Меню Рубрики

Вода с точки зрения физики кратко

Самое важное, уникальное по свойствам и составу вещество нашей планеты — это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара — она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины — гидрологии.

Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

  1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
  2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
  3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
  4. Подземные воды составляют 100 млн м 3 .

Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

Состав воды и строение молекулы

Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н2О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра — атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды — диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

Основные физические свойства

К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

  1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым — лед, жидким — основная вода при обычных условиях, газообразным — пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
  2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
  3. То, что по структуре оксид водорода — диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
  4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
  5. Температура кипения жидкой воды — 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя — лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
  6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных — поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
  7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение — бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, — это растворенные в ней минералы и другие компоненты.
  8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

Лед — это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

  • высокое давление — 610 Па;
  • температура 0,01 0 С.

Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

Химические свойства

Вода и ее свойства — важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

  1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
  2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
  3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими — наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
  4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
  5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
  6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO4*5H2O), а также обычные гидраты (NaOH*H2O и другие).
  7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
  8. Электролиз. Под действием электрического тока молекула разлагается на составные газы — водород и кислород. Один из способов получения их в лаборатории и промышленности.

С точки зрения теории Льюиса вода — это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода — источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода — источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода — это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород — газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода — это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

Гидрологический цикл воды

Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

Читайте также:  Где можно проверить зрение в гомеле

Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н2О ( 1 Н и 16 О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая ( 2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 0 С.
  2. Кипение наблюдается при 101,42 0 С.
  3. Плотность составляет 1,1059 г/см 3 .
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D2O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды — атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной — она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода — основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго — полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Талая вода и ее применение

Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда — сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

При замораживании воды первой фракцией превращается в лед более тяжелая часть — это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть — чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

  1. Ускорение восстановительных процессов.
  2. Укрепление иммунитета.
  3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
  4. Улучшается дыхание, состояние гортани и слизистых оболочек.
  5. Общее самочувствие человека, активность повышаются.

Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

Энергетика

Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

Структурированная вода — что это?

Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.

Удивительная и странная физика воды

«Нет ничего мягче и слабее воды, но все же нет ничего лучше для обработки твердых и крепких вещей».

Этот парадокс был сформулирован китайским мудрецом Лао-цзы в древнем тексте «Тао-Те-Кинг, или писание о нравственности». Действительно, способность воды омывать, успокаивать и питать контрастирует с неудержимой силой, примером этому является Ниагарский водопад, Большой каньон (он был высечен с течением веков рекой Колорадо) и цунами.

Точно так же парадоксально, что вода и крайне знакома – она составляет около двух третей нашего тела и покрывает три четверти планеты – и крайне загадочна. Хотя вам кажется, что вы ее отлично знаете, многие свойства воды вас очень удивят. А некоторые из них настолько странные, что до сих пор до конца не поняты наукой.

Гонка по нисходящей

Логично мыслящий человек предположит, что горячей воде понадобится больше времени, чтобы остудиться до температуры 0 градусов Цельсия и замерзнуть, чем холодной. Но странно то, что это не всегда правда. В 1963 году танзанийский учащийся по имени Эрасто Мпемба заметил, что в действительности горячая вода замерзает быстрее, чем холодная, когда две массы воды подвергаются воздействию одинаковых условий с температурой ниже нуля.

И никто не знает, почему.

Единственное допущение – это что эффект Мпембы появляется в результате процесса циркуляции тепла под названием конвекция. В контейнере теплая вода поднимается вверх, вытесняя холодную и создавая «утепленный верх». Ученые предполагают, что конвекция может каким-то образом ускорить процесс охлаждения, позволяя более теплой воде замерзать быстрее, чем холодной, несмотря на то, сколько ртутного столбика ей нужно преодолеть до точки замерзания.

Скользкая субстанция

Полтора века научных исследований так и не дали ответ, почему на льду можно упасть. Ученые единогласны в том, что тонкий слой жидкой воды на верху твердого льда становится причиной скользкости, а подвижность жидкости затрудняет движение, даже если лет тонкий. Но нет консенсуса относительного того, почему лед в отличие от большинства твердых веществ имеет такой слой.

Теоретики предполагают, что именно процесс скольжения, то есть контакт со льдом, заставляет таять его поверхность. Другие считают, что жидкий слой существует еще до того, как появляется скользящий предмет, и что он образуется благодаря внутреннему движению молекул поверхности.

Несомненно, вы ищете виновного, лежа на спине и кипя от злости, но, к сожалению, его еще предстоит найти.

Акванавт

На Земле кипящая вода создает тысячи крошечных пузырьков пара. В космосе же создается один гигантский колеблющийся пузырь.

Динамика жидкости столь сложна, что физики не могли предположить, что случится с кипящей водой при нулевой гравитации, пока в 1992 году не был проведен эксперимент на борту космического корабля. После этого физики решили, что упрощенный вид кипения в космосе, очевидно, связан с отсутствием конвекции и подъемной силы – оба этих явления образуются гравитацией. На Земле эти эффекты вызывают бурление, которое мы видим в чайнике.

Парящая жидкость

Когда капля воды падает на поверхность гораздо горячее ее точки кипения, она может гораздо дольше носиться по поверхности, чем вы ожидаете. Это эффект Лейденфроста, и он появляется из-за того, что когда нижний слой капли испаряется, газообразным молекулам воды в этом слое некуда деться, и их присутствие изолирует остаток капли и препятствует ее касанию горячей поверхности. Таким образом, капля существует несколько секунд до того, как полностью испариться.

Необыкновенная оболочка

Порой кажется, что вода отрицает законы физики, удерживаясь от распада, даже несмотря на попытки гравитации или даже давление тяжелых объектов разорвать ее.

Это сила поверхностного натяжения, свойство, которое делает внешний слой массы воды (и некоторых других жидкостей) вести себя, как гибкая оболочка. Поверхностное натяжение возникает из-за того, что молекулы воды слабо связаны друг с другом. Благодаря этому молекулы поверхности испытывают внутреннее усилие от молекул под ними. Вода останется целостной, пока разрывающая ее сила не превзойдет силу этих слабых связей и не прорвет поверхность.

Например, на фото выше скрепка для бумаги лежит на поверхности воды. Хотя металл плотнее воды и потому должен утонуть, поверхностное натяжение не позволяет скрепке прорвать поверхность воды.

Кипящий снег

Когда есть огромная разница температур между водой и внешним воздухом, происходит удивительный эффект – скажем, если вылить кастрюлю кипящей воды (100 градусов Цельсия) в воздух температурой минус 34 градуса Цельсия, то кипящая вода мгновенно превратиться в снег и разлетится.

Объяснение: крайне холодный воздух очень плотный, расстояние между его молекулами такое маленькое, что не остается достаточно места для переноса водяного пара. Кипящая вода, с одной стороны, очень активно испускает пар. Когда ее кидают в воздух, она распадается на капельки, из-за чего появляется еще больше пространства для распространения пара. Это представляет собой проблему. Испускается больше пара, чем может удержать воздух, и потому он распределяется, закрепляясь на микроскопических частицах в воздухе, как сода или кальций, и формирует кристаллы. Именно так и образуются снежинки.

Пустое пространство

Хотя твердое состояние почти любой субстанции плотнее, чем жидкое, так как атомы в твердых телах обычно плотно прилегают друг к другу, это не действует для Н2О. Когда вода замерзает, ее объем увеличивается на почти 8 процентов. Это странное свойство, позволяющее кубам льда и даже громадным айсбергам плавать.

Когда вода охлаждается до точки замерзания, существует меньше энергии, заставляющей молекулы скрепляться, и потому они могут формировать более прочные водородные связи со своими соседями и постепенно закрепляться. Этот же процесс заставляет все жидкости отвердевать. И, как и в других твердых телах, связи между молекулами льда действительно короче и прочнее, чем в жидкой воде; разница в том, что гексагональная структура кристаллов льда оставляет много пустого места, что делает лед в целом менее плотным, чем вода.

Избыток объема можно иногда увидеть в форме выступов на верху кубиков льда в вашей морозильной камере. Эти выступы состоят из избытка воды, выдавленной из кубика замораживающимся (и расширяющимся) льдом. В контейнере вода замерзает от боков и низа к центру и верху, и лед расширяется по направлению к центру.

Читайте также:  Определение рынок с разных точек зрения

Единственные в своем роде

Как говорится, нет двух одинаковых снежинок. В самом деле, за всю историю исследования снега каждая прекрасная структура была абсолютно уникальной. И вот почему: снежинка зарождается в форме простой гексагональной призмы. Во время падения она сталкивается с неповторяющимися условиями, меняющими их форму, включая разные температуры, уровни влажности и атмосферное давление. Этих переменных факторов достаточно для того, чтобы формирование кристаллов никогда не проходило дважды по одной схеме.

И что самое интересное относительно снежинок – это что все их шесть ответвлений вырастают абсолютно синхронно, создавая гексагональную симметрию, потому как каждое ответвление испытывает те же условия, что и все другие.

Откуда она?

Точное происхождение воды на нашей планете, покрывающей около 70 процентов поверхности, все еще остается загадкой для ученых. Они подозревают, что любая вода, накапливавшаяся на поверхности планеты во время ее формирования в течение 4,5 миллиардов лет, испарилась бы из-за интенсивного жара молодого Солнца. Это означает, что вода, которую мы сейчас имеем, должна была появиться позже.

Как? В течение периода под названием поздняя тяжелая бомбардировка, проходившего около 4 миллиардов лет назад, массивные объекты, возможно, из других систем падали на Землю и планеты Солнечной системы. Возможно, что такие объекты были наполнены водой, и эти столкновения могли доставить на нашу планету громадные объемы этого вещества.

Кометы – глыбы изо льда и камня с хвостами из испаряющегося льда, вращающиеся по длинным орбитам вокруг Солнца – вполне могут быть остатками того, что упало на планету. Однако есть проблема: удаленные исследования воды, испаряющейся с нескольких крупных комет, выявили, что они состоят из воды другого типа Н2О (содержат более тяжелый изотоп водорода), чем земная, потому такие кометы не могут быть источником всей нашей чудесной воды.

Живая и неживая

Пять мифов о необычных свойствах обычной воды

Мы не знаем точно, откуда берутся мифы о воде. На эту тему существует множество спекуляций, затрагивающих и биологическую роль воды, и ее культурное значение, и даже тот факт, что с точки зрения физики и химии вода действительно представляет собой очень необычную жидкость. Но поскольку «очень необычную» не означает «волшебную и загадочную», мы решили отделить зерна от плевел и вспомнить самые популярные поверья о свойствах воды. А заодно и разобраться, что с ними не так. Этот материал мы подготовили совместно с компанией «Аквафор».

1. Память воды

«Возьмите физику и выбросьте ее в мусорное ведро: у воды есть память! И хотя ее память о крохотной капельке лукового сока кажется бесконечной, обо всем дерьме, что в ней плавало, она почему-то забывает. » — Тим Минчин, «Шторм».

Что утверждается?
Вода обладает способностью запоминать, какие вещества в ней были растворены. И не только запоминать, но и воспроизводить свойства растворов, притом что ни одной молекулы нужного вещества в растворе фактически нет. Достигается такой эффект за счет того, что молекулы воды определенным якобы образом выстраиваются вокруг молекул растворенного вещества и впоследствии сохраняют эту структуру.

Откуда это взялось?
Популярный термин «память воды» появился благодаря работам французского иммунолога Жака Бенвениста в конце 1980-х — начале 1990-х годов. В серии экспериментов по активации базофилов (разновидностей лейкоцитов, играющих важную роль в аллергических реакциях организма) команда под руководством Бенвениста показала, что при последовательном уменьшении концентрации антител, активирующих базофилы, наблюдался отклик последних даже в том случае, когда статистически в пробе не могло остаться ни одного антитела. К чести исследователей надо отметить, что они не стали предлагать какого-либо революционного теоретического объяснения новым результатам, а в описании методической части их работы не было каких-либо критических ошибок. Тем не менее, полученные ими результаты противоречили имевшимся на тот момент представлениям о физико-химических свойствах воды. По этой причине редактор журнала Nature, в который Бенвенист и коллеги отправили статью по результатам работы, согласился принять публикацию с тем условием, что исследователи проведут повторный эксперимент под наблюдением специальной комиссии.

Статья была опубликована в Nature в июне 1988 года. Вскоре после этого ученые попытались воспроизвести свои результаты под наблюдением комиссии (в которую даже входил профессиональный иллюзионист). Вначале им это удалось, однако при попытке сделать то же самое в слепом тесте (когда экспериментатор не знал, в какой пробирке действующее вещество, а в какой — пустой образец или стандарт для сравнения) все изменилось: вода отказалась что-либо запоминать. До сих пор неизвестно, чем был обусловлен изначальный успех Бенвениста. То ли он сознательно хотел обмануть научное сообщество, то ли искренне поверил в свои невероятные результаты, но ученый так и не признал собственной ошибки, закончил академическую карьеру и продолжил эксперименты в независимой лаборатории.

Как все обстоит на самом деле?
Представление о «памяти воды» противоречит современным концепциям физической химии. Несмотря на то, что вода действительно имеет структуру, эта структура постоянно меняется, тогда как понятие «памяти» предполагает наличие определенного состояния в течение продолжительного времени. По крайней мере, до того момента, когда потребуется «считать» информацию, «записанную» ранее. Экспериментально показано, что характерное время жизни структур, образованных молекулами жидкой воды, измеряется пикосекундами, то есть интервалом порядка 10 -12 секунды. Этот период определяется временем жизни водородных связей между соседними молекулами воды. Даже без дополнительных оценок понятно, что за время, которое требуется для манипуляции с пробирками, вода успеет многократно поменять свое состояние, «забыв» все, что ей пытались «сообщить» ранее.

Память воды очень часто напрямую соотносят с гомеопатией, что не совсем корректно. Действительно, памятью воды можно было бы объяснить механизм действия гомеопатических разведений, однако она не является основополагающим принципом. Создатель гомеопатии Христиан Ганеман объяснял ее действие принципом «подобное лечится подобным», когда препарат, вызывающий определенные симптомы, в предельно малых разведения якобы воздействует обратным образом, то есть эти самые симптомы исцеляет. Кроме того, гомеопатические препараты часто существуют не в виде водных растворов, а в виде сахарных шариков, поэтому одной памятью воды их действие не объяснить, нужна еще «память сахара».

2. Зарядка воды на расстоянии

«Я попрошу вас приготовить кремы: самые простые, самые нейтральные, с тем, чтобы я в процессе сеанса их зарядил», — Аллан Чумак, телесеанс от заболеваний опорно-двигательного аппарата.

Что утверждается?
Воду можно «зарядить» при помощи определенного сигнала, обычно электромагнитного, отчего она приобретет свойства раствора какого-то специфичного вещества. Сигнал, несущий информацию, можно оцифровать и передать на расстояние при помощи любого средства связи. Таким образом, с помощью особых манипуляций, имея в наличии только чистую воду и нужный сигнал, можно воспроизвести свойства определенного раствора, например лекарства. В некоторых случаях считается, что вода запоминает информацию вообще, например эмоции, хорошие или плохие слова.

Откуда это взялось?
В академической сфере о зарядке воды на расстоянии впервые заговорил тот же Жак Бенвенист — это был следующий шаг его группы после предполагаемого открытия памяти воды. Однако после провала эксперимента под контролем комиссии Бенвенист потерял авторитет в академических кругах, поэтому все последующие проведенные им эксперименты практически не получили внимания со стороны его коллег.

Другим классическим примером работ в этой области являются произведения японского автора Масару Эмото, который прославился своими заявлениями о том, что вода способна впитывать информацию, причем для этого даже не обязательно ее облучать. Достаточно поместить бумажку с определенным словом на крышку емкости с водой, чтобы эмоция или информация, соответствующая этому слову, записалась в структуру воды. В доказательство своей гипотезы Эмото приводил внешний вид микрокристаллов воды, «заряженной» различной информацией. Как и стоило ожидать, «положительные» эмоции, как и классическая музыка, например, придают кристаллам воды (согласно результатам Эмото) правильную, красивую форму. При этом отрицательные эмоции или музыка в жанрах рок или метал приводят к образованию некрасивых, деформированных кристаллов.

Опыты Бенвениста и Эмото в России не получили такой широкой огласки, как работы другого специалиста по зарядке воды на расстоянии — Аллана Владимировича Чумака. В ходе своих телесеансов целитель заряжал воду (и не только) при помощи пассов руками, хотя вода и не считалась основным объектом воздействия: исцеляться можно было и без нее, просто сидя у телевизора. В отличие от Бенвениста, использующего научную методологию для подтверждения наличия памяти у воды, Чумак объяснял свой талант даром свыше и не апеллировал к французскому ученому, хотя и работал с ним примерно в одно время. Именно потому, что Чумак не использовал псевдонаучных концепций, его действия не привлекли пристального внимания научных комиссий, за исключением упоминания в ряду других телевизионных экстрасенсов — Анатолия Кашпировского и Юрия Лонго.

Как все обстоит на самом деле?
Никто из создателей и адептов этого мифа даже не пытался придумать механизм, в соответствии с которым электромагнитное излучение могло бы записывать информацию прямо в воду. Так, Масару Эмото, несмотря на популяризацию собственных экспериментальных данных, никогда не приводил подробной методологии эксперимента, а также не имел рецензированных публикаций, за что не раз подвергался критике со стороны научного сообщества. Поэтому, кроме теории о памяти воды, о которой говорилось выше, обсуждать здесь нечего. От себя добавим, что с точки зрения физической химии не стоит ожидать прямого соответствия между структурой воды и льда. Действительно, при плавлении льда в воде обнаруживаются крупные кластеры, обладающие схожей со льдом структурой, однако при нагревании хотя бы до комнатной температуры эта структура полностью теряется и вода становится аморфной.

Можно ли зарядить воду (если принять гипотезу о существовании ее памяти) при помощи обычного бытового телевизора? Поскольку мы не знаем точного механизма передачи информации воде, можно только предположить, как должен происходить подобный эксперимент. Раз заряженная вода должна определенным образом воздействовать на клеточные процессы, характерный размер кластеров, несущих информацию, должен быть сопоставим с типичными биологическими макромолекулами, то есть не превышать десятков нанометров. Телевизор в основном излучает электромагнитные волны видимого спектра, длина волны которых составляет от 400 до 760 нанометров. Тем не менее, можно вспомнить, что телевизоры во времена трансляций Чумака были кинескопическими, то есть основным их рабочим элементом была электронно-лучевая трубка. В ней формировался пучок электронов, который попадал на флуоресцентный экран. Известно, что в подобных приборах создается вторичное рентгеновское излучение, которое характеризуется длиной волны от 10 нанометров и меньше. К счастью, большая часть рентгеновского излучения кинескопа поглощается специальным металлизированным стеклом. Остаточное же излучение обладает настолько малой интенсивностью, что будет быстро поглощено материалом емкости, в которой вода стоит перед телевизором. Поэтому даже в случае существования памяти воды ее зарядка посредством телевизора выглядит маловероятной.

3. Структурированная вода

— А океаны, в которые впадают замерзшие реки? А ключи, которые питают замерзшие реки и озера, а все подземные источники, питающие эти ключи.
— Замерзнут, черт побери!
— А дождь?
— Коснулся бы земли и превратился в твердые катышки, в лед-девять, и настал бы конец света.
(Курт Воннегут, «Колыбель для кошки»)

Читайте также:  Химические связи с точки зрения квантовой механики

Что утверждается?
Не только память воды как способность воспроизводить определенную информацию, но и структура воды сама по себе играет огромную роль в биологических процессах в организме. Так, вокруг здоровых клеток вода структурируется особым образом, а вблизи больных клеток эта структура теряется. В том случае, если человек пьет структурированную воду (талую воду, свежевыжатые соки, фрукты и овощи, воду из специальных приборов — структуризаторов), организм может сразу же использовать ее в своей работе. Если же вода была неструктурированная (водопроводная, кипяченая, дистиллированная), организм затрачивает значительные усилия на ее структуризацию, что приводит к плохому самочувствию. При этом некоторые способы получения структурированной воды опираются на «естественные» подходы. Так, часто можно встретить рекомендацию готовить талую воду на натуральном зимнем морозе, а не в морозильной камере холодильника. У структурированной воды, по словам ее адептов, существует еще целый ряд более специфических эффектов, но мы в них углубляться не будем.

Откуда это взялось?
Точный момент возникновения этой идеи назвать сложно, но можно вспомнить несколько ее предвестников. Один из них — концепция «поливоды», о которой заговорили в СССР в начале 1960-х годов, но которую опровергли к середине 1970-х. В результате пропускания чистой воды через тонкие кварцевые капилляры наблюдалось образование все такой же чистой (предположительно) воды, которая, однако, обладала кардинально новыми свойствами. Так, «поливода» была плотнее, кипела при повышенной, а замерзала — при пониженной температуре, а также обладала колоссальной (по сравнению с обычной водой) вязкостью. Название «поливода» было предложено вслед гипотезе об образовании полимерных цепочек, в которых молекулы воды выступали в качестве мономеров. Существовала даже гипотеза, что поливода может полимеризовать обычную воду при контакте с ней. Эта идея, в частности, обыгрывается в произведении Курта Воннегута «Колыбель для кошки». Когда феноменом поливоды заинтересовались по всему миру, а главное — многим лабораториям удалось воспроизвести результаты советских первооткрывателей, встал вопрос о теоретическом обосновании поливоды. В последующие годы было создано несколько соответствующих теорий, однако при более пристальном контроле эксперимента выяснилось, что все необычные свойства поливоды объяснялись наличием в ней примесей. В отличие от того же Бенвениста, авторы первых работ о поливоде признали собственные ошибки, и о явлении забыли, по крайней мере, в научных кругах.

Как все обстоит на самом деле?
В отличие от идей о памяти воды, понятие «водный кластер» не является лженаучным и широко изучается в физической химии. Речь может идти как о малых кластерах, в которые входят от двух до восьми молекул воды, так и более крупных кластерах, включающих несколько сотен молекул. Характерные размеры таких объектов могут достигать нескольких нанометров. Исследование подобных структур играет важную роль в определении роли воды как растворителя во многих химических и биологических процессах. Однако эта тематика не затрагивает существование долгоживущих кластеров, которые были бы способны нести какую-либо информацию на макроскопических временных масштабах. Характерное время жизни кластера все равно не слишком превышает время жизни водородных связей и лежит в пределах нескольких пикосекунд (при комнатной температуре).

В доказательство особых свойств структурированной воды часто приводят опыты по кристаллизации воды из разных источников. Так, водопроводная или дистиллированная вода в этих экспериментах обычно образует «некрасивые» и несимметричные кристаллы, а структурированная вода — красивые и симметричные. Отсутствие детальной методологии этих экспериментов, а также публикаций в рецензируемых научных журналах позволяет лишь предположить, что эти данные не являются воспроизводимыми. Достаточно заметить, что в реальности все обстоит ровно наоборот: чем более химически чиста вода, тем правильнее и «красивее» будут ее кристаллы, так что дистиллят должен занимать чуть ли не первое место в подобном «конкурсе красоты».

4. Кислородная, электролизованная и бездейтериевая вода

«В процессе применения новой специальной технологии расстояние между молекулами воды увеличивается, и это свободное пространство занимают дополнительные молекулы кислорода. Таким образом, обеспечивается длительная устойчивая связь воды и кислорода», — неизвестный автор о кислородной воде.

Что утверждается?
Существуют сравнительно простые способы придания обычной питьевой воде уникальных оздоравливающих свойств. К этим способам относится насыщение кислородом, чтобы он попадал в кровь через желудочно-кишечный тракт, электролизация воды с целью образования щелочной воды, кислотной воды и атомарного водорода, которые служат антиоксидантами и способствуют оздоровлению организма, а также удаление из воды примеси более тяжелого изотопа водорода — дейтерия, которого в норме в воде содержится около 0,01 процента. Бездейтериевая, или «легкая», вода также способствует общему оздоровлению организма и оказывает терапевтический эффект при раковых заболеваниях.

Откуда это взялось?
Все эти утверждения основаны на желании найти что-то необычное в обычной воде, то есть производить различные манипуляции с составными частями самой воды. Отследить точный момент появления подобных идей оказалось непросто. Так, кислородные коктейли появились в советской медицине еще в 1960-х годах, но, в отличие от собственно кислородной воды, в коктейле кислород удерживается в плотной пенной шапке, способной доставить значительный объем кислорода в желудочно-кишечный тракт. Бездейтериевая вода, с точки зрения биологических применений, впервые упоминается в начале 1990-х годов. Примерно в то же время в Японии набрала популярность электролизованная или ионизированная вода.

Как все обстоит на самом деле?
Из трех перечисленных типов воды проще всего разобраться, вероятно, с кислородной водой. Дело в том, что, в отличие от углекислого газа, кислород растворяется в воде не так хорошо: достаточно для рыб, но недостаточно, чтобы оказать реальное влияние на газообмен человека, поэтому сама по себе идея кислородной воды выглядит слабореализуемой с точки зрения физической химии. Именно поэтому при максимальном насыщении воды кислородом то количество газа, которое один литр воды принесет в кишечник (даже если считать его всасываемость 100-процентной), будет сопоставимо с содержанием кислорода в одном вдохе взрослого человека. Таким образом, даже самые простые оценки опровергают заявления о значительном тонизирующем эффекте от употребления кислородной воды. Все утверждения о существовании «особых технологий», позволяющих каким-то иным способом перенасытить воду кислородом при комнатной температуре и в отсутствие дополнительных химических примесей, также не выдерживают простейшей критики со стороны базовой термодинамики.

С электролизованной и бездейтериевой водой все оказывается чуть сложнее, так как в обоих случаях имеются опубликованные исследования, в которых так или иначе демонстрируется положительный эффект этих препаратов. Например, употребление бездейтериевой воды замедляло (PDF) гибель популяции мышей, пораженных раковыми опухолями. Однако исследования, посвященные бездейтериевой и электролизованной воде, оказались очень локализованными (электролизованная вода исследуется и употребляется преимущественно в Азии) и широкого распространения в научном сообществе не получили. Их принципы остаются не до конца понятыми, а зачастую и противоречивыми. В случае с электролизованной водой, например, остается непонятым вопрос о том, чем «кислотная» и «щелочная» вода отличается от раствора кислоты и щелочи соответственно.

5. Серебряная вода

«Жуткий город: девок нет, в карты никто не играет. Вчера в трактире украл серебряную ложку — никто даже не заметил: посчитали, что ее вообще не было», — из кинофильма «Формула любви».

Что утверждается?
Вода, настоянная в серебряной посуде или на серебряном предмете (рубле, ложке), долго не портится, обладает сильным бактерицидным эффектом и полезна для внутреннего употребления. Частный случай — святая вода обладает целебными эффектом благодаря тому, что во время обряда освящения используется серебряная утварь.

Откуда это взялось?
О целебных свойствах серебра говорится очень давно: первые упоминания можно найти у Геродота и в последующих римских источниках. В основном речь ведется о настаивании воды в серебряной посуде, что якобы увеличивает срок ее хранения. Долгое время серебро в различных формах использовалось для обеззараживания воды и обработки ран, однако с появлением более эффективных антисептиков серебро отошло на второй план. В современной практике серебро в виде растворов его солей или коллоидных частиц можно использовать, например, для «мягкого» обеззараживания воды, например, в некоторых фильтрах для питьевой воды.

Как дело обстоит на самом деле?
Данный миф — миф лишь отчасти. Действительно, серебро в ионной форме, как и многие другие тяжелые металлы, например, медь, обладает бактериостатическим и (в высоких концентрациях) бактерицидным эффектом. Это означает, что лишь в сравнительно высоких концентрациях растворы солей серебра способны эффективно убивать бактерии, но чаще они лишь замедляют рост микроорганизмов. Всемирная организация здравоохранения в 2014 году опубликовала большой отчет (PDF) о перспективах применения серебра в качестве дезинфицирующего агента. Вкратце выводы этой работы сводятся к тому, что, несмотря на большой объем современных исследований ионов серебра и его коллоидных растворов, далеко не во всех случаях приведенных данных достаточно для того, чтобы сделать окончательный вывод об эффективности таких препаратов для применения в водоподготовке. В то же время серебро, как и другие тяжелые металлы, накапливается в организме и им вполне можно отравиться (это заболевание называется аргироз), поэтому существует норма предельно допустимой концентрации (ПДК) серебра, превышение которой в питьевой воде ничего хорошего не сулит.

Другой проблемой серебряной воды является тот факт, что серебряная ложка или рубль, опущенные в воду, дают пренебрежимо малый вклад в содержание серебра в ионной форме. Именно поэтому настаивание воды на серебряных предметах обладает довольно слабой эффективностью с точки зрения дезинфекции. По этой же причине касание воды серебряным крестом во время освящения не придает воде никаких особых свойств, за исключением символической ценности, обусловленной ее ролью во многих религиозных обрядах. Важно помнить, что освящение воды не изменяет ее физико-химических свойств, а главное — не очищает ее. Из-за этого происходят и курьезные случаи: анализ выборки святых источников и церемониальных сосудов для воды в Австрии показал, что в 86 процентах случаев исследуемая вода не пригодна для питья из-за присутствия в ней вредоносных микроорганизмов. Возвращаясь к серебру: если все-таки есть потребность насытить воду его ионами, то для этого можно добавить растворимую соль серебра (нитрат, например), или воспользоваться специальным прибором — ионизатором. Его применение действительно позволяет добиться бактерицидного эффекта, однако с его помощью очень легко превысить ПДК серебра в питьевой воде. В этом случае регулярное употребление ионизированной серебряной воды может привести к серьезным последствиям для здоровья.

Как упоминалось выше, этот материал мы подготовили совместно с компанией «Аквафор». Поэтому наш разбор мифов о воде мы завершим простым, но важным напоминанием: пить надо воду, очищенную современными фильтрами, созданными на основе научных данных, а не лженаучных мифов. Такими, как, например, фильтры «Аквафор» — обычный кувшин, система очистки воды с защитой от бактерий и система очистки воды премиум класса с дополнительной минерализацией.

Источники:
  • http://facepla.net/the-news/nature-news-mnu/1857-water39.html
  • http://nplus1.ru/material/2017/04/18/water-myths