Меню Рубрики

Химические связи в молекулах с точки зрения квантовой механики

При сближении атомы, начиная с некоторых расстояний, будут взаимодействовать между собой. Волновые функции наиболее удаленных от ядра электронов начинают перекрываться, что приводит к появлению сил притяжения или отталкивания. Под действием сил притяжения атомы будут объединяться в молекулы. Молекула – наименьшая частица вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями.

В самом общем виде причина возникновения химической связи состоит в понижении электронной энергии образующейся молекулы по сравнению с суммой электронных энергий исходных атомов. Электронная энергия молекулы определяется взаимодействием каждого электрона с каждым электроном, каждого ядра с каждым ядром и каждого электрона с каждым ядром. Хотя все электронные взаимодействия в молекулах носят обычный электростатический характер, т. е. по своей природе являются кулоновскими, но вследствие волновых свойств электронов представляют собой взаимодействия не точечных зарядов, а электронных облаков. Это обстоятельство автоматически учитывается при решении уравнения Шрёдингера. Электронная энергия молекулы, так же как и электронная энергия атомов, имеет дискретные значения. Однако полная энергия молекулы, в отличие от полной энергии атома, включает в себя не только электронную энергию, но и энергии колебательного движения ядер и вращательного движения молекулы относительно ее центра масс, которые также являются квантованными. Это необходимо учитывать при анализе молекулярных спектров излучения и поглощения.

Атомы в молекулах и кристаллах удерживаются почти полностью силами электростатического притяжения между отрицательно заряженными электронами и положительно заряженными ядрами. Роль сил магнитного происхождения весьма незначительна, а гравитационными силами вообще можно пренебречь. Взаимодействие атомов, возникающее в результате частичного или полного обобществления электронов и сопровождающееся уменьшением полной энергии молекул и кристаллов по сравнению с полной энергией их атомов в свободном состоянии, когда атомы удалены друг от друга на бесконечные расстояния, называется химической связью, а разность этих двух энергий –энергией химической связи.

Различают следующие основные типы химических связей:

1) ионная, или гетерополярная;

2) ковалентная, или гомеополярная;

К основным типам межмолекулярных связей относят связь Ван дер Ваальса и водородную связь. Кратко рассмотрим каждый из названных типов связей.

Ионная связь обусловлена электростатическим взаимодействием противоположно заряженных ионов. К числу молекул с ионной связью можно отнести хлориды калия, натрия, окисел магния и прочее, а также кристаллы с аналогичным химическим составом. За счет электростатического притяжения ионы сближаются, их внешние электронные оболочки начинают перекрываться (рис. 1), что приводит к возникновению сил отталкивания.

Рис. 1. Область перекрытия ионов K+ и Cl-, аппроксимированных сферами резко ограниченных радиусов в молекуле KCl

Отталкивание объясняется взаимодействием электронных оболочек ионов с учетом принципа Паули. Этот тип отталкивания является основным во всех молекулах, кроме самых легких (например, H2). Отталкивание связано также с электростатическим взаимодействием ядер, но для всех молекул, за исключением самых легких, оно не является основным. На некотором расстоянии между ядрами силы притяжения уравновешиваются силами отталкивания, при этом энергия молекулы принимает минимальное значение, что соответствует устойчивому состоянию молекулы.

Квантово-механическое рассмотрение химической связи.

Ковалентная связь

Получить ответ, удовлетворительно объясняющий природу и механизм химической связи, оказалось воз­можным только после появления квантово-механической теории строения атома, так как при образовании связи проявляются специфические для микрообъектов свойства электронов.

С точки зрения квантовой механики при образовании химической связи между атомами их электронные орбитали перекрываются. В результате в межъядерной облас­ти создается повышенная электронная плотность по сравнению с электронной плот­ностью в изолированных атомах, которая как бы стягивает ядра в единую устойчивую систему (рис.1, а). В силу осо­бенностей электронных со­стояний между ядрами может происходить не повышение электронной плотности, а, наоборот, уменьшение ее до нуля. В этом случае химическая связь не образуется (рис. 1, б). Причины ус­тойчивости многоатомной частицы заключаются в по­нижении энергии ее образования. Рассмотрим, например, изменение энергии при сближении двух атомов водорода, находящихся на бесконечно большом расстоянии (r = ∞) друг от друга. Потенциальную энергию Е при г = ∞ примем равной нулю.

Рис.1 Взаимодействие между атомами водорода, приводящее к образованию связи (а) и не приводящее к образованию связи (б)

Система состоит из двух протонов и двух электронов. Между частицами возникает два типа сил: силы оттал­кивания между электронами двух атомов и протонами атомов и силы притяжения между протонами и электро­нами.

Если спины электронов антипараллельны, то при сбли­жении атомов происходит уменьшение потенциальной энергии системы и при r= rсилы притяжения становят­ся равными силам отталкивания, а энергия системы при­нимает свое минимальное значение. При дальнейшем сближении атомов силы отталкивания будут больше сил притяжения и потенциальная энергия системы начинает резко возрастать. Графическая зависимость потенциаль­ной энергии системы из двух атомов водорода от межъядерного расстояния, называемая ПОТЕНЦИАЛЬ­НОЙ КРИВОЙ, представлена на рис.2.

Таким образом, при сближении двух атомов водорода с электронами, обладающими антипараллельными спи­нами, на расстояние rсистема имеет минимальную энер­гию и, следовательно, в этом случае образуется устойчи­вая химическая связь (рис. 2, а).

В случае, когда спины па­раллельны, квантово-механические расчеты по урав­нению Шредингера показы­вают, что потенциальная энергия системы при любом расстоянии между сближающимися атомами больше, чем сумма энергий двух отдельных атомов и образование химической связи невозможно. Потенциальная кривая в данном случае выглядит иначе (рис. 2, б).

В заключение отметим, что в рамках этой модели ядро атома не закрепляется неподвижно в точке О, а постоянно колеблется. В реальной же двухъядерной молекуле ко­леблются оба ядра, достигая определенных предельных состояний. Молекулы все время как бы растягиваются и сжимаются. При этом го — среднее расстояние между яд­рами, а Еmin— минимальная энергия молекулы с учетом колебания ядер.

Рис 2. потенциальная кривая

Количественные характеристики химической связи

Химическая связь характеризуется рядом параметров. Чаще всего говорят об ее энергии и длине. Если молекула состоит из трех и более атомов, то к перечисленным пара­метрам добавляют еще один — валентные углы.

ЭНЕРГИЕЙ СВЯЗИ называют ту энергию, которую необходимо затратить для ее разрыва. При этом молекула должна находиться в основном (невозбужденном) состо­янии и при 0 о К. Эта величина определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Единица измерения энергии связи — кДж/моль. Например, энергия связи Н—Н в молекуле водорода равна 436 кДж/моль. Если в молекуле несколь­ко одинаковых связей, то, очевидно, для разрушения каждой следующей потребуется различная энергия и в таком случае говорят о средней энергии связи.

Величина энергии химических связей в большинстве соединений колеблется в пределах 100-1000кДж/моль. Энергия связи в ряду однотипных молекул постепенно изменяется. Например, энергия связи Н-Г в ряду гало-геноводородов HF, HC1, HBr, HI уменьшается с 565,7 кДж/моль у HF, до 294,7 кДж/моль у HI. Зная энергию связей в молекуле, можно судить также о ее ре­акционной способности и производить различные термо­химические расчеты.

ДЛИНОЙ СВЯЗИ называют среднее расстояние между ядрами, отвечающее минимуму энергии системы. На рис. 2. длина связи между атомами водорода измеря­ется отрезком гo. Современными методами исследования структуры веществ можно определить длины связей с точ­ностью, которую допускает принцип неопределенности.

В ряду аналогичных по составу молекул длины связей также изменяются закономерно. Например, в ряду HF, НС1, HBr, HI длина связи увеличивается с возрастанием размера атома и соответственно равна 0,091; 0,127; 0,141; 0,160нм. Вмолекулах, близких по химической природе, одного гомологического ряда, длины связей между ядрами элементов мало различаются и могут считаться практи­чески постоянными (например, длины связей С — С в пре­дельных углеводородах и т. д.).

Кроме того, на длину связи влияет ее кратность, ко­торая определяется числом электронных пар, связываю­щих два атома. С увеличением кратности связей происходит их упрочнение, межъядерные расстояния уменьша­ются. Так, длина связи С—С равна 0,154 нм, С = С — 0,135 нм и С ≡ С — 0,121 нм.

ВАЛЕНТНЫЕ УГЛЫ. Это углы между связями в молекуле. Их схематически можно представить как углы между прямыми линиями, соединяющими ядра атомов в молекуле. Эти воображаемые прямые, проведенные через два ядра, называют линиями связи. Величины валентных углов зависят от природы атомов и характера связи. Простые двухатомные молекулы всегда имеют линейную структуру. Трехатомные и более сложные молекулы могут обладать различными конфигурациями. Например, в мо­лекуле воды угол между линиями связи Н—О равен 104,5°, а в сходной молекуле сероводорода валентный угол между связями составляет 92°.

Все рассмотренные параметры химической связи можно определить экспериментально при исследовании молекулярных спектров веществ. Их также, в боль­шинстве случаев, можно найти в справочнике.

Для описания и расчета ковалентной связи широко используются два метода — метод валентных связей (МВС) и метод молекулярных орбиталей (ММО).

Метод валентных связей

Основные положения метода валентных связей, ба­зирующиеся на квантово-механической теории строения атома, были разработаны Вальтером Гейтлером и Фритцем Лондоном в 1928 году. В последующем значительный вклад в развитие этого метода внесли Лайнус Полинг и Джон Слейтер. С точки зрения этого метода:

1. В образовании связи участвуют только электроны внешней электронной оболочки атома (валентные элек­троны).

2. Химическая связь образуется двумя валентными электронами различных атомов с антипараллельными спи­нами. При этом происходит перекрывание электронных орбиталей и между атомами появляется область с повышенной электронной плотностью, обусловливающая связь между ядрами атомов. Таким образом, в основе МВС лежит образование двухэлектронной, двухцентровой связи.

3. Химическая связь осуществляется в том направле­нии, в котором обеспечивается наибольшее перекрывание атомных орбиталей.

4. Из нескольких связей данного атома наиболее проч­ной будет связь, которая получилась в результате наибольшего перекрывания атомных орбиталей.

5. При образовании молекул электронная структура (кроме внешней электронной оболочки) и химическая индивидуальность каждого атома в основном сохраняются.

Известны два механизма образования общих электрон­ных пар: обменный и донорно-акцепторный.

ОБМЕННЫЙ МЕХАНИЗМ объясняет образование ковалентной химической связи участием в ней двух элек­тронов с антипараллельными спинами (по одному от каж­дого атома).

ДОНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ предпола­гает образование ковалентной химической связи за счет неподеленной пары (не участвовавшей ранее в образова­нии связи) одного из связывающихся атомов и вакантной орбитали другого атома. Например, при сближении молекулы аммиака и иона водорода неподеленная пара электронов атома азота занимает ва­кантную орбиталь иона водорода. Это приводит к образо­ванию общей электронной пары и, следовательно, к об­разованию химической связи между ними. Первый атом называют ДОНОРОМ, второй — АКЦЕПТОРОМ. Вещества, в которых есть химические связи донорно-акцепторного происхожде­ния, широко распространены среди неорганических со­единений. Большая часть таких соединений относится к так называемым комплексным соединениям.

Метод молекулярных орбиталей (ММО)

Метод валентных связей в большинстве случаев позво­ляет получать правдивую информацию о структуре и свойствах различных молекул и ионов. Однако имеется ряд экспериментальных фактов, которые не могут быть объяснены на основании этого метода. Так, не удается объяснить магнитные свойства ряда веществ (О2, В2 и др.) и существование молекул с нечетным числом электронов (NО и др.).

Читайте также:  Классификация активов банка с точки зрения риска

Эти и другие факты способствовали созданию иного квантово-механического метода описания ковалентной химической связи — МЕТОДА МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ (ММО). Основы ММО разработаны Робертом Малликеном и Фридрихом Хундом (1928-1930 гг.).

В методе МО подход к рассмотрению структуры моле­кулы близок к тому, которым мы пользовались при рас­смотрении строения атома. Метод основан на следующих положениях:

Молекула рассматривается как единая система ядер и электронов, а не как совокупность атомов, сохраняю­щих некоторую индивидуальность. Она образуется, если энергия такой системы ниже, чем энергия исходных атомов.

Подобно тому как электроны в атомах располагают­ся на атомных орбиталях (АО), общие электроны в моле­куле располагаются на молекулярных орбиталях (МО). Совокупность молекулярных орбиталей, занятых электронами, определяет электронную конфигурацию моле­кулы.

Существует несколько приближенных методов расчета молекулярных орбиталей. Наиболее простой называется методом линейной комбинации атомных орбиталей (МЛК АО). С точки зрения МЛК АО молекулярную орбиталь рассматривают как линейную комбинациюсоответствующих атомных орбиталеи в изолированных атомах, ядра которых входят в состав молекулы.

4. В образовании молекулярной орбитали участвуют только те АО, которые имеют близкую по величине энергию и приблизительно одинаковую симметрию относи­тельно оси связи.

5. При взаимодействии двух атомных орбиталеи в результате их линейной комбинации образуются две молекулярных орбитали с большей и меньшей энергиями, чемэнергия исходных АО. В результате сложения АО образуется МО с повышенной межъядерной электронной плотностью (меньшей энергией). Такую орбиталь называютсвязывающей. В случае вычитания АО образуется МО с пониженной межъядерной электронной плотностью
(большей энергией), называемая разрыхляющей. Сумма энергии образовавшихся МО в первом приближении равна сумме энергий АО, из которых они образова­лись.

6. Число всех образовавшихся МО равно сумме АО ис­ходных атомов. При этом число связывающих и разрыхляющих МО одинаково у гомоядерных молекул (содержащих одинаковые ядра) или равно числу участвующих в
образовании связи АО того атома, у которого их меньше.

7. Молекулярные орбитали по аналогии с атомными обозначаются греческими буквами s, p, d. Каждая МОхарактеризуется набором трех квантовых чисел. В соот­ветствии с принципом Паули на молекулярной орбитали, как и на атомной, не может быть больше двух электронов.

8. Все имеющиеся в молекуле электроны распределя­ются по МО с соблюдением тех же принципов и правил, что и при заполнении электронами орбиталеи в отдельных атомах (принцип наименьшей энергии, принцип Паули, правило Хунда). Электрон, находящийся на связывающей орбитали, увеличивает энергию связи, а электрон, находящийся на разрыхляющей орбитали, ее уменьшает.

9. Стабильность молекулы определяется разностью числа связывающих и разрыхляющих электронов. Если эта разность равна нулю, частица не образуется. Для того, чтобы можно было сопоставить число связей по МВС и
ММО, используют понятие порядок связи (кратность). По­рядок связи (N) равен разности между числом электронов, находящихся на связывающих орбиталях, и числомэлектронов на разрыхляющих орбиталях, деленной на 2.
Он может принимать целые или дробные положительныезначения.

Сравнение методов валентных связей и молекулярных орбиталей

Вначале отметим, что методы валентных связей и мо­лекулярных орбиталей являются приближенными. Каж­дый метод имеет свои преимущества и недостатки.

Метод МО позволяет описывать и прогнозировать свой­ства молекулы, зависящие от состояния в них отдельных электронов, такие как устойчивость и неустойчивость. Так, например, с точки зрения ММО, устойчив молеку­лярный ион Щ и, наоборот, неустойчивы Не2, Ве2. С по­зиций метода ВС это необъяснимо.

В рамках метода МО хорошо объясняются и прогнози­руются магнитные свойства молекул, также необъясни­мые с позиций МВС. Однако в рассмотренном простейшем варианте ММО не способен передавать насыщаемость ко-валентной связи (т. е. состав молекулы). Для МВС этот недостаток менее характерен. Расчет геометрической структуры и определение важнейших параметров моле­кулы с помощью ММО является трудной математической задачей, для решения которой необходимы мощные ЭВМ.

Из сказанного выше можно сделать вывод о том, что наиболее общим и последовательным методом для описа­ния строения молекул является метод молекулярных ор­биталей. Тем не менее, метод валентных связей дает воз­можность, основываясь на небольшом числе предположе­ний, связывать между собой в стройную систему важ­нейшие опытные данные, и применение этого метода во многих случаях более наглядно и вполне оправдано. Спор о том, какой из методов вернее, беспредметен. Правильнее считать, что они взаимно дополняют друг друга.

Свойства ковалентной связи

Ковалентная связь обладает рядом важных свойств. К их числу относятся: насыщаемость и направленность.

НАСЫЩАЕМОСТЬ — характерное свойство ковалент­ной связи. Она проявляется в способности атомов образо­вывать ограниченное число ковалентных связей. Это свя­зано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной хими­ческой связи. Данное свойство определяет состав молеку­лярных химических соединений. Так, при взаимодейст­вии атомов водорода образуется молекула Н2, а не Н3. С точки зрения МВС третий атом водорода не может присо­единиться, так как спин его электрона окажется парал­лельным спину одного из спаренных электронов в молеку­ле. Способность к образованию того или иного числа кова­лентных связей у атомов различных элементов ограни­чивается получением максимального числа неспаренных валентных электронов.

НАПРАВЛЕННОСТЬ — свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечиваю­щей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее проч­ная химическая связь.

Полярность связей и молекул

В молекулах положительные заряды ядер скомпенси­рованы отрицательными зарядами электронов. Однако по­ложительные и отрицательные заряды могут быть про­странственно разделены. Предположим, что молекула со­стоит из атомов разных элементов (НС1, СО и т. д.). В этом случае электроны смещены к атому с большей электроотрицательностью и центры тяжести положительных и отрицательных зарядов не совпадают, образуется электри­ческий диполь — система из двух равных по величине и противоположных по знаку зарядов q, находящихся на расстоянии l, называемом длиной диполя. Длина дипо­ля — векторная величина. Ее направление условно приня­то от отрицательного заряда к положительному. Такие мо­лекулы называют полярными молекулами или диполями.

Полярность молекулы тем больше, чем больше абсо­лютная величина заряда и длина диполя. Мерой поляр­ности служит произведение q . l, называемое электрическим моментом диполя μ: μ = q . l.

Единицей измерения μ служит Дебай (Д). 1 Д = 3,3 . 10 -30 Кл . м.

В молекулах, состоящих из двух одинаковых атомов μ = 0. Их называют неполярными. Если такая частица попадает в электрическое поле, то в ней под действием поля произойдет поляризация — смещение центров тя­жести положительных и отрицательных зарядов. В час­тице возникает электрический момент диполя, называе­мый наведенным диполем.

Дипольный момент двухатомной молекулы АВ можно отождествить с дипольным моментом связи А—В в ней. Если общая электронная пара смещена к одному из атомов, то электрический момент диполя связи не равен нулю. Связь в этом случае называется полярной ковалентной связью. Если электронная пара симметрично расположена относительно атомов, то связь называется неполярной.

В многоатомной молекуле определенный электричес­кий момент диполя можно приписать каждой связи. Тогда электрический момент диполя молекулы может быть представлен как векторная сумма электрических мо­ментов диполя отдельных связей. Существование или от­сутствие момента диполя у молекулы связано с ее сим­метрией. Молекулы, имеющие симметричное строение, неполярны (μ = 0). К ним относятся двухатомные моле­кулы с одинаковыми атомами (Н2, С12 и др.), молекула бензола, молекулы с полярными связями BF3, A1F3, CO2, ВеС12 и др.

Электрический момент диполя молекулы является важным молекулярным параметром. Знание величины μ может указать на геометрическую структуру молекулы. Так, например, полярность молекулы воды указывает на ее угловую структуру, а отсутствие момента диполя СО2 — на ее линейность.

Ионная связь

Предельным случаем ковалентной полярной связи яв­ляется ионная связь. Если электроотрицательности атомов различаются очень сильно (например, атомов щелочных металлов и галогенов), то при их сближении валентные электроны одного атома полностью переходят на второй атом. В результате этого перехода оба атома становятся ионами и принимают электронную структуру ближайшего благородного газа. Например, при взаимо­действии атомов натрия и хлора, они превращаются в ионы Na + и Сl — , между которыми возникает электроста­тическое притяжение. Ионная связь может быть описа­на в рамках методов ВС и МО, однако обычно ее рас­сматривают с помощью классических законов электро­статики.

Молекулы, в которых существует в чистом виде ион­ная связь, встречаются в парообразном состоянии ве­щества. Ионные кристаллы состоят из бесконечных рядов чередующихся положительных и отрицательных ионов, связанных электростатическими силами. При растворении ионных кристаллов или их плавлении в раствор или расплав переходят положительные и отрицательные ионы.

Следует отметить, что ионные связи обладают большой прочностью, поэтому для разрушения ионных кристаллов необходимо затратить большую энергию. Этим объясня­ется тот факт, что ионные соединения имеют высокие тем­пературы плавления.

В отличие от ковалентной связи ионная не обладает свойствами насыщаемости и направленности. Причина этого состоит в том, что электрическое поле, создаваемое ионами, имеет сферическую симметрию и действует оди­наково на все ионы. Поэтому количество ионов, окру­жающих данный ион, и их пространственное расположе­ние определяются только величинами зарядов ионов и их размерами.

Рассматривая ионную связь, необходимо иметь в виду, что при электроста­тическом взаимодействии между ионами происходит их деформация, называе­мая поляризацией. На рис. 2.1, а изображены два взаимодействующие электростатически нейтральных иона и сохраняющие идеально сферическую форму. На рис. 2.1, б показана поляризация ионов, которая при­водит к уменьшению эффективного расстояния между центрами положительных и отрицательных зарядов. Чем больше поляризация ионов, тем меньше степень ионности связи, т. е. тем больше ковалентный характер связи между ними. В кристаллах поляризация оказывается не­высокой, т. к. ионы симметрично окружены ионами про­тивоположного знака и ион подвергается одинаковому воздействию во всех направлениях.

Рис 2.1. Поляризация ионов

Металлическая связь

Особенностью всех металлов является их высокая электропроводность и теплопроводность. Эти свойства свидетельствуют о том, что валентные электроны способ­ны свободно перемещаться в пределах кристаллической решетки. Простейшая модель строения металла выглядит так: в узлах кристаллической решетки находятся поло­жительные ионы металла, которые прочно связаны элек­тронным газом. Валентные электроны одновременно на­ходятся на всех доступных орбиталях соседних атомов, осуществляя между ними связь. Такая нелокализованная связь называется металлической. Эта связь является до­статочно прочной, т. к. большинство металлов имеет вы­сокую температуру плавления. Указанная модель объяс­няет также свойственные металлам ковкость (способность расплющиваться в тонкие листы) и пластичность (способ­ность вытягиваться в проволоку). Эти свойства обуслов­лены тем, что подвижный электронный газ позволяет плоскостям, состоящим из положительных ионов, сколь­зить одна по другой.

Читайте также:  Происхождение языка с точки зрения шахматова

Более строгую интерпретацию металлической связи позволяет дать метод молекулярных орбиталей. Напо­мним, что при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали: связывающая и разрыхляющая. Происходит расщепление энергетическо­го уровня на два. Если взаимодействуют одновременно че­тыре атома металла, образуются четыре молекулярные ор­битали. При одновременном взаимодействии N частиц, со­держащихся в кристалле, образуется N молекулярных орбиталей, причем величина N может достигать огромных значений, сравнимых с числом Авогадро (6 • 10 23 ). Моле­кулярные орбитали, образованные атомными орбиталями одного подуровня, находятся настолько близко, что прак­тически сливаются, образуя определенную энергетичес­кую зону.

Рассмотрим в качестве примера электронную структуру кристалла лития. Прежде всего, вспомним электронную конфигурацию молекулы Li2, образовавшуюся издвух изолированных атомов. При взаимо­действии N ls-орбиталей в кристалле лития образуется внутренняя энергетическая зона, полностью занятая электронами. Эти электроны не принимают участия в ме­таллической связи. Атом лития имеет один валентный электрон на 2s-орбитали. При взаимодействии N атомов лития 2s -орбитали, на которых находятся валентные электроны, образуют валентную зону. Нижняя часть ва­лентной зоны, образованная связывающими 2s -орбиталями, заполнена электронами, которые перемещаются по кристаллу хаотически. Достаточно близко расположен­ная верхняя часть, образованная разрыхляющими 2s-opбиталями, электронами не занята. При наложении даже незначительной разности потенциалов электроны возбуж­даются и переходят в верхнюю часть валентной зоны, где перемещаются в направлении поля, перенося электри­ческие заряды через весь кристалл. Верхнюю часть ва­лентной зоны называют зоной проводимости. Таким образом, у металлов валентная зона сливается с зоной проводимости. Это связано с тем, что число валентных электронов в атомах металлов относительно невелико и всегда недостаточно для заполнения всех валентных орбиталей.

В атомах неметаллов число валентных электронов ве­лико и валентная зона кристалла практически запол­нена электронами. Зона проводимости в кристаллах, со­держащих атомы или ионы неметаллов, образуется за счет орбиталей, имеющих намного большую энергию по сравнению с валентными орбиталями, т. е. принадле­жащих к следующему электронному уровню. В таких кристаллах между валентной зоной и зоной про­водимости находится запрещенная зона. Электроны не могут перемещаться вдоль кристалла, даже если к нему приложить высокое напря­жение — такие вещества на­зываются изоляторами или диэлектриками.

Промежуточное положе­ние между проводниками электрического тока и диэлектриками занимают полупроводники (кремний, германий,многие сложные вещества). Особенность полупроводников состоит в том, что у них сравнительно небольшая ширина запрещенной зоны. По­этому даже при незначительном нагревании электроны переходят в зону проводимости и вещество проводит электрический ток. В некоторых случаях переход элек­тронов в зону проводимости происходит при освещении — возникает фотопроводимость.

В диэлектриках ширина запрещенной зоны более 3 эВ, а в полупроводниках она составляет 0,1—3 эВ.

Под действием внешнего электрического поля на диэ­лектрик часть его электронов, получив достаточное ко­личество энергии, может переброситься из полностью за­полненной валентной зоны в зону проводимости и участ­вовать в переносе электричества. При этом в валентной зоне появится эквивалентное число так называемых дырок (вакантных мест), имеющих положительный заряд. Они также могут участвовать в переносе тока. Такая прово­димость называется электронно-дырочной.

Последнее изменение этой страницы: 2016-12-29; Нарушение авторского права страницы

Квантово-механическое рассмотрение химической связи.

Ковалентная связь

Получить ответ, удовлетворительно объясняющий природу и механизм химической связи, оказалось воз­можным только после появления квантово-механической теории строения атома, так как при образовании связи проявляются специфические для микрообъектов свойства электронов.

С точки зрения квантовой механики при образовании химической связи между атомами их электронные орбитали перекрываются. В результате в межъядерной облас­ти создается повышенная электронная плотность по сравнению с электронной плот­ностью в изолированных атомах, которая как бы стягивает ядра в единую устойчивую систему (рис.1, а). В силу осо­бенностей электронных со­стояний между ядрами может происходить не повышение электронной плотности, а, наоборот, уменьшение ее до нуля. В этом случае химическая связь не образуется (рис. 1, б). Причины ус­тойчивости многоатомной частицы заключаются в по­нижении энергии ее образования. Рассмотрим, например, изменение энергии при сближении двух атомов водорода, находящихся на бесконечно большом расстоянии (r = ∞) друг от друга. Потенциальную энергию Е при г = ∞ примем равной нулю.

Рис.1 Взаимодействие между атомами водорода, приводящее к образованию связи (а) и не приводящее к образованию связи (б)

Система состоит из двух протонов и двух электронов. Между частицами возникает два типа сил: силы оттал­кивания между электронами двух атомов и протонами атомов и силы притяжения между протонами и электро­нами.

Если спины электронов антипараллельны, то при сбли­жении атомов происходит уменьшение потенциальной энергии системы и при r= rсилы притяжения становят­ся равными силам отталкивания, а энергия системы при­нимает свое минимальное значение. При дальнейшем сближении атомов силы отталкивания будут больше сил притяжения и потенциальная энергия системы начинает резко возрастать. Графическая зависимость потенциаль­ной энергии системы из двух атомов водорода от межъядерного расстояния, называемая ПОТЕНЦИАЛЬ­НОЙ КРИВОЙ, представлена на рис.2.

Таким образом, при сближении двух атомов водорода с электронами, обладающими антипараллельными спи­нами, на расстояние rсистема имеет минимальную энер­гию и, следовательно, в этом случае образуется устойчи­вая химическая связь (рис. 2, а).

В случае, когда спины па­раллельны, квантово-механические расчеты по урав­нению Шредингера показы­вают, что потенциальная энергия системы при любом расстоянии между сближающимися атомами больше, чем сумма энергий двух отдельных атомов и образование химической связи невозможно. Потенциальная кривая в данном случае выглядит иначе (рис. 2, б).

В заключение отметим, что в рамках этой модели ядро атома не закрепляется неподвижно в точке О, а постоянно колеблется. В реальной же двухъядерной молекуле ко­леблются оба ядра, достигая определенных предельных состояний. Молекулы все время как бы растягиваются и сжимаются. При этом го — среднее расстояние между яд­рами, а Еmin— минимальная энергия молекулы с учетом колебания ядер.

Рис 2. потенциальная кривая

Количественные характеристики химической связи

Химическая связь характеризуется рядом параметров. Чаще всего говорят об ее энергии и длине. Если молекула состоит из трех и более атомов, то к перечисленным пара­метрам добавляют еще один — валентные углы.

ЭНЕРГИЕЙ СВЯЗИ называют ту энергию, которую необходимо затратить для ее разрыва. При этом молекула должна находиться в основном (невозбужденном) состо­янии и при 0 о К. Эта величина определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Единица измерения энергии связи — кДж/моль. Например, энергия связи Н—Н в молекуле водорода равна 436 кДж/моль. Если в молекуле несколь­ко одинаковых связей, то, очевидно, для разрушения каждой следующей потребуется различная энергия и в таком случае говорят о средней энергии связи.

Величина энергии химических связей в большинстве соединений колеблется в пределах 100-1000кДж/моль. Энергия связи в ряду однотипных молекул постепенно изменяется. Например, энергия связи Н-Г в ряду гало-геноводородов HF, HC1, HBr, HI уменьшается с 565,7 кДж/моль у HF, до 294,7 кДж/моль у HI. Зная энергию связей в молекуле, можно судить также о ее ре­акционной способности и производить различные термо­химические расчеты.

ДЛИНОЙ СВЯЗИ называют среднее расстояние между ядрами, отвечающее минимуму энергии системы. На рис. 2. длина связи между атомами водорода измеря­ется отрезком гo. Современными методами исследования структуры веществ можно определить длины связей с точ­ностью, которую допускает принцип неопределенности.

В ряду аналогичных по составу молекул длины связей также изменяются закономерно. Например, в ряду HF, НС1, HBr, HI длина связи увеличивается с возрастанием размера атома и соответственно равна 0,091; 0,127; 0,141; 0,160нм. Вмолекулах, близких по химической природе, одного гомологического ряда, длины связей между ядрами элементов мало различаются и могут считаться практи­чески постоянными (например, длины связей С — С в пре­дельных углеводородах и т. д.).

Кроме того, на длину связи влияет ее кратность, ко­торая определяется числом электронных пар, связываю­щих два атома. С увеличением кратности связей происходит их упрочнение, межъядерные расстояния уменьша­ются. Так, длина связи С—С равна 0,154 нм, С = С — 0,135 нм и С ≡ С — 0,121 нм.

ВАЛЕНТНЫЕ УГЛЫ. Это углы между связями в молекуле. Их схематически можно представить как углы между прямыми линиями, соединяющими ядра атомов в молекуле. Эти воображаемые прямые, проведенные через два ядра, называют линиями связи. Величины валентных углов зависят от природы атомов и характера связи. Простые двухатомные молекулы всегда имеют линейную структуру. Трехатомные и более сложные молекулы могут обладать различными конфигурациями. Например, в мо­лекуле воды угол между линиями связи Н—О равен 104,5°, а в сходной молекуле сероводорода валентный угол между связями составляет 92°.

Все рассмотренные параметры химической связи можно определить экспериментально при исследовании молекулярных спектров веществ. Их также, в боль­шинстве случаев, можно найти в справочнике.

Для описания и расчета ковалентной связи широко используются два метода — метод валентных связей (МВС) и метод молекулярных орбиталей (ММО).

Дата добавления: 2015-11-06 ; просмотров: 1950 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

3.8. Химическая связь и квантовая механика

Существуют два метода интерпретации механизма образования ковалентной связи:

— метод валентных связей (метод ВС),

— метод молекулярных орбиталей (метод МО).

Первый из них (метод ВС) анализирует распределение электронной плотности в молекуле и дает возможность моделировать ее геометрию. Второй (метод МО) акцентирует свое внимание на энергетических аспектах взаимодействия атомов в молекуле.

Оба метода – две стороны одной модели – модели молекулы. Исторически первым из них явился метод ВС. Метод ВС более нагляден, носит скорее описательный характер. Метод МО более «математичен», поскольку предполагает проведение расчетов энергетических уровней и подуровней в молекуле. И те, и другие проблемы решаются сегодня с применением компьютерной техники. Современная химия придает первостепенное значение количественным данным об энергетических состояниях молекул, поэтому метод МО более перспективен, и в настоящее время активно развивается.

3.8.1. Метод валентных связей (метод ВС)

Метод ВС является по сути дела переводом теории Льюиса на язык квантовой механики. Здесь также идет речь об обобщении электронов и образовании общих электронных пар, однако теперь об этом говорится так: при взаимодействии атомов в пространстве образуется некая область, в которой с равной вероятностью можно обнаружить электроны и одного, и другого атомов одновременно. Другими словами, происходит обмен электронами между атомами, при этом оба электрона находятся в поле двух ядер одновременно.

Поскольку за вероятность обнаружения электронов в пространстве «отвечают» атомные орбитали, то факт образования общей электронной пары может быть проиллюстрирован их перекрыванием. Область перекрывания орбиталей характеризуется повышенной электронной плотностью, обеспечивающей связывание между атомами.

В соответствии с принципом Паули спины обобщаемых атомами электронов должны антипараллельными. Очевидно, спаренные валентные электроны атомов не участвуют в этом процессе (однако, они являются главными участниками процесса образования ковалентной связи по механизму).

Читайте также:  Что влияет на зрение ребенка при беременности

Итак, процесс образования химической связи в рамках механического метода ВС интерпретируется как перекрывание орбиталей неспаренных валентных электронов взаимодействующих атомов. Перекрывание орбиталей происходит в направлении, отвечающем максимальной симметрии и максимальной области перекрывания.

Поскольку орбитали обладают определенной геометрической формой, и их перекрывание происходит в заданном направлении, ковалентная связь направленна в пространстве, а молекулы обладают определенной геометрией.

Направленность ковалентной связи получила таким образом свое обоснование (теория Льюиса не могла объяснить это свойство ковалентной связи).

Для того, чтобы определить, какие именно орбитали перекрываются при образовании химической связи между данными атомами, необходимо распределить валентные электроны атомов по квантовым ячейкам и выбрать из них только одиночные (неспаренные).

Число одиночных (неспаренных) валентных электронов атома называют его спиновой валентностью Спиновая валентность позволяет прогнозировать число ковалентных связей, которые может образовать атом данного элемента (его ковалентность ). Для многих элементов спиновая валентность есть величина переменная.

Например, для атомов алюминия и скандия в основном состоянии (т.е. состоянии, отвечающем минимальной энергии атома) спиновая валентность равна 1:

Квантовая механика и химическая связь

Химик Артем Оганов об истории появления квантовой механики, уравнении Шрёдингера и танце электронов

Химия формировалась как эмпирическая наука, основу которой составило понятие о валентности, формировавшееся практически весь XIX век, начиная с закона кратных отношений Дальтона (вообще-то, фамилия правильно произносится Долтон). Начиная с его закона кратных отношений, который определял соотношение атомов в молекуле (то, что мы называем стехиометрией), и с последующих работ таких ученых, как Кекуле, понятие валентности сформировалось в XIX веке. Второй основой систематизации химического знания явилась Периодическая таблица Дмитрия Ивановича Менделеева. Если вдуматься, периодический закон Менделеева и таблица Менделеева являются исключительно смелыми открытиями, пророческими для своего времени. Можно сказать, это самое великое открытие, которое когда-либо сделано или будет сделано в химической науке. Это основа основ.

[post is=»31687″]В 1916 году знаменитыми американскими учеными Гилбертом Льюисом и Ирвингом Ленгмюром были сформулированы первые попытки ― тоже пророческие ― понимания того, что собой представляет валентность и химическая связь. Они предположили, что в химической связи первую скрипку играют неспаренные электроны атомов, когда образуется то, что мы сейчас называем ковалентной химической связью: неспаренные электроны (по одному от каждого атома) взаимодействуют друг с другом, образуя электронную пару, которая обеспечивает химическую связь.

Первая квантово-механическая попытка понимания того, что собой представляет атом, была сделана Нильсом Бором. Но эта попытка была не вполне успешной. Бору удалось корректно рассчитать электронный спектр атома водорода. Но боровская модель была физически неверна, и для других атомов она уже не давала правильных результатов. Согласно Бору, в центре атома было ядро, практически точечный заряд, вокруг которого по круговым орбитам, как планеты вокруг Солнца, двигались электроны. Почему электроны двигались по круговым орбитам, почему они не падали, как вроде бы должно было быть, Бор не знал. Он это просто постулировал. Понять это удалось лишь тогда, когда были заложены основы, дополнительные положения квантовой механики.

В 1925 году великий швейцарский физик Вольфганг Паули формулирует одноименный принцип: в одном состоянии может быть только один электрон. Если вы учтете, что два электрона могут иметь разные спины, то есть они фактически являются все-таки в разных состояниях, то в одном электронном состоянии уже могут находиться два электрона. И это объясняет, почему, например, могут образовываться электронные пары, но никак не электронные тройки, или четверки, или пятерки. Это объяснило многое из того, что люди знали раньше, но не могли понять.

В 1926 году австрийский физик Эрвин Шрёдингер совершает великий прорыв: он формулирует уравнение ― уравнение Шрёдингера, которое является основой квантовой механики. В уравнении Шрёдингера оказывается, что электроны описываются некой волновой функцией. Кстати, его смысл Шрёдингер поначалу сам не понимал. Он был позже прояснен в ходе его дебатов с Нильсом Бором.

В 1927 году великий немецкий физик Вернер Гайденберг (в русской литературе его часто называют Гейзенберг) формулирует принцип неопределенности, который тоже вызвал поначалу очень много споров. С принципом неопределенности до конца своих дней не мог согласиться Эйнштейн. Согласно принципу неопределенности, вы не можете одновременно указать и положение электрона, и его импульс (говоря проще, скорость). Вы не можете построить траекторию движения электрона. То есть то, что Бор говорил о круговой траектории движения электрона вокруг ядра, вообще говоря, является нефизичным с точки зрения квантовой механики. У электронов нет траектории ― у электронов есть лишь некая вероятность находиться в разных точках пространства. Таким образом, правильным описанием электрона в атоме является либо волновая функция, которая описывает все свойства системы, квадратом модуля волновой функции является электронная плотность либо напрямую электронная плотность (плотность распределения электронов, вероятность нахождения электронов в разных точках пространства). Доказано, что эта вероятность достигает максимума на позиции ядра.

Когда была рассчитана электронная структура атома водорода и прочих атомов, выяснилось, что электроны можно описать с помощью орбиталей. Орбитали ― это одноэлектронные волновые функции, то есть волновые функции, которые описывают какое-то конкретное состояние электронной подсистемы. Есть s-орбитали, они обладают физической симметрией. Есть p-орбитали, их распределение имеет гантелеобразную форму. Есть d- и f-орбитали, имеющие более сложную пространственную форму. Этими орбиталями и определяется химическая связь.

В 1927 году немецкие ученые Гайтлер и Лондон сделали еще один шаг дальше, уже зная, что собой представляет атом, его электронная структура и как это может объяснять таблицу Менделеева. Почему она разделена на восемь групп, почему образуются электронные пары, было уже к тому времени понятно. Гайтлер и Лондон представили количественное описание молекулы водорода, молекулы H2, и ее иона, H2 + (H2 с разрядом плюс. ― Прим. ред.). Они обнаружили, что это электронное спаривание можно описать с помощью так называемого обменного эффекта. Обменные взаимодействия ― это следствие квантовой механики в применении к заряженным системам. Это одна из форм электромагнитного взаимодействия, даже электростатического взаимодействия между электронами и ядрами. Возникают они тогда, когда у вас есть неспаренные электроны и их электронные орбитали в значительной степени перекрываются. При взаимодействии двух орбиталей на соседних атомах возникают две молекулярные орбитали, одна из которых характеризуется понижением энергии ― мы ее называем связывающей, а другую орбиталь, которая характеризуется повышением энергии по сравнению с атомной орбиталью, мы называем разрыхляющей.

Если вы ставите электроны только на связывающие орбитали, ваши два атома будут связаны, будет образовываться химическая связь так, как об этом говорил, например, Льюис, так, как химики всегда и подозревали. Но если вы начинаете заселять также разрыхляющую орбиталь, то связь будет ослабляться. Можно посмотреть на молекулу H2, молекулу водорода, где у вас будет две орбитали и два электрона. Два электрона могут полностью заселить связывающую орбиталь, и у вас будет сильная химическая связь. А можно посмотреть, например, на молекулу He2, где у вас две орбитали и четыре электрона. В этом случае вам придется заселить полностью и связывающую, и разрыхляющую орбиталь. Но можно показать (и это было показано работой Гайтлера и Лондона), что разрыхляющая орбиталь в значительно большей степени дестабилизирует молекулу, чем связывающая ее связывает. В результате будет не связывание, а атомы гелия будут друг от друга отталкиваться.

Тем не менее это по-прежнему является неполной правдой. Это является полуправдой, ведь атомы благородных газов, согласно модели Гайтлера и Лондона, должны только отталкиваться. Но мы знаем, что при очень низких температурах благородные газы находятся в жидком состоянии. В жидком состоянии точно есть какое-то связывание. А при дальнейшем понижении температуры они все кристаллизуются, за исключением гелия, но под давлением и гелий становится кристаллическим. Итак, между атомами благородных газов существуют какие-то взаимодействия, которые не вписываются в эту теорию Гайтлера и Лондона.

Объяснение этому было найдено, и опять же замечательным немецким ученым Фрицем Лондоном. Он построил теорию того, что мы называем дисперсионным взаимодействием, также известным как вандерваальсово взаимодействие. К замечательному голландскому ученому Ван-дер-Ваальсу это взаимодействие почти не имеет отношения. Ван-дер-Ваальс сформулировал уравнение состояния неидеальных газов. Из уравнения состояния неидеального газа следовало, что есть какой-то член, который можно описать, если предположить взаимодействие между атомами, убывающее как шестая степень расстояния между атомами, то есть R -6 .

Природа состоит в следующем. У вас есть электронные облака двух атомов, усредненные по времени. Но электроны соседних атомов чувствуют друг друга. Если в данный момент времени вы помещаете электрон этого атома в некую точку, то электрон другого атома будет коррелирован с ним по положению. Он не будет находиться там в силу отталкивания, а будет стараться находиться как можно дальше. Если один электрон находится в межатомном пространстве, то электрон другого атома будет стараться уйти в противоположную сторону. Будет своего рода электронный танец: электроны будут друг с другом скоррелированы. За счет электронного танца на атоме будут мгновенные диполи, электрические диполи от положительного ядра к отрицательному сгустку электронного поля. Они будут взаимодействовать друг с другом, и, как показал Лондон, их результирующее взаимодействие будет притягивающим. И это приводит к эффекту, который мы знаем как дисперсионное взаимодействие. Это один из самых важных случаев вандерваальсовых взаимодействий.

С помощью квантовой механики удалось дать определение и расчетные методы для предсказаний, для расчетов таких свойств, как атомные радиусы. Это те свойства, которые до того эмпирически определялись для электроотрицательности атомов, атомной поляризуемости. Практически все релевантные для химии свойства атомов можно теперь рассчитать с помощью квантово-механического расчета.

Великая революция в квантовой механике, которая также отразилась на нашем понимании химической связи, была совершена в середине 1960-х годов американским физиком австрийского происхождения Уолтером Коном, который вместе с коллегами сформулировал теорию функционала плотности. Это революционная переформулировка квантовой механики, которая показывает, что для описания многих свойств квантовой системы, такой как атом, или молекула, или кристалл, даже необязательно знать волновую функцию. Можно ее вообще не учитывать, а оперировать только лишь с электронной плотностью. Электронная плотность, в отличие от волновой функции, является экспериментально измеримой. Это функция всего лишь трех координат ― X, Y, Z. На самом деле электронная плотность ― это именно то, что определяется на рентгенодифракционных экспериментах. Когда мы определяем кристаллическую структуру материалов, мы определяем на самом деле не столько положение атомов, сколько распределение электронной плотности, пики которого ассоциируются с позициями атомов.

Источники:
  • http://infopedia.su/15x1dbf.html
  • http://helpiks.org/5-97545.html
  • http://studfiles.net/preview/2214646/page:17/
  • http://surfingbird.ru/surf/kvantovaya-mehanika-i-himicheskaya-svyaz--1kXp013B0