-ионной теории.

Сначала металлические шары не были заряжены. Это значит, что электронный газ присутствовал в шарах в равных количествах (а). Поскольку палочка стеклянная, мы считаем её заряд положительным (см. § 8-б). Она притягивает отрицательно заряженные частицы – электроны. В результате электронный газ «перетекает» в левую часть левого шара, и в этом месте образуется избыток отрицательного заряда (б).

Все положительные ионы металла прочно связаны друг с другом (они и есть металл), поэтому никуда не «перетекают». Значит, во всех остальных частях шаров возникает недостаток электронов, то есть положительный заряд. И если в этот момент, не убирая палочку, раздвинуть шары (в) и лишь затем убрать её, шары останутся разноимённо заряженными (г).

Итак, электризация индукцией объясняется перераспределением электронного газа между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноимённо. Однако возникает вопрос: все ли тела поддаются электризации индукцией? Можно проделать опыты и убедиться, что пластмассовые, деревянные или резиновые шары можно легко наэлектризовать трением, но невозможно индукцией. Объясним это.

Электроны в резине, древесине и во всех пластмассах не являются свободными, то есть не образуют электронного газа, который может перетекать в другие тела. Поэтому для электризации тел из этих веществ необходимо прибегнуть к их трению, способствующему отделению электронов от «своих» атомов и переходу на другое тело.

Итак, по электрическим свойствам все вещества можно разделить на две группы. Диэлектрики – вещества, не имеющие свободных заряженных частиц и потому не проводящие заряд от одного тела к другому. Проводники вещества со свободными заряженными частицами, которые могут перемещаться, перенося заряд в другие части тела или к другим телам. Это иллюстрирует рисунок с электроскопами, пластмассовой линейкой и металлической проволокой (см. выше).

Читайте также:  После измерения глазного давления портится зрение

Объяснение электрических явлений (Гребенюк Ю.В.)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Рис. 1. Уильям Гильберт (1544–1603)

Однако объяснить эти явления ученые смогли только спустя несколько веков. После открытия электрона физики выяснили, что часть электронов может сравнительно легко отрываться от атома, превращая его в положительно или отрицательно заряженный ион (рис. 2). Каким же способом могут электризоваться тела? Рассмотрим эти способы.

Рис. 2. Положительно и отрицательно заряженный ион

Электризация трением

С электризацией трением мы встречались, когда электризовали эбонитовую палочку кусочком шерсти. Возьмем эбонитовую палочку и потрем ее шерстяной тканью – в этом случае палочка приобретет отрицательный заряд. Выясним, что вызвало возникновение этого заряда. Оказывается, что в случае тесного контакта двух тел, изготовленных из разных материалов, часть электронов переходит из одного тела на другое (рис. 3).

Рис. 3. Переход части электронов с одного тела на другое

Расстояние, на которое при этом перемещаются электроны, не превышает межатомных расстояний. Если тела после контакта разъединить, то они окажутся заряженными: тело, отдавшее часть своих электронов, будет заряжено положительно (шерсть), а тело, получившее их, – отрицательно (эбонитовая палочка). Шерсть удерживает электроны слабее, чем эбонит, поэтому при контакте электроны в основном переходят с шерстяной ткани на эбонитовую палочку, а не наоборот.

Аналогичного результата можно добиться, если расчесывать сухие волосы расческой. Отметим, что общепринятое название «электризация трением» не совсем корректная, правильно говорить «электризация прикосновением», ведь трение необходимо только для того, чтобы увеличить количество участков тесного контакта при соприкосновении тел.

Если до начала опыта шерстяная ткань и эбонитовая палочка не были заряженными, то после проведения опыта они приобретут некоторый заряд, причем их заряд будет равен по модулю, но противоположен по знаку. Это означает, что до и после проведения опыта суммарный заряд палочки и ткани будет равен 0 (рис. 4).

Рис. 4. Суммарный заряд палочки и ткани до и после проведения опыта равен нулю

В результате проведения многих опытов физики установили, что при электризации происходит не создание новых зарядов, а их перераспределение. Таким образом, выполняется закон сохранения заряда.

Закон сохранения электрического заряда

Закон сохранения электрического заряда: полный заряд замкнутой системы тел или частиц остается неизменным при любых взаимодействиях, происходящих в этой системе (рис. 5):

,

где – заряды тел или частиц, образующих замкнутую систему (n – количество таких тел или частиц).

Рис. 5. Закон сохранения электрического заряда

Под замкнутой системой подразумевают такую систему тел или частиц, которые взаимодействуют только друг с другом, то есть не взаимодействуют с другими телами и частицами.

Решение различных задач

Рассмотрим примеры решения нескольких важных задач, связанных с различными электрическими явлениями.

Задача 1. Два одинаковых проводящих заряженных шарика соприкоснулись и сразу же разошлись. Вычислите заряд каждого шарика после соприкосновения, если до него заряд первого шарика был равен Решение данной задачи основывается на законе сохранения электрического заряда: сумма зарядов шариков до и после соприкосновения не может измениться (так как в данном случае они образуют замкнутую систему). Кроме того, поскольку шарики одинаковые, то перетекание заряда с одного шарика на другой будет происходить до тех пор, пока их заряды не уравняются (в качестве аналогии можно рассмотреть тепловой баланс в системе из двух одинаковых тел с разными температурами, который установится только тогда, когда уравняются температуры тел). Значит, после соприкосновения заряд каждого из шариков станет равным

Рис. 6. Заряды после соприкосновения шариков

Задача 2. Два заряженных шарика подвешены на шелковых нитях. К ним подносят положительно заряженный лист оргстекла, и угол между нитями увеличивается. Каков знак зарядов шариков? Ответ обоснуйте.

До поднесения оргстекла силы, действующие на каждый из шариков, уравновешены (сила тяжести, сила натяжения нити и сила электрического взаимодействия шариков) (рис. 7). Мы видим, что при поднесении положительно заряженного оргстекла шарики «поднимаются» относительно первоначального положения. Значит, возникла сила, которая направлена вверх. Это, конечно же, сила электрического взаимодействия шарика и пластинки. Значит, шарик и пластинка отталкиваются (в противном случае сила их взаимодействия «тянула» бы шарик вниз). Из этого можно сделать вывод, что шарики заряжены так же по знаку, как и пластинка, то есть положительно (рис. 8).

Рис. 7. Силы, действующие на шарики до поднесения оргстекла

Рис. 8. Движение шариков вверх

Задача 3. Как передать электроскопу заряд, который в несколько раз больше, чем заряд наэлектризованной стеклянной палочки? У вас, кроме заряженной палочки и электроскопа, есть небольшой металлический шарик на изолирующей ручке.

Будем использовать электризацию через влияние. Поднесем шарик к палочке (не касаясь) и, дотронувшись до шарика пальцем, зарядим его. После этого поднесем шарик к шару электроскопа и коснемся его с внутренней стороны. Заряд распределится по поверхности шара электроскопа. Повторяя операцию много раз, мы можем сообщить электроскопу достаточно большой заряд.

В этом можно убедиться с помощью наглядной демонстрации (рис. 9).

Рис. 9. Сообщение электроскопу большого заряда многократной передачей

Заземление. Проводники и диэлектрики

Если взять металлический стержень и, удерживая его в руке, попробовать наэлектризовать, окажется, что это невозможно. Дело в том, что металлы – это вещества, имеющие множество так называемых свободных электронов (рис. 10), которые легко перемещаются по всему объему металла.

Рис. 10. Металлы – это вещества, имеющие множество свободных электронов

Подобные вещества принято называть проводниками. Попытка наэлектризовать металлический стержень, удерживая его в руке, приведет к тому, что избыточные электроны очень быстро убегут со стержня, и он останется незаряженным. «Дорогой для бегства» электронов служит сам исследователь, поскольку тело человека – это проводник. Именно поэтому опыты с электричеством могут быть опасными для их участников!

Рис. 11. «Дорога для бегства» электронов

Обычно «конечный пункт» для электронов – земля, которая тоже является проводником. Ее размеры огромны, поэтому любое заряженное тело, если его соединить проводником с землей, спустя некоторое время станет практически электронейтральным (незаряженным): тела, заряженные положительно, получат от земли некоторое количество электронов, а с тел, заряженных отрицательно, избыточное количество электронов уйдет в землю (см. рис. 12).

Рис. 12. Земля – «конечный пункт» для электронов

Технический прием, позволяющий разрядить любое заряженное тело путем соединения этого тела проводником с землей, называют заземлением.

Рис. 13. Обозначение заземления на схеме

В некоторых случаях, например чтобы зарядить проводник или сохранить на нем заряд, заземления следует избегать. Для этого используют тела, изготовленные из диэлектриков. В диэлектриках (их еще называют изоляторами) свободные электроны практически отсутствуют. Поэтому если между землей и заряженным телом поставить барьер в виде изолятора, то свободные электроны не смогут покинуть проводник (или попасть на него) и проводник останется заряженным (рис. 14). Стекло, оргстекло, эбонит, янтарь, резина, бумага – диэлектрики, поэтому в опытах по электростатике их легко наэлектризовать – заряд с них не стекает.

Рис. 14. Если между землей и заряженным телом поставить барьер в виде изолятора, то свободные электроны не смогут покинуть проводник (или попасть на него)

Электризация через влияние, или электростатическая индукция

Проведем следующий опыт: возьмем эбонитовую палочку и зарядим ее с помощью электризации трением. Поднесем палочку к шару электрометра, коснемся на некоторое время шара электрометра пальцем и уберем палочку, мы видим, что стрелка электрометра отклонилась (рис. 15).

Рис. 15. Показание электрометра

Таким образом, шар приобрел электрический заряд, хотя мы его не касались эбонитовой палочкой. Почему же это произошло? Знак шара является противоположным знаку заряду палочки.

Так как контакта между заряженным и незаряженным телами не было, описанный процесс называется электризацией через влияние (или электростатической индукцией). Под действием электрического поля отрицательно заряженной палочки свободные электроны перераспределяются по поверхности металлической сферы (рис. 16).

Рис. 16. Перераспределение электронов

Электроны имеют отрицательный заряд, поэтому они отталкиваются от отрицательно заряженной эбонитовой палочки. В результате количество электронов станет избыточным на удаленной от палочки части сферы и недостаточным на ближней. Если коснуться сферы пальцем, то некоторое количество свободных электронов перейдет из сферы на тело исследователя (рис. 17).

Рис. 17. Переход части электронов на тело исследователя

В итоге на сфере возникнет недостаток электронов и она станет положительно заряженной. Выяснив механизм электризации через влияние, вам не составит труда объяснить, почему незаряженные металлические тела притягиваются к заряженным телам.

Поляризация диэлектрика

Сложнее объяснить, почему к наэлектризованной палочке притягиваются кусочки бумаги, ведь бумага – диэлектрик, а значит, практически не содержит свободных электронов. Дело в том, что электрическое поле заряженной палочки действует на связанные электроны атомов, из которых состоит бумага, вследствие чего изменяется форма электронного облака – оно становится вытянутым. В результате на ближних к палочке кусочках бумаги образуется заряд, противоположный по знаку заряду палочки (рис. 18), и поэтому бумага начинает притягиваться к палочке – это явление называется поляризацией диэлектрика.

Рис. 18. Поляризация диэлектрика

Польза и вред электризации

Применение электризации и наэлектризованных тел.

1. Изготовление наждачной бумаги

Принцип покрытия наждачным порошком бумаги и получения искусственных ворсистых материалов можно пояснить на следующем опыте (рис. 19). Диски от раздвижного конденсатора соединяют с кондукторами электрофорной машины. На нижний диск насыпают песок или узкие полоски цветной бумаги. Поверхность верхнего диска смазывают клеем. Приведя в действие электрофорную машину, заряжают диски. При этом кусочки бумаги или песок, находящиеся на нижнем диске, получив одноименный с ним заряд, под действием сил электрического поля притягиваются к верхнему диску и оседают на нем.

Рис. 19. Изготовление наждачной бумаги

2. Метод электростатической покраски металлических изделий

Метод окраски поверхностей в электрическом поле – электроокраска – впервые разработал русский ученый А.Л. Чижевский. Суть его такова: жидкий краситель любого цвета помещают в пульверизатор – сосуд с тонко оттянутым концом (соплом) – и подводят к нему отрицательный потенциал. К металлическому трафарету подводят положительный потенциал, а перед трафаретом размещается окрашиваемая поверхность (ткань, бумага, металл и т. д.) (рис. 20).

Рис. 20. Постановка метода электростатической покраски металлических изделий

Благодаря электростатическому полю между соплом с краской и трафаретом частицы краски летят строго по направлению к металлическому трафарету (рис. 21), на окрашиваемой поверхности воспроизводится точный рисунок трафарета, при этом ни одна капля краски не падает. Регулируя расстояние между соплом и объектом окраски, можно менять скорость нанесения и толщину покровного слоя, т. е. регулировать скорость окраски.

Данный метод дает экономию красителей до 70 % по сравнению с обычным методом окраски и ускоряет примерно в три раза процесс покрытия изделия.

Рис. 21. Частицы краски летят строго по направлению к металлическому трафарету

3. Очистка воздуха от пыли и легких частиц

Так как частицы пыли способны электризоваться, то для их удаления часто применяют фильтр, внутри которого находится электрически заряженный элемент, притягивающий к себе микрочастицы. Для того чтобы сделать пылеудаление более эффективным, воздух в помещении ионизируют. Такие электрофильтры устанавливают в цехах размола цемента и фосфоритов, на химических заводах.

Рис. 22. Электростатический очиститель воздуха со снятой пылесборной пластиной

Рис. 23. Электроды внутри промышленного электростатического очистителя воздуха

Отрицательное влияние электризации трением на производстве и в быту

На одном из целлюлозно-бумажных комбинатов некоторое время не могли установить причину частых обрывов быстродвижущейся бумажной ленты. Были приглашены ученые. Они выяснили, что причина заключалась в электризации ленты при трении ее о валки.

Рис. 24. Бумагоделательная машина

При трении о воздух электризуется самолет. Поэтому после посадки к самолету нельзя сразу приставлять металлический трап: может возникнуть разряд, который вызовет пожар. Сначала самолет разряжают: опускают на землю металлический трос, соединенный с обшивкой самолета, и разряд происходит между землей и концом троса (рис. 25).

Рис. 25. Удаление заряда с самолета

Бывали случаи, что быстро поднимающийся в воздухе воздушный шар загорался. Воздушные шары часто наполняют водородом, который легко воспламеняется. Причиной воспламенения может быть электризация трением прорезиненной оболочки о воздух при быстром подъеме.

Рис. 26. Воздушные шары (аэростаты)

В любом процессе, где участвуют движущиеся части вещества, движется зерно или жидкость, происходит разделение зарядов. Одна из опасностей при транспортировке зерна в элеватор связана с тем, что в результате разделения зарядов в атмосфере, заполненной горячей пылью, может проскочить искра и произойти возгорание.

Рис. 27. Транспортировка зерна

В домашних условиях устранить заряды статического электричества довольно легко, повышая относительную влажность воздуха квартиры до 60–70 % (рис. 28).

Рис. 28. Гигрометр

На этом уроке мы обсудили некоторые электрические явления: в частности, поговорили об электризации двумя способами – трением и влиянием.

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: издательство «Ранок», 2005. – 464 с.
  2. А.В. Перышкин. Физика 8 кл.: учеб. для общеобразоват. учреждений. – М.: Дрофа, 2013. – 237 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Почему иногда, поглаживая кошку рукой, можно увидеть небольшие искры, которые возникают между шерстью и рукой?
  2. Есть рыбы, которые можно назвать «живыми электростанциями». Что это за рыбы?
  3. Сформулируйте закон сохранения электрического заряда.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Источники:
  • http://sernam.ru/book_phis_t2.php?id=7
  • http://900igr.net/prezentatsii/fizika/Fizika-Elektrostatika/009-JAvlenie-elektrizatsii.html
  • http://fiz.1sep.ru/article.php?ID=200701701
  • http://ppt4web.ru/fizika/fizika-ehlektrostatika.html
  • http://questions-physics.ru/uchebniki/8_klass/obyasnenie_elektrizatsii.html
  • http://interneturok.ru/lesson/physics/8-klass/belektricheskie-yavleniyab/ob-yasnenie-elektricheskih-yavleniy-2