Меню Рубрики

Xxi век что такое жизнь с точки зрения физики

Рекомендую

Г. Р. Иваницкий: Жизнь с точки зрения физика

В статье, написанной 65 лет после выхода книги Шрёдингера Что такое жизнь с точки зрения физики, биофизик Иваницкий дает свое определение жизни:

‘Жизнь с точки зрения физики можно определить как результат процесса игры взаимодействий материи, в которой одна её часть приобрела свойство запоминать вероятности появления удач и неудач в предыдущих раундах этой игры, повышая тем самым свой шанс на существование в последующих раундах. Эту часть материи сегодня называют живой материей.’

В статье после короткого рассмотрения проблемы определения живого, Иваницкий рассматривает десять известных парадоксов, предлагает свои решения и в заключение приходит к определению, приведенному выше.

Иваницкий скептически относится к возможности разделения на живое и неживое на базе характерного признака.

‘попытка найти какой-либо один абсолютный, характерный признак живого занятие малоперспективное. Следовательно, в живых системах не обнаруживается никаких свойств, которыми не обладали бы разные неживые объекты.’

В качестве подтверждения Иваницкий приводит в таблице 1 сравнение между признаками живой и неживой материи, которое с его точки зрения показывает отсутствие разницы. Приведу из таблицы только ответ Иваницкого на признак ‘Всё живое размножается‘:

‘Коацерватные капли органических веществ могут расти и делиться. Из растворов солей растут кристаллы. Кусочек, отломившийся от растущего кристалла, становится зародышем для подобного кристалла. Чёрные курильщики и белые столбы на дне океана также размножаются.’

Интересно отметить, что Иваницкий говорит следующее:

‘Очевидно, что процедура разделения [живого и неживого] это классическая задача распознавания образов. Здесь возможно построение логических функций от исходных признаков. Трудность состоит в том, что заранее нельзя сказать, комбинация каких признаков окажется полезной для такого разделения. Граница живого и неживого подвижна и проходит через наше восприятие окружаю- щего мира.’

Мое прочтение сводится к тому, что не существует объективной разницы между живым и неживым, но не могу сказать, согласился бы Иваницкий с такой интерпретацией своего утверждения.

Иваницкий отвергает возможность использования энтропии для различия живого и неживого:

‘Энтропия слишком грубый усреднённый параметр, для того чтобы с её помощью можно было бы охарактеризовать движение и развитие живых систем. Она не позволяет сделать содержательные выводы по отличию живых систем от неживых.’

‘Энтропия совокупности 10^13 различных одноклеточных организмов почти не отличается от энтропии человека, состоящего из 10^13 клеток. Все разговоры об «антиэнтропийных тенденциях» биологической эволюции и живой материи основаны на недоразумении. Согласно термодинамическим критериям любая биологическая система упорядочена не больше, чем кусок горной породы того же веса.’

Ключевым в статье является рассмотрение Санкт-Петербургского парадокса, который связывается с именем Бернулли и который вошел в историю науки как Санкт-Петербургский парадокс о разорении игрока. Именно отсюда следует приведенное в самом начале определение живого.

Речь, по сути дела, идет про игру орел и решка. Насколько я понял, утверждается, что существуют стратегии, в рамках которых можно остаться в выигрыше. Рассмотрение построено на том, что несмотря на то, что вероятность выпадения орла или решки одинакова, существуют кластеры событий, в которых вероятность выпадения орла или решки уже немного отличаются между собой. Если игрок распознает, в каком из кластеров он находится, то это дает ему возможность долгосрочного выигрыша. Не могу сказать, чтобы меня убедило приведенное в статье рассмотрение. Просто приведу ряд высказываний, которые привлекли мое внимание. Они, по-моему, прекрасно иллюстрируют отношение настоящего физика к биологии.

‘Дарвин предполагал, что движущей силой эволюции является наследственность, изменчивость и отбор. Однако отбор не может быть движущей силой. Отбор может происходить только из того, что уже существует, и тем самым уменьшать разнообразие существующего. Отбор это операция редукции. … Термин «изменчивость» у Дарвина плохо определён, его следовало бы заменить термином «самоусложнение». Но как реализуется механизм самоусложнения?’

‘В терминах биологической эволюции крупье это внешняя среда, а сам игрок это живая материя. Возьмём для примера игру с монеткой. Игрок не может влиять на результат подбрасывания монетки. Её бросает крупье. Тем не менее игрок может управлять процессом выигрышей и проигрышей в каждой игре, состоящей из N бросаний монетки, меняя ставку перед каждым очередным бросанием монетки в зависимости от результата предыдущего подбрасывания. Если игрок будет обладать памятью хотя бы на один раунд, запоминая выиграл он или проиграл в предыдущем раунде, то он может выбрать стратегию изменения ставки при следующем бросании монетки.’

‘Суть схемы состоит в том, что образуется цикл с меняющимися коэффициентами обратной связи. Игрок (живой объект) в процессе игры, управляя ставкой, вносит асимметрию в симметричное распределение случайностей, создаваемых внешней средой (бросанием монетки).’

‘Асимметрия возникает не в результате бросания монеты, а в результате изменения ставки в полосе выигрышей и проигрышей, т.е. в кинетике процесса происходит изменение вероятностей выигрыша/проигрыша.’

‘Таким образом, можно сделать вывод, что величайшей находкой природы было появление примитивной памяти, хотя бы на один цикл изменения внешней среды. Эта находка сразу разделила всю природу на живую и неживую. У её части (которую называют живой материей) появилась возможность прогнозировать (пусть и не совсем точно) изменение среды своего существования.’

В заключение только отмечу, что в самом начале статьи Иваницкий утверждал в таблице 1, что память присуща также неживому:

‘Признаки живой материи:

Способность запоминать информацию о предыдущих состояниях и адаптироваться к изменению внешних условий’

‘Признака неживой материи:

Ответная реакция объектов неживой природы обычно также направлена на «нейтрализацию» внешнего воздействия. Ответная реакция неживого объекта это стремление сохранить своё исходное состояние (принцип Ле Шателье, принцип Ленца, инерция Ньютона). Существуют проявления в неживых объектах и элементов памяти: например, магнитный гистерезис’

Информация

Иваницкий ГР. XXI век: что такое жизнь с точки зрения физики. Успехи физических наук. 2010 Apr 1;180(4):337-69.

Xxi век что такое жизнь с точки зрения физики

MedBooks|Медкниги запись закреплена

1.Емец Б. Г., Ромоданова Э.А., Тиманюк В.А. Спект роскопические методы в биофизике, биологии и медицине. Пособие для студентов с тестами и задачами
2.Жорина Л.В., Змиевской Г.Н. Основы взаимодействия физических полей с биологическими объектами
3.Зима В.Л. Біофізика: Збі рник задач
4.Зотин А.И., Зотина Р.С. Феноменологическая тео рия развития, роста и старения организмов
5.Иваницкий Г.Р. XXI век: что такое жизнь с точки зрения физики

MedBooks|Медкниги запись закреплена

Иваницкий Г. Р. XXI век: что такое жизнь с точки з рения физики

Рассмотрена эволюция биофизической парадигмы в течение 65-ти лет после выхода книги Э. Шредингера Что такое жизнь с точки зрения физики? (1944 г.). На основе успехов молекулярной генетики показано, что все признаки, которыми характеризуются живые системы, встречаются в системах неживой природы. Рассмотрены десять логико-физических парадоксов, которые позволяют дать определение жизни в терминах пространственно-временной иерархии структур и комбинаторной вероятностной логики. Жизнь с точки зрения физики можно определить как результат процесса игры взаимодействий материи, в которой одна еe часть приобрела свойство запоминать вероятности появления удач и неудач в предыдущих раундах этой игры, повышая тем самым свой шанс на существование в последующих раундах. Эту часть материи сегодня называют живой материей.

Xxi век что такое жизнь с точки зрения физики

Здравствуйте Гость . Вход :: Регистрация . . Выслать повторно письмо для активации

Загрузка. Пожалуйста, подождите.

Группа: Абориген
Сообщений: 8067
Регистрация: 05.02.04

Вне форума

Предупреждения:
(0%)

Занятная статья, к теме различия живого и неживого (недавно я затронул ее в теме о вегетаринастве, упомянув ПНД)
—————-

XXI век: что такое жизнь с точки зрения физики
Г.Р. Иваницкий
Институт теоретической и экспериментальной био физики РАН, г.Пущино, Моск. обл.

Рассмотрена эволюция биофизической парадигмы в течение 65-ти лет после выхода книги Э. Шрёдингера «Что такое жизнь с точки зрения физики ?» (1944 г.). На основе успехов молекулярной генетики показано, что все признаки, которыми характеризуются живые системы, встречаются в системах неживой природы. Рассмотрены десять логико-физических парадоксов, которые позволяют дать определение жизни в терминах пространственно-временнóй иерархии структур и комбинаторной вероятностной логики. Жизнь с точки зрения физики можно определить как результат процесса игры взаимодействий материи, в которой одна её часть приобрела свойство запоминать вероятности появления удач и неудач в предыдущих раундах этой игры, повышая тем самым свой шанс на существование в последующих раундах. Эту часть материи сегодня называют живой материей.

Текст: pdf (1,5 Мб)
PACS: 01.65.+g, 01.70.+w, 87.23.-w (все)
DOI: 10.3367/UFNr.0180.201004a.0337

XXI век: что такое жизнь с точки зрения физики, НАСА

Институт теоретической и экспериментальной биофизики РАН, ул. Институцкая 3, 142290 Пущино, Московская обл., Российская Федерация

Аннотация: Рассмотрена эволюция биофизической парадигмы в течение 65-ти лет после выхода книги Э. Шрëдингера “Что такое жизнь с точки зрения физики?” (1944 г.). На основе успехов молекулярной генетики показано, что все признаки, которыми характеризуются живые системы, встречаются в системах неживой природы. Рассмотрены десять логико-физических парадоксов, которые позволяют дать определение жизни в терминах пространственно-временнóй иерархии структур и комбинаторной вероятностной логики. Жизнь с точки зрения физики можно определить как результат процесса игры взаимодействий материи, в которой одна еë часть приобрела свойство запоминать вероятности появления удач и неудач в предыдущих раундах этой игры, повышая тем самым свой шанс на существование в последующих раундах. Эту часть материи сегодня называют живой материей.

Итак, развёрнутое определение жизни, основанное на перечислении признаков, которые характерны для живых систем (И не только для живых, как было показано выше), Следующее: Жизнь — это единая система

Xxi век что такое жизнь с точки зрения физики

УФН, 2010, том 180, номер 4,

Эта публикация цитируется в 31 научных статьях (всего в 33 статьях)

ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ

XXI век: что такое жизнь с точки зрения физики

Аннотация: Рассмотрена эволюция биофизической парадигмы в течение 65-ти лет после выхода книги Э. Шрëдингера “Что такое жизнь с точки зрения физики?” (1944 г.). На основе успехов молекулярной генетики показано, что все признаки, которыми характеризуются живые системы, встречаются в системах неживой природы. Рассмотрены десять логико-физических парадоксов, которые позволяют дать определение жизни в терминах пространственно-временнóй иерархии структур и комбинаторной вероятностной логики. Жизнь с точки зрения физики можно определить как результат процесса игры взаимодействий материи, в которой одна еë часть приобрела свойство запоминать вероятности появления удач и неудач в предыдущих раундах этой игры, повышая тем самым свой шанс на существование в последующих раундах. Эту часть материи сегодня называют живой материей.

Полный текст: PDF файл (8069 kB)
Полный текст: http://www.ufn.ru/ru/articles/2010/4/a/
Список литературы: PDF файл HTML файл

Англоязычная версия:
Physics–Uspekhi, 2010, 53:4,

Реферативные базы данных:

Тип публикации: Статья
PACS: 01.65.+g , 01.70.+w , 87.23.-w
Поступила:
Доработана:

Образец цитирования: Г. Р. Иваницкий, “XXI век: что такое жизнь с точки зрения физики”, УФН , 180 :4 (2010), ; Phys. Usp. , 53 :4 (2010),

Цитирование в формате AMSBIB

XXI век: что такое жизнь с точки зрения физики

Рассмотрена эволюция биофизической парадигмы в течение лет после выхода книги Э. Шрёдингера «Что такое жизнь с точки зрения физики?» (1944 г.). На основе успехов молекулярной генетики показано, что все признаки, которыми характеризуются живые системы, встречаются в системах неживой природы. Рассмотрены десять логико-физических парадоксов, которые позволяют дать определение жизни в терминах пространственно-временнóй иерархии структур и комбинаторной вероятностной логики. Жизнь с точки зрения физики можно определить как результат процесса игры взаимодействий материи, в которой одна её часть приобрела свойство запоминать вероятности появления удач и неудач в предыдущих раундах этой игры, повышая тем самым свой шанс на существование в последующих раундах. Эту часть материи сегодня называют живой материей.

sirius_lj

Записная книжка

для всего, что меня интересует

[Через 65 лет после шредингеровской «What is Life? The physical aspect of a living cell.» (1944)]

» Жизнь — это единая система (биосфера), для которой характерна память, способность к направленной подвижности,самовоспроизведению, обмену веществ, регулируемому потоку энергии и к размножению.
Краткое определение жизни с точки зрения физики: жизнь — это результат процесса игры при взаимодействии части системы со своим окружением. В игре у этой части системы появилось свойство запоминать вероятности появления удач и неудач в предыдущих раундах, что дало ей шенс на существование в последующих раундах.
При этом, отражая результат этой игры, на надгробном камне одних исчезнувших видов следовало бы написать: «Они были косными и не могли противостоять изменениям своего окружения«. На другом камне эритафия гласила бы: «Они не научились запоминать и не испытывали тяги к объединению, потому что вели себя хаотично«. «

Иваницкий Г.Р. УФН 180 337 (2010)// c. 367.

Чем биология отличается от химии и физики

В аннотации к своей статье «XXI век: что такое жизнь с точки зрения физики» (Успехи физических наук, 2010, том 180, номер 4, стр. 337–369) бывший директор Института теоретической и экспериментальной биофизики РАН член-корреспондент РАН Г.Р. Иваницкий пишет: «Рассмотрена эволюция биофизической парадигмы в течение 65-ти лет после выхода книги Э. Шрёдингера «Что такое жизнь с точки зрения физики?» (1944 г.). На основе успехов молекулярной генетики показано, что все признаки, которыми характеризуются живые системы, встречаются в системах неживой природы (Л.А. — эта эта чрезвычайно «глубокая» мысль выделена мною). Рассмотрены десять логико-физических парадоксов, которые позволяют дать определение жизни в терминах пространственно-временн;й иерархии структур и комбинаторной вероятностной логики. Жизнь с точки зрения физики можно определить как результат процесса игры взаимодействий материи, в которой одна её часть приобрела свойство запоминать вероятности появления удач и неудач в предыдущих раундах этой игры, повышая тем самым свой шанс на существование в последующих раундах. Эту часть материи сегодня называют живой материей.» Этот жанр художественной литературы применительно к научным темам возник не из собственных изысканий Генриха Романовича, а вытекает из почти столетних безуспешных попыток объяснить, чем биология фундаментально отличается от химии и физики.

Наверняка, будучи многолетним директором Института биофизики АН СССР, Иваницкий неоднократно задумывался над этим фундаментальным вопросом академической науки, с которым непосредственно связан чисто профессиональный вопрос «является ли биофизика наукой?». Над этим вопросом безуспешно задумывались и десятки выдающихся деятелей науки, включая нобелевских лауреатов. Ответ на этот фундаментальный вопрос фундаментально прост. Его даже нет необходимости обосновывать и доказывать, он включает в себя всего несколько слов, что полностью соответствует древнеримской поговорке «Argumenta ponderantur, non numerantur (Сила аргументов не в числе, а в их весомости)». Но всё по порядку.

Прежде всего нужно сказать, что величайший учёный Эрвин Шрёдингер (1887-1961), лауреат нобелевской премии по физике (1933, совместно с П.А.М. Дираком), разработавший квантовую механику и волновую теорию материи, сформулировавший её основное уравнение (уравнение Шрёдингера), автор трудов по кристаллографии, теории относительности, математической физике и пр., три четверти века назад, когда писал свою книгу, имел очень приблизительные представления о биологии и биохимии. Достаточно сказать, что первый фермент «уреаза» был выделен Д. Самнером всего 18 лет до написания книги, а аденозинтрифосфорная кислота (АТФ) была открыта всего за 15 лет до написания книги. Этим Г.Р. Иваницкий сильно отличается от Эрвина Шрёдингера, поскольку знал о ферментах и об АТФ ещё в школе. Указанными обстоятельствами можно объяснить тот факт, что Э. Шрёдингер не сумел объяснить, что такое жизнь с точки зрения физики, вопреки тому, что на этот счёт думает Г.Р. Иваницкий.

Ко времени написания Э. Шрёдингером своей книги уже были сформулированы законы термодинамики в качестве раздела физики, изучающего наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах. Были хорошо известны свойства катализаторов. Но совершенно не были известны основные законы биологии, не было известно, например, строение ферментов, не было известно, что в отличие от небелковых катализаторов, ускорящих реакции в сотни и тысячи раз, белковые катализаторы — ферменты — ускоряют реакции в миллионы и миллиарды раз, не было ничего известно об их феноменальной специфичности.

Кстати говоря, Э. Шрёдингер прекрасно понимал неполноценность существующих данных для объяснения того, что такое жизнь с точки зрения физики. В своей книге он писал: «Принято считать, что ученый должен в совершенстве знать определенную область науки, и поэтому ему не следует писать по таким вопросам, в которых он не является знатоком. Это рассматривается как noblesse oblige. Однако для достижения моей цели я хочу отказаться от noblesse и поэтому прошу освободить меня от вытекающих отсюда обязательств. Я не вижу выхода из этого положения (чтобы при этом наша основная цель не оказалась потерянной навсегда), если только кое-кто из нас не рискнет взяться за синтез фактов и теорий, хотя наше знание в некоторых областях неполно и получено из вторых рук и хотя мы можем подвергнуться опасности показаться невеждами.»

В отличие от настоящего учёного, каким является Э. Шредингер, множество других представителей этой профессии, включая нобелевских лауреатов и многочисленных профессоров-академиков, желающих объяснить применимость законов термодинамики к функционированию живых существ, не демонстрировали и следов скромности. В этом разделе книги я не задаюсь целью привести перечень всех знаменитостей, которые претендовали на объяснение законов биологии с помощью физики и (что ещё страшнее и нелепее) математики. Я не собираюсь цитировать нобелевские и ненобелевские открытия новых идей, объясняющих феноменальные особенности биологических объектов (Людвиг фон Берталанфи, Илья Пригожин, многочисленные герои безумной идеи о происхождении жизни из капелек бульона и из умных нуклеиновых кислот). Моя задача намного проще. В этом разделе я попытаюсь показать, что для объяснения того, чем биология отличается от химии и физики, в принципе достаточно образования, которым владеет умный старшеклассник, читающий чуть больше того, что ему задают по школьным учебникам.

Прежде всего необходимо дать определение понятиям. Наука биология призвана объяснить механизмы функционирования живых организмов. Но вопрос о том, что из себя представляет феномен живого, как он возник и по каким причинам существует на Земле, больше относится к науке о происхождении жизни на Земле, которая по идее должна была бы занимать место четвёртой фундаментальной науки наряду с физикой, химией и биологией, но которая на сегодняшний день представляет собой совокупность мало вразумительных домыслов, которая, однако, на мой взгляд в будущем обретёт полагающийся ей по важности статус. Итак ответа на свой вопрос ожидают два глобальных компартмента знания: «Что такое жизнь?» и «Что такое феномен биологии?».

Вне зависимости от первичных механизмов, лежавших в основе возникновения жизни на Земле, возникшие живые существа существовали на основе использования энергии Солнца в реакции восстановления двуокиси углерода с помощью водородных атомов воды с выделением в атмосферу молекулярного кислорода. В результате процесса восстановления двуокиси углерода на Земле образовывались частично восстановленные (глюкоза) или полностью восстановленные (углеводороды) продукты. Таким образом, жизнь представляет собой диверсификацию процесса усвоения энергии Солнца с помощью восстановления углекислоты и окисления первичных продуктов биосинтеза, в которых эта энергия Солнца аккумулирована. Понятно, что этот биосферный процесс извлечения энергии Солнца с помощью восстановления углекислоты в органические продукты и окисления органических продуктов происходит с участием углекислоты атмосферы и атмосферного молекулярного кислорода, который выделялся в процессе восстановления двуокиси углерода с помощью водородных атомов воды. В этих процессах участвует азот атмосферы, сера, фосфаты, магний, кальций и т.д. Таким образом, жизнь представляет собой механизм аккумулирования, консервации и траты энергии Солнца.

Теперь перейдём к ответу на вопрос о том, в чём заключается феномен биологии, т.е. мехнизм аккумулирования, консервации и траты энергии Солнца. Ответ на этот вопрос элементарно прост: феномен биологии заключается в индивидуальном подводе энергии к реагирующим молекулам. Ничего подобного не существует в явлениях неживой природы, описываемых химическим и физическим знаниями. Поддержание функциональных возможностей живых организмов требует одновременного протекания огромного числа химическизх реакций, называемых обменом веществ или же метаболизмом. В условиях неживой природы одновременное протекания различных процессов невозможно. Результатом подобного совмещения может быть лишь смола, не содержащая индивидуальных веществ, необходимых для поддержания жизнеспособности организмов. С целью осуществления возможности одновременного биосинтеза огромного множества веществ Природа «придумала» белковые катализаторы и АТФ, являющуюся универсальным источником энергии для всех биохимических процессов, протекающих в живых системах, в частности и в реакциях, приводящих к образованию ферментов.

Подобно неорганическим катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность — константа связывания некоторых субстратов с белком может достигать 10;10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду. Эта специфика связи белковых катализаторов с подвергающимся химическим превращениям субстратами позволяет осуществлять процессы, отсутствующие в неживой природе: доставлять энергию с помощью АТФ непосредственно к каждой реагирующей молекуле.

Тривиальный вопрос о том, что раньше: курица или яйцо, здесь даже не стоит, поскольку без АТФ ферменты синтезироваться не могут, как впрочем и нуклеиновые кислоты. Значит в самом начале было не слово, как полагают некоторые религиозные верующие, а аденозинтрифосфорная кислота, гипотезу о спонтанном происхождении её предшественника на предбиологической Земле — макроэргического соединения окиси магния — я опубликовал 36 лет тому назад (https://systemity.livejournal.com/4659992.html, https://systemity.livejournal.com/4661364.html, https://systemity.livejournal.com/1237317.html).

Резюмируя сказанное:
— Жизнь представляет собой процесс диверсификации поставляемой Земле энергии Солнца в виде её аккумулирования, консервации и траты с помощью катаболизма и анаболизма химических (преимущественно органических) веществ.
— Феномен биологии, отсутствующий в явлениях неживой природы, состоит в индивидуальной доставке энергии к каждой реагирующей молекуле.
— Признаки, которыми характеризуются живые системы (доставка энергии к каждой реагирующем молекле персонально), не встречаются в системах неживой природы, соответственно, не описываются законами физики и не существуют в химических превращениях, осуществляемых в условиях неживой природы.

Эрвин Шредингер. Что такое жизнь с точки зрения физика?

Эрвин Рудольф Йозеф Александр Шредингер — австрийский физиктеоретик, лауреат Нобелевской премии по физике. Один из разработчиков квантовой механики и волновой теории материи. В 1945 г. Шредингер пишет книгу «Что такое жизнь с точки зрения физики?», оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Основополагающим является вопрос: «Как могут физика и химия объяснить те явления в пространстве и времени, которые имеют место внутри живого организма?». Текст и рисунки восстановлены по книге, вышедшей в 1947 г. в издательстве Иностранной литературы.

Э. Шредингер. Что такое жизнь с точки зрения физики? – М.: РИМИС, 2009. – 176 с.

Скачать краткий конспект в формате Word или pdf

Глава I. Подход классического физика к предмету

Наиболее существенная часть живой клетки — хромосомная нить — может быть названа апериодическим кристаллом. В физике мы до сих пор имели дело только с периодическими кристаллами. Поэтому не очень удивительно, что химик-органик уже сделал большой и важный взнос в разрешение проблемы жизни, в то время как физик не внес почти ничего.

Почему атомы так малы? Было предложено много примеров, чтобы уяснить этот факт широкой публике, но не было ни одного более выразительного примера, чем тот, который привел когда-то лорд Кельвин: предположите, что вы можете поставить метки на все молекулы в стакане воды; после этого вы выльете содержимое стакана в океан и тщательно перемешаете океан так, чтобы распределить отмеченные молекулы равномерно во всех морях мира; если вы далее возьмете стакан воды где угодно, в любом месте океана, — вы найдете в этом стакане около сотни ваших отмеченных молекул.

Все наши органы чувств, составленные из неисчислимых атомов, оказываются слишком грубыми, чтобы воспринимать удары отдельного атома. Мы не можем ни видеть, ни слышать, ни чувствовать отдельных атомов. Обязательно ли должно быть так? Если бы дело обстояло не так, если бы человеческий организм был столь чувствителен, что несколько атомов или даже отдельный атом мог бы произвести заметное впечатление на наши органы чувств, на что была бы похожа жизнь!

Имеется только одна и единственная вещь, представляющая особый интерес для нас в нас самих, — это то, что мы можем чувствовать, думать и понимать. В отношении тех физиологических процессов, которые ответственны за наши мысли и чувства, все другие процессы в организме играют вспомогательную роль, по крайней мере, с человеческой точки зрения.

Все атомы все время проделывают совершенно беспорядочные тепловые движения. Только в соединении огромного количества атомов статистические законы начинают действовать и контролировать поведение этих объединений с точностью, возрастающей с увеличением числа атомов, вовлеченных в процесс. Именно этим путем события приобретают действительно закономерные черты. Точность физических законов основана на большом количестве участвующих атомов.

Степень неточности, которую надо ожидать в любом физическом законе – . Если некоторый газ при определенном давлении и температуре имеет определенную же плотность, то я могу сказать, что внутри какого-то объема имеется n молекул газа. Если в какой-то момент времени вы сможете проверить мое утверждение, то вы найдете его неточным, и отклонение будет порядка . Следовательно, если n = 100, вы нашли бы отклонение равным приблизительно 10. Таким образом, относительная ошибка здесь равна 10%. Но если n = 1 миллиону, вы бы, вероятно, нашли отклонение равным примерно 1000, и таким образом относительная ошибка равняется 0,1%.

Организм должен иметь сравнительно массивную структуру для того, чтобы наслаждаться благоденствием вполне точных законов как в своей внутренней жизни, так и при взаимодействии с внешним миром. Иначе количество участвующих частиц было бы слишком мало и «закон» слишком неточен.

Глава II. Механизм наследственности

Выше мы пришли к заключению, что организмы со всеми протекающими в них биологическими процессами должны иметь весьма «многоатомную» структуру, и для них необходимо, чтобы случайные «одноатомные» явления не играли в них слишком большой роли. Теперь мы знаем, что такая точка зрения не всегда верна.

Разрешите мне воспользоваться словом «план» (pattern) организма, обозначая этим не только структуру и функционирование организма во взрослом состоянии или на любой другой определенной стадии, но организм в его онтогенетическом развитии, от оплодотворенной яйцеклетки до стадии зрелости, когда он начинает размножаться. Теперь известно, что весь этот целостный план в четырех измерениях (пространство + время) определяется структурой всего одной клетки, а именно — оплодотворенного яйца. Более того, ее ядром, а еще точнее – парой хромосом: один набор приходит от матери (яйцевая клетка) и один — от отца (оплодотворяющий сперматозоид). Каждый полный набор хромосом содержит весь шифр, хранящийся в оплодотворенной яйцеклетке, которая представляет самую раннюю стадию будущего индивидуума.

Но термин шифровальный код, конечно, слишком узок. Хромосомные структуры служат в то же время и инструментом, осуществляющим развитие, которое они же предвещают. Они являются и кодексом законов и исполнительной властью или, употребляя другое сравнение, они являются и планом архитектора и силами строителя в одно и то же время.

Как хромосомы ведут себя в онтогенезе?[1] Рост организма осуществляется последовательными клеточными делениями. Такое клеточное деление называется митозом.[2] В среднем достаточно 50 или 60 последовательных делений, чтобы произвести количество клеток, имеющихся у взрослого человека.

Как ведут себя хромосомы в митозе? Они удваиваются, удваиваются оба набора, обе копии шифра. Каждая, даже наименее важная отдельная клетка обязательно обладает полной (двойной) копией шифровального кода. Существует единственное исключение из этого правила – редукционное деление или мейоз (рис. 1; автор немного упростил описание, чтобы сделать его более доступным).

Рис. 1. Редукционное деление (мейоз) и оплодотворение (сингамия)

Один набор хромосом происходит от отца, один — от матери. Ни случайность, ни судьба не могут помешать этому. Но когда вы проследите происхождение вашей наследственности вплоть до ваших дедов и бабок, то дело оказывается иным. Например, набор хромосом, пришедших ко мне от отца, в частности хромосома № 5. Это будет точная копия или того № 5, который мой отец получил от своего отца, или того № 5, который он получил от своей матери. Исход дела был решен (с вероятностью 50:50 шансов). Точно та же история могла бы быть повторена относительно хромосом № 1, 2, 3… 24 моего отцовского набора и относительно каждой из моих материнских хромосом.

Но роль случайности в смешении дедушкиной и бабушкиной наследственности у потомков еще больше, чем это могло показаться из предыдущего описания, в котором молчаливо предполагалось или даже прямо утверждалось, что определенные хромосомы пришли как целое или от бабушки, или от дедушки; другими словами, что единичные хромосомы пришли неразделенными. В действительности это не так или не всегда так. Перед тем как разойтись в редукционном делении, скажем в том, которое происходило в отцовском теле, каждые две «гомологичные» хромосомы приходят в тесный контакт одна с другой и иногда обмениваются друг с другом значительными своими частями (рис. 2). Явление кроссинговера, будучи не слишком редким, но и не слишком частым, обеспечивает нас ценнейшей информацией о расположении свойств в хромосомах.[3]

Рис. 2. Кроссинговер. Слева — две гомологичные хромосомы в контакте; справа — после обмена и разделения.

Максимальный размер гена. Ген – материальный носитель определенной наследственной особенности – равен кубу со стороной в 300 . 300 — это только около 100 или 150 атомных расстояний, так что ген содержит не более миллиона или нескольких миллионов атомов. Согласно статистической физике такое число слишком мало (с точки зрения ), чтобы обусловить упорядоченное и закономерное поведение.

Мы теперь определенно знаем, что Дарвин ошибался, когда считал, что материалом, на основе которого действует естественный отбор, служат малые, непрерывные, случайные изменения, обязательно встречающиеся даже в наиболее однородной популяции. Потому что было доказано, что эти изменения не наследственны. Если вы возьмете урожай чистосортного ячменя и измерите у каждого колоса длину остей, а затем вычертите результат вашей статистики, вы получите колоколообразную кривую (рис. 3). На этом рисунке количество колосьев с определенной длиной остей отложено против соответствующей длины остей. Другими словами, преобладает известная средняя длина остей, а отклонения в том и другом направлении встречаются с определенными частотами. Теперь выберите группу колосьев, обозначенную черным, с остями, заметно превосходящими среднюю длину, но группу достаточно многочисленную, чтобы при посеве в поле она дала новый урожай. Проделывая подобный статистический опыт, Дарвин ожидал бы, что для нового урожая кривая сдвинется вправо. Другими словами, он ожидал бы, что отбор произведет увеличение средней величины остей. Однако на деле этого не случится.

Рис. 3. Статистика длины остей в чистосортном ячмене. Черная группа должна быть отобрана для посева

Отбор не дает результата, потому что малые, непрерывные различия не наследуются. Они, очевидно, не обусловлены строением наследственного вещества, они случайны. Голландец Хуго де-Фриз открыл, что в потомстве даже совершенно чистосортных линий появляется очень небольшое число особей — скажем, две или три на десятки тысяч – с малыми, но «скачкообразными» изменениями. Выражение «скачкообразные» означает здесь не то, что изменения очень значительны, а только факт прерывистости, так как между неизмененными особями и немногими измененными нет промежуточных форм. Де-Фриз назвал это мутацией. Существенной чертой тут является именно прерывистость. Физику она напоминает квантовую теорию — там тоже не наблюдается промежуточных ступеней между двумя соседними энергетическими уровнями.

Мутации наследуются так же хорошо, как первоначальные неизмененные признаки. Мутация определенно является изменением в наследственном багаже и должна обусловливаться каким-то изменением наследственной субстанции. В силу их свойства действительно передаваться потомкам, мутации служат также подходящим материалом и для естественного отбора, который может работать над ними и производить виды, как это описано Дарвином, элиминируя неприспособленных и сохраняя наиболее приспособленных.

Определенная мутация вызывается изменением в определенной области одной из хромосом. Мы твердо знаем, что это изменение происходит только в одной хромосоме и не возникает одновременно в соответствующем «локусе» гомологичной хромосомы (рис. 4). У мутантной особи две «копии шифровального кода» больше уже не одинаковы; они представляют два различных «толкования» или две «версии».

Рис. 4. Гетерозиготный мутант. Крестом отмечен мутировавший ген

Версия, которой следует особь, называется доминантной, противоположная — рецессивной; другими словами, мутация называется доминантной или рецессивной в зависимости от того, проявляет ли она свой эффект сразу или нет. Рецессивные мутации даже более часты, чем доминантные, и бывают весьма важными, хотя они не сразу обнаруживаются. Чтобы изменить свойства организма, они должны присутствовать в обеих хромосомах (рис. 5).

Рис. 5. Гомозиготный мутант, полученный в одной четверти потомства при самооплодотворении гетерозиготных мутантов (см. рис. 4) или при скрещивании их между собой

Версия шифровального кода — будь она первоначальной или мутантной, — принято обозначать термином аллель. Когда версии различны, как это показано на рис. 4, особь называется гетерозиготной в отношении этого локуса. Когда они одинаковы, как, например, в немутировавших особях или в случае, изображенном на рис. 5, они называются гомозиготными. Таким образом, рецессивные аллели влияют на признаки только в гомозиготном состоянии, тогда как доминантные аллели производят один и тот же признак как в гомозиготном, так и в гетерозиготном состоянии.

Особи могут быть совершенно подобны по внешности и, однако, различаться наследственно. Генетик говорит, что у особей один и тот же фенотип, но различный генотип. Содержание предыдущих параграфов может быть, таким образом, суммировано в кратком, но высоко техническом выражении: рецессивная аллель влияет на фенотип, только когда генотип гомозиготен.

Процент мутаций в потомстве — так называемый темп мутирования — можно увеличить во много раз по сравнению с естественным мутационным темпом, если освещать родителей х-лучами или γ-лучами. Мутации, вызванные таким путем, ничем (за исключением большей частоты) не отличаются от возникающих самопроизвольно.

Глава IV. Данные квантовой механики

В свете современного знания механизм наследственности тесно связан с основой квантовой теории. Величайшим открытием квантовой теории были черты дискретности. Первый случай этого рода касался энергии. Тело большого масштаба изменяет свою энергию непрерывно. Например, начавший качаться маятник постепенно замедляется вследствие сопротивления воздуха. Хотя это довольно странно, но приходится принять, что система, имеющая размер атомного порядка, ведет себя иначе. Малая система по самому своему существу может находиться в состояниях, отличающихся только дискретными количествами энергии, называемыми ее специфическими энергетическими уровнями. Переход от одного состояния к другому представляет собой несколько таинственное явление, обычно называемое «квантовым скачком».

Среди прерывистой серии состояний системы атомов необязательно, но все же может существовать наиболее низкий уровень, предполагающий тесное сближение ядер друг с другом. Атомы в таком состоянии образуют молекулу. Молекула будет иметь известную устойчивость; конфигурация ее не может изменяться, по крайней мере до тех пор, пока она не будет снабжена извне разностью энергий, необходимой, чтобы «поднять» молекулу на ближайший, более высокий уровень. Таким образом, эта разница уровней, представляющая собой совершенно определенную величину, характеризует количественно степень устойчивости молекулы.

При всякой температуре (выше абсолютного нуля) имеется определенная, большая или меньшая, вероятность подъема на новый уровень, причем эта вероятность, конечно, увеличивается с повышением температуры. Наилучший способ выразить эту вероятность — это указать среднее время, которое следует выждать, пока не произойдет подъем, то есть указать «время ожидания». Время ожидания зависит от отношения двух энергий: энергетической разности, какая необходима для подъема (W), и интенсивности теплового движения при данной температуре (обозначим через Т абсолютную температуру и через kТ эту характеристику; k – постоянная Больцмана; 3/2kT представляет собой среднюю кинетическую энергию атома газа при температуре Т).

Удивительно, насколько сильно время ожидания зависит от сравнительно малых изменений отношения W:kT. Например, для W, которое в 30 раз больше, чем kТ, время ожидания будет всего 1/10 секунды, но оно повышается до 16 месяцев, когда W в 50 раз больше kТ, и до 30 000 лет, когда W в 60 раз больше kТ.

Причина чувствительности в том, что время ожидания, назовем его t, зависит от отношения W:kТ как степенная функция, то есть

τ — некоторая малая константа порядка 10 –13 или 10 –14 секунды. Этот множитель имеет физический смысл. Его величина соответствует порядку периода колебаний, все время происходящих в системе. Вы могли бы, вообще говоря, сказать: этот множитель обозначает, что вероятность накопления требуемой величины W, хотя и очень мала, повторяется снова и снова «при каждой вибрации», т.е. около 10 13 или 10 14 раз в течение каждой секунды.

Степенная функция не случайная особенность. Она снова и снова повторяется в статистической теории тепла, образуя как бы ее спинной хребет. Это — мера невероятности того, что количество энергии, равное W, может случайно собраться в некоторой определенной части системы, и именно эта невероятность возрастает так сильно, когда требуется многократное превышение средней энергии kТ для того, чтобы преодолеть порог W.

Предлагая эти соображения как теорию устойчивости молекул, мы молчаливо приняли, что квантовый скачок, называемый нами «подъемом», ведет если не к полной дезинтеграции, то, по крайней мере, к существенно иной конфигурации тех же самых атомов — к изомерной молекуле, как сказал бы химик, то есть к молекуле, состоящей из тех же самых атомов, но в другом расположении (в приложении к биологии это может представлять новую «аллель» того же самого «локуса», а квантовый скачок будет соответствовать мутации).

Химику известно, что одна и та же группа атомов при образовании молекул может объединиться более чем одним способом. Такие молекулы называются изомерными, т.е., состоящими из тех же частей (рис. 6).

Рис. 6. Два изомера пропилового алкоголя

Замечателен тот факт, что обе молекулы весьма устойчивы, — обе ведут себя так, как если бы они были «нижним уровнем». Самопроизвольных переходов от одного состояния к другому не бывает. В применении к биологии нас будут интересовать переходы только такого «изомерного» типа, когда энергия, необходимая для перехода (величина, обозначаемая W), в действительности является не разностью уровней, а ступенькой от исходного уровня до порога (см. стрелки на рис. 7). Переходы без порога между исходным и конечным состояниями совершенно не представляют интереса, и не только применительно к биологии. Они действительно ничего не меняют в химической устойчивости молекул. Почему? Они не дают продолжительного эффекта и остаются незамеченными. Ибо когда они происходят, то за ними почти немедленно следует возвращение в исходное состояние, поскольку ничто не препятствует такому возвращению.

Рис. 7. Энергетический порог 3 между изомерными уровнями 1 и 2. Стрелки указывают минимум энергии, требующейся для перехода.

Глава V. Обсуждение и проверка модели Дельбрюка

Мы примем, что по своей структуре ген является гигантской молекулой, которая способна только к прерывистым изменениям, сводящимся к перестановке атомов с образованием изомерной молекулы (для удобства я продолжаю называть это изомерным переходом, хотя было бы нелепостью исключать возможность какого-либо обмена с окружающей средой). Энергетические пороги, отделяющие данную конфигурацию от любых возможных изомерных, должны быть достаточно высоки (сравнительно со средней тепловой энергией атома), чтобы сделать переходы редкими событиями. Эти редкие события мы будем отождествлять со спонтанными мутациями.

Часто спрашивали, как такая крошечная частичка вещества — ядро оплодотворенного яйца — может вместить сложный шифровальный код, включающий в себя все будущее развитие организма? Хорошо упорядоченное объединение атомов, наделенное достаточной устойчивостью для длительного сохранения своей упорядоченности, представляется единственно мыслимой материальной структурой, в которой разнообразие возможных («изомерных») комбинаций достаточно велико, чтобы заключать в себе сложную систему «детерминаций» в пределах минимального пространства.

Глава VI. Упорядоченность, неупорядоченность и энтропия

Из общей картины наследственного вещества, нарисованной в модели Дельбрюка, следует, что живая материя, хотя и не избегает действия «законов физики», установленных к настоящему времени, по-видимому, заключает в себе до сих пор неизвестные «другие законы физики». Попробуем разобраться с этим. В первой главе было объяснено, что законы физики, как мы их знаем, это статистические законы. Они связаны с естественной тенденцией вещей переходить к неупорядоченности.

Но для того, чтобы примирить высокую устойчивость носителей наследственности с их малыми размерами и обойти тенденцию к неупорядоченности, нам пришлось «изобрести молекулу», необычно большую молекулу, которая должна быть шедевром высоко дифференцированной упорядоченности, охраняемой волшебной палочкой квантовой теории. Законы случайности не обесцениваются этим «изобретением», но изменяется их проявление. Жизнь представляет собой упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но частично и на существовании упорядоченности, которая поддерживается все время.

Что является характерной чертой жизни? Когда мы говорим про кусок материи, что он живой? Когда он продолжает «делать что-либо», двигаться, обмениваться веществами с окружающей средой и т.д., — и все это в течение более долгого времени, чем по нашим ожиданиям мог бы делать неодушевленный кусок материи при подобных же условиях. Если неживую систему изолировать или поместить в однородные условия, всякое движение, обычно, очень скоро прекращается в результате различного рода трений; разности электрических или химических потенциалов выравниваются, вещества, которые имеют тенденцию образовывать химические соединения, образуют их, температура становится однообразной благодаря теплопроводности. После этого система в целом угасает, превращается в мертвую инертную массу материи. Достигнуто неизменное состояние, в котором не возникает никаких заметных событий. Физик называет это состоянием термодинамического равновесия или «максимальной энтропии».

Именно в силу того, что организм избегает бы строго перехода в инертное состояние «равновесия», он и кажется столь загадочным: настолько загадочным, что с древнейших времен человеческая мысль допускала, будто в организме действует какая-то специальная, не физическая, сверхъестественная сила.

Как же живой организм избегает перехода к равновесию? Ответ прост: благодаря еде, питью, дыханию и (в случае растений) ассимиляции. Это выражается специальным термином—метаболизм (от греческого – перемена или обмен). Обмен чего? Первоначально, без сомнения, подразумевался обмен веществ. Но представляется нелепостью, чтобы существенным был именно обмен веществ. Любой атом азота, кислорода, серы и т.д. так же хорош, как любой другой того же рода. Что могло бы быть достигнуто их обменом? Что же тогда составляет то драгоценное нечто, содержащееся в нашей пище, что предохраняет нас от смерти?

Каждый процесс, явление, событие, все, что происходит в природе, означает увеличение энтропии в той части мира, где это происходит. Так и живой организм непрерывно увеличивает свою энтропию — или, говоря иначе, производит положительную энтропию и таким образом приближается к опасному состоянию максимальной энтропии, которое представляет собою смерть. Он может избегнуть этого состояния, то есть оставаться живым, только путем постоянного извлечения из окружающей его среды отрицательной энтропии. Отрицательная энтропия — вот то, чем организм питается. Или, чтобы выразить это менее парадоксально, существенно в метаболизме то, что организму удается освобождать себя от всей той энтропии, которую он вынужден производить, пока он жив.

Что такое энтропия? Это не туманное представление или идея, а измеримая физическая величина. При абсолютном нуле температуры (около –273°С) энтропия любого вещества равна нулю. Если вы переводите вещество в любое другое состояние, то энтропия возрастает на величину, вычисляемую путем деления каждой малой порции тепла, затрачиваемой во время этой процедуры, на абсолютную температуру, при которой это тепло затрачено. Например, когда вы расплавляете твердое тело, то энтропия возрастает на величину теплоты плавления, деленной на температуру при точке плавления. Вы видите из этого, что единица, которой измеряется энтропия, есть кал/°С. Гораздо более важна для нас связь энтропии со статистической концепцией упорядоченности и неупорядоченности, связь, открытая исследованиями Больцмана и Гиббса по статистической физике. Она также является точной количественной связью и выражается

где k — постоянна Больцмана и D — количественная мера атомной неупорядоченности в рассматриваемом теле.

Если D есть мера неупорядоченности, то обратная величина 1/D может рассматриваться как мера упорядоченности. Поскольку логарифм 1/D есть то же, что отрицательный логарифм D, мы можем написать уравнение Больцмана таким образом:

Теперь неуклюжее выражение «отрицательная энтропия» может быть заменено лучшим: энтропия, взятая с отрицательным знаком, есть сама по себе мера упорядоченности. Cредство, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (= достаточно низкому уровню энтропии), в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды (для растений собственным мощным источником «отрицательной энтропии» служит, конечно, солнечный свет).

Глава VIII. Основана ли жизнь на законах физики?

Все известное нам о структуре живого вещества заставляет ожидать, что деятельность живого вещества нельзя свести к обычным законам физики. И не потому, что имеется какая-нибудь «новая сила» или что-либо еще, управляющее поведением отдельных атомов внутри живого организма, но потому, что его структура отличается от всего изученного нами до сих пор.

Физикой управляют статистические законы. В биологии мы встречаемся с совершенно иным положением. Единичная группа атомов, существующая только в одном экземпляре, производит закономерные явления, чудесно настроенные одно в отношении другого и в отношении внешней среды, согласно чрезвычайно тонким законам.

Мы здесь встречаемся с явлениями, регулярное и закономерное развертывание которых определяется «механизмом», полностью отличающимся от «механизма вероятности» физики. В каждой клетке руководящее начало заключено в единичной атомной ассоциации, существующей только в одной копии, и оно направляет события, служащие образцом упорядоченности. Подобное не наблюдается нигде за исключением живого вещества. Физик и химик, исследуя неодушевленную материю, никогда не встречали феноменов, которые им приходилось бы интерпретировать подобным образом. Такой случай еще не возникал, и поэтому теория не покрывает его – наша прекрасная статистическая теория.

Упорядоченность, наблюдаемая в развертывании жизненного процесса, возникает из иного источника. Оказывается, есть два различных «механизма», которые могут производить упорядоченные явления: «статистический механизм», создающий «порядок из беспорядка», и новый механизм, производящий «порядок из порядка».

Для объяснения этого мы должны пойти несколько дальше и ввести уточнение, чтобы не сказать улучшение, в наше прежнее утверждение, что все физические законы основаны на статистике. Это утверждение, повторявшееся снова и снова, не могло не привести к противоречию. Ибо действительно имеются явления, отличительные черты которых явно основаны на принципе «порядок из порядка» и ничего, кажется, не имеют общего со статистикой или молекулярной неупорядоченностью.

Когда же физическая система обнаруживает «динамический закон» или «черты часового механизма»? Квантовая теория дает на этот вопрос краткий ответ, а именно — при абсолютном нуле температуры. При приближении к температуре нуль молекулярная неупорядоченность перестает влиять на физические явления. Это — знаменитая «тепловая теорема» Вальтера Нернста, которой иногда, и не без основания, присваивают громкое название «Третьего Закона Термодинамики» (первый — это принцип сохранения энергии, второй — принцип энтропии). Не следует думать, что это должна быть всегда очень низкая температура. Даже при комнатной температуре энтропия играет удивительно незначительную роль во многих химических реакциях.

Для маятниковых часов комнатная температура практически эквивалентна нулю. Это — причина того, что они работают «динамически». Часы способны функционировать «динамически», так как они построены из твердых тел, чтобы избежать нарушающего действия теплового движения при обычной температуре.

Теперь, я думаю, надо немного слов, чтобы сформулировать сходство между часовым механизмом и организмом. Оно просто и исключительно сводится к тому, что последний также построен вокруг твердого тела — апериодического кристалла, образующего наследственное вещество, не подверженное в основном воздействию беспорядочного теплового движения.

Эпилог. О детерминизме и свободе воли

Из того, что было изложено выше, ясно, что протекающие в теле живого существа пространственно-временные процессы, которые соответствуют его мышлению, самосознанию или любой другой деятельности, если не вполне строго детерминированы, то во всяком случае статистически детерминированы. Это неприятное чувство возникает потому, что принято думать, будто такое представление находится в противоречии со свободой воли, существование которой подтверждается прямым самонаблюдением. Поэтому посмотрим, не сможем ли мы получить правильное и непротиворечивое заключение, исходя из следующих двух предпосылок:

  1. Мое тело функционирует как чистый механизм, подчиняясь всеобщим законам природы.
  2. Однако из неопровержимого, непосредственного опыта я знаю, что я управляю действиями своего тела и предвижу результаты этих действий. Эти результаты могут иметь огромное значение в определении моей судьбы, и в таком случае я чувствую и сознательно беру на себя полную ответственность за свои действия.

Мне думается, что из этих двух предпосылок можно вывести только одно заключение, а именно, что «я», взятое в самом широком значении этого слова — то есть каждый сознательный разум, когда-либо говоривший или чувствовавший «я», — представляет собой не что иное, как субъект, могущий управлять «движением атомов» согласно законам природы.[4] [1] Онтогенез —развитие индивидуума в течение его жизни, в противоположность филогенезу — развитию вида в течение геологических периодов.

[2] Митоз — непрямое деление клетки, наиболее распространенный способ репродукции клеток. Значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений. [3] Автор здесь выражается неточно, говоря о расположении в хромосоме «свойств» или «признаков». Как он сам далее указывает, в хромосоме расположены не сами свойства, а лишь определенные материальные структуры (гены), различия в которых приводят к видоизменениям определенных свойств всего организма в целом. Это надо постоянно иметь в виду, ибо Шредингер все время пользуется кратким выражением «свойства». — Прим. пер. [4] Я не вполне понял этот пассаж Шредингера. Замечу, что в послесловии, написанном переводчиком в 1947 г., философия Шредингера подвергается критике с позиций марксизма-ленинизма… ? Прим. Багузина
Источники:

Популярные записи