Меню Рубрики

Виды носителей информации с точки зрения

Что было известно первому человеку? Как убить мамонта, бизона или поймать кабана. В эпоху палеолита хватало стен в пещере, чтобы зафиксировать все изученное. Пещерная база данных целиком бы уместилась на скромную флешку размером мегабайт. За 200000 лет своего существования мы узнали о геноме африканской лягушки, нейронных сетях и больше не рисуем на скалах. Сейчас у нас есть диски, облачные хранилища. А также другие виды носителей информации, способные сохранить на одном чипсете всю библиотеку МГУ.

Носитель информации – это физический объект, свойства и характеристики которого используются для записи и хранения данных. Примерами носителей информации являются пленки, компактные оптические диски, карты, магнитные диски, бумага и ДНК. Носители информации различаются по принципу осуществления записи:

  • печатная или химическая с нанесением краски: книги, журналы, газеты;
  • магнитная: HDD, дискеты;
  • оптическая: CD, Blu-ray;
  • электронная: флешки, твердотельные накопители.

Классифицируются хранилища данных по форме сигнала:

  • аналоговые, использующие для записи непрерывный сигнал: аудио компакт-кассеты и бобины для магнитофонов;
  • цифровые — с дискретным сигналом в виде последовательности чисел: дискеты, флешки.

Первые носители информации

История записи и хранения данных началась 40 тысяч лет назад, когда Homo sapiens пришла идея делать эскизы на стенах своих жилищ. Первое наскальное творчество находится в пещере Шове на юге современной Франции. Галерея содержит 435 рисунков, изображающих львов, носорогов и других представителей фауны позднего палеолита.

На смену Ориньякской культуре в бронзовом веке возник принципиально новый вид носителей информации – туппу́м. Девайс представлял собой пластину из глины и напоминал современный планшет. На поверхность с помощью тростниковой палочки — стилуса — наносились записи. Чтобы труд не размыло дождем, туппумы обжигались. Все таблички с древней документацией тщательно сортировались и хранились в специальных деревянных ящиках.

В Британском музее есть туппум, содержащий информацию о финансовой сделке, произошедшей в Месопотамии во времена правления царя Ассурбанипала. Офицер из свиты принца подтверждал продажу рабыни Арбелы. Табличка содержит его именную печать и записи о ходе операции.

Кипу и папирус

С III тысячелетия до нашей эры в Египте начинают использовать папирус. Запись данных происходит на листы, изготовленные из стеблей растения papyrus. Портативный и легкий вид носителей информации быстро вытеснил свою глиняную предшественницу. На папирусе пишут не только египтяне, но и греки, римляне, византийцы. В Европе материал использовали до XII века. Последний документ, написанный на папирусе, – папский декрет 1057 года.

Одновременно с древними египтянами, на противоположном конце планеты инки изобретают кипу, или «говорящие узелки». Информация фиксировалась с помощью завязывания узлов на прядильных нитях. Кипу хранили данные о налоговых сборах, численности населения. Предположительно использовалась нечисловая информация, но ученым ее только предстоит разгадать.

Бумага и перфокарты

С XII до середины XX века основным хранилищем данных была бумага. Ее использовали для создания печатных и рукописных изданий, книг, средств масс-медиа. В 1808 году из картона начали делать перфокарты – первые цифровые носители информации. Представляли собой листы картона с проделанными в определенной последовательности отверстиями. В отличие от книг и газет, перфокарты считывались машинами, а не людьми.

Изобретение принадлежит американскому инженеру с немецкими корнями Герману Холлериту. Впервые автор применил свое детище для составления статистики смертности и рождаемости в Нью-Йоркском Совете здравоохранения. После пробных попыток, перфокарты использовали для переписи населения США в 1890 году.

Но сама идея проделывать дырки в бумаге, чтобы записывать информацию, была далеко не новой. Еще в 1800 году перфокарты ввел в обиход француз Джозеф-Мари Жаккард для управления ткацким станком. Поэтому технологический прорыв заключался в создании Холлеритом не перфокарт, а табуляционной машины. Это был первый шаг на пути к автоматическому считыванию и вычислению информации. Компания TMC Германа Холлерита по производству табуляционных машин в 1924 году была переименована в IBM.

Представляют собой листы плотной бумаги с информацией, записанной человеком в виде оптических меток. Сканер распознает метки и обрабатывает данные. OMR-карты используют для составления опросников, тестов с опциональным выбором, бюллетеней и форм, которые необходимо заполнять вручную.

Технология основана на принципе составления перфокарт. Но машина считывает не сквозные отверстия, а выпуклости, или оптические метки. Погрешность исчислений составляет менее 1 %, поэтому OMR-технологию продолжают использовать государственные учреждения, экзаменационные органы, лотереи и букмекерские конторы.

Перфолента

Цифровой носитель информации в виде длинной бумажной полоски с отверстиями. Перфорированные ленты были впервые использованы Базиле Бушоном в 1725 году для управления ткацким станком и механизирования отбора нитей. Но ленты были очень хрупкими, легко рвались и при этом дорого стоили. Поэтому их заменили на перфокарты.

С конца XIX века перфолента получила широкое применение в телеграфии, для ввода данных в компьютеры 1950-1960 годов и в качестве носителей для мини-компьютеров и станков с ЧПУ. Сейчас бобины с намотанной перфолентой стали анахронизмом и канули в Лету. На смену бумажным носителям пришли более мощные и объемные хранилища данных.

Магнитная лента

Дебют магнитной ленты в качестве компьютерного носителя информации состоялся в 1952 году для машины UNIVAC I. Но сама технология появилась гораздо раньше. В 1894 году датский инженер Вольдемар Поульсен обнаружил принцип магнитной записи, работая механиком в Копенгагенской телеграфной компании. В 1898 году ученый воплотил идею в аппарате под названием «телеграфон».

Стальная проволока проходила между двумя полюсами электромагнита. Запись информации на носитель осуществлялась посредством неравномерного намагничивания колебаний электрического сигнала. Вольдемар Поульсен запатентовал свое изобретение. На Всемирной выставке 1900 года в Париже он имел честь записать голос императора Франца-Иосифа на свой девайс. Экспонат с первой магнитной звукозаписью по сей день хранится в Датском музее науки и техники.

Когда патент Поульсена истек, Германия занялась улучшением магнитной записи. В 1930 году стальная проволока была заменена гибкой лентой. Решение использовать магнитные полосы принадлежит австрийско-немецкому разработчику Фрицу Пфлеймеру. Инженер придумал покрывать тонкую бумагу порошком оксида железа и осуществлять запись посредством намагничивания. С использованием магнитной пленки были созданы компакт-кассеты, видеокассеты и современные носители информации для персональных компьютеров.

Винчестер, HDD или жесткий диск – это аппаратное устройство с энергонезависимой памятью, что означает полное сохранение информации, даже при отключенном питании. Является вторичным запоминающим устройством, состоящим из одной или нескольких пластин, на которые записываются данные с использованием магнитной головки. HDD находятся внутри системного блока в отсеке дисководов. Подключаются к материнской плате с помощью кабеля ATA, SCSI или SATA и к блоку питания.

Первый жесткий диск был разработан американской компанией IBM в 1956 году. Технологию применили в качестве нового вида носителей информации для коммерческого компьютера IBM 350 RAMAC. Аббревиатура расшифровывается как «метод случайного доступа к учету и контролю».

Чтобы вместить девайс у себя дома, потребовалась бы целая комната. Внутри диска было 50 алюминиевых пластин по 61 см в диаметре и 2,5 см шириной. Размер системы хранения данных приравнивался к двум холодильникам. Его вес составлял 900 кг. Емкость RAMAC была всего лишь 5МБ. Смешная цифра на сегодняшний день. Но 60 лет назад это расценивалось как технология завтрашнего дня. После анонсирования разработки, ежедневная газета города Сан Хосе выпустила репортаж под названием «Машина с суперпамятью!».

Размеры и возможности современных HDD

Жесткий диск – компьютерный носитель информации. Используется для хранения данных, включая изображения, музыку, видео, текстовые документы и любые созданные или загруженные материалы. Кроме того, содержат файлы для операционной системы и программного обеспечения.

Первые винчестеры вмещали до нескольких десятков Мбайт. Постоянно развивающаяся технология позволяет современным HDD хранить терабайты информации. Это около 400 фильмов со средним расширением, 80 000 песен в mp3-формате или 70 компьютерных ролевых игр, аналогичных «Скайрим», на одном устройстве.

Floppy, или гибкий магнитный диск, – носитель информации, созданный IBM в 1967 году как альтернатива HDD. Дискеты стоили дешевле винчестеров и предназначались для хранения электронных данных. На ранних компьютерах не было CD-ROM или USB. Гибкие диски были единственным способом установки новой программы или резервного копирования.

Вместительность каждой 3,5-дюймовой дискеты была до 1,44 Мбайт, когда одна программа «весила» не менее полутора мегабайт. Поэтому версия Windows 95 появилась сразу на 13 дискетах DMF. Floppy disk на 2,88 Мбайт появился только в 1987 году. Просуществовал этот электронный носитель информации до 2011 года. В современной комплектации компьютеров отсутствуют флоппи-дисководы.

Оптические носители

С появлением квантового генератора началась популяризация оптических запоминающих устройств. Запись осуществляется лазером, а считываются данные за счет оптического излучения. Примеры носителей информации:

Устройство представляет собой диск, покрытый слоем поликарбоната. На поверхности находятся микроуглубления, которые считываются лазером при сканировании. Первый коммерческий лазерный диск появился на рынке в 1978 году, а в 1982 году японская компания SONY и Philips выпустили в продажу компакт-диски. Их диаметр составлял 12 см, а разрешение было увеличено до 16 бит.

Электронные носители информации формата CD использовались исключительно для воспроизведения звуковой записи. Но на то время это была передовая технология, за которую в 2009 году Royal Philips Electronics получила награду IEEE. А в январе 2015 года CD был награжден как ценнейшая инновация.

В 1995 году появились цифровые универсальные диски или DVD, ставшие оптическими носителями нового поколения. Для их создания использовалась технология другого типа. Вместо красного лазер DVD использует более короткий инфракрасный свет, что увеличивает объем носителя информации. Двухслойные DVD-диски способны хранить до 8,5 Гбайта данных.

Flash-память

Флеш-память – это интегральная микросхема, которая не требует постоянной мощности для сохранения данных. Другими словами, это энергонезависимая полупроводниковая компьютерная память. Запоминающие устройства с флеш-памятью постепенно завоевывают рынок, вытесняя магнитные носители.

  • компактность и мобильность;
  • большой объем;
  • высокая скорость работы;
  • низкое энергопотребление.

К запоминающим устройствам Flash-типа относят:

  • USB-флешки. Это самый простой и дешевый носитель информации. Используется для многократной записи, хранения и передачи данных. Размеры варьируются от 2 Гбайт до 1 Тбайта. Содержит микросхему памяти в пластиковом или алюминиевом корпусе с USB-разъёмом.
  • Карты памяти. Разработаны для хранения данных на телефонах, планшетах, цифровых фотоаппаратах и других электронных девайсах. Отличаются размером, совместимостью и объемом.
  • SSD. Твердотельный накопитель с энергонезависимой памятью. Это альтернатива стандартному жесткому диску. Но в отличие от винчестеров у SSD нет движущийся магнитной головки. За счет этого они обеспечивают быстрый доступ к данным, не издают скрипов, как HDD. Из недостатков – высокая цена.

Облачные хранилища

Облачные онлайн-хранилища – это современные носители информации, представляющие собой сеть из мощных серверов. Вся информация хранится удаленно. Каждый пользователь может получать к данным доступ в любое время и из любой точки мира. Недостаток в полной зависимости от интернета. Если у вас нет подключения к Сети или Wi-Fi, доступ к данным закрыт.

Облачные хранилища гораздо дешевле своих физических аналогов и обладают большим объемом. Технология активно используется в корпоративной и образовательной среде, разработке и проектировании веб-приложений компьютерного софта. На облаке можно хранить любые файлы, программы, резервные копии, использовать их как среду разработки.

Из всех перечисленных видов носителей информации самыми перспективными являются облачные хранилища. Также все больше пользователей ПК переходят с магнитных жестких дисков на твердотельные накопители и носители с Flash-памятью. Развитие голографических технологий и искусственного интеллекта обещает появление принципиально новых девайсов, которые оставят флешки, SDD и диски далеко позади.

Виды носителей информации с точки зрения

8(495)912-63-37
gmc@edu.mos.ru

Носители информации

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

  • записи;
  • хранения;
  • чтения;
  • передачи (распространения) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

  • оптические диски (CD-ROM, DVD-ROM, Blu-ray Disc);
  • полупроводниковые (флеш-память, дискеты и т. п.);
  • CD-диски (CD – Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации;
  • DVD-диски (DVD – Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную ёмкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно;
  • диски HR DVD и Blu-ray, информационная ёмкость которых в 3–5 раз превосходит информационную ёмкость DVD-дисков за счёт использования синего лазера с длиной волны 405 нанометров.

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

  • по объёму (размеру) хранимой информации;
  • по удельной стоимости хранения;
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации;
  • по возможности предоставления информации в виде, удобном потребителю (форматирование, сортировка).

Есть и недостатки:

  • хрупкость устройств считывания;
  • вес (масса) (в некоторых случаях);
  • зависимость от источников электропитания;
  • необходимость наличия устройства считывания/записи для каждого типа и формата носителя.

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала – магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

  • без возможности записи — CD-ROM и DVD-ROM (ROM – Read Only Memory, память только для чтения). На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна;
  • с однократной записью и многократным чтением – CD-R и DVD±R (R – recordable, записываемый). На дисках CD-R и DVD±R информация может быть записана, но только один раз;
  • с возможностью перезаписи – CD-RW и DVD±RW (RW – Rewritable, перезаписываемый). На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.

Основные характеристики оптических дисководов:

  • емкость диска (CD – до 700 Мбайт, DVD – до 17 Гбайт)
  • скорость передачи данных от носителя в оперативную память – измеряется в долях, кратных скорости 150 Кбайт/сек для CD-дисководов;
  • время доступа – время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80–400 мс).

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы – до 7,8 Мбайт/сек. Запись CD-RW дисков производится на меньшей скорости (например, 32х-кратной). Поэтому CD-дисководы маркируются тремя числами «скорость чтения х скорость записи CD-R х скорость записи CD-RW» (например, «52х52х32»).
DVD-дисководы также маркируются тремя числами (например, «16х8х6»).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM). Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации. Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

У флеш-памяти есть как свои преимущества перед другими накопителями (жесткие диски и оптические накопители) , так и свои недостатки, с которыми вы можете познакомиться из таблицы, расположенной ниже.

Информационные носители: виды и примеры

Человеческая цивилизация за время своего существования нашла множество способов фиксировать информацию. С каждым годом ее объемы растут в геометрической прогрессии. По этой причине меняются и носители. Именно об этой эволюции и пойдет речь ниже.

Читайте также:  Где можно работать инвалидам по зрению

Пережитки прошлого

Древнейшими памятниками человеческой деятельности можно считать наскальные рисунки, на которых изображались животные, бывшие целями охоты. Первые материальные носители информации были природного происхождения.

Настоящим прорывом можно считать появление письменности у шумеров, живших в современном Ираке и использовавших не камень, а глиняные таблички, которые обжигались после письма. Таким образом, их сохранность значительно увеличивалась. Однако скорость, с которой фиксировались знания, была крайне малой.

Также можно отметить египетский папирус, воск, шкуры, на которых впервые начали писать в Персии. В Азии использовался бамбук и шелк. Древние индейцы имели уникальную систему узелкового письма. На Руси в ходу была береста, которую и сегодня находят археологи.

Бумажные носители информации совершили переворот, масштаб которого сложно переоценить. Несмотря на то что первые аналоги целлюлозного материала были получены китайцами еще во II веке, общедоступным он стал только в XIX столетии.

С бумагой связано и появление книг. В 1450-ых немецкий изобретатель Иоганн Гутенберг изобрел ручной типографский станок, с помощью которого издал два экземпляра Библии. Эти события послужили точкой отсчета для новой эпохи массового книгопечатания. Именно благодаря ему знание перестало быть уделом тонкой прослойки человечества, а стало доступным для каждого желающего.

Сегодняшняя бумага бывает газетной, офсетной, мелованной и т. д. Ее выбор зависит от конкретных целей. И хотя белое полотно пользуется спросом как никогда, свое инновационное положение оно уже уступило.

Перфокарты и перфоленты

Следующий толчок в своем развитии информационные носители получили в начале XIX века, когда появились первые картонные перфокарты. В определенных местах ставились отверстия, с помощью которых считывались данные. Первоначально технология использовалась для управления ткацкими станками.

Интерес к новинке возрос после того, как в США ее стали использовать для более удобного и быстрого подсчета результатов переписи населения страны в 1890 году. Производством карт занималась компания IBM в будущем ставшая пионером компьютерных технологий. Расцвет технологии пришелся на середину XX века. Именно тогда стала распространяться двоичная система счисления, систематизировавшая и обобщившая самые разные данные.

Первые машинные носители информации представляли собой также и перфоленты. Производились они из бумаги и использовались в телеграфах. Благодаря своему формату ленты позволяли легко производить ввод и вывод. Это сделало их незаменимыми вплоть до появления магнитных конкурентов.

Магнитная лента

Как бы не были хороши прежние внешние носители информации, они не могли воспроизводить то, что фиксировали. Данная проблема была решена с появлением магнитной ленты. Она представляла собой гибкую основу, покрытую несколькими слоями, на которых и записывается информация. В качестве рабочей среды выступали различные химические элементы: железо, кобальт, хром.

Магнитные носители информации сделали рывок в звукозаписи. Именно эта инновация позволила новой технологии быстро прижиться в Германии в 30-ые годы. Прежние устройства (фонографы, граммофоны, патефоны) отличались механическим характером и были не практичны. Большое распространение получили магнитофоны катушечного и кассетного типа.

В 50-ые годы были предприняты попытки использовать данные разработки как компьютерные носители информации. Магнитные ленты внедрялись в персональные компьютеры в 80-ые годы. Их популярность в целом объяснялась такими преимуществами. как большая емкость, сравнительная дешевизна производства и низкое энергопотребление.

Недостатком лент можно считать срок годности. С течением времени они размагничиваются. В лучшем случае данные сохраняются на 40 – 50 лет. Тем не менее, это не помешало формату стать популярным во всем мире. Отдельно стоит упомянуть о видеокассетах, расцвет которых пришелся на окончание XX века. Магнитные носители информации стали основой теле и радиовещания нового типа.

Жесткие диски

Тем временем развитие отрасли продолжалось. Информационные носители большого объема требовали модернизации. Первые жесткие диски или винчестеры были созданы в 1956 году силами IBM. Однако они были непрактичны. Их размер превышал ящик, а вес почти равнялся тонне. При этом объем хранимых данных не превышал 3,5 мегабайт. Однако в дальнейшем стандарт развивался, и к 1995 году была преодолена планка в 10 гигабайт. А еще через 10 лет в продаже появились модели Hitachi объемом в 500 гигабайт.

В отличие от гибких аналогов жесткие диски содержали алюминиевые пластины. Данные воспроизводятся посредством считывающих головок. Они не прикасаются к диску, а работают на расстоянии нескольких нанометров от него. Так или иначе принцип работы винчестеров похож на характеристики магнитофонов. Основная разница заключается в физических материалах, используемых для производства устройств. Жесткие диски стали основой персональных компьютеров. Со временем подобные модели стали выпускаться совмещенно вместе с накопителями, приводами и блоком электроники.

Помимо основной памяти, необходимой для содержания данных, жесткие диски обладают определенным буфером, необходимым для сглаживания скоростей чтения с устройства.

3,5-дюймовые дискеты

Одновременно с этим шло движение вперед в сфере малых форматов. Знание магнитных свойств пригодилось при создании дискет, данные с которых считывались с помощью специального дисковода. Первый подобный аналог был представлен IBM в 1971 году. Плотность записи на такие информационные носители составляла до 3 мегабайт. Основой дискеты был гибкий диск, покрывавшийся специальным слоем из ферромагнетиков.

Главное достижение – уменьшение физических размеров носителя – сделало данный формат главным на рынке на протяжении четверти века. Только в США в 80-е ежегодно производилось до 300 миллионов новых дискет.

Несмотря на массу преимуществ, новинка имела и недостатки – чувствительность к магнитному воздействию и малая емкость по сравнению с все увеличивающимися потребностями рядового пользователя компьютера.

Компакт-диски

Первым поколением оптических носителей стали компакт-диски. Их прообразом были еще грампластинки. Однако новые внешние носители информации производились из поликарбоната. Диск из этого вещества получил тончайшее покрытие из металла (золото, серебро, алюминий). Для защиты данных он покрывался специальным лаком.

Пресловутый CD был разработан силами Sony и запущен в массовое производство в 1982 году. В первую очередь формат получил бешеную популярность за счет удобной звукозаписи. Объем в несколько сот мегабайт позволил вытеснить сначала виниловые проигрыватели, а после и магнитофоны. Если первые уступали в объеме информации, то вторые отличались худшим качеством звука. Кроме того новый формат отправил в прошлое дискеты, которые не только вмещали меньше данных, но и были не слишком надежны.

Компакт-диски стали причиной революции в сфере персональных компьютеров. Со временем все гиганты отрасли (например, Apple) перешли на производство ПК вместе с дисководами, поддерживающими формат CD.

DVD и Blue-Ray

Оптические информационные носители первого поколения продержались на Олимпе хранения данных недолго. В 1996 году появился DVD, который по объему был больше своего предка в шесть раз. Новый стандарт позволил записывать видео большей длительности. Под него быстро подстроилась киноиндустрия. Фильмы на DVD стали общедоступными по всему миру. Принцип работы и кодирования информации по сравнению с компакт-дисками остался тот же.

Наконец в 2006 году был запущен новый, на сегодняшний день последний формат оптического носителя информации. Объем стал исчисляться сотнями гигабайт. Благодаря этому обеспечивается лучшее качество записи звука и видео.

Войны форматов

На протяжении последних лет участились конфликты между несовместимыми форматами хранения информации. Внешние носители разных производителей на очередном витке развития отрасли конкурируют между собой за монополию в формате.

Одним из первых подобных примеров можно назвать конфликт между фонографом Эдисона и граммофоном Берлинера в 10-е годы XX века. В дальнейшем подобные споры возникали между компакт-кассетами и 8-дорожечными аудиокассетами; VHS и Betamax; MP3 и AAC и т. д. Последней в этом ряду стала «война» между HD DVD и Blue-Ray, которая окончилась победой последнего.

Флеш-накопители

Примеры носителей информации не могут обойтись без упоминания USB-флеш-накопителей. Первый Universal Serial Bus был разработан в середине 90-х годов. На сегодняшний день существует уже третье поколение этого интерфейса передачи данных. Шина позволяет присоединить к персональному компьютеру периферийное устройство. И хотя эта проблема существовала задолго до появления USB, решена она была только в последнее десятилетие.

Сегодня каждый компьютер обладает узнаваемым гнездом, с помощью которого к компьютеру можно подключить мобильный телефон, плеер, планшет и т. д. Быстрая передача данных любого формата сделало USB действительно универсальным инструментом.

Наибольшую популярность на основе данного интерфейса получили флеш-накопители или в просторечии флешки. Такое устройство обладает USB-разъемом, микроконтроллером, микросхемой, кварцевым резонатором и светодиодом. Все эти детали сделали возможным держать в одном кармане гигабайты информации. По своему размеру флешка уступает даже дискетами, обладавшим объемом в 3 мегабайта. В разы увеличился объем устройств, где осуществляется хранение информации. Носители информации, напротив, имеют тенденцию к физическому уменьшению.

Универсальность разъема позволяет накопителям работать не только с персональными компьютерами, но и с телевизорами, DVD-проигрывателями и другими устройствами, обладающими технологией USB. Огромным преимуществом по сравнению с оптическими аналогами стала меньшая восприимчивость к внешнему воздействию. Флешке не страшны царапины и пыль, бывшие смертельной угрозой для CD.

Виртуальная реальность

В последние годы компьютерные носители информации уступают позиции виртуальной альтернативе. Так как сегодня легко подключить ПК к Глобально Сети, информация хранится на общих серверах. Удобства неоспоримы. Теперь чтобы получить доступ к своим файлам, пользователю вовсе не нужен физический носитель. Для взаимодействия с данными на расстоянии достаточно находиться в зоне доступа беспроводного Wi-Fi соединения и т. д.

Кроме того, данное явление помогает избежать недоразумений с выходом из строя физических накопителей, уязвимых к повреждениям. Удаленные сервера, связь с которыми поддерживается сигналом, не пострадают, а в случае непредвиденных ситуаций там существуют резервные хранилища данных.

На протяжении всей истории — от наскальных рисунков до виртуальных бит — человек стремился сделать информационные носители объемнее, надежнее и доступнее. Это стремление привело к тому, что сегодня мы живем в эпоху, которую не без основания называют веком информационного общества. Прогресс дошел до того, что теперь люди в своей повседневной жизни просто захлебываются в потоке данных. Возможно информационные носители, виды которых все множатся, кардинально изменятся, согласно требованиям современенного человека.

9. Понятие носителя информации. Виды носителей.

Носитель информации– физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Носитель информации— строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Вот один из вариантов классификация носителей информации :

Ленточные носители информации

Магнитная лента — носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию [1].

Накопители на дисках наиболее разнообразны:

Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты

Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)

Накопители на оптических компакт-дисках:

CD-ROM (Compact Disk ROM)

В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких магнитных дисках (НЖМД или винчестерах), в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах — оптический принцип.

Гибкие магнитные дискипомещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.

Информационная ёмкость дискеты невелика и составляет всего 1.44 Мбайт. Скорость записи и считывания информации также мала (около 50 Кбайт/с) из-за медленного вращения диска (360 об./мин).

Жесткие магнитные диски.

Жесткий диск (HDD — Hard Disk Drive) относится к несменным дисковым магнитным накопителям. Первый жесткий диск был разработан фирмой IBM в 1973 г. и имел емкость 16 Кбайт. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. Скорость записи и считывания информации с жестких дисков достаточно велика (около 133 Мбайт/с) за счет быстрого вращения дисков (7200 об./мин).

В процессе работы компьютера случаются сбои. Вирусы, перебои энергоснабжения, программные ошибки — все это может послужить причиной повреждения информации, хранящейся на Вашем жестком диске. Повреждение информации далеко не всегда означает ее потерю, так что полезно знать о том, как она хранится на жестком диске, ибо тогда ее можно восстановить. Тогда, например, в случае повреждения вирусом загрузочной области, вовсе не обязательно форматировать весь диск (!), а, восстановив поврежденное место, продолжить нормальную работу с сохранением всех своих бесценных данных.

В жестких дисках используются достаточно хрупкие и миниатюрные элементы. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.

Лазерные дисководы и диски.

В начале 80-х годов голландская фирма «Philips» объявила о совершенной ею революцией в области звуковоспроизведения. Ее инженеры придумали то, что сейчас пользуется огромной популярностью — Это лазерные диски и проигрыватели.

Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD — Compact Disk, компакт диск) и DVD (DVD — Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1. Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения. На лазерных дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна. Производятся такие диски путем штамповки. Существуют CD-R и DVD-R диски информация на которые может быть записана только один раз. На дисках CD-RW и DVD-RW информация может быть записана/перезаписана многократно. Диски разных видов можно отличить не только по маркировки, но и по цвету отражающей поверхности.

Устройства на основе flash-памяти.

Flash-память — это энергонезависимый тип памяти, позволяющий записывать и хранить данные в микросхемах. Устройства на основе flash-памяти не имеют в своём составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах.

Flash-память представляет собой микросхему, помещенную в миниатюрный корпус. Для записи или считывания информации накопители подключаются к компьютеру через USB-порт. Информационная емкость карт памяти достигает 1024 Мбайт.

Внешние носители информации

Для хранения и переноса информации с одного компьютера на другие удобно использовать внешние носители. В качестве носителей информации чаще всего выступают оптические диски (CD, DVD, Blu-Ray), флеш-накопители (флешки) и внешние жесткие диски. В этой статье мы разберем виды внешних носителей информации и ответим на вопрос «На чем хранить данные?»

Сейчас оптические диски постепенно отходят на второй план и это понятно. Оптические диски позволяют записать относительно небольшое количество информации. Также удобство использования оптического диска оставляет желать лучше, к тому же диски можно легко повредить, поцарапать, что приводит к потере читаемости диска. Однако для длительного хранения медиаинформации (фильмов, музыки) оптические диски подходят как никакой другой внешний носитель. Все медиацентры и видеопроигрыватели по-прежнему воспроизводят оптические диски.

Флеш-накопители или по-простому «флешка» сейчас пользуется наибольшим спросом у пользователей. Ее малый размер и внушительные объемы памяти (до 64Гб и более) позволяют использовать для различных целей. Чаще всего флешки подключаются к компьютеру или медиацентр через порт USB. Отличительной особенность флешек является высокая скорость чтения и записи. Флешка имеет пластиковый корпус, внутрь которого помещена электронная плата с чипом памяти.

К разновидностью флешек можно отнести карты памяти, которые с картриддером являются полноценной USB-флешкой. Удобство использование такого тандема позволяет хранить значительные объемы информации на различных картах памяти, которые будет занимать минимум места. К тому же вы всегда можете прочитать карту памяти вашего смартфона, фотоаппарата.

Читайте также:  Имеет свою точку зрения и отстаивает ее


Флешки удобно использовать в повседневной жизни – переносить документы, сохранять и копировать различные файлы, просматривать видео и прослушивать музыку.

Внешние жесткие диски

Внешние жесткие диски технически представляют собой жесткий диск, помещенный в компактный корпус с USB адаптером и системой защиты от вибрации. Как известно жесткие диски обладают впечатляющими объемами дискового пространства, что в купе с мобильностью делает их очень привлекательными. На внешнем жестком диске вы сможете хранить всю свою видео и аудиоколлекцию. Однако для оптимальной работы внешнего жесткого диска требуется повышенная мощность питания. Один разъем USB не в силе обеспечить полноценное питание. Вот почему на внешних жестких дисках имеется двойной кабель USB. По габаритам внешние жесткие диски совеем небольшие, и могут легко поместиться в обычном кармане.

Существуют HDD боксы, предназначенные для использования в качестве носителя информации обычный жесткий диск (HDD). Такие боксы представляют собой коробку с контроллером USB, к которому подключаются самые простые жесткие диски стационарного компьютера.

Таким образом, вы легко можете переносить информацию непосредственно с жесткого диска вашего компьютера напрямую, без дополнительного копирования и вставки. Такой вариант будет намного дешевле покупки внешнего жесткого диска, особенно если перенести на другой компьютер нужно почти весь раздел жесткого диска.

В общем случае, границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться, в зависимости от ситуации и внешних условий.

Необходима подсказка, как устранить затертость с заднего бампера автомобиля.
Кто-то прижался во дворе и поцарапал. Деньги выкидывать для перекраску элемента нет желания, т.к дорого стоит.

Виды и характеристики носителей информации.

Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Носитель информации — строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Один из вариантов классификация носителей информации представлен на рис. 1.1.

Список носителей информации на рис. 1.1 не является исчерпывающим. Некоторые носители информации мы рассмотрим более подробно в следующих разделах.

Хранение информации — это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга — библиотека, картина — музей, фотография — альбом). Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.

ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.

Информационная система — это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур — главная особенность информационных систем, отличающих их от простых скоплений информационных материалов.

диск файл накопитель информация

ЛЕНТОЧНЫЕ НОСИТЕЛИ ИНФОРМАЦИИ

Магнитная лента — носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

ДИСКОВЫЕ НОСИТЕЛИ ИНФОРМАЦИИ

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию [1].

— Накопители на дисках наиболее разнообразны:

— Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты

— Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)

— Накопители на оптических компакт-дисках:

— CD-ROM (Compact Disk ROM)

Имеются и другие разновидности дисковых носителей информации, например, магнитооптические диски, но ввиду их малой распространенности мы их рассматривать не будем.Накопители на гибких магнитных дисках

Некоторое время назад дискеты были самым популярным средством передачи информации с компьютера на компьютер, так как интернет в те времена был большой редкостью, компьютерные сети тоже, а устройства для чтения-записи компакт дисков стоили очень дорого. Дискеты и сейчас используются, но уже достаточно редко. В основном для хранения различных ключей (например, при работе с системой клиент-банк) и для передачи различной отчетной информации государственным надзорным службам.

Дискета — портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема.

Этот вид носителя был особенно распространён в 1970-х — начале 2000-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД — «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД — «накопитель на гибких магнитных дисках», жаргонный вариант — флоповод, флопик, флопарь от английского floppy-disk или вообще «печенюшка»). Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства — дисковод (флоппи-дисковод). Дискета обычно имеет функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Внешний вид 3,5” дискеты представлен на рис. 1.2.

НАКОПИТЕЛИ НА ЖЕСТКИХ МАГНИТНЫХ ДИСКАХ

В качестве накопителей на жестких магнитных дисках широкое распространение в ПК получили накопители типа «винчестер».

Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 КВ (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30/30 известного охотничьего ружья «Винчестер».

Дата добавления: 2016-03-10 ; просмотров: 3987 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Виды носителей

Читайте также:

  1. Имена внешних носителей информации
  2. Подвижность носителей заряда.
  3. Проблема использования внешних носителей информации
  4. Создание уровня с инверсной заселенностью носителей,

Носители информации

Информация – вещь нематериальная. Это сведения, которые зафиксированы (записаны) тем или иным расположением (состоянием) материального носителя, например, порядком расположения букв на странице или величиной намагниченности ленты.

Носителем информации может быть любой материальный объект. И наоборот – любой материальный объект всегда несёт на себе некую информацию (которая, однако, далеко не всегда имеет для нас значение). Например, книга как совокупность переплёта, бумажных листов, и типографской краски на них является типичным носителем информации.

Чтобы отличать информацию от её носителя, надо твёрдо помнить, что информация – это сугубо нематериальная субстанция. Всё, что является материальным объектом, информацией быть не может, но только лишь её носителем. В том же примере с книгой и листы, и знаки на них – только носитель; информация же заключена в порядке расположения печатных символов на листах. Радиосигнал – тоже материальный объект, поскольку является комбинацией электрических и магнитных полей (с другой точки зрения – фотонов), поэтому он не является информацией. Информация в данном случае – порядок чередования импульсов или иных модуляций указанного радиосигнала.

Материя и информация неотделимы друг от друга. Информация не может существовать сама по себе, в отрыве от материального носителя. Материя же не может не нести информации, поскольку всегда находится в том или ином определённом состоянии.

Теперь перейдём к более конкретному рассмотрению. Хотя любой материальный объект – носитель информации, но люди используют в качестве таковых специальные объекты, с которых информацию удобнее считывать.

Традиционно используемым носителем информации является бумага с нанесёнными на ней тем или иным способом изображениями.

Поскольку в наше время основным средством обработки информации является компьютер, то и для хранения информации используются в основном машинно-читаемые носители. Ниже приводится полный список известных типов машинных носителей с их качественными характеристиками:

1. Жёсткий магнитный диск, ЖМД, НЖМД (hard disk, HD). Применяется как основной стационарный носитель информации в компьютерах. Большая ёмкость, высокая скорость доступа. Иногда встречаются модели со съёмным диском, который можно вынуть из компьютера и спрятать с сейф;

2. Твердотельный накопитель (SSD) — компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Различают два вида твердотельных накопителей: на основе памяти, подобной оперативной памяти компьютеров, и на основе флеш-памяти.

3. USB-флеш-накопитель — запоминающее устройство, использующее в качестве носителя флеш-память и подключаемое к компьютеру или иному считывающему устройству по интерфейсу USB.

4. Гибкий магнитный диск, ГМД (floppy disk, FD) или дискета (diskette). Сменный носитель для персональных компьютеров. Небольшая ёмкость, низкая скорость доступа, но и стоимость тоже низкая. Основное преимущество – транспортабельность;

5. Лазерный компакт-диск (CD, CD-ROM). Большая ёмкость, средняя скорость доступа, но отсутствует возможность записи информации. Запись производится на специальном оборудовании;

6. Перезаписываемый лазерный компакт-диск (CD-R, CD-RW). В одних случаях возможна только запись (без перезаписи), в других — также ограниченное число циклов перезаписи данных. Те же характеристики, что и для обычного компакт-диска;

7. DVD-диск. Аналогичен CD-ROM, но имеет более высокую плотность записи (в 5-20 раз). Имеются устройства как только для считывания, так и для записи (перезаписи) DVD;

8. HD DVD — технология записи оптических дисков, использует диски стандартного размера (120 миллиметров в диаметре) и сине-фиолетовый лазер с длиной волны 405 нм. HD DVD-ROM, HD DVD-R и HD DVD-RW могут иметь как один слой, ёмкостью 15 ГБ, так и два слоя, ёмкостью 30 ГБ.

9. Blu-ray Disc — формат оптического носителя, используемый для записи с повышенной плотностью и хранения цифровых данных, включая видео высокой чёткости. В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длинной волны 405 нм. Однослойный диск Blu-ray (BD) может хранить 23,3 ГиБ(25 ГБ), двухслойный диск может вместить 46,6 ГиБ (50 ГБ), трёхслойный диск может вместить 100 ГБ, четырёхслойный диск может вместить 128 ГБ.

10. Сменный магнитный диск типа ZIP или JAZZ. Похож на дискету, но обладает значительно большей ёмкостью;

11. Кассета с магнитной лентой – сменный носитель для стримера (streamer) – прибора, специально предназначенного для хранения больших объёмов данных. Некоторые модели компьютеров приспособлены для записи информации на обычные магнитофонные кассеты. Кассета имеет большую ёмкость и высокую скорость записи-считывания, но медленный доступ к произвольной точке ленты.

12. Кассеты и микросхемы ПЗУ (read-only memory, ROM). Характеризуются невозможностью или сложностью перезаписи, небольшой ёмкостью, относительно высокой скоростью доступа, а также большой устойчивостью к внешним воздействиям. Обычно применяются в компьютерах и других электронных устройствах специализированного назначения, таких как игровые приставки, управляющие модули различных приборов, принтеры и т.д.

10. Магнитные карты (полоски). Маленькая ёмкость, транспортабельность, возможность сочетания машинно-читаемой и обычной текстовой информации. Кредитные карточки, пропуска, удостоверения и т.п.

11. Существует большое количество специализированных носителей, применяемых в различных малораспространённых приборах. Например, магнитная проволока, голограмма, перфокарта, перфолента и т.д.

Кроме того, носителем информации является оперативная память компьютера, ОЗУ (RAM), но она не пригодна для долговременного хранения информации, поскольку данные в ней не сохраняются при отключении питания.

1.2.2 Защита носителей и её отличие от защиты информации

Важно различать два вида ЗИ – защита носителей и защита непосредственно информации, безотносительно к тому, где она находится.

Первый вид включает несколько методов защиты носителей информации (здесь мы будем рассматривать только компьютерные носители), их можно подразделить на программные, аппаратные и комбинированные. Метод же защиты самой информации только один – использование криптографии, то есть, шифровка данных.

Для всех сменных носителей – физическая их защита, например, запереть в сейф.

Для всех встроенных в ПК носителей – воспрепятствование включению питания компьютера. Конечно, этот метод действенен для ограниченного числа случаев.

Программное воспрепятствование доступу к конкретному носителю или к компьютеру целиков. Например, пароль на CMOS.

Программно-аппаратный метод с использованием электронных ключей, которые чаще всего вставляются в USB-порт ПК. Не получая нужный ответ от ключа, программа, для которой он предназначен, не будет работать или давать пользователю доступ к своим данным.

Модель информационной безопасности

Модель информационной безопасности — это модель, поясняющая суть терминов «информационная безопасность», «безопасность информационных технологий (ИТ)», «защита информационных ресурсов» и «защита ресурсов ИТ». Данная модель должна быть компактной, недвусмысленной и интуитивно понятной. Модель должна, по крайней мере, связывать понятия, входящие в термины, которые она поясняет, а именно: ресурс ИТ и защита/безопасность. Кроме того, понятие «ресурс» должно быть центральным, поскольку ресурс ИТ (или их совокупность) как раз и является объектом защиты. Модель приведена на рисунке 1

Кроме понятий «ресурс ИТ» и «безопасность», данная модель вводит (связывает) еще и понятия «уязвимость», «окружение» или «злоумышленник», «угроза», «риск», и, естественно, «средство защиты (СЗ)» и «остаточный риск». Все указанные понятия описывают очень абстрактные сущности, однако, с каждой такой сущностью связаны реальные объекты, и это соответствие вполне однозначно.

все, что имеет значение для организации и является предметом защиты.

Уязвимое место (vulnerability)

слабости в системе или организации, которые являются причиной потенциальных угроз.

потенциально возможная ситуация, в результате которой может быть нанесен ущерб системе или организации.

Атакующая сторона (attacker)

Взломщик (cracker, intruder)

человек или группа людей, осуществляющая преднамеренно или случайно действия, наносящие ущерб объекту защиты.

потенциальная возможность непреднамеренного или умышленного нарушения режима безопасности (осуществления угрозы, атаки).

Средство защиты (СЗ) ИТ (safeguard)

практическое мероприятие, некоторая процедура или механизм, уменьшающие вероятность осуществления риска для безопасности ИТ.

Остаточный риск (residual risk)

риск, который остается после ввода в действие средств защиты. Процесс управления безопасностью ИТ заключается в принятии тех или иных решений по применению средств защиты, минимизирующих остаточный риск.

В общем, данная модель вполне адекватна рассматриваемой проблеме, и вполне достаточно перечисленных выше терминов и понятий. Однако, данная модель явно не обозначает специфику сетевого окружения. Этот недостаток ликвидирует следующая модель — модель сетевой безопасности ИТ, являющаяся частным случае рассмотренной выше модели и детализирующая понятие безопасности ИТ. Данная модель приведена на рисунке 2.

В следующем разделе подробно рассматриваются классы объектов сети, соответствующих терминам «ресурс», «достояние» и «ценности», а уязвимости и угрозы детально будут рассмотрены в двух заключительных разделах.

Информационные ресурсы организации

В общем случае, под информационными ресурсами организации понимается вся совокупность вычислительной техники и коммуникационного оборудования, которой владеет организация, а так же совокупность применяемых программ и обрабатываемых данных, и представляющих ценность для организации. К информационным ресурсам также относят носители информации, как электронные, так и бумажные.

Однако, в контексте сетевой безопасности целесообразно рассматривать защиту от вторжения на средства вычислительной техники (СВТ) организации извне через коммуникационное оборудование, объединив при этом вычислительную технику с функционирующем на ней ПО и обрабатываемыми на ней данными.

Как правило, в организации используются самые разнообразные средства вычислительной техники разных производителей, с разными функциональными возможностями и, наконец, на функционирование разных средств вычислительной техники накладываются разные требования, в т.ч. требования безопасности. Кроме того, обычно средства вычислительной техники физически распределены в пределах (а иногда и за пределами) организации. Можно выделить следующие классы СВТ: рабочая станция, сервер поддержки, информационный сервер и коммуникационное оборудование. В пределах каждого класса цели функционирования вычислительной системы и требования к ней практически совпадают, а значит, совпадают и средства защиты, которые могут применяться для эффективного снижения риска вторжения злоумышленника. Данная классификация введена для удобства рассмотрения проблем сетевой безопасности используемых СВТ.

Рассмотрим указанные классы СВТ более подробно, акцентируя внимание на угрозах безопасности и методах защиты, специфичных для каждого конкретного класса.

3.1. Рабочая станция

Рабочая станция (workstation) — средство вычислительной техники, предназначенное для непосредственной работы персонала организации. Конструктивно рабочая станция представляет собой персональный компьютер (ПК), обычно на базе процессора Intel и с операционной системой Windows 98, NT Workstation или Unix. Количество рабочих станций обычно пропорционально количеству персонала в организации и относительно велико. Администрирование рабочих станций производится не централизованно администратором, а локально — сами пользователями.

С точки зрения сетевого взаимодействия рабочая станция не предоставляет никаких сервисов, но она активно использует сервисы предоставляемые серверами поддержки и информационными серверами организации, а так же, возможно, предоставляемые серверами сети Интернет.

Уровень информационной безопасности рабочей станции — минимальный и не является приемлемым при подключении к глобальным сетям. Рабочая станция (а точнее установленная ОС и другое системное ПО) имеет большое количество уязвимых мест (ошибок в ПО), в том числе и в реализации стека TCP/IP. Существует большое число сетевых угроз или атак, направленных как на выведение рабочей станции из строя («зависание»), так и на чтение и изменение конфиденциальной информации передаваемой по сети или хранимой и обрабатываемой на самом ПК. При этом основу этих угроз составляют непосредственная доступность для рабочей станции всей глобальной сети и, наоборот, доступность рабочей станции извне.

Читайте также:  Как дети на небе выбирают себе родителей с точки зрения православия

Значительно повысить уровень защиты рабочей станции можно путем установки межсетевого экрана (см. «Коммуникационное оборудование») между рабочей станцией (или сегментом рабочих станций) и внешней глобальной сетью. С его помощью можно отслеживать и различать направление соединений всех уровней модели OSI, проходящих через межсетевой экран, фильтровать и протоколировать все исходящие от рабочей станции соединения, отвергать все неразрешенные соединения. Все входящие соединения следует протоколировать и блокировать, определять попытки сетевого вторжения с уведомлением об этом администратора сети, а в случае вторжения — автоматически принимать действия по противодействию атаке. Кроме того, очень часто необходимо сокрытие (или маскировка) сетевых адресов рабочих станций как для обеспечения более качественной защиты, так и для повышения гибкости в доступе к ресурсам глобальной сети (случай нехватки официальных сетевых адресов, выделенных организации). Последняя проблема решается путем трансляции сетевых адресов (network address translation — NAT).

3.2. Сервер поддержки

Сервер поддержки (supporting server) — специальное средство вычислительной техники, предназначенное для нормального функционирования рабочих станций и других средств, и решения повседневных задач организации. Конструктивно сервер поддержки может представлять собой как персональный компьютер, так и мощный многопроцессорный комплекс. Установленное программное обеспечение и ОС также могут быть самыми различными: Windows NT Server, Unix, Novell NetWare и т.д. Круг решаемых задач — это хранение больших массивов данных и программ (сетевые файловые системы (NFS) и базы данных), осуществление ресурсоемких вычислений с разделением времени, кэширование информационных объектов сети Интернет для ускорения доступа (proxy caching), осуществление доставки электронной почты (e-mail delivering), трансляция символьных адресов компьютеров в их цифровые эквиваленты (DNS), сбор статистики и прочие приложения типа клиент-сервер. Количество серверов поддержки в организации обычно соизмеримо с количеством решаемых задач, указанных выше. Серверы поддержки обычно имеют минимальные средства человеко-машинного интерфейса и администрируются удаленно с рабочей станции. Обычно в организации есть персонал, ответственный за администрирование серверов поддержки.

С точки зрения сетевого взаимодействия каждый сервер поддержки предоставляет услуги исходя из решаемых им задач, причем услуги могут предоставляться и внешней сети (например, доставка почты), хотя это, скорее всего, исключение. Аналогично, каждый сервер поддержки может пользоваться услугами других серверов поддержки, информационных серверов и серверов внешней сети (как, например, при трансляции символьных адресов компьютеров) исходя из решаемых им задач.

Уровень информационной безопасности серверов поддержки обычно значительно выше, чем рабочих станций. Однако, и требования к защите у серверов поддержки выше. Если не используется специальная защищенная версия ОС, то у сервера поддержки также имеется большое количество уязвимых мест, в т.ч. и в реализации стека TCP/IP. Существует большое число сетевых атак, направленных на замедление работы сервера, на выведение его из строя («зависание» или перезагрузка), на получение несанкционированного доступа (НСД) к конфиденциальной информации, передаваемой по сети или хранимой/обрабатываемой на самом сервере. Возможны атаки подготовительного типа, целью которых является сбор информации о других информационных ресурсах организации. Особую опасность представляют атаки, в результате которых злоумышленник получает несанкционированный доступ к управлению СВТ с большими полномочиями (root-privileges unauthorized access). При этом основу всех этих угроз составляет непосредственная доступность сервера из глобальной сети.

Установка межсетевого экрана, отделяющего локальную сеть от внешней глобальной сети, позволила бы значительно усилить защиту серверов поддержки. Более хорошим является решение о выделении отдельного сегмента сети специально для всех серверов поддержки, и развязки данного сегмента от других сегментов сети организации и внешней сети с помощью межсетевого экрана, т.е. организация так называемой «демилитаризованной» зоны (demilitarized zone — DMZ). В такой конфигурации можно отслеживать и различать направление соединений всех уровней модели OSI, проходящих через межсетевой экран, фильтровать и протоколировать все исходящие от сервера поддержки и входящие в него соединения, отвергая все неразрешенные соединения, блокируя все известные сетевые атаки и извещая о них администратора. Особенно тщательно следует фильтровать команды прикладного протокола, семантика которых заключается в модификации конфиденциальной информации или получении пользователем больших привилегий. Те серверы, которые не предоставляют никаких сервисов внешней сети и не пользуются сервисами, предоставляемыми внешней сетью, возможно сделать недостижимыми и невидимыми извне, путем блокирования любого трафика между данным сервером и внешней сетью, и исключения записей об адресе данного сервера во внешнем DNS. Кроме того, очень часто возникает потребность в безопасном доступе к серверу поддержки от рабочей станции, находящейся во внешней сети. Последняя задача решается путем прозрачного туннелирования стандартного трафика между сервером и удаленной рабочей станцией с шифрование всех передаваемых данных и команд, с применением усиленных механизмов идентификации и аутентификации (подтверждения подлинности) рабочей станции, с которой осуществляется удаленный доступ.

3.3. Информационный сервер

Информационный сервер (public informational server) — средство вычислительной техники, предназначенное для предоставления организацией информационных услуг всем пользователям глобальной сети. Конструктивно он представляет собой достаточно мощный компьютер, способный обслуживать запросы пользователей в реальном масштабе времени, с установленной ОС либо Unix, либо Windows NT Server. По типу предоставляемых услуг все информационные серверы делятся на HTTP-, FTP-, DNS- и прочие серверы. Следует отметить, что услуги DNS-сервера — это предоставление информации (по запросам из внешней сети) о наличии тех или иных информационных ресурсов в сети организации и об их сетевых адресах, т.е. создание некоторой формы «присутствия» организации в сети Интернет. Обычно в организации существует только один информационный сервер, на котором одновременно исполняются приложения, предоставляющие все вышеуказанные услуги. Следует отметить, что в последнее время все чаще применяется техника зеркального отображения (mirroring) информационного сервера, т.е. использование нескольких одинаковых серверов, исполняющих роль одного «виртуального» информационного сервера, с целью увеличения суммарной скорости обслуживания клиентских запросов. Информационный сервер обычно имеет минимальные средства человеко-машинного интерфейса и администрируется удаленно с рабочей станции. Как правило, в организации есть персонал, ответственный за администрирование информационного сервера.

С точки зрения сетевого взаимодействия информационный сервер не пользуется услугами, предоставляемыми другими серверами, а только предоставляет вышеперечисленные информационные услуги, причем основные потребители данных услуг располагаются в глобальной сети, и, в принципе, потребителем услуг может стать любой пользователь сети Интернет.

Уровень информационной безопасности информационного сервера — не столь критичный параметр по сравнению с безопасностью серверов поддержки, тем не менее, от уровня безопасности непосредственно зависит качество предоставляемых информационных услуг, а, следовательно, зависит и престиж организации. Уровень безопасности, предоставляемый ОС и программами, установленными на информационном сервере, обычно является недостаточным. Если ОС специально не защищена, то в ней существует большое количество уязвимых мест. Аналогично, существует и большое число сетевых атак, направленных на замедление работы сервера, на выведение его из строя («зависание» или перезагрузка), на получение прав на изменение (и компрометацию) информации, хранимой на сервере. Опасны также атаки подготовительного типа, целью которых является получение несанкционированного доступа к управлению информационным сервером для дальнейшего осуществления атак с данного сервера на другие ресурсы сети организации.

Наиболее эффективной защиты информационного сервера можно добиться с помощью межсетевого экрана. Есть несколько вариантов:

Во-первых, можно поместить информационный сервер перед межсетевым экраном. При этом информационный сервер не будет дополнительно защищен от атак из внешней сети, но и при выведении из строя, его нельзя будет использовать как базу для дальнейших атак на остальные сетевые ресурсы организации, находящиеся за межсетевым экраном. Преимуществом данного метода является тот факт, что трафик через межсетевой экран определяется только потребностями самой организации и не зависит от активности пользователей сети Интернет, т.е. соединения, проходящие через межсетевой экран, устанавливаются/допускаются исключительно из внутренней сети (за исключением случая доставки электронной почты);

Во-вторых, существует возможность размещения информационного сервера за межсетевым экраном в том же сегменте сети, где расположены серверы поддержки и/или рабочие станции. В таком случае информационный сервер будет защищен также как и другие сетевые ресурсы компании, но, учитывая то, что соединения к информационному серверу устанавливаются извне, а не наоборот (как для остальных СВТ), и учитывая возможность косвенных атак через скомпрометированный («взломанный») информационный сервер, решение об установке данного сервера за межсетевым экраном в одном сегменте представляется неадекватным требованиям защиты в большинстве случаев;

В-третьих, есть возможность размещения информационного сервера за межсетевым экраном, но на отдельном сегменте (т.е. организация «демилитаризованной» зоны). При этом информационный сервер будет защищен наилучшим образом от атак (при полной доступности) из глобальной сети и отделен от других сетевых ресурсов организации, делая невозможным осуществление косвенных атак через данный сервер. По критерию цена/эффективность данное решение в большинстве случаев является наилучшим.

В любом случае, с помощью межсетевого экрана, защищающего информационный сервер, можно отслеживать и различать направление соединений всех уровней модели OSI, проходящих через межсетевой экран, фильтровать и протоколировать все входящие в сервер соединения, отвергая все неразрешенные соединения, блокируя все известные сетевые атаки и извещая о них администратора.

3.4. Коммуникационное оборудование

Коммуникационное оборудование (communication equipment) — специальное оборудование, предназначенное для физической связи различных средств вычислительной техники между собой и с глобальной сетью, для комплексной информационной защиты компонентов локальной сети, а также для управления и маршрутизации трафика между различными СВТ, и между СВТ и глобальной сетью. Класс коммуникационного оборудования содержит: кабели (cables), активные повторители (active repeaters), концентраторы (hubs) и коммутаторы (switches), маршрутизаторы (routers), модемы (modems), межсетевые экраны (firewalls) и т.п. С точки зрения сетевой безопасности и атак из внешней сети, следует обратить особое внимание на маршрутизаторы, модемы и межсетевые экраны.

Маршрутизатор — главный элемент при организации соединений на сетевом уровне модели OSI, направляющий пакеты данных, проходящие через него, в нужную сторону. Поскольку все пакеты из внешней сети обязательно проходят через маршрутизатор, то от возможностей по фильтрации и блокированию пакетов и соединений напрямую зависит защищенность внутренней сети организации от атак злоумышленников из глобальной сети. Поэтому, многие существующие маршрутизаторы выполняют те или иные функции межсетевых экранов, начиная от простой фильтрации пакетов по адресам их заголовков и кончая контекстной инспекцией информационных потоков. Следует отметить, что сами маршрутизаторы также могут стать объектом сетевой атаки.

Модем — основное средство для связи вычислительной техники посредством коммутируемых телефонных линий. Модем может присутствовать на самом компьютере или находиться в модемном пуле (modem pool), т.е. на специально предназначенном для этого защищенном сегменте сети. С точки зрения безопасности, вариант с модемным пулом гораздо лучше, т.к. в противном случае у злоумышленника появляется возможность легкой атаки компьютера с модемом посредством коммутируемой телефонной сети(в обход межсетевого экрана, если он присутствует в сети) и использование атакованного компьютера как базы для дальнейших атак на другие компьютеры внутренней сети организации.

Межсетевой экран — средство разделения (экранирования) компьютерных сетей в целях защиты. Следует отметить, что часто и сами межсетевые экраны содержат уязвимости и могут стать объектом сетевых атак злоумышленников. Поэтому, обычно используется комбинация межсетевых экранов разных типов, дающая максимальную комплексную защиту. Кроме того, в последнее время межсетевые экраны все чаще используются для организации так называемых виртуальных частных сетей (virtual private networks — VPN) — «прозрачного» и безопасного объединения нескольких физически удаленных сетей организации (филиалов организации) посредством глобальной сети. «Прозрачность» и безопасность такого объединения достигается путем туннелирования стандартного трафика сети организации с шифрованием всех данных предаваемых пакетов. Функции шифрования возлагаются на межсетевые экраны, расположенные на границах стыковки каждой из виртуально объединяемых сетей с глобальной сетью, а туннелированный трафик передается по глобальной сети между этими межсетевыми экранами. Таким образом, достигается защита от чтения и модификации злоумышленником во внешней сети конфиденциальной информации между двумя физически разрозненными локальными сетями одной организации.

Теперь рассмотрим уязвимые места, наиболее характерные для описанных выше сетевых ресурсов организации, подключенных к глобальной сети Интернет. Параллельно будут излагаться возможные способы «закрытия» (ликвидации) этих уязвимостей.

4.1. «Дыры» в сетевых ОС

Самым главным уязвимым местом СВТ, существующим на сегодняшний день, является наличие так называемых «дыр» в сетевых ОС — недостатков и ошибок реализации примитивов безопасности, заложенных в стандартную поставку операционной системы и реализацию стека протоколов TCP/IP. В связи с наличием таких «дыр» существует огромное число сетевых атак, направленных на реализацию угроз, связанных с выведением системы из строя (отказ в обслуживании), получения неавторизованного доступа по управлению конкретным СВТ или доступа к чтению и модификации конфиденциальных данных злоумышленником.

Для ликвидации указанных «дыр» к каждой версии ОС через некоторое время после ее выпуска появляются программы-заплатки (patches), однако, как правило, они сильно запаздывают по времени, и к моменту выхода очередной «заплатки» для ОС уже существует большое число атак, использующие уязвимость, которая ликвидируется данной «заплаткой».

4.2. Слабая аутентификация

Слабая аутентификация (weak authentication) — недостаток системы, программы или протокола, реализующих идентификацию и аутентификацию (т.е. подтверждение подлинности) удаленной системы и/или пользователя, причем слабость означает возможность легкой фальсификации результатов идентификации и аутентификации (identification and authentication — I&A) злоумышленником и выдачи себя за легального пользователя системы с целью получения несанкционированного доступа. Слабой аутентификацией обладают почти все стандартные протоколы прикладного уровня: ftp, telnet, rsh, rexec и т.п. — в них аутентификация пользователя производится с помощью парольной фразы условно-постоянного действия, которая передается по сети в незашифрованном виде, а идентификация и аутентификация СВТ осуществляется с только (!) помощью IP-адреса.

Внутри организации вполне допускается использование программ и протоколов со слабой аутентификацией, поскольку основные сетевые атаки осуществляются извне. Если необходим доступ с удаленной рабочей станции из внешней сети к серверу организации, то можно использовать какой-нибудь протокол с сильной аутентификацией (strong authentication): SSH, SSL, S/MIME. В таком случае, необходимо, чтобы данный протокол поддерживался сервером, к которому производится обращение из глобальной сети.

При использовании межсетевого экрана, возможно возложение задачи надежной аутентификации и поддержки протоколов с сильной аутентификацией непосредственно на сам межсетевой экран. В этом случае отпадает необходимость в каком-либо усилении стандартных средств идентификации и аутентификации, входящих в состав программ, функционирующих на серверах, защищаемых данным межсетевым экраном, и отвечающих за поддержку соответствующих протоколов прикладного уровня.

4.3. «Активные» данные

Внутри данных, которые передаются по компьютерной сети, может содержаться исполняемый код, записанный в некотором формате: exe, JavaScript, ActiveX, shell script, MSWord document и т.п. Такие данные называются «активными». Указанный исполняемый код может быть «враждебным» (malicious software), т.е. содержать вирусы, программные «закладки»; и т.п. В принципе, если не принимать специальных мер, злоумышленник, написав искусным образом указанный исполняемый код, может получить практически неограниченный удаленный доступ на том компьютере, на котором будут получены «активные» данные, содержащие написанный злоумышленником код.

В качестве упомянутых специальных мер могут использоваться регулярные проверки каждого компьютера антивирусным пакетом, отключение действия макросов в документах MSWord, отключение исполнения апплетов JavaScript и модулей ActiveX, исполнение Java-программ в безопасной среде.

Другой способ защиты (реализованный во многих межсетевых экранах экспертного типа) от такой угрозы — инспектирование получаемых из компьютерной сети «активных» данных в реальном масштабе времени, что дает гораздо более высокий уровень защиты от проникновения вирусов и установки программных «закладок» злоумышленником по сравнению с описанными выше мерами. Под инспектированием (inspection) данных в данном случае понимается контроль (например, антивирусный) получаемых/пересылаемых данных с целью блокирования «враждебного» кода, содержащегося в них.

4.4. Неразвитые средства мониторинга и управления

Еще одним уязвимым местом используемых СВТ является неразвитость инструментов мониторинга и контроля безопасности (security monitoring and control). Обычно штатные средства ОС позволяют только просмотреть активные в данный момент задачи на конкретном компьютере, а также активные в данный момент соединения с данным компьютером. Конечно, существуют средства ОС протоколирующие все нештатные ситуации (unusual situations), происходящие на компьютере, однако набор контролируемых нештатных ситуаций обычно невелик. Практически полностью отсутствуют средства удаленной сигнализации (например, по электронной почте или на пейджер) администратору системы о происходящих нештатных ситуациях. Средства безопасного удаленного управления и мониторинга также обычно минимальны.

Как правило, отсутствует хороший интуитивно-понятный графический интерфейс с пользователем (GUI), позволяющий легко осуществлять наиболее часто выполняемые операции управления и мониторинга безопасности, существенно снижающий вероятность ошибки администратора.

1) Защита информации

2) Твердотельный накопитель — Википедия

3) USB-флеш-накопитель — Википедия

4) HD DVD — Википедия

5) Blu-ray Disc — Википедия

| следующая лекция ==>
Аспекты защиты | ТЕМА 1. Политология – наука и учебная дисциплина

Дата добавления: 2014-01-05 ; Просмотров: 6004 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источники:
  • http://mosmetod.ru/centr/proekty/pokoleniya-it/nositeli-informatsii.html
  • http://fb.ru/article/155502/informatsionnyie-nositeli-vidyi-i-primeryi
  • http://studfiles.net/preview/3994758/page:7/
  • http://minterese.ru/vneshnie-nositeli-informatsii/
  • http://helpiks.org/7-37296.html
  • http://studopedia.su/6_16052_vidi-nositeley.html