Меню Рубрики

В какой доле коры больших полушарий головного мозга находится зрение

Продолговатый мозг является непосредственным продолжением спинного мозга

  • отвечает за дыхание, кровообращение, пищеварение;
  • содержит рефлексы кашля, чихания, глотания, сосания, рвоты и т.д.

Мозжечок отвечает за координацию движений.

Средний мозг отвечает за ориентировочные реакции на свет и звук.

Промежуточный мозг регулирует обмен веществ в организме, согласовывает физиологические процессы, поддерживает гомеостаз (постоянство внутренней среды) двумя способами:

  • через гипофиз управляет всеми остальными железами внутренней секреции организма;
  • участвует в формировании чувств голода, холода, жажды и т.п., таким образом, влияет на поведение.

Большие полушария переднего мозга имеют борозды и извилины (как и мозжечок)

  • в передней части лобной доли находится зона логического мышления (она развита у человека лучше, чем у других животных);
  • в задней части лобной доли находится двигательная зона тела (отвечает за произвольные движения);
  • в нижней части лобной доли, на границе с теменной и височной, находится зона речи (она имеется только в мозге человека, у других животных ее нет);
  • в передней части теменной доли находится чувствительная зона тела (зона кожно-мышечной чувствительности);
  • в затылочной доле находится зона зрения; это центральная часть зрительного анализатора, здесь происходит анализ и распознавание зрительных образов;
  • в височной доле находится зона слуха, это центральная часть слухового анализатора.

Еще можно почитать

Тесты и задания

Установите соответствие между особенностями строения и функциями головного мозга человека и отделом, для которого они характерны: 1) продолговатый мозг, 2) передний мозг. Запишите цифры 1 и 2 в правильном порядке.
А) содержит дыхательный центр
Б) поверхность разделена на доли
В) воспринимает и обрабатывает информацию от органов чувств
Г) содержит (включает) сосудодвигательный центр
Д) содержит центры защитных реакций организма – кашля и чихания

Выберите один, наиболее правильный вариант. В какой доле коры больших полушарий головного мозга расположены высшие центры кожного анализатора?
1) лобной
2) височной
3) затылочной
4) теменной

Выберите один, наиболее правильный вариант. Регуляцию и согласование физиологических процессов, протекающих во внутренних органах, обеспечивает
1) промежуточный мозг
2) средний мозг
3) спинной мозг
4) мозжечок

Выберите один, наиболее правильный вариант. У человека по сравнению с млекопитающими животными происходит сильное развитие следующей доли коры головного мозга
1) лобной
2) теменной
3) затылочной
4) височной

Выберите один, наиболее правильный вариант. В какой доле коры больших полушарий головного мозга находится центр кожно-мышечного чувства у человека?
1) затылочной
2) височной
3) лобной
4) теменной

Выберите один, наиболее правильный вариант. Регуляцию и согласование физиологических процессов, протекающих во внутренних органах, обеспечивает
1) промежуточный мозг
2) средний мозг
3) спинной мозг
4) мозжечок

Выберите один, наиболее правильный вариант. В каком отделе головного мозга человека расположен дыхательный центр, на который влияет изменение концентрации углекислого газа в крови?
1) продолговатом
2) промежуточном
3) переднем
4) среднем

Выберите один, наиболее правильный вариант. Продолговатый отдел головного мозга человека не регулирует
1) дыхательные движения
2) перистальтику кишечника
3) сердечные сокращения
4) равновесие тела

Выберите один, наиболее правильный вариант. При разрушении клеток височной доли коры больших полушарий человек
1) получает искаженное представление о форме предметов
2) не различает силу и высоту звука
3) теряет координацию движений
4) не различает зрительные сигналы

Выберите один, наиболее правильный вариант. Окончательный анализ высоты, силы и характера звука у человека происходит в
1) внутреннем ухе
2) слуховом нерве
3) барабанной перепонке
4) слуховой зоне коры мозга

Выберите один, наиболее правильный вариант. Произвольные движения человека обеспечивают
1) мозжечок и промежуточный мозг
2) средний и спинной мозг
3) продолговатый мозг и мост
4) большие полушария переднего мозга

Выберите один, наиболее правильный вариант. В каком отделе головного мозга располагаются центры речи человека
1) продолговатый мозг
2) промежуточный мозг
3) мозжечок
4) кора больших полушарий

Установите соответствие между функцией отдела нервной системы человека и отделом, выполняющим данную функцию: 1) продолговатый мозг, 2) кора головного мозга. Запишите цифры 1 и 2 в правильном порядке.
А) регулирует деятельность сердечно-сосудистой системы
Б) отвечает за выработку условных рефлексов
В) содержит дыхательный центр
Г) анализирует зрительные и слуховые раздражения
Д) запускает реакцию кашля и чихания
Е) контролирует тонкие движения пальцев


Выберите три верно обозначенные подписи к рисунку «Отделы головного мозга». Запишите цифры, под которыми они указаны.
1) промежуточный мозг
2) продолговатый мозг
3) средний мозг
4) мост
5) большое полушарие
6) мозжечок

Установите соответствие между характеристикой и отделом головного мозга человека: 1) средний, 2) промежуточный, 3) продолговатый. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) содержит центры ориентировочных рефлексов
Б) содержит дыхательный центр
В) участвует в регуляции температуры тела
Г) расположен над мостом
Д) содержит центры защитных рефлексов (чихание, кашель)
Е) отвечает за чувство голода и насыщения

Установите соответствие между характеристиками и отделами головного мозга: 1) промежуточный мозг, 2) продолговатый мозг, 3) мозжечок. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) располагается непосредственно над спинным мозгом
Б) обеспечивает точность и координацию движений
В) содержит центр дыхания
Г) имеет борозды и извилины
Д) включает в себя гипоталамо-гипофизарную систему
Е) располагаются центры голода, жажды, насыщения


Установите соответствие между характеристиками и отделами головного мозга, обозначенными на рисунке цифрами 1 и 2. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) контролирует слюноотделение
Б) обеспечивает координацию движения
В) снаружи расположено серое вещество, внутри белое вещество
Г) располагается центр дыхания
Д) контролирует равновесие тела
Е) располагаются центры защитных рефлексов (рвоты)

17 апреля Кратко о специальной теории относительности.

14 апреля Вариант резервного дня ЕГЭ по математике.

13 апреля Вариант досрочного ЕГЭ по физике.

12 апреля Вариант досрочного ЕГЭ по информатике.

25 декабря На нашем сайте размещён курс русского языка Людмилы Великовой.

− Учитель Думбадзе
из школы 162 Кировского района Петербурга.

Наша группа ВКонтакте
Мобильные приложения:

В какой доле коры больших полушарий головного мозга расположены высшие центры кожного анализатора?

— в передней части лобной доли находится зона логического мышления (она развита у человека лучше, чем у других животных);

— в задней части лобной доли находится двигательная зона тела (отвечает за произвольные движения);

— в нижней части лобной доли, на границе с теменной и височной, находится зона речи (она имеется только в мозге человека, у других животных ее нет);

в передней части теменной доли находится чувствительная зона тела (зона кожно-мышечной чувствительности);

— в затылочной доле находится зона зрения; это центральная часть зрительного анализатора, здесь происходит анализ и распознавание зрительных образов;

— в височной доле находится зона слуха, это центральная часть слухового анализатора.

Основные центры коры больших полушарий головного мозга человека

Лобная доля. 1)Двигательный анализатор располагается в передней центральной извилине и парацентральной дольке.

2)Центр поворота глаз и головы в противоположную сторону расположен в средней лобной извилине в премоторной области. Работа его тесно связана с системой заднего продольного пучка, вестибулярными ядрами, образованиями стриопаллидарной системы, участвующей в регуляции торсии, а также с корковым отделом зрительного анализатора . 3)В задних отделах верхней лобной извилины представлен центр, дающий начало лобно-мостомозжечковому пути. Эта область коры больших полушарии участвует в обеспечении координации движений, связанных с прямохождением, сохранением равновесия стоя, сидя и регулирует работу противоположного полушария мозжечка. 4)Моторный центр речи (центр речевого праксиса) находится в задней части нижней лобной извилины—извилине Брока. Центр обеспечивает анализ кинестетической импульсации от мышц речедвигательного аппарата, хранение и реализацию «образов» речевых автоматизмов, формирование устной речи, тесно связан с расположением кзади от него нижним отделом передней центральной извилины (проекционной зоной губ, языка и гортани) и с находящимся кпереди от него музыкальным моторным центром. 5) Музыкальный моторный центр обеспечивает определенную тональность, модуляцию речи, способность составлять музыкальные фразы и петь. 6)Центр письменной речи — в заднем отделе средней лобной извилины в непосредственной близости от проекционной корковой зоны руки. Центр обеспечивает автоматизм письма и функционально связан с центром Брока.

Теменная доля. 1)Центр кожного анализатора располагается в задней центральной извилине и коре верхней теменной области. В задней центральной извилине проецируется тактильная, болевая, температурная чувствительность противоположной половины тела. В верхних отделах проецируется чувствительноси, воги, в нижних отделах— чувствительность лица. Представлены элементы глубокой чувствительности. Кзади от средних отделов задней центральной извилины располагается центр стереогнозиса, обеспечивающего способность узнавания предметов на ощупь. 2)Кзади от верхних отделов задней центральной извилины располагается центр, обеспечивающий способность узнавания собственного тела, его частей, их пропорции и взаимоположения . 3)Центр праксиса локализуется в нижней теменной дольке слева, надкраевой извилине. Центр обеспечивает хранение и реализацию образов двигательных автоматизмов (функции праксиса). 4)В нижних отделах передней и задней центральных извилин располагается центр анализатора интероцептивных импульсов внутренних органов и сосудов. Центр имеет тесные связи с подкорковыми вегетативными образованиями. Височная доля. 1)Центр слухового анализатора располагается в средней части верхней височной извилины, на поверхности, обращенной к островку (извилина Гешля). Указанные образования обеспечивают проекцию улитки, а также хранение и распознавание слуховых образов. 2)Центр вестибулярного анализатора располагается в нижних отделах наружной поверхности височной доли, является проекционным, находится в тесной связи с нижнебазальными отделами височных долей, дающими начало затылочно-височному корково-мостомозжечковому пути. 3)Центр обонятельного анализатора находится в филогенетически наиболее древней части коры мозга— в крючке и аммоновом роге и обеспечивает проекционную функцию, а также хранение и распознавание обонятельных образов. 4)Центр вкусового анализатора располагается в ближайшем соседстве с центром обонятельного анализатора, т. е. в крючке и аммоновом роге. но, кроме того, в нижнем отделе задней центральной извилины, а также в островке. Как и обонятельный анализатор, центр обеспечивает проекционную функцию, хранение и распознавание вкусовых обозов. 5)Акустико-гностический сенсорный центр речи (центр Вернике) локализуется в задних отделах верхней височной извилины слева, в глубине латеральной борозды. Центр обеспечивает распознавшие и хранение звуковых образов устной речи как собственной, так и чужой. В непосредственной близости от центра Вернике располагается центр, обеспечивающий распознавание музыкальных звуков, мелодий. Затылочная доля. 1)Центр зрительного анализатора располагается в затылочной доле, является проекционной зрительной зоной, обеспечивает хранение и распознавание зрительных образов, зрительную ориентацию в непривычной обстановке. На границе височной, затылочной и теменной долей располагается центр анализатора письменной речи, который тесно связан с центром Вернике височной доли, с центром зрительного анализатора затылочной доли, а также с центрами теменной доли. Центр чтения обеспечивает распознавание и хранение образов письменной речи.

Помогите.
1. Зрительная зона находится в доле коры больших полушарий

А – височной Б – лобной В – затылочной Г – теменной

2. Цвет глазу придает

А – хрусталик Б – роговица В – склера Г – радужка

3. Ушная раковина и слуховой проход представляют ухо

А – наружное Б – среднее В — внутреннее

4. Внутренняя оболочка глазного яблока

А – сетчатая Б – сосудистая В – радужная Г – фиброзная

5. Во вспомогательный аппарат глаза НЕ входит

А – брови Б – ресницы В – глазное яблоко Г — глазодвигательные мышцы

6. Передняя прозрачная оболочка глаза называется

А – склера Б – роговица В – радужка Г – хрусталик

7. Двояковыпуклая линза нужна в очках при дефекте зрения

А – дальнозоркости Б – близорукости

8. Слуховая зона находится в доле коры больших полушарий

А – височной Б – теменной В – лобной Г – затылочной

9. Звуковые колебания из наружного слухового прохода в среднее ухо передаются через

А – слуховые косточки Б – слуховую трубу В – улитку

Г – баранную перепонку

10. Жидкость, которая находится внутри перепончатого лабиринта, называется

А – эндолимфа Б – перилимфа В – гемолимфа

11. Слуховые рецепторы находятся в

А – улитке Б – полукружных каналах В – евстахиевой трубе

Г – барабанной полости

12. Небольшое отверстие в центре радужной оболочки

А – хрусталик Б – зрачок В – роговица Г – склера

13. Звуковые колебания передаются через стремечко, которое упирается в

А — овальное окно Б – полукружные каналы В – преддверие Г – улитку

14. Давление, прикосновение, механическое воздействие на кожу мы ощущаем благодаря

А – терморецепторам Б – механорецепторам В – болевым рецепторам

15. Рецепторы, определяющие горький вкус находятся

А – на кончике языка Б – сбоку языка В – у корня языка

16. Человек способен чувствовать запах

А – всех веществ Б – только летучих и растворённых в воде и жирах

В – только растворённых в эфире и жирах Г – только летучих

Будь здоров!

СТРОЕНИЕ И ФУНКЦИИ ГОЛОВНОГО МОЗГА

Головной мозг состоит из следующих отделов: продолговатый мозг, мозжечок, мост, средний мозг, промежуточный и большие полушария головного мозга.

Продолговатый мозг, мост и мозжечок относят к заднему мозгу, а промежуточный и большой мозг — к переднему мозгу.

В продолговатом мозге находятся центры защитных рефлексов — мигательного и рвотного, рефлексов кашля и чихания, и некоторых других. Другая группа центров связана с питанием и дыханием — это центры вдоха и выдоха, слюноотделения, глотания и отделения желудочного сока.

Мост, отвечает за движения глазных яблок и мимики. Также через мост проходят слуховые пути.

Мозжечок осуществляет координацию движений, делает их плавными, точными и соразмерными, устраняет лишние движения, например, возникшие в силу инерции.

Средний мозг — отдел мозга, где находятся центры, обеспечивающие чёткость зрения и слуха. Они регулируют величину зрачка и кривизну хрусталика, мышечный тонус. Благодаря им поддерживается устойчивость тела при стоянии, ходьбе, беге, изменении позы.

Передний мозг состоит из двух отделов: промежуточного мозга и больших полушарий головного мозга. Это самый большой отдел головного мозга, состоящий из правой и левой половин.

Читайте также:  Редукция органов зрения у крота идиоадаптация

Промежуточный мозг состоит из трёх частей — верхней, центральной и нижней. Центральная часть промежуточного мозга называется таламусом. Сюда стекается вся информация от органов чувств. Здесь происходит первая оценка её значимости. Благодаря таламусу только важная информация поступает в кору большого мозга.

Нижняя часть промежуточного мозга называется гипоталамусом. Он регулирует обмен веществ и энергии. В его ядрах имеются центры жажды и её утоления, голода и насыщения. Гипоталамус контролирует удовлетворение потребностей и поддержание постоянства внутренней среды — гомеостаза.

С участием промежуточного мозга и других отделов головного мозга осуществляются многие циклические движения движения: ходьба, бег, прыжки, плавание и пр., а также сохранение позы между движениями.

Большие полушария головного мозга. Каждое полушарие разделено на четыре доли: лобную, теменную, затылочную и височную.

В нейронах коры больших полушарий происходит анализ нервных импульсов, поступающих от органов чувств. Так, в затылочной доле сосредоточены нейроны зрительной зоны, в височной — слуховой. В теменной доле, находится зона кожно-мышечной чувствительности.

Обонятельные и вкусовые зоны находятся на внутренней поверхности височных долей. Центры, регулирующие активное поведение, находятся в передних частях головного мозга, в лобных долях коры больших полушарий. Двигательная зона расположена впереди центральной извилины.

Правое полушарие управляет органами левой части туловища и получает информацию от пространства слева. Левое полушарие регулирует работу органов правой части туловища и воспринимает информацию от пространства справа.

Основная особенность большого мозга человека заключается в том, что правое и левое полушарие функционально различны. В левом полушарии, как правило, у правшей находятся центры речи. Здесь происходит анализ обстановки и связанных с ним действий по отдельным параметрам, вырабатываются обобщения, строятся логические выводы. В правом полушарии происходит распознавание образов и мелодий, запоминание лиц.

Старая и новая кора большого мозга. Здесь сосредоточены центры, связанные со сложными инстинктами, эмоциями, памятью.

Старая кора даёт возможность организму различать благоприятные и неблагоприятные события и реагировать на них испугом, радостью, агрессией, тревогой. Здесь в памяти хранится информация о пережитых событиях. Это даёт возможность при сходных обстоятельствах предпринять действия, которые приведут к успеху.

В новую кору, поступает информация от внутренних органов и от органов чувств. В лобных долях из многочисленных потребностей отбирается самая важная и формируется цель деятельности, план достижения цели на основании анализа обстановки и прошлого опыта.

Из вышесказанного мы заключаем, что мозг — орган, координирующий и регулирующий все жизненные функции организма и контролирующий поведение. Все наши мысли, чувства, ощущения, желания и движения, связаны с работой мозга. И если он не функционирует, человек переходит в вегетативное состояние: утрачивается способность к каким-либо действиям, ощущениям или реакциям на внешние воздействия. Учёные выявили, что:

Левое полушарие руководит следующими видами умственной деятельности:

— Другие аналогичные виды деятельности;

Правое полушарие отвечает за:

— Другие аналогичные виды деятельности.

Наш интеллектуальный труд, можно сравнить с работой наших мускулов. Мозг, также как и мышцы можно и нужно тренировать, чтобы он всегда был в отличном состоянии. Чем больше мы будем развивать его, тем более весомую пользу он принесёт нам в будущем. Погружение в рутину не улучшит его и не принесёт нам никакой пользы.

С научной точки зрения, чем старше мы становимся, тем более важную роль играет тренировка мозга. Она останавливает ухудшения, связанные со старением мозга и замедляет этот процесс. С медицинской точки зрения — это конечно не исцеляет от болезни Альцгеймера или слабоумия, но значительно уменьшает скорость развития этих процессов.

Если Вы хотите, чтобы Ваш мозг всегда был на пике своей формы, тогда Вам необходимо выполнять предложенные ниже, несложные рекомендации:

Наш мозг любит:

1) Умственная активность. Больше читайте. Посвящайте больше времени чтению разнообразной литературы: книги, газеты и журналы. Старайтесь охватить широкий спектр областей знаний. Изучение чего-то нового не только заставит ваш мозг работать, но и сделает Вас более умным. Играйте в развивающие игры. Шахматы, шашки, эрудит, кроссворды и судоку, рисование и шитьё — помогут развить способности вашей памяти.

2) Полноценное питание. Для плодотворной работы мозга и памяти необходимо полноценное разнообразное питание. Недостаток некоторых аминокислот, витаминов и микроэлементов приведёт к провалам памяти и дегенеративным изменениям мозга.

Углеводы: Мозг составляет всего 2% от веса организма, но потребляет 20% энергии. А основной источник энергии – это углеводы. Полезные для мозга углеводы — это сложные углеводы (каши, макароны из твердых сортов пшеницы, фрукты и овощи. Если углеводы будут поступать в организм в недостаточном количестве, то вы будете «медленно соображать», у вас будет чувство усталости, потому что вашему мозгу элементарно не будет хватать энергии. Углеводов в рационе должно быть порядка 70%.

Белки: Роль белка для мозга и памяти огромна. Белки – это строительный материал и для нервных клеток, и для нейротрансмиттеров, без которых процесс запоминания невозможен; и для гормонов, которые определяют активность мозга. Белки также выполняют функцию получения и перемещения энергии – даже если вы хорошо питаетесь углеводами, но в вашем организме недостаточно белков, то вы тоже будете чувствовать усталость и подавленность, потому как энергия не сможет ни усваиваться клетками, ни доставляться в необходимые участки мозга. И мозгу уже не из чего строить необходимые ткани, гормоны и нейротрансмиттеры.

Поэтому, регулярно не менее 3 раз в неделю в вашем меню должен присутствовать белок: говядина, свинина, мясо птицы, рыба, творог, яйца, молоко). В рационе должно быть порядка 15% белков.

Жиры: Наравне с углеводами жиры выступают источником энергии. Самый полезный жир — это Омега-3 полиненасыщенная жирная кислота, которая напрямую влияет на умственные возможности и память человека. Поэтому, в вашем меню должна присутствовать не реже чем 2 раза в неделю жирная рыба (сельдь, лосось, форель, семга). Жиров в рационе должно быть 15%.

3) Витамины, аминокислоты, полиненасыщенные жирные кислоты, макро и-микро элементы.

4) Спокойный продолжительный сон. Во время сна происходят процессы с участием важнейшего нейромедиатора (вещества, с помощью которого происходит передача нервного импульса между нейронами) ГАМК. Без нормального сна, память на химическом уровне неспособна работать в полную мощность. К тому же, мозг человека настроен на биологические ритмы, смены дня и ночи, поэтому спать нужно ночью, так как именно в темное время суток происходит полное восстановление клеток мозга.

5) Классическая музыка благотворно воздействует на клетки мозга.

6) Спорт способствует развитию серых клеток (Во время физических нагрузок мозг лучше снабжается кровью и кислородом, что помогает сохранять его активность. Не менее важно и то, что в то время, когда работают мышцы, выделяется ряд гормонов, необходимых для работы памяти.

Если же у вас по каким-либо причинам нет возможности или желания ходить в спортивный зал, то увеличьте двигательную активность: ходите на танцы, откажитесь от лифта, постарайтесь больше ходить пешком. Ежедневные часовые пешие прогулки улучшают работу головного мозга и предупреждают множество болезней. Бездеятельность тела рано или поздно приведёт к отсутствию активности в мозге.

7) Ароматерапия – активизирует и расслабляет мозг (Розмарин и шалфей увеличивают приток крови к мозгу, способствуют лучшему функционированию ума и тела).

8) Новые впечатления. Всё новое благотворно воздействует на мозг (новые люди, новое место, новые впечатления и т. д.).

9) Секс и любовь.

Наш мозг не любит:

1) Нехватка сна провоцирует развитие в мозге токсичных компонентов.

2) Алкоголь – убивает клетки мозга.

3) Отрицательные эмоции (стресс, гнев, рутина).

4) Неполноценное скудное и однообразное питание.

5) Малоподвижный образ жизни.

Зоны и доли коры больших полушарий

  • Физиология
  • История физиологии
  • Методы физиологии

Кора больших полушарий головного мозга

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс), старую (палеокортекс) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и таламуса; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение нейронов по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка — зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный — его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный — связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий — участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии — участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны — отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.
Читайте также:  У меня и у мужа плохое зрение

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

  • управление врожденными поведенческими реакциями при помощи накопленного опыта;
  • согласование внешних и внутренних мотиваций поведения;
  • разработка стратегии поведения и программы действия;
  • мыслительные особенности личности.

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные, воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные, посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные, осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

Зрительный центральный отдел анализатора

Известно, что человек получает до 85% информации об окружающей среде благодаря зрению, и только остальные 15% – это слух и прочие чувства. Затылочная доля – это зона, отвечающая за высшую обработку зрительных сигналов. Благодаря ей здоровое человечество способно не только различать окружающие предметы среды по их визуальным характеристикам, но и созерцать творения художников, творить самим. Мы можем улавливать настроение других людей, наблюдая за изменением их мимики, наслаждаться красотой заката, и, наконец, выбирать пищу по любимому цвету.

Расположение

Затылочной долей считается та область конечного мозга, которая располагается позади височной и теменной доли. В затылочной доле коры головного мозга расположен центральный отдел анализатора, а именно: зрительный. Эта область мозга включает в себя непостоянные боковые затылочные борозды, которые разграничивают верхнюю и нижнюю затылочную извилину. Внутри этой области располагается шпорная борозда.

Возложенные функции

Функции затылочной доли головного мозга связаны с анализом, восприятием и контейнированием (хранением) зрительной информации. Зрительный тракт состоит из нескольких пунктов:

  • Глаз с его сетчаткой. Этот парный орган является лишь механической составляющей зрения, выполняя оптическую функцию.
  • Зрительные нервы, по которым, непосредственно, идут электрические импульсы с определенной частотой и несущие определенную информацию.
  • Первичные центры, представленные зрительным бугром и четверохолмием.
  • Подкорковые и корковые центры. Все вышеперечисленные структуры выступают в качестве пунктов элементарного восприятия и доставки информации. Зрительная кора, в отличие от тех, играет роль высшего анализатора, то есть она обрабатывает полученные нервные импульсы в психические визуальные образы.

Примечательно то, что сетчатка глаза воспринимает набор световых волн, каждая из которых имеет длину, и состоят из квантов электромагнитного излучения. Но кора, эволюционируя миллионы лет, «научилась» работать с такими сигналами и превращать их в нечто большее, чем набор энергии и импульсов. Благодаря этому люди имеют картину окружающей среды и мира. Благодаря этой коре мы видим элементы вселенной так, как они представляются.

Зрительная кора, располагаясь на обоих полушариях затылочной доли, обеспечивает бинокулярное зрение – мир представляется человеческому глазу объемным.

Мозг человека – многофункциональная структура, как и каждая область его коры – поэтому затылочная доля головного мозга в стандартном функциональном состоянии берет незначительное участие в обработке слуховых и тактильных сигналов. В условиях повреждения соседних областей, степень участия в анализе сигналов возрастает.

Зрительная кора, называющаяся ассоциативной областью, постоянно взаимодействует с другими структурами мозга, формируя полноценную картину мира. Затылочная доля имеет прочные связи с лимбической системой (особенно с гиппокампом), теменной и височной долей. Так, тот или иной визуальный образ может сопровождаться негативными эмоциями, или наоборот: давнее визуальное воспоминание вызывает позитивные чувства.

Затылочная доля, кроме одномоментного анализа сигналов, также играет роль контейнера информации. Однако объем таких сведений незначителен, и большая часть данных об окружающей среде хранится в гиппокампе.

Затылочная кора прочно ассоциируется с теорий интеграции признаков, суть которой заключается в том, что корковыми аналитическими центрами отдельные свойства объекта (цвет) обрабатываются как отдельно, изолированно, так и параллельно.

Подведя краткий итог можно ответить на вопрос о том, за что отвечает затылочная доля:

  • обработка зрительной информации и интеграция ее в общее отношение к миру;
  • хранение визуальной информации;
  • взаимодействие с другими областями конечного мозга и частично правопреемство их функций;
  • бинокулярное восприятие окружающего.

Какие поля входят

В затылочной доле коры головного мозга находится:

  • 17 поле – скопление серого вещества зрительного анализатора. Это поле является первичной зоной. Состоит 300 миллионов нервных клеток.
  • 18 поле. Также является ядерным скоплением визуального анализатора. По Бродману это поле выполняет функцию восприятия письменной речи и является более сложной вторичной зоной.
  • 19 поле. Такое поле берет участие в оценивании значения увиденного.
  • 39 поле. Однако эта мозговая площадка принадлежит затылочной области не вполне. Данное поле расположено на границе между теменной, височной и затылочной доли. Здесь располагается ангулярная извилина, и в перечень ее задач входит интеграция зрительной, слуховой и общей чувствительности информации.

Симптомы поражения

При поражении области, отвечающей за зрение, в клинической картине наблюдаются следующие признаки:

Дизлексия – неспособность читать написанное. Хотя больной и видит буквы, он не может их проанализировать и понять.

Зрительная агнозия: утрата способности различать объекты среды по их внешним параметрам, однако на ощупь больным это сделать удается.

Нарушение зрительно-пространственной ориентации.

Нарушение восприятия цветов.

Галлюцинации – визуальное восприятие того, чего не существует в настоящем объективном мире. В данном случае характеры фотопсии – молниеносное цветовое восприятие и различного рода вспышки.

Зрительные иллюзии – извращенное восприятие реально существующих объектов. Например, больной может воспринимать мир в красных цветах, или все окружающие объекты могут казаться ему чрезвычайно малыми или большими.

При поражении внутренней поверхности затылочной коры наблюдается выпадение противоположных полей зрения.

При масштабном поражении тканей этой области может обнаружиться полная слепота.

КОРА́ БОЛЬШИ́Х ПОЛУША́РИЙ ГОЛОВНО́ГО МО́ЗГА

  • В книжной версии

    Том 15. Москва, 2010, стр. 226

    Скопировать библиографическую ссылку:

    КОРА́ БОЛЬШИ́Х ПОЛУША́РИЙ ГОЛОВ НО́ГО МО́ЗГА, слой се­ро­го ве­ще­ст­ва (1–5 мм), по­кры­ваю­щий по­лу­ша­рия. Эта часть го­лов­но­го моз­га, имею­щая упо­ря­до­чен­ную слои­стую струк­ту­ру; раз­ви­ва­ет­ся на позд­них эта­пах эво­лю­ции и иг­ра­ет клю­че­вую роль в осу­ще­ст­в­ле­нии выс­шей нерв­ной дея­тель­но­сти; уча­ст­ву­ет в ре­гу­ля­ции и ко­ор­ди­на­ции всех функ­ций ор­га­низ­ма. В хо­де эво­лю­ции у круг­ло­ро­тых и рыб по­яв­ля­ет­ся пред­шест­вен­ник К. б. п. г. м. – пал­ли­ум (лат. pallium – плащ, по­кров), в ко­то­ром раз­ли­ча­ют­ся 3 струк­ту­ры: па­лео­пал­ли­ум (древ­ний плащ), ар­хи­пал­ли­ум (ста­рый плащ) и нео­пал­ли­ум (за­ча­точ­ный но­вый плащ). На­чи­ная с реп­ти­лий пал­ли­ум диф­фе­рен­ци­ру­ет­ся и при­об­ре­та­ет сло­и­стость (с это­го мо­мен­та его на­зы­ва­ют «кор­текс», от лат. cortex – ко­ра). Т. о., у выс­ших по­зво­ноч­ных К. б. п. г. м. пред­став­ле­на эле­мен­та­ми па­лео­кор­тек­са, ар­хи­кор­тек­са и не­окор­тек­са; по­след­ний до­с­ти­га­ет наи­боль­ше­го раз­ви­тия у мле­ко­пи­таю­щих.

    Зрительная кора

    Состоящая из аксонов нервных клеток латерального коленчатого тела (подкорковых зрительных центров) зрительная лучистость проводит зрительные импульсы, идущие от гомолатеральных половин сетчаток обоих глаз к проекционной зоне зрительного анализатора, расположенной в коре затылочной доли большого мозга, главным образом на медиальной ее поверхности, в области шпорной борозды (поле 17, по архитектонической карте Бродманна).

    При этом представительство желтого пятна сетчатки и его центральной ямки (место поступления импульсов, проходящих ранее по папилломакулярному пучку) расположено в задней части этого поля (в районе полюса затылочной доли); спереди к ней примыкает проекция парамакулярной зоны гомолатеральных половин сетчаток, а затем и их участков, расположенных на периферии. Обращает на себя внимание, что проекция пятна сетчатки и его центральной ямки занимает в первичной зрительной коре непропорционально большую площадь, переходя при этом на конвекситальную поверхность затылочного полюса.

    Подсчитано, что область проекции на зрительную кору центральной ямки сетчатки в 35 раз превышает размеры зоны проекции такого же по площади участка сетчатки, находящегося на некотором расстоянии от нее. Можно отметить также, что верхние части гомолатеральных половин сетчаток (верхние квадранты) проецируются на верхнюю губу шпорной борозды, входящую в состав клина (cuneus), а нижние — на нижнюю губу той же борозды, относящуюся к язычной извилине (gyrus linqualis). Четкий ретинотопический порядок архитектоники коркового поля 17 является поводом к тому, что его иногда называют «корковой сетчаткой».

    Понятие зрительная кора включает

    • первичную зрительную кору (также называемую стриарной корой или зрительной зоной V1. Она эквивалентна полю Бродмана 17, или BA17.
    • экстрастриарную зрительную кору (вторичные зрительные области) — зоны V2, V3, V4, и V5. Она включает поля Бродмана 18 и 19. Вторичные зрительные области, называемые также зрительными ассоциативными зонами, лежат латерально, впереди, выше и ниже по отношению к первичной зрительной коре. Кроме того, большая часть этих областей накладывается на латеральные поверхности затылочной и теменной коры в виде складок, направленных наружу. В эти области проводятся вторичные зрительные сигналы для анализа их значения. Например, со всех сторон вокруг первичной зрительной коры находится поле Бродмана 18, куда направляются практически все сигналы от первичной зрительной коры. Поле Бродмана 18 называют зрительной областью II, или просто V2. Другие, более отдаленные вторичные зрительные области имеют специфические обозначения V3, V4 и т.д. (более дюжины областей). Значение всех этих областей заключается в постепенном выявлении и анализе различных аспектов зрительного образа.

    Зрительная кора присутствует в каждом из полушарий головного мозга. Области зрительной коры левого полушария получают сигналы от правой половины зрительного поля, правого полушария — от левой половины.

    Корковое поле 17 (по Бродманну) именуется также первичной зрительной корой или стриарной корой (area striata), что обусловлено особенностями строения («полосатостью») этого коркового поля. Если кора большинства территорий больших полушарий состоит из шести слоев, то в стриарной коре IV слой ее разделен на три подслоя полосками Дженнари, состоящими из проникающих сюда миелиновых волокон зрительной лучистости. Некоторые морфологи считают возможным подобное разделение и других ее слоев.

    Можно предполагать, что такая особенность строения стриарной коры является отражением особой сложности ее функций. В первичной зрительной коре начинается расшифровка поступающей сюда из сетчаток зрительной информации. Есть мнение, что центральная ямка пятна (желтого пятна) сетчатки каждого глаза в первичной зрительной коре имеет двустороннее корковое представительство.
    Нервные клетки, расположенные в поле 17, имеют связи с нейронами соседних корковых полей (18 и 19, по Бродманну), осуществляющими дальнейший анализ и синтез поступающих в первичную зрительную кору элементарных зрительных сигналов. Физиологи называют эти корковые поля престриарной или вторичной зрительной корой. Прилежащие к вторичной зрительной коре ассоциативные корковые территории височной и теменной долей также участвуют в переработке зрительной информации и в трансформации ее в зрительные образы.

    Читайте также:  Как принимать чернику форте для зрения

    Вторичная зрительная кора и прилежащие к ней ассоциативные корковые территории осуществляют восприятие видимого и сопоставление его с уже хранящейся в памяти ранее приобретенной информации. Это обеспечивает узнавание зрительных образов и их оценку, возможность формирования представлений, которые в свою очередь могут стимулировать создание плана ответных реакций и его реализацию в форме изменений направленности взора, мимических реакций, движений, действий, имеющих различный характер и степень сложности.

    В настоящее время общепризнано также, что аксоны части нейронов зрительной коры подходят к корковым и подкорковым глазодвигательным центрам. При этом принято считать, что рефлекторные глазодвигательные корковые центры находятся и в глубоких слоях самой зрительной коры в затылочных долях мозга.

    Корковые центры произвольных движений взора располагаются в заднелобной области (поле 8) обоих полушарий. Основными подкорковыми глазодвигательными центрами признают переднее двухолмие крыши среднего мозга (центр вертикального взора) и мостовой центр взора (центр горизонтального взора).

    Таким образом, под влиянием получаемой зрительной корой информации, поступающей из сетчатки, возникает возможность как рефлекторного, так и произвольного контроля за состоянием взора. Изменение его направленности способствует последовательной фиксации взора на отдельных объектах, расположенных в окружающей среде, что обогащает информированность субъекта и способствует расширению объема получаемой зрительной информации.

    Если, как принято считать, ганглиозных клеток в сетчатке каждого глаза приблизительно 1 млн, а в каждом латеральном коленчатом теле содержится до 1,5 млн нервных клеток, то в первичной зрительной коре одного большого полушария мозга их уже около 200 млн. Такое соотношение числа нейронов в подкорковом и корковом зрительных центрах создает возможность представления о выраженной дивергенции зрительных импульсов, достигающих первичной зрительной коры, и наличие в ней предпосылок к углубленному анализу этой информации. Дальнейшая дивергенция пути проведения зрительной информации может рассматриваться как аргумент в пользу возможного осуществления вторичной зрительной корой главным образом синтеза поступающих из первичной зрительной коры многообразных элементов различных зрительных ощущений.

    Длительное время признавалось, что связи между отдельными участками зрительной коры и другими корковыми зонами осуществляются только за счет горизонтально расположенных транскортикальных волокон, однако на сегодня такая точка зрения признается упрощенной. Экспериментальные исследования Сперри и Майнера (1955) продемонстрировали, что горизонтально идущие корковые связи в большинстве случаев коротки и потому не могут обеспечить взаимодействие участков коры, находящихся на значительном отдалении друг от друга. Указанные экспериментаторы рассекали у кошек зрительную кору или вставляли в нее вертикально полоски слюды, что приводило к разделению зрительной коры на множество мелких островков, связанных между собой только через подкорковое белое вещество. Тем не менее, после этого экспериментальные животные, оправившись от операции, сохраняли способность видеть и осуществляли освоенные ими ранее зрительные дифференцировки.

    Луке (Louchs R.B., 1949), Доти с соавт. (Doty R.W. et al., 1956) и др. исследователи показали, что связи между отдельными зонами зрительной коры и остальным мозгом обычно имеют форму петель, погружающихся в мозг на разную глубину. При этом отдельные колонки корковых нервных клеток могут реагировать на зрительные импульсы, возникающие при воздействии на сетчатку глаз различных по длине, интенсивности и направленности электромагнитных волн. Аналогичным образом объединяются в колонки корковые зрительные нейроны, связанные с определенными участками сетчатки правого или левого глаза, а также с периферическим глазодвигательным аппаратом. В настоящее время доказано и существование колонок глазодоминантности, а также ориентационных колонок (Хьюбел Д., 1990).

    Д. Хьюбел и Т.Н. Визел (Hubel D. и WieselT.N., 1977, 1982), пользуясь микроэлектродной регистрацией биоэлектрических потенциалов нейронов, расположенных на разной глубине зрительной коры, выявили наличие между ними вертикальных возбудительных связей. При этом было установлено, что находящиеся рядом нейроны зрительной коры обычно имеют близкие по характеру функциональные свойства и объединяются в вертикальные колонки, или столбы. Указанными авторами было доказано, что нервные клетки в пределах узкой вертикальной колонки отвечают на раздражитель лишь определенной модальности, тогда как клетки соседних колонок могут автономно реагировать на зрительные сигналы той же или иной модальности. Это привело к суждению о том, что в зрительной системе группы нейронов коры реагируют главным образом на информацию, которая поступает к ним не по горизонтальным, а по вертикальным ассоциативным связям. В настоящее время доказано и существование колонок глазодоминантности, а также ориентационных колонок (Хьюбел Д., 1990).

    Таким образом, зрительные импульсы, идущие от сетчатки, прежде всего, поступают в первичную зрительную кору, которая имеет не только горизонтальные, но и особенно важные вертикальные петлеобразные связи, как с вторичной зрительной корой, так и с подкорковыми центрами, влияющими на зрительные функции.

    Д. Хьюбел (1990) выделял в первичной зрительной коре участки величиной приблизительно 2х2 мм. Такой участок коры, названный им модулем, обычно представляет собой группу из 500-1000 функциональных единиц. Каждый модуль имеет все механизмы, необходимые для полной обработки информации поступающей от корреспондирующего с ним участка сетчатки.

    Оказалось, что если сопряженный с модулем участок сетчатки находился в области центральной ямки пятна, то такой ее участок, приходящийся на один корковый модуль (фрагмент первичной зрительной коры), как правило очень мал. Если же изучаемый фрагмент коры (модуль, имеющий аналогичную площадь), сопряжен с периферией сетчатки, то он воспринимает сигналы с участком сетчатки в несколько раз большего по площади. При этом было установлено, что модуль, на который проецируются структуры центральной ямки пятна сетчатки и модуль, сопряженный с ее периферией, нельзя признать однородными по своей структуре. Помимо разной остроты зрения по мере отдаления модуля от проекции центральной ямки сетчатки изменяются и другие параметры зрительного восприятия. Понижается, в частности, цветное и бинокулярное зрение. Вместе с тем периферические отделы сетчатки, в которых особенно значительно преобладание палочек над колбочками и сопряженные с ним корковые модули, более чувствительны к слабым источникам света и к находящимся в поле зрения перемещающимся предметам.

    В процессе углубленного изучения коры больших полушарий было выявлено несколько уровней интеграции в ней зрительной информации. При этом признается особая значимость в осуществлении этого процесса ассоциативных корковых зон, в которых происходит синтез информации, добытой посредством не только зрения, но и других органов чувств. К тому же многочисленные связи коры со структурами лимбической системы во многом определяют влияние информации, поступающей с периферии через посредство анализаторов различных видов модальности, в частности, через зрительный анализатор, на состояние эмоциональной и вегетативной сфер.

    • Если поле 17 (по Бродманну) обеспечивает возникновение элементарных ощущений (светоощущение, цветоощущение, элементы составляющие предмет, находящийся в обозреваемом пространстве),
    • то от поля 18 зависят анализ и синтез этих ощущений и возможность расширения их количества и определенности путем рефлекторной стимуляции степени аккомодации хрусталиков и конвергенции глаз, а также изменения положения взора.
    • При этом признается, что поле 19 вторичной зрительной коры уже создает возможности оптико-гностического, предметного и пространственного восприятия, способствует формированию представлений.

    В процессе последующей интерпретации, возникающих в ассоциативных зонах коры уже более сложных зрительных представлений, происходит их сопоставление с имевшимися в прошлом и хранящимися в памяти зрительными впечатлениями, а также с информацией, параллельно получаемой с помощью других сенсорных систем.

    Раздражение первичной зрительной коры (поле 17) обычно сопровождается появлением элементарных зрительных ощущений — фотопсий. Деструкция ее ведет к изменениям полей зрения (к вариантам неполной или полной гемианопсии, патологических скотом в гомолатеральных половинах полей зрения) и к снижению зрения, вплоть до слепоты.

    Раздражение корковых полей 18 и 19, а также прилежащих к ним ассоциативных зон коры височной и теменной долей, сопровождается более сложными зрительными ощущениями по типу иллюзий или галлюцинаций, а разрушение их может обусловить нарушение ориентировки в пространстве и расстройство узнавания видимых предметов — зрительную агнозию.

    Проявления зрительной агнозии особенно значительны при двустороннем нарушении функций 18, 19 корковых полей и прилежащих к ним ассоциативных корковых территорий, а также при поражении межполушарных комиссуральных связей. Больной в таких случаях может видеть и обходить препятствия, однако не узнает видимое, не имеет возможности адекватно оценить и понять окружающую обстановку. Разобраться в ней он пытается за счет сохраняющихся слуха, тактильной, температурной и других видов чувствительности.

    Различают несколько видов зрительной агнозии

    • агнозия на вещи — предметная,
    • агнозия букв — особая форма алексии («чистая» алексия, или алексия без афазии),
    • агнозия на цвета, лица и пр.

    Поражение правой затылочно-теменной области часто ведет к развитию зрительной дезориентации в пространстве, к полному игнорированию его левой половины.

    В связи со сложностью строения коры больших полушарий и происходящих в ней физиологических процессов изучение ее функций сопряжено с особыми трудностями. Посвятивший свою жизнь преодолению этих трудностей, американский нейрофизиолог Д. Хьюбел в 1990 г. признавал, что, несмотря на некоторые успехи в изучении преобразований зрительной информации в первичной зрительной коре, «почти ничего не известно о том, что происходит на дальнейших этапах ее переработки».

    Нейропсихологами при изучении освоения человеком зрительной информации был подтвержден соматотопический порядок распространения зрительных сигналов от сетчатки до первичной зрительной коры. При этом установлено, что частичное поражение зрительных путей или первичной зрительной коры приводит к выпадению строго определенных фрагментов полей зрения, что в некоторых случаях может иметь существенное значение в топической диагностике заболеваний и травматических поражений головного мозга.

    Установлено также, что раздражение первичной зрительной коры сопровождается развитием фотопсий в виде мельканий светящихся точек или пятен в определенных участках полей зрения. При поражении участков вторичной зрительной коры или прилежащих к ним ее ассоциативных зон возникают расстройства восприятия зрительных образов, в частности микро- или макрофотопсия, возможны сложные зрительные галлюцинозы или галлюцинации, а также зрительные агнозии, которые проявляются расстройством узнавания отдельных зрительных образов, нарушением способности к синтезу и обобщению получаемой зрительной информации, что ведет к дезориентации в пространстве к неадекватности представлений и поведенческих реакций.

    Установлено также, что поражения отдельных участков первичной зрительной коры одного полушария не имеет сколько-нибудь серьезного значения для осуществления высших психических процессов и приводит лишь к частичным нарушениям полей зрения, в частности к возникновению патологических скотом. Однако при нарушениях функций ассоциативных зон коры теменно-затылочной области или глубинных отделов субдоминантного (чаще правого) полушария у больного возможно возникновение игнорирования противоположной половины пространства и собственного тела, которое обычно расценивается как анозогнозия и аутотопагнозия — варианты пространственной зрительной агнозии.

    Если патологическим процессом оказались поражены зрительные пути с обеих сторон выше подкорковых зрительных центров, возникает центральная слепота на оба глаза, при которой остаются сохранными зрачковые рефлексы. В случаях, когда в связи с нарушением гемодинамики в сосудах вертебрально-базилярного бассейна, что на практике встречается относительно редко, избирательно поражается первичная зрительная кора обоих полушарий возможно сохранение трубчатого зрения с обеих сторон в связи с тем, что участок коры затылочной доли, на который проецируется пятно (желтое пятно) сетчатки, имеет дополнительное кровоснабжение за счет задних ветвей средних мозговых артерий.

    Зрительные пути

    Зрительные зоны V1 (правая и левая) передают визуальную информацию по двум первичным зрительным путям — дорсальному и вентральному.

    • Дорсальный путь начинается в первичной зрительной коре (зрительная зона V1), проходит через зрительную зону V2, затем направляясь к дорсомедиальной зрительной зоне (DM или V6), зрительной зоне MT (иначе называемой V5) и в заднюю часть теменной доли коры. Дорcальный путь (канал «где?» или «как?») ассоциирован с движением, представлением о локализации объекта, управлением движениями глаз (саккады), использованием визуальной информации для оценки досягаемости объектов и доставания видимых предметов руками).
    • Вентральный путь также начинается в зоне V1 и проходит через V2, но затем направляется через зрительную зону V4 к вентральной (нижней) части височной доли коры. Вентральный путь (канал «что?») связан с процессом распознавания формы, представлением об объекте, а также с долговременной памятью.

    Разветвление потока зрительной информации на дорсальный («где?») и вентральный («что?») пути — иначе говоря, на каналы «действия» и «распознавания» — впервые описали Лесли Анджерлейдер и Мортимер Мишкин, и до сих пор эта гипотеза вызывает споры среди физиологов и учёных, изучающих феномен зрения. Возможно, она чрезмерно упрощает реальные процессы в зрительной коре. Она основана на обнаружении того, что оптические обманы зрения, такие как иллюзия Эббингауза, могут искажать правильное восприятие, но в случаях, когда субъект отвечает на визуальный стимул действием, таким как схватывание увиденного предмета, изображение воспринимается без искажений. Однако имеется публикация 2005 г., утверждающая, что обе кортикальные системы обработки зрительной информации — и «канал действия», и «канал распознавания» — в равной степени подвержены обману иллюзий.

    Нейроны зрительной коры генерируют потенциал действия, когда визуальные стимулы воздействуют на их рецептивные поля. Рецептивное поле определяется как область зрительного поля, стимуляция которой приводит к генерации потенциала действия. Но иногда нейрон может лучше отвечать на какую-то определённую совокупность зрительных стимулов, представляемых в пределах его рецептивного поля. Это свойство называется избирательностью нейронов. В более древних зрительных областях избирательность нейронов невысока. Так, нейрон зрительной зоны V1 может возбуждаться в ответ на любой вертикальный стимул в своём рецептивном поле. Нейронам интегративных зрительных областей свойственна сложная избирательность. Например, нейроны зрительной интегративной области верхней височной борозды (у обезьян) или вентральной поверхности веретеновидной извилины на границе между затылочной и височной долями (у человека) могут возбуждаться лишь при стимуляции рецептивного поля изображениями лиц.

    Кровоснабжение зрительной коры осуществляется, в основном, шпорной ветвью (лат. ramus calcarinus) медиальной затылочной артерии — разветвления конечной (корковой) части (лат. pars corticalis) задней мозговой артерии (лат. arteria cerebri posterior). Шпорная ветвь залегает в шпорной борозде (лат. sulcus calcarinus, fissura calcarina) коры головного мозга.

    Источники:
    • http://bio-ege.sdamgia.ru/problem?id=12679
    • http://studfiles.net/preview/2230117/page:26/
    • http://znanija.com/task/11572777
    • http://www.sdorov.ru/organizm/mozg/
    • http://www.grandars.ru/college/medicina/kora-bolshih-polushariy.html
    • http://sortmozg.com/structure/zatylochnaya-dolya-golovnogo-mozga-funktsii-i-stroenie
    • http://bigenc.ru/biology/text/2095729
    • http://eyesfor.me/home/anatomy-of-the-eye/innervation/visual-cortex.html