Меню Рубрики

Химический элемент с точки зрения строения атома

Химический элемент — это простое вещество, которое не может ни изменяться, ни разлагаться. В его составе однородные по строению атомы (атомы с одинаковым зарядом ядра) . Они не могут быть изменены какими-либо химическими методами.

Но почему тогда в мире столько самых разнообразных веществ? Все просто: элементы могут друг с другом соединяться и образовывать новые вещества. Так, вода состоит из кислорода и водорода. Серная кислота — из серы, кислорода и водорода. Ну, а помимо названных химических элементов вам наверняка известны также медь, золото, цинк, железо, свинец, ртуть, серебро.

Название Задание 1 1 Периодический закон Д. И. Менделеева, его современная формулировка. 2 Структура периодический системы с точки зрения строения атома.
Анкор Вопросы и ответы по устному модулю по химии.docx
Дата 25.02.2017
Размер 138.97 Kb.
Формат файла
Имя файла Вопросы и ответы по устному модулю по химии.docx
Тип Закон
#3118
страница 1 из 6

1) Периодический закон Д.И.Менделеева, его современная формулировка. 2) Структура периодический системы с точки зрения строения атома.3) Периодичность изменения свойств атома: энергия ионизации, электронегатисность, энергия средство к электрону. 4) Основные классы химических соединений. 5) Классификация биогенных элементов. 6) Качественное и количественное содержание макро- и микроэлементов в организме человека. 7) Элементы – органогены.

Периодический закон – фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс.

Формулировка периодического закона, данная Д.И. Менделеевым, гласила: свойства химических элементов находятся в периодической зависимости от атомных масс этих элементов. Современная формулировка гласит: свойства химических элементов находятся в периодической зависимости от заряда ядра этих элементов. Такое уточнение потребовалось, поскольку к моменту установления Менделеевым периодического закона еще не было известно о строении атома. После выяснения строения атома и установления закономерностей размещения электронов по электронным уровням стало ясно, что периодическая повторяемость свойств элементов связана с повторяемостью строения электронных оболочек.

Периодическая система – графическое изображение периодического закона, суть которого в том, то с увеличением заряда ядра периодически повторяется строение электронной оболочки атомов, а значит будут периодически изменяться свойства химических элементов и их соединений.

Свойство элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер и атомов.

Энергия ионизации – разновидность энергии связи, представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическим (основном) состоянии на бесконечность.

Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей. От энергии ионизации атома существенно зависят также восстановительные свойства соответствующего простого вещества. Энергия ионизации элементов измеряется в электронвольт на 1 атом или джоуль на моль.

Сродство к электрону – энергия, которая выделяется или поглощается вследствие присоединения электрона к изолированному атому, находящемуся в газообразном состоянии. Выражается в килоджоулях на моль (кДж/моль) или электрон-вольтах (эВ). Оно зависит от тех же факторов, что и энергия ионизации.

Электроотрицательность – относительная способность атомов элемента притягивать к себе электроны в любом окружении. Она напрямую зависит от радиуса или размера атома. Чем радиус меньше, тем сильнее он будет притягивать электроны от другого атома. Поэтому, чем выше и правее стоит элемент в периодической таблице, тем меньше у него радиус и больше электроотрицательность. По существу, электроотрицательность определяет вид химической связи.

Химическое соединение – сложное вещество, состоящее из химически связанных атомов двух или более элементов. Делятся на классы: неорганические и органические.

Органические соединения – класс химических соединений, в состав которых входит углерод (есть исключения). Основные группы органических соединений: углеводороды, спирты, альдегиды, кетоны, карбоновые кислоты, амиды, амины.

Неорганические соединения – химические соединение, которое не является органическим, то есть оно не содержит углерода. Неорганические соединения не имеют характерного для органических соединений углеродного скелета. Делятся на простые и сложные (оксиды, основания, кислоты, соли).

Химический элемент – совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающих с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свое латинское название химический символ, состоящий з одной или пары латинских букв, регламентированные ИЮПАК и приводятся в таблице Периодической системы элементов Менделеева.

В составе живого вещества найдено более 70 элементов.

Биогенные элементы – элементы, необходимые организму для построения и жизнедеятельности клеток и органов. Существует несколько классификаций биогенных элементов:

А) По их функциональной роли:

1) органогены, в организме их 97% (C, H, O, N, P, S);

2) элементы электролитного фона (Na, K, Ca, Mg, Cl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) микроэлементы – биологически активные атомы центров ферментов, гормонов (переходные металлы).

Б) По концентрации элементов в организме:

1) макроэлементы – содержание превышает 0,01% от массы тела (Fe, Zn, I, Cu, Mn, Cr, F, Mo, Co, Ni, B, V, Si, Al, Ti, Sr, Se, Rb, Li)

2) микроэлементы – содержание составляет величину порядка 0,01%. Большинство содержится в основном в тканях печени. Некоторые микроэлементы проявляют сродство к определенным тканям (йод – к щитовидной железе, фтор – к эмали зубов, цинк – к поджелудочной железе, молибден – к почкам). (Ca, Mg, Na, K, P,Cl, S).

3) ультрамикроэлементы – содержание меньше чем 10-5%. Данные о количестве и биологическом роли многих элементов не выявлены до конца.

• Fe — Накапливается в эритроцитах, селезенке, печени

• К — Накапливается в сердце, скелетных и гладких мышцах, плазме крови, нервной ткани, почках.

• Mn — органы-депо: кости, печень, гипофиз.

• P — органы-депо: кости, белковые вещества.

• Ca — органы-депо: кости, кровь, зубы.

• Zn — органы-депо: печень, простата, сетчатка.

• I — Органы-депо: щитовидная железа.

• Si — органы-депо: печень, волосы, хрусталик глаза.

• Mg — органы-депо: биологические жидкости, печень

• Cu — органы-депо: кости, печень, желчный пузырь

• S — органы-депо: соединительная ткань

• Ni — органы-депо: легкие, печень, почки, поджелудочная железа, плазма крови.

Биологическая роль макро- и микроэлементов:

• Fe — участвует в кроветворении, дыхании, иммунобиологических и окислительно-восстановительных реакциях. При недостатке развивается анемия.

• К — участвует в мочеиспускании, возникновении потенциала действия, поддержание осмотического давления, синтез белков.

• Mn — Влияет на развитие скелета, участвует в реакциях иммунитета, в кроветворении и тканевом дыхании.

• P — сочетает последовательные нуклеотиды в нитях ДНК и РНК. АТФ, служит главным энергетическим носителем клеток. Формирует клеточные мембраны. Прочность костей определяется наличие в них фосфатов.

• Ca — участвует в возникновении нервного возбуждения, в свертывающей функций крови, обеспечивает осмотическое давление крови.

• Co — Ткани в которых обычно скапливается микроэлемент: кровь, селезенка, кость, яичники, печень, гипофиз. Стимулирует кроветворение, участвует в синтезе белков и углеводном обмене.

• Zn — участвует в кроветворении, участвует в деятельности желез внутренней секреции.

• I — Нужен для нормального функционирования щитовидной железы, влияет на умственные способности.

• Si — способствует синтезу коллагена и образования хрящевой ткани.

• Mg — участвует в различных реакциях метаболизма: синтез ферментов, белков др. кофермент синтеза витаминов группы В.

• Cu — Влияет на синтез гемоглобина, эритроцитов, белков, кофермент синтеза витаминов группы В.

• S — Влияет на состояние кожных покровов.

• Ag — Антимикробная активность

• Ni — стимулирует синтез аминокислот в клетке, повышает активность пепсина, нормализует содержание гемоглобина, улучшает генерацию белков плазмы.

Элементы-органогены — химические элементы, составляющие основу органических соединений (C, H, O, N, S, P). В биологии органогенными называют четыре элемента, которые вместе составляют около 96-98% массы живых клеток (C, H, O, N).

Карбон — важнейший химический элемент для органических соединений. Органические соединения по определению — это соединения углерода. Он четырехвалентен и способен формировать прочные ковалентные связи между собой.

Роль водорода в органических соединениях в основном заключается в связывании тех электронов атомов углерода, которые не участвуют в образовании межкарбонових связей в составе полимеров. Однако, водород участвует в образовании нековалентных водородных связей.

Вместе с карбоном и водородом, кислород входит в многих органических соединений в составе таких функциональных групп как гидроксильная, карбонильная, карбоксильная и тому подобное.

Азот зачастую входит в состав органических веществ в форме аминогруппы или гетероцикла. Он является обязательным химическим элементом в составе. Азот входит также в состав азотистых оснований, остатки которых содержатся в нуклеозиды и нуклеотиды.

Серы входит в состав некоторых аминокислот, в частности метионина и цистеина. В составе белков между атомами серы остатков цистеина устанавливаются дисульфидные связи, обеспечивающие формирование третичной структуры.

Фосфатные группы, то есть остатки ортофосфорной кислоты входят в состав таких органических веществ как нуклеотиды, нуклеиновые кислоты, фосфолипиды, фосфопротеины.

Биогенные s- и p- элементы. Связь между электронным строением s- и p- элементов и их биологическими функциями. Соединения s- и p- в медицине.

Биохимическая роль и медико-биологическое значение биогенных s- элементов. (водород, литий, натрий, калий, кальций, магний).

Биохимическая роль и медико-биологическое значение биогенных p- элементов. (углерод, азот, фосфор, кислород, сера, хлор, бром, йод)

Биогенные d- элементы. Связь между электронным строение d- элементов и их биологическими функциями. Роль d- элементов в комплексообразовании в биологических системах.

В составе живого вещества найдено более 70 элементов.

Биогенные элементы – элементы, необходимые организму для построения и жизнедеятельности клеток и органов.

В организме человека больше всего s- и p- элементов.

Незаменимые макроэлементы s-: H, Na, Mg, K, Ca

Незаменимые макроэлементы p-: C, N, O, P, S, Cl, I.

Примесные s- и p- элементы: Li, B, F.

Концентрирование химического элемента – повышенное содержание элемента в организме по сравнению с окружающей средой.

Основу всех живых систем составляют шесть элементов-органогенов: углерод, водород, кислород, азот, фосфор, сера. Их содержание в организме достигает 97%.

Биогенные элементы подразделяют на три блока: s-, p-, d-.

Основные сведения:


  1. S-элементы – это химические элементы, в атомах которых заполняются электронами, s-подуровень внешнего уровня.

  2. Строение их валентного уровня ns 1-2 .

  3. Небольшой заряд ядра, большой размер атома способствуют тому, что атомы s-элементов – типичные активные металлы; показателем этого является невысокий потенциал их ионизации. Химия таких элементов является в основном ионной, за исключением лития и бериллия, которые обладают более сильным поляризующим действием.

  4. Имеют относительно большие радиусы атомов и ионов.

  5. Легко отдают валентные электроны.

  6. Являются сильными восстановителями. Восстановительные свойства возрастают закономерно с увеличением радиуса атома. Восстановительная способность увеличивается по группе сверху вниз.

Биологическая роль:

Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений.

Натрий


  1. Относится к жизненно необходимым элементам, постоянно содержится в организме, участвует в обмене веществ.

  2. Содержание натрия в организме человека массой 70 кг – около 60г.

  3. В организме человека натрий находится в виде растворимых солей: хлорида, фосфата, гидрокарбоната.

  4. Распределен по всему организму (в сыворотке крови, в спинномозговой жидкости, в глазной жидкости, в пищеварительных соках, в желчи, в почках, в коже, в костной ткани, в легких, в мозге).

  5. Является основным внеклеточным ионом.

  6. Ионы натрия играют важную роль в обеспечении постоянства внутренней среды человеческого организма, участвует в поддержании постоянного осмотического давления биожидкости.

  7. Ионы натрия участвуют в регуляции водного обмена и влияют на работу ферментов.

  8. Вместе с ионами калия, магния, кальция, хлора ионы натрия участвуют в передаче нервных импульсов.

  9. При изменении содержания натрия в организме происходят нарушения нервной, сердечно-сосудистой систем, гладких и скелетных мышц.

Калий


  1. Содержание калия организме человека массой 70 кг – около 160г.

  2. В организме человека калий находится в крови, почках, сердце, костной ткани, мозге.

  3. Калий является основным внутриклеточным ионом.

  4. Ионы калия играют важную роль в физиологических процессах – сокращении мышц, нормальном функционировании сердца, проведении нервных импульсов, обменных реакциях.

  5. Являются важными активаторами внутриклеточных ферментов.

Магний


  1. Общее содержание в организме 20г.

  2. Находится в дентине и эмали зубов, костной ткани.

  3. Накапливается в поджелудочной железе, скелетных мышцах, почках, мозге, печени и сердце.

  4. Является внутриклеточным катионом.

Кальций


  1. Относится к макроэлементам.

  2. Содержится в каждой клетке человеческого организма. Основная масса – в костной и зубной тканях.

  3. Ионы кальция принимают активное участие в передаче нервных импульсов, сокращении мышц, регулировании работы сердечной мышцы, механизмах свертывания крови.

P-элементы

Общая характеристика:


  1. Относят 30 элементов периодической системы.

  2. В периодах слева направо атомные и ионные радиусы p-элементов по мере увеличения заряда ядра уменьшаются, энергия ионизации и сродство к электрону в целом возрастают, электроотрицательность увеличивается, окислительная активность элементных веществ и неметаллические свойства усиливаются.

  3. В группах радиусы атомов и однотипных ионов увеличиваются. Энергия ионизации при переходе от 2р-элементам уменьшается.

  4. С увеличением порядкового номера р-элементов в группе неметаллические свойства ослабевают, а металлически усиливаются.

Биологическая роль:

Бор


  1. Относится к примесным микроэлементам.

  2. Концентрируется в легких, щитовидкой железе, селезенке, печени, мозге, почках, сердце.

  3. Входит в состав зубов и костей.

  4. Избыток бора вреден для организма человека (уменьшается активность адреналина).

Алюминий


  1. Относится к примесным элементам.

  2. Концентрируется в сыворотке крови, легких, печени, костях, почках, ногтях, волосах, входит в структуру нервных оболочек мозга человека.

  3. Суточная норма – 47мг.

  4. Влияет на развитие эпителиальной и соединительной тканей, на регенерацию костных тканей, на обмен фосфора.

  5. Оказывает воздействие на ферментативные процессы.

  6. Избыток тормозит синтез гемоглобина.

Таллий


  1. Относится к весьма токсичным элементам.

Углерод


  1. Относится к макроэлементам.

  2. Входит с состав всех тканей в форме белков, жиров, углеродов, витаминов, гормонов.

  3. С биологической точки зрения углерод является органогеном номер 1.

Кремний


  1. Относится к примесным микроэлементам.

  2. Находится в печени, надпочечниках. Волосах, хрусталике.

  3. С нарушением кремния связывают возникновение гипертонии, ревматизма, язвы, малокровия.

Германий


  1. Относится к микроэлементам.

  2. Соединения германия усиливают кроветворения в костном мозге.

  3. Соединения германия малотоксичные.

D-элементы

Общая характеристика:


  1. Относятся 32 элемента периодической системы.

  2. Входят в 4-7 большие периоды. Особенностью элементов этих периодов является непропорционально медленное возрастание атомного радиуса с возрастанием числа электронов.

  3. Важный свойством является переменная валентность и разнообразие степеней окисления. Возможность существования d-элементов в разных степенях окисления определяет широкий диапазон окислительно-восстановительных свойств элементов.

  4. D-элементы в промежуточной степени окисления проявляют амфотерные свойства.

  5. В организме обеспечивают запуск большинства биохимических процессов, обеспечивающих нормальную жизнедеятельность.

Биологическая роль:

Цинк


  1. Микроэлемент

  2. В организме человека 1,8г.

  3. Больше всего цинка в мышцах и костях, а также в плазме крови, печени, эритроцитах.

  4. Образует бионеорганический комплекс с инсулином – гормоном, регулирующим содержание сахара в крови.

  5. Содержится в мясных и молочных продуктах, яицах.

Кадмий


  1. Микроэлемент.

  2. В организме человека – 50мг.

  3. Примесный элемент.

  4. Находится в почках, печени, легких, поджелудочной железе.

Ртуть


  1. Микроэлемент.

  2. Примесный элемент.

  3. В организме человека – 13мг.

  4. Находится в жировой и мышечной тканях.

  5. Хроническая интоксикация кадмием и ртутью может нарушить минерализацию костей.

Хром


  1. Микроэлемент.

  2. В организме человека – 6г.

  3. Металлический хром нетоксичен, а соединения опасны для здоровья. Они вызывают раздражения кожи, что приводит к дерматитам.

Молибден


  1. Микроэлемент.

  2. Относится к металлам жизни, является одним из важнейших биоэлементов.

  3. Избыточное содержание вызывает снижение прочности костей – остеопороз.

  4. Входит с состав различных ферментов.

  5. Малотоксичный.

Вольфрам


  1. Микроэлемент.

  2. Роль не изучена.

  3. Анионная форма вольфрама легко абсорбируется в желудочно-кишечном тракте.

Чем характеризуются атомы металлов с точки зрения строения атома?

Ответ или решение 2

Атомы металлов имеют на внешнем энергетическом уровне небольшое число электронов ( 1-3) и в химических реакциях легко их отдают. Преимущественно это элементы I – II группы периодической системы.

Металлические свойства проявляют и атомы в которых заполняется электронами d- или f – подуровни предыдущего энергетического уровня ( элементы III – VIII б группы периодической системы, лантаноиды и актиноиды).

Металлами являются и элементы III – VIII а группы периодической системы, расположены в 5 – 7 периоде. У них внешние электроны находятся далеко от ядра атома. Эти атомы легче отдают электроны внешнего уровня нежели присоединяют, металлические свойства усиливаются.

Если в таблице Д.И. Менделеева провести диагональ от элемента №5 бора (В), к элементу №85 астату (At), то под этой диагональю разместятся металлы. Исключение из этого правила составляют элементы восьмой группы (кроме благородных газов) и побочных подгрупп, которые также являются металлами.

Электронное строение атомов металлов

Химические свойства металлов обусловлены строением их атомов. Так, на внешнем энергетическом уровне металлов, расположены обычно от одного до трех электронов. Следовательно, атому металла, вступающему в химическую реакцию, легче отдать собственные валентные электроны, нежели принять чужие.

Поэтому металлы, в ходе химической реакции:

  • легко переходят в позитивно заряженные ионы (катионы), с зарядом (+1), (+2) или (+3) соответственно;
  • являются восстановителями;
  • образуют химические соединения с неметаллами (галогенами, кислородом и серой), которые выступают в роли акцепторов электронов, то есть являются окислителями.

Химическая активность металлов

Некоторые металлы способны вытеснять другие металлы из соединений. Химическую активность металлов иллюстрирует таблица «Ряд напряжений металлов», которую можно найти в любом химическом справочнике.

Воспользоваться этой таблицей просто — следует лишь помнить несколько правил:

  • самые активные металлы расположены слева, причем слева – направо активность металлов ослабевает;
  • металлы, расположенные слева от водорода, вытесняют его из разбавленных кислот (исключение – азотная кислота HNO3);
  • каждый металл ряда, не разлагающий воду, вытесняет все следующие за ним металлы из растворов их солей.

Вопрос. Периодический закон с точки зрения строения атома. Причина периодичности.

1867г – таблица Менделеева

Авторская формулировка(1869г): свойства элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомной массы элементов.

Современная формулировка: свойства простых веществ, а также форма и свойства элементов находятся в периодической зависимости от величин заряда числа атома.

Менделеев располагал элементы не только по принципу возрастания атомных масс, но и учитывал свойства элементов.

Каждому элементу присвоен порядковый (атомный) номер.

Порядковый номер совпадает с числом элементарных положительных электронных зарядов ядра атома этого элемента.

Порядковый номер частично равен положительному заряду ядра его атома.

Периодически повтор.след свойства элементов:

1.Металличность(легко отдают электроны)

2.Энергия ионизации атома – кол-во энергии, кот. Необходимо затратить отрыва электрона от атома.

3.Неметалличность(сильно притягивают электроны)

4.Сродство к электрону – кол-во энергии, которая выделяется при присоединении электрона к атому.

5.Электроотрицательность – способность атома притягивать электроны.

Причины: периодичное повторение св-в эл-ов объясняется периодическим повторением кол-во электронов по внешним электронам слое.

Вопрос. s-, p-, d-, f-элементы, положение в периодической системе. Основные химические свойства

Вопрос.Природа химической связи. Метод валентных связей.

(Хим. Связь имеет электронную природу, образ. за счет электронов)

Природа химической связи едина: взаимодействие атомов в молекуле (ионах, кристаллах) осуществляется под действием электрических сил между электронами и ядрами атомов.

(у S и P элементов за счет электронов внешнего слоя, у d элементов за счет электронов внешнего слоя и предвнешнего)

В формировании химической связи принимают участие валентные электроны. Это электроны внешних электронных слоев, которые наименее прочно связаны с ядром атома. Несмотря на единую электрическую природу связывания атомов существуют различные типы связей, формируемые по разным механизмам. К основным типам связи относятся ковалентная (полярная и неполярная) и ионная связи. Разновидностями этих типов являются донорно-акцепторная (координационная), водородная и другие. Между атомами металлов в конденсированной фазе действует металлическая связь. Метод базируется на двух положениях: 1 ) ковалентная химическая связь образуется парой электронов с антипараллельными спинами, пренадлежащей двум атомам; 2 ) ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Химический элемент с точки зрения строения атома

Из-за блокировщика рекламы некоторые функции на сайте могут работать некорректно! Пожалуйста, отключите блокировщик рекламы на этом сайте.

Вам нужны консультации по Химии по Skype?
Если да, подайте заявку. Стоимость договорная.
Чтобы закрыть это окно, нажмите «Нет».

Основы химии

Данный курс предназначен для тех, кто желает более подробно познакомиться с такой замечательной наукой, как химия и углубить свои знания.

Мы рекомендуем его учителям химии средней школы, репетиторам химии и ученикам профильных классов.

Курс состоит из разделов, каждый из которых посвящён определённой теме. Разделы рекомендуется изучать по порядку. Пока не все темы Вы сможете найти здесь, так как курс только начал пополняться материалами. В разделах особое внимание уделяется спорным теоретическим и методологическим моментам, а также распространённым заблуждениям некоторых авторов.

© Копирование материалов курса разрешено исключительно с указанием ссылки на соответствующий раздел и указанием автора.

С уважением, Кузьмин Владимир Александрович.

Просто о химии. Атом.

Химия — наука о веществах. Эта наука исследует строение, свойства и превращения веществ.

Для того что бы понимать химические процессы необходимо подробно знать строение атома.

Атом – (от греческого atomos — неделимый) наименьшая частица химического элемента, носитель его свойств.

Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов.

Ядро атома состоит из двух видов частиц: нейтронов, не имеющих заряда и положительно заряженных протонов, которые и определяют положительный заряд ядра.

Вокруг ядра атома вращаются отрицательно заряженные электроны, образующие электронное облако – совокупность всех электронов в атоме. О том, что такое электронное облако и электронное строение атома будет отдельная тема.

Число протонов равно числу электронов, поэтому атом – электронейтральная частица. Вспомните из школьного курса химии формулу: A = Z + N

Масса протонов и нейтронов приблизительно одинакова и равна

1,67 * 10^(-27) кг. Масса электрона, в свою очередь, примерно равна 9,11 * 10^(-31) кг, поэтому основная масса атома сосредоточена в ядре.

Рассмотрим основные параметры, характеризующие атом

Атомный номер (порядковый номер) Z – номер химического элемента, определяемый по периодической системе элементов. Атомный номер элемента показывает количество протонов и электронов в элементе.

Атомная масса, а точнее относительная атомная масса – масса атома, выраженная в атомных единицах массы (а.е.м.). Она определяется как отношение массы данного атома к 1/12 массы нейтрального изотопа углерода 12С.

К понятию атомная масса близко понятие массовое число А – сумма чисел протонов и нейтронов (нуклонов) атома. Но численно оно равно только для изотопа углерода 12С, для остальных элементов массовое число – целочисленное значение, а относительная атомная масса нет. Например: массовое число изотопа водорода равно 1, а относительная атомная масса 1,00794 (см картинку)

А что такое изотопы?

Изотоп — атомы одного элемента, имеющие одинаковый заряд ядра (следовательно, и количество электронов), но различное число нейтронов (следовательно, различные массовые числа). Например, элемент водород имеет семь изотопов, но наиболее всем известны и чаще всего встречаются из них три: 1Н протий, 2Н дейтерий и 3Н тритий.

Электронная формула (конфигурация) – порядок заполнения электронов по различным электронным оболочкам.

Думаю, что на это стоит остановиться, ибо все в одном посте не охватишь.

Следующие посты будут посвящены электронному строению атома, истории открытия атома и развитию представлений о его строении.

1.2. Строение атома. Периодическая система химических элементов д.И. Менделеева.

Периодичность свойств элементов и

Между положением элемента в периодической системе и строением атома этого элемента существует взаимно-однозначное соответствие, т.е. координаты элемента в периодической системе определяют строение атома и наоборот, по строению атома можно определить его положение в периодической системе.

Для каждого элемента в периодической системе существует пять характеристик: порядковый номер Z, атомная масса А, номер периода, номер группы и подгруппа (главная или побочная). С точки зрения строения атома порядковый номер показывает число протонов в ядре. Атомная масса даёт сумму масс всех частиц атома: протонов, нейтронов и электронов. Учитывая, что масса электрона мала по сравнению с массой протона и нейтрона округлённо можно определять атомную массу, как сумму масс протонов и нейтронов. Отсюда легко найти число нейтронов в ядре как разность атомной массы и числа протонов: А – Z. Атом электронейтрален, поэтому число электронов в электронной оболочке равно числу протонов в ядре, т.е. порядковому номеру элемента – Z.

Номер периода показывает число энергетических электронных уровней в атоме.

Номер группы показывает общее число «валентных» электронов, т.е. электронов, которые могут принимать участие в образовании химических связей. Положение элемента в подгруппе (главной или побочной) определяется распределением «валентных» электронов: если элемент расположен в главной подгруппе, то все его валентные электроны находятся на последнем энергетическом электронном уровне, а все предыдущие уровни заполнены. Если элемент расположен в побочной подгруппе, то все остальные валентные электроны находятся на предпоследнем энергетическом уровне.

Существует форма записи энергетических состояний электронов в атоме, которая называется электронной формулой. В ней главное квантовое число обозначается цифрой (1, 2, 3, 4…), орбитальное – буквой (s-, p-, d-, f-), а число электронов на каждом подуровне показывается индексом вверху, например, электронная формула атома азота Фактически электронная формула есть распределение электронов по двум квантовым числам. Если же требуется дать распределение электронов по четырём квантовым числам, используют запись по энергетическим ячейкам или атомным орбиталям. Атомной орбиталью называется совокупность энергетических состояний электронов, характеризующихся определённым набором трёх квантовых чисел: главного, орбитального и магнитного. Например, для атома азота электронно-графическая формула имеет вид:

Основным или нормальным состоянием атома называется состояние, отвечающее минимальному запасу энергии, т.е. электроны занимают энергетические состояния с меньшей энергией. С небольшой затратой энергии (например, при воздействии светового излучения) электроны могут переходить в пределах одного энергетического уровня на более высокий энергетический подуровень. Атом переходит в «возбуждённое» состояние, например, для атома бериллия:

Строение внешних электронных уровней определяет формы и свойства его соединений. Например, для атома № 22 Ti имеем электронную формулу ,это d – элемент.

Ti имеет всего четыре валентных электрона, поэтому высшая степень окисления +4.

Оксид, отвечающий этой степени окисления – TiO2, имеет амфотерный характер (с преобладанием основных свойств), поэтому соответствующий ему гидроксид может быть записан в двух формах: Ti(OH)4 или H2TiO3, соответственно он образует соли при взаимодействии и с кислотами и со щелочами:

Ti(OH)4 + 2Н2SO4Ti (SO4)2 + 4H2O и H2TiO3 + 2NaOH Na2TiO3 + 2H2O

Ti(OH)4 + 2НCl Ti Сl2 + 4H2O и H2TiO3 + K2O K2TiO3 + H2O

Низшая степень окисления Ti (как у большинства d–элементов) +2. Оксид TiО имеет основный характер, гидроксид Ti(OH)2 образует соли только с кислотами, например, TiSO4 или TiCl2.

Для характеристики любого элемента необходимо выполнить следующие действия:

Определить состав атома, т.е. указать число протонов, нейтронов и электронов.

Дать электронную формулу атома и распределение электронов внешних энергетических уровней по атомным орбиталям.

Определить высшую и низшую степень окисления и привести формулы и названия соединений, отвечающих данным степеням окисления.

Например, элемент № 34 Se.

Состав атома: (34 p, 46 n) 34 e.

Электронная формула: 1s 2 2s 2 2р 6 3s 2 3p 6 3d 10 4s 2 4p 4 – это p–элемент.

Высшая степень окисления +6, оксид селена (VI) SeO3 – кислотный, гидроксид H2SeO4 — селеновая кислота, соли: Na2SeO4 — cеленат натрия, K2SeO4 — селенат калия.

Низшая степень окисления -2, H2S — селеноводород, K2Se — селенид калия, Na2Se — селенид натрия.

Свойства элементов, определяемые строением внешних электронных слоев атомов, закономерно изменяются по периодам и группам периодической системы. При этом сходство электронных структур порождает сходство свойств элементов–аналогов, но не тождественность этих свойств. Поэтому при переходе от одного элемента к другому в группах и подгруппах наблюдается не простое повторение свойств, а их более или менее ярко выраженное закономерное изменение. В частности, химическое поведение атомов элементов проявляется в их способности терять и приобретать электроны, т.е. в их способности к окислению и восстановлению. Количественной мерой способности атома терять электроны является потенциал ионизации(Еи), а мерой способности их приобретатьсродство к электрону (Ес). Характер изменения этих величин при переходе от одного периода к другому повторяется, причем в основе этих изменений лежит изменение электронной конфигурации атома. Так, завершенные электронные слои, соответствующие атомам инертных газов, обнаруживают повышенную устойчивость и повышенное значение потенциалов ионизации в пределах периода. В то же время наименьшими значениями потенциала ионизации обладают s–элементы первой группы (Li, Na, K, Rb, Cs).

Электроотрицательность является мерой способности атома данного элемента оттягивать на себя электроны по сравнению с атомами других элементов в соединении. Согласно одному из определений (Малликен), электроотрицательность атома может быть выражена как полусумма его энергии ионизации и сродства к электрону:=и + Ес).

В периодах наблюдается общая тенденция роста электроотрицательности элемента, а в подгруппах – ее снижение. Наименьшими значениями электроотрицательности обладают s–элементы I группы, а наибольшими – р–элементы VII группы.

Электроотрицательность одного и того же элемента может меняться в зависимости от валентного состояния, гибридизации, степени окисления и пр. Электроотрицательность существенно влияет на характер изменения свойств соединений элементов. Так, например, серная кислота проявляет более сильные кислотные свойства, чем ее химический аналог – селеновая кислота, поскольку в последней центральный атом селена из-за меньшей по сравнению с атомом серы электроотрицательности не так сильно поляризует связи Н–О в кислоте, что и означает ослабление кислотности.

Н–ОO

Se

Другой пример: гидроксид хрома (II) и гидроксид хрома (VI). Гидроксид хрома (II), Cr(OH)2, проявляет основные свойства в отличие от гидроксида хрома (VI), Н2CrO4, поскольку степень окисления хрома +2 обусловливает слабость кулоновского взаимодействия Cr 2+ с гидроксид-ионом и легкость отщепления этого иона, т.е. проявление основных свойств. В то же время высокая степень окисления хрома +6 в гидроксиде хрома (VI) обусловливает сильное кулоновское притяжение между гидроксид-ионом и центральным атомом хрома и невозможность диссоциации по связи –OH. С другой стороны, высокая степень окисления хрома в гидроксиде хрома (VI) усиливает его способность притягивать электроны, т.е. электроотрицательность, что обусловливает высокую степень поляризации связей Н–О в этом соединении, являясь предпосылкой увеличения кислотности.

Н–О+6 O

Cr

Следующей важной характеристикой атомов является их радиусы. В периодах радиусы атомов металлов с ростом порядкового номера элемента уменьшаются, т.к. с ростом порядкового номера элемента в пределах периода возрастает заряд ядра, а следовательно и уравновешивающий его общий заряд электронов; как следствие, возрастает и кулоновское притяжение электронов, что приводит в конечном счете к уменьшению расстояния между ними и ядром. Наиболее рельефно снижение радиуса наблюдается у элементов малых периодов, у которых происходит заполнение электронами внешнего энергетического уровня.

В больших периодах у d- и f-элементов наблюдается более плавное снижение радиусов при увеличении заряда ядра атома. В пределах каждой подгруппы элементов радиусы атомов, как правило, увеличиваются сверху вниз, так как такое смещение означает переход на более высокий энергетический уровень.

Влияние радиусов ионов элементов на свойства образуемых ими соединений можно проиллюстрировать на примере возрастания кислотности галогенводородных кислот в газовой фазе: HI > HBr > HCl > HF.

В этих соединениях сила кулоновского притяжения зависит от кулоновского радиуса, представляющего собой сумму радиусов ионов галогена и водорода. Очевидно, что с ростом радиуса галогена сила кулоновского притяжения снижается, что делает отщепление протона более выгодным.

Примеры решения типовых задач.

Пример 1. Составление электронных и электронно-графических формул атомов элементов, молекулярных формул соответствующих оксидов и гидроксидов по номеру элемента в периодической системе.

Задача. Постройте электронные и электронно-графические формулы атомов элементов № 35 и № 73 и приведите молекулярные формулы образуемых ими оксидов, гидроксидов и солей.

Решение. Электронные формулы показывают распределение электронов в атоме по энергетическим уровням и подуровням. Электронная формула обозначается символами , где– главное квантовое число,– орбитальное квантовое число (вместо него указывают соответствующее буквенное обозначение –),– число электронов в данном подуровне. В основе последовательности заполнения многоэлектронного атома лежит принцип наименьшей энергии, согласно которому в первую очередь заполняются орбитали с минимальным уровнем энергии. Реализация этого принципа осуществляется на основе правил Клечковского, и, согласно первому правилу, атомные орбитали заполняются электронами в порядке увеличения суммы; согласно второму – при равенстве суммыдля различных энергетических уровней в первую очередь заполняются орбитали, имеющие меньшее значение главного квантового числап.

Приложение этих правил к многоэлектронному атому приводит к следующей последовательности заполнения его энергетических уровней и подуровней:

1s2s2p3s3p4s3d4p5s4d5p6s(5d 1 )4f

5d6p7s (6d 3-2 )5f6d7p.

Положение элементов в периодической системе дает для него следующие характеристики: порядковый номер элемента, номер периода, номер группы, подгруппа (главная или побочная). Каждая из этих характеристик однозначно связана со строением атома элемента.

Порядковый номер элемента указывает на число электронов, номер периода показывает на число энергетических уровней. Номер группы для элементов главных подгрупп указывает на число электронов на внешнем энергетическом уровне и на высшую положительную степень окисления. Для элементов побочных подгрупп номер группы указывает только на высшую положительную степень окисления, число же электронов на внешнем энергетическом уровне может быть 1 или 2.

В связи с выше сказанным, электронные формулы для элементов №35 (Br) и №73 (Та) имеют следующий вид:

35Br 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5

73Ta 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 3 6s 2

Электронная структура атома может быть изображена также графическим образом с помощью энергетических, или квантовых ячеек, которые являются схематическим изображением атомных орбиталей (АО).

аждая такая ячейка обозначается в виде прямоугольника, а электроны в этих ячейках обозначаются стрелками. В каждой квантовой ячейке может быть не более двух электронов с противоположными спинами:

Согласно правилу Хунда орбитали данного подуровня заполняются сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами.

Графическая схема для указанных элементов имеет следующий вид:

Br находится в VIIA группе, т.к. все валентные электроны у него находятся на внешнем энергетическом уровне. Следовательно, Br – неметалл, оксид брома (VII) Br2O7 проявляет свойства кислотного оксида, соответствующий ему гидроксид – бромная кислота HBrO4, соль пербромат натрия NaBrO4. Так как на внешнем энергетическом уровне 7 электронов, то приобретая один электрон, бром имеет низкую степень окисления –1. Соединения, соответствующие :HBr, KBr.

Тантал – d-элемент, поэтому он может проявлять переменную степень окисления и образует несколько оксидов и гидроксидов, причем характер их зависит от степени окисления. Для тантала наиболее типичны соединения, в которых их степень окисления равна +5. Оксид тантала (V) проявляет свойства кислотного оксида, его формула Та2О5, соответствующий ему гидроксид танталовая кислота НТаО3, соль КТаО3. Низшая степень окисления для тантала +2. Оксид и гидроксид Та(II) проявляет основные свойства. Соединения, соответствующие : ТаО, Та(ОН)2, Та(NO3)2.

Пример 2. Определение местонахождения элемента в периодической системе химических элементов по его электронной формуле.

Задача. Определите элемент, его местонахождение в периодической системе, если его электронная формула имеет следующий вид: …5s 2 5p 2 .

Решение. Определить элемент и найти его местоположение в периодической системе можно двумя путями.

Первый путь: определить число электронов, а оно укажет на порядковый номер элемента. Электронная формула, соответствующая этому элементу, имеет следующий вид:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 2 ,

т.к. число электронов равно 50, следовательно, это олово. Оно находится в 5 периоде, четвертой группе, главной подгруппе.

Второй путь: этот элемент находится в 5 периоде, т.к. имеет строение внешнего энергетического уровня 5s 2 5р 2 . На внешнем энергетическом уровне находится 4 электрона, следовательно, он находится в IVA группе. Элемент, соответствующий этим координатам – олово.

Пример 3. Составление электронных формул атомов элементов на основе значений квантовых чисел электронов наружного слоя.

Решение. Состояние каждого электрона наружного энергетического уровня определяется следующим набором квантовых чисел:

Главное квантовое число равно четырем, следовательно, электроны находятся на 4-м энергетическом уровне. Орбитальное квантовое число определяет форму орбитали. Если l=1, то орбиталь называется р-орбиталью, следовательно, три электрона находятся на р-подуровне 4-го энергетического уровня. Магнитное квантовое число ml (-1, 0, +1) определяет ориентацию орбитали в пространстве. На всех трех р-орбиталях (px, py, pz) находится по одному электрону (ms=+1/2). Наружный энергетический уровень атома этого элемента содержит пять электронов: …4s 2 4p 3 . Такую электронную конфигурацию наружного энергетического уровня имеет атом мышьяка As, электронная формула которого следующая: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 .

Пример 4. Составление электронных формул вещества на основе значения порядкового номера элемента.

Задача. Составьте электронные формулы атома элемента с порядковым номером 40. Приведите распределение электронов атома этого элемента по квантовым (энергетическим) ячейкам.

Решение. Элемент с порядковым номером 40 – цирконий Zr. Соответственно, на электронных уровнях и соответствующих им подуровнях (орбиталях) необходимо разместить 40 электронов.

В соответствии с правилами заполнения многоэлектронного атома начинаем размещение электронов на нем с самого низкого энергетического уровня, n=1. Ему соответствует единственное значение орбитального числа l=0, определяющего сферическую форму орбитали (s-подуровень). Магнитное квантовое число, определяемое значением l (-l, . 0,…+l) также принимает для этого случая единственное значение ml=0, что демонстрирует наличие единственной орбитали (s-орбитали) на этом подуровне. Согласно правилу Паули на одной орбитали (и соответственно, на s-подуровне) может быт размещено максимум два электрона со спиновыми квантовыми числами ms=+1/2 и ms=-1/2. Поскольку рассматриваемый уровень (n=1) и соответствующий ему s-подуровень после размещения на нем двух электронов исчерпан (1s 2 ), переходим к следующему энергетическому уровню n=2. Этому уровню соответствуют два подуровня, характеризующегося значениями l=0 и l=1. Как указывалось выше, значение l=0 определяет s-подуровень, на котором может быть размещено максимум два электрона 2s 2 . Следующий подуровень, определяемый значением l=1, называется р-подуровнем. Ему соответствует гантелеобразная форма орбитали (p-орбиталь). Для l=1 магнитное квантовое число принимает три значения -1, 0 и +1. Эти три значения определяют наличие на р-подуровне трех орбиталей, каждая из которых может принять максимум два электрона. Это означает, что на р-подуровне (l=1) можно разместить максимум шесть электронов (2р 6 ). Итак, на двух первых энергетических уровнях (n=1, n=2) мы расположим 10 электронов: 1s 2 2s 2 2p 6 . Переходим к следующему уровню, n=3. На этом уровне находятся три подуровня, которым соответствуют значения l: 0, 1, 2 (l=0,1…..n-1). 3s-подуровень (l=0) этого уровня как любой s-подуровень содержит максимум 2 электрона (3s 2 ). 3р-подуровень (l=1) – 6 электронов (3р 6 ). При дальнейшем заполнении многоэлектронного атома возникает дилемма: куда размещать следующие электроны — на 3d (l=2) или 4s (l=0) подуровень? Здесь мы руководствуемся первым правилом Клечковского, согласно которому в первую очередь заполняется подуровень, которому соответствует меньшее значение суммы n+l. Для 3d-подуровня эта сумма равна 3+2=5, а для 4s она равна 4+0=4. Поэтому заполняем 4s-подуровень 4s 2 . Далее необходимо решить дилемму, на каком подуровне размещать следующие электроны: 3d или 4р. Обоим этим подуровням соответствует одинаковое значение n+l=5. Здесь мы руководствуемся вторым правилом Клечковского, согласно которому при равенстве суммы n+l в первую очередь заполняется подуровень, которому соответствует меньшее значение n. Поэтому заполняет 3d-подуровень. Любой d-подуровень (l=2) содержит 5 орбиталей, которым соответствует набор значений m: -2, -1, 0, +1, +2. Максимальное число электронов, размещенных на этом подуровне, равно 5·2=10 (3d 10 ). Таким образом, мы пришли к ситуации, когда полностью исчерпаны первые три уровня (n=1, n=2, n=3) и заполнен s-подуровень 4-го уровня: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 . При заполнении использовано 30 электронов, остается еще 10. Следующий подуровень, подлежащий заполнению, — 4р-подуровень (но не 5s – см. второе правило Клечковского). Ему соответствуют 3р-орбитали, на которых размещаем шесть электронов. Затем заполняем 5s-подуровень (два электрона) и приходим к ситуации 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 . Остающиеся два электрона размещаем (руководствуясь первым правилом Клечковского) на 4d-подуровне и приходим к электронной формуле атома циркония: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 . Ей соответствует графическая электронная формула

Читайте также:  Задание 2 оцените ситуации с точки зрения педагогической этики
Источники:
  • http://topuch.ru/zadanie-1-1-periodicheskij-zakon-d-i-mendeleeva-ego-sovremenna/index.html
  • http://vashurok.ru/questions/chem-harakterizuyutsya-atomi-metallov-s-tochki-zreniya-stroeniya-atoma
  • http://cyberpedia.su/17x88f1.html
  • http://dist-tutor.info/course/view.php?id=2530&item=11023
  • http://pikabu.ru/story/prosto_o_khimii_atom_4199508
  • http://studfiles.net/preview/600151/page:4/