Меню Рубрики

Укажите понятие находящееся с точки зрения формальной логики

Укажите важнейшие причины зарождения логики как науки:

Выберите один ответ.

a. необходимость исторического видоизменения форм религии под видом рационального знания

b. чрезмерное количество мифов в древнем мире

c. развитие математики, естествознания и ораторского искусства Верно

d. рост числа педагогов без рабочих мест в древнем мире

e. политический вес Аристотеля

f. отсутствие развития в других областях духовной жизни

Баллов за ответ: 1/1.

Законы объективного мира представляют собой:

Выберите один ответ.

a. устойчивую, повторяющуюся связь явлений и событий Верно

b. зафиксированные людьми в письменном виде открытия

c. продукт конвенции ученых

d. лучшее доказательство хаотичности и бессмысленности мира

e. универсальное опровержение теодицеи

Баллов за ответ: 1/1.

Логика как наука зародилась:

Выберите один ответ.

a. в древности Верно

b. в Средние века

c. в Новое время

d. в эпоху Возрождения

Баллов за ответ: 1/1.

Найдите правильно построенное умозаключение:

Выберите один ответ.

a. Все адвокаты имеют юридическое образование. Этот человек имеет юридическое образование. Значит, он адвокат.

b. Если человек ничего не потерял, то он это имеет. Это человек не терял рога. Значит, он рогат.

c. Все, что золото, блестит. Эта вещь блестящая. Значит, она золотая.

d. Все лица, имеющие высшее образование, имеют диплом о высшем образовании. Перед нами человек с высшим образованием. Значит, у него есть диплом о высшем образовании. Верно

e. Многие студенты, получающие неудовлетворител ьные оценки на экзаменах, не готовятся к занятиям. Многие из тех, кто не готовится к занятиям, имеют серьезное хобби. Значит, многие из тех, кто получают неудовлетворител ьные оценки, имеют серьезное хобби.

f. Все, кто с нами, не против нас. Этот человек не с нами. Значит, он против нас.

Предметом изучения логики является:

Выберите один ответ.

a. правильность мышления Верно

b. истинность суждений

c. логическая непротиворечивос ть суждений друг другу

d. соотношение стандартности и нестандартности мышления

e. правильный путь в жизни без ошибок и промахов

Объектом изучения логики является:

Выберите один ответ.

a. мыслящий человек

b. ошибающийся человек

c. поиск правильного пути в жизни

d. психическая деятельность во всем многообразии ее форм

e. мышление Верно

f. ошибки в мышлении

Баллов за ответ: 1/1.

Какая функция речи рассматривается в логике как наиважнейшая:

Выберите один ответ.

a. объяснения в любви

b. средство манипулирования людьми

c. передача информации и развитие знания Верно

e. обмен эмоциями

Баллов за ответ: 1/1.

Какой термин следует исключить из перечня важнейших форм чувственного постижения мира:

Выберите один ответ.

b. потрясения Верно

Баллов за ответ: 1/1.

Логика как наука представляет собой:

Выберите один ответ.

a. рассуждения философов о добре и зле, о смысле жизни

b. учение о внутреннем мире человека

c. учение о законах и формах правильного мышления Верно

d. представления человечества о самом целесообразном, прагматически верном пути развития

e. обобщение важнейших законов математики и физики

Баллов за ответ: 1/1.

Какой термин обозначает в логике и других науках целостный образ предметов или явлений, который был сохранен в памяти или является продуктом воображения:

Выберите один ответ.

a. представление Верно

Баллов за ответ: 1/1.

По сравнению с лингвистическими логических форм:

Выберите один ответ.

a. значительно больше

b. примерно одинаково

d. нельзя никак сравнивать

Баллов за ответ: 1/1.

Логическая форма – это:

Выберите один ответ.

a. структура, строение мыслей Верно

b. непререкаемый эталон мышления

c. то же самое, что и логический закон

d. необходимо упрощенная модель мышления

e. стандартный, общепринятый ход мыслей

Баллов за ответ: 1/1.

Объекты разных наук могут:

Выберите один ответ.

a. не существовать в реальной действительности

b. совпадать друг с другом Верно

c. взаимоисключать и взаимообуславлив ать друг друга

d. замалчивать друг друга

e. противоречить здравому смыслу

Баллов за ответ: 1/1.

Формальная логика является частью:

Выберите один ответ.

c. философии Верно

Баллов за ответ: 1/1.

Основателем логики как науки был древнегреческий философ:

Выберите один ответ.

d. Аристотель Верно

Баллов за ответ: 1/1.

Какое понятие в формальной логике считается регистрирующим:

Выберите один ответ.

c. пациент московской городской поликлиники № 7 Верно

Баллов за ответ: 1/1.

Укажите несравнимое с точки зрения формальной логики понятие для понятия ВРАЧ:

Выберите один ответ.

a. больничный лист; Верно

b. человек без высшего образования;

c. инвалид 1 группы;

Баллов за ответ: 1/1.

Какое понятие находится в отношении несовместимости объемов для понятия «преподаватель»:

Выберите один ответ.

a. мастер спорта по боксу

b. человек, имеющий вредные привычки

c. человек без ученой степени

d. новорожденный Верно

e. человек, имеющий судимость

Баллов за ответ: 1/1.

Какое понятие находится в отношении пересечения объемов для понятия «обеденный перерыв»:

Выберите один ответ.

a. время с 12.00 до 13.30 Верно

c. талон на обед

d. обеденный перерыв в магазине

Баллов за ответ: 1/1.

Укажите понятие, которое в формальной логике считается конкретным:

Выберите один ответ.

d. преступник; Верно

Баллов за ответ: 1/1.

Какое понятие находится в отношении соподчинения для понятия «уголовное право»:

Выберите один ответ.

a. судебное заседание

d. гражданское право Верно

e. исправительно-тр удовое учреждение

Баллов за ответ: 1/1.

Какое понятие является итогом логической операции ограничения понятия ДЕРЕВО:

Выберите один ответ.

d. корневая система;

Баллов за ответ: 1/1.

Укажите выражение, которое по своей логической форме является понятием:

Выберите один ответ.

a. собака громко лает

b. громко лающая собака Верно

c. не все собаки громко лают

d. та и не собака, которая громко не лает

Баллов за ответ: 1/1.

Какое понятие в формальной логике считается единичным:

Выберите один ответ.

Баллов за ответ: 1/1.

Какое понятие считается несобирательным в формальной логике:

Выберите один ответ.

d. салон автомобиля

e. водитель Верно

Баллов за ответ: 1/1.

Можно ли уменьшить объем понятия «Московский Кремль» (т.е. ограничить его):

Выберите один ответ.

Баллов за ответ: 1/1.

Какое понятие в формальной логике можно считать логически несравнимым для понятия «лектор»:

Выберите один ответ.

b. кандидат наук

d. микрофон Верно

Баллов за ответ: 1/1.

Укажите пример замены логической процедуры деления членением целого на части:

Выберите один ответ.

a. в составе слова существуют такие части, как приставка, корень, суффикс, окончание; Верно

b. среди слов существуют существительные, глаголы, прилагательные, местоимения, наречия, числительные и др. части речи;

c. слова могут быть изменяемыми и неизменяемыми по падежам и числам;

d. слова могут быть заимствованными из других языков и незаимствованным и;

Баллов за ответ: 1/1.

Можно ли увеличить объем понятия «Московский Кремль» (т.е. обобщить его):

Выберите один ответ.

Баллов за ответ: 1/1.

Укажите понятие, которое с точки зрения формальной логики является регистрирующим:

Выберите один ответ.

b. город, имеющий много исторических достопримечатель ностей промышленный город;

c. город, построенный на территории СССР в период 30-х гг. ХХ века; Верно

1 Предмет и значение логики. Формальная логика – это наука о законах и формах правильного мышления. Термин «логика» имеет свое происхождение от греческого «logos», что означает «мысль», «слово», «разум», «закон». Логика исследует логические формы, отвлекаясь от их конкретного содержания, анализирует мышление со стороны его формальной правильности. Формальная правильность означает соответствие мышления (рассуждения, доказательства) известным фиксированным правилам, соблюдение которых обеспечивает правильность перехода отодних высказываний к другим. Предметом логики является выводное знание, т. е. знание, полученное из ранее проверенных истин в соответствии с определенными законами. Логику не интересует в каждом отдельном случае истинная характеристика исходного знания. Ее задача заключается в том, чтобы определить, следует ли вывод из определенных посылок с необходимостью либо лишь вероятно. Другой задачей является формализация и систематизация правильных способов рассуждений . Формальная логика сегодня представлена двумя ветвями –традиционной и математической (символической) логикой. Традиционная логика – это первая ступень логики выводного знания. Она изучает общечеловеческие формы мысли (понятия, суждения), формы связи мыслей в рассуждении (умозаключения), зафиксированные в системе формально-логических законов: тождества, противоречия, исключенного третьего и достаточного основания. Математическая логика – вторая после традиционной логики ступень в развитии формальной логики, применяющая математические методы и специальный аппарат символов и исследующая мышление с помощью исчислений (формализованных языков). Большая, чем в традиционной логике, степень абстрагирования и обобщения позволяет современной символической логике познавать новые закономерности мышления, возникающие при решении сложных логических конструкций в математике, кибернетике, при проектировании и в работе электронно-вычислительных машин и управляющих устройств.

2 Мышление как предмет изучения логики. Закон мышления, или логический закон, – это суждение, выражающее внутреннюю необходимую существенную связь между мыслями либо их элементами в процессе рассуждения или доказательства. В формальной логике выделяют четыре основных закона: тождества, противоречия, исключенного третьего и достаточного основания. Эти законы являются основными потому, что выражают наиболее общие свойства мышления: определенность, непротиворечивость, последовательность и обоснованность. Законы формальной логики – это законы построения и связи мыслей. Они отражают схемы правильных рассуждений, сложившиеся в процессе многовековой практики мышления. Эти законы лежат в основе различных логических операций, умозаключений, доказательств, носят объективный характер, т. е. не зависят от сознания и воли людей. Закон тождества фиксирует одно из коренных свойств мышления – его определенность. Согласно этому закону всякая мысль в процессе рассуждения должна быть тождественна самой себе. Это означает, что предмет мысли должен рассматриваться в одном и том же содержании своих признаков на всем протяжении рассуждения или доказательства. Закон противоречия выражает требование непротиворечивости и последовательности мышления. Это означает, что, признав известные положения в качестве истинных и развивая выводы из этих положений, мы не можем допустить в своем рассуждении или доказательстве никаких утверждений, противоречащих тому, что было сказано ранее. Закон противоречия гласит: два находящихся в отношении отрицания суждения не могут быть одновременно истинными; по крайней мере, одно из них необходимо ложно. Закон достаточного основания выражает требование доказательности и обоснованности мысли. Согласно этому закону, всякая истинная мысль должна быть обоснована другими мыслями, истинность которых уже доказана.

3 Понятие о логической форме. Основные этапы развития логики и ее значение в познании. Логическая форма – это структура мысли или способ связи элементов ее содержания. Логическая форма выражается посредством логических переменных и логических констант. В качестве логической переменной может выступать любая буква латинского алфавита: A, B, C, p, q. Константы, или логические постоянные, выступают способом связи логических переменных и выражаются словами: «все», «некоторые», «суть», «и», «или», «либо, либо», «если…, то» и т. Д Пропозициональная функция – это выражение, содержащее переменные и превращающееся в высказывание при подстановке вместо переменных соответствующих дескриптивных терминов. Законы мышления Закон мышления, или логический закон, – это суждение, выражающее внутреннюю необходимую существенную связь между мыслями либо их элементами в процессе рассуждения или доказательства. В формальной логике выделяют четыре основных закона: тождества, противоречия, исключенного третьего и достаточного основания. Законы формальной логики – это законы построения и связи мыслей. Они отражают схемы правильных рассуждений, сложившиеся в процессе многовековой практики мышления. Закон тождества фиксирует одно из коренных свойств мышления – его определенность. Согласно этому закону всякая мысль в процессе рассуждения должна быть тождественна самой себе. Это означает, что предмет мысли должен рассматриваться в одном и том же содержании своих признаков на всем протяжении рассуждения или доказательства. Закон противоречия выражает требование непротиворечивости и последовательности мышления. Это означает, что, признав известные положения в качестве истинных и развивая выводы из этих положений, мы не можем допустить в своем рассуждении или доказательстве никаких утверждений, противоречащих тому, что было сказано ранее. Закон противоречия гласит: два находящихся в отношении отрицания суждения не могут быть одновременно истинными; по крайней мере, одно из них необходимо ложно. Закон достаточного основания выражает требование доказательности и обоснованности мысли. Согласно этому закону, всякая истинная мысль должна быть обоснована другими мыслями, истинность которых уже доказана. Формально-логические законы – это законы нормативного мышления. Соблюдение требований законов логики предохраняет мышление от логических ошибок и гарантирует получение истинного знания при условии, если исходное знание будет истинным.

Читайте также:  Может ли ухудшиться зрение от диабета

4 Понятие как форма мышления. Переход от чувственной ступени познания к абстрактному мышлению характеризуется прежде всего как переход отражения мира в формах ощущений, восприятий и представлений к отражению его в понятиях и на их основе в суждениях и теориях. Мышление, таким образом, может рассматриваться как процесс оперирования понятия- ми. Именно благодаря понятиям мышление приобретает характер обобщенного отражения действительности. Понятие это одна из основных форм мышления, которая есть результат обобщения предметов некоторого вида на основе отличительных для них признаков. Как логическая форма понятие характеризуется двумя важнейшими параметрами – содержанием и объемом. Совокупность признаков, по которым обобщаются предметы в понятии, называется содержанием данного понятия. Совокупность предметов, мыслимых в понятии, называется его объемом. Мыслимые (обобщаемые в понятии) предметы – носители признаков, составляющих содержание понятия, являются элементами объема этого понятия.

5 Содержание и объем понятия. Содержание и объем понятия тесно связаны друг с другом. Эта связь выражается в законе обратного отношения между объемом и содержанием понятий, согласно которому увеличение содержания понятия ведет к уменьшению его объема и наоборот. Или иначе в более общей формулировке: если объем одного понятия составляет часть объема другого, то содержание второго понятия составляет часть содержания первого. Закон обратного отношения играет важную роль в операциях обобщения и ограничения понятий и в анализе отношений между понятиями.

6 Виды понятий. 1. По объему понятия делятся на единичные и общие. Единичным является понятие, объем которого состоит из одного элемента. Например, понятия «Александр Сергеевич Пушкин», «созвездие Большой Медведицы», «эта книга» и др. Общие понятия имеют в качестве объема класс, состоящий более чем из одного элемента. Например: «человек», «животное» и др. 2. Общие понятия, в свою очередь, делятся на регистрирующие и нерегистрирующие. Регистрирующие – это такие понятия, объем которых составляет конечное множество элементов, в принципе поддающихся учету. Например, «планеты Солнечной системы», «человек», «следователь». Нерегистрирующие – такие понятия, объем которых составляет бесконечное множество элементов и не поддается принципиальному учету. Например, «число», «атом», «молекула». 3. Понятия делятся на разделительные и собирательные. Разделительные понятия – такие понятия, в объеме которых каждый индивидуальный предмет мыслится как элемент класса. На- пример, «книга», «человек», «звезда». Собирательные – такие понятия, в которых предметы мыслятся как единое целое. Например, «человечество», «созвездие», «флот». 4. По содержанию понятия делятся на конкретные и абстрактные. Конкретными называются понятия, в которых мыслятся предметы в совокупности своих признаков. Например, «стол», «стул», «человек», «дерево» и т. д. Абстрактными называются понятия, в которых мыслятся свойства или отношения, отвлеченные от самих предметов: «счастье», «белизна», «бесконечность». 5. Понятия бывают положительные и отрицательные. Положительными называются понятия, которые выражают наличие у предмета какого-либо свойства или отношения. Например, «преступник», «европейское государство», «столичный город». Отрицательными называются такие понятия, в которых указывается на отсутствие какого-либо свойства или отношения Например, «не-преступник», «неевропейское государство», «нестоличный город». Обычно отрицательные понятия образуются от положительных посредством прибавления к положительным понятиям отрицательной частицы «не» или приставки «без». Однако следует помнить, что в случаях, когда без отрицательной частицы понятие не употребляется, оно является положительным. Например, «неряха», «ненастье» и т. д. 6. По содержанию понятия делятся также на соотносительные и безотносительные. Соотносительными считаются такие понятия, в которых отражаются предметы, существование одного из которых немыслимо без существования другого, например, «дети» и «родители», «начальник» и «подчиненный», «верх» и «низ» и т. д. Безотносительные – такие понятия, в которых отражаются предметы, существование которых не связывается необходимым образом с существованием других предметов. Например, «человек», «книга», «парта» и т. д.

7 Отношения между понятиями. Отношения между понятиями устанавливается по содержанию и объему. По содержанию. Для выяснения логических отношений между понятиями различают отношения сравнимости и несравнимости, которые устанавливаются по общности признаков, т. е. по содержанию. Сравнимыми называют понятия, предметы которых имеют какие-либо общие признаки, позволяющие эти понятия сравнивать друг с другом, если же у предметов, мыслимых в понятии, нет никаких общих признаков, то они несравнимы. В логических отношениях могут состоять только сравнимые понятия. По объему. Во множестве сравнимых понятий принято выделять совместимые и несовместимые. Понятия совместимы, если признаки, составляющие содержание этих понятий, могут принадлежать одним и тем же предметам, т. е. их объемы имеют какие-то общие элементы (например, «спортсмен» и «студент»), т. е. условием совместимости двух понятий xA(x) и xB(x) является непустота пересечения их объемов. Отношение совместимости представлено следующими видами: 1. Равнозначность (равнообъемность), или тождество. Данное отношение имеет место между понятиями, имеющими один и тот же объем, но различное содержание. 2. Пересечение или частичное совпадение имеет место между понятиями, объемы которых содержат общие элементы. Например, пересекающимися являются понятия «спортсмен» и «иркутянин». 3. Подчинение, или субординация, имеет место между такими понятиями, объем одного из которых полностью входит в объем другого, но его не исчерпывает. Например, в отношении подчинения находятся понятия «высшее учебное заведение» (А) и «университет» (В); «врач» (А) и «врач-терапевт» (В). Понятие, объем которого включает объем другого понятия как часть своего объема, называется подчиняющим (А), а понятие, объем которого входит в объем другого понятия, называется подчиненным (В). Виды несовместимости: 1. Соподчинение или координация имеет место как минимум между тремя понятиями, одно из которых является родовым, а остальные – видами данного рода, не находящимися в отношении пересечения. Например: «высшее учебное заведение» (А), «институт» (В), «академия» (С). 2. Противоположность, или контрарность, имеет место между такими понятиями, одно из которых содержит определенные признаки, а другое эти признаки отрицает, замещая при этом на противоположные. Важно помнить, что объемы противоположных понятий не исчерпывают объем родового понятия, между ними существуют промежуточные виды. Например, «черный» (В) и «белый» (С). 3. Противоречие или контрадикторность имеет место между понятиями, одно из которых содержит некоторые признаки, а у другого эти признаки отсутствуют, не замещаясь при этом никакими другими. Объемы противоречащих понятий полностью исчерпывают объем родового понятия. Например, «мужчина» (В) и «не мужчина» (С). Символически противоречащие понятия могут быть записаны посредством знака отрицания над буквой («мужчина» (В) и «не мужчина» (В)).

8 Определение понятий. Определение понятий – это логическая операция, раскрывающая содержание понятия. Понятие, содержание которого раскрывается, называется определяемым (definiendum), или сокращенно Dfd. Понятие, раскрывающее содержание определяемого понятия, называется определяющим (definience), или Dfn. Виды определения 1. Реальные и номинальные. Деление определений на реальные и номинальные зависит от того, что определяется – содержание понятия или значение термина. Реальное определение (экспликация) – это определение, посредством которого раскрывается содержание понятия, т. е. определяемый предмет выделяется из класса сходных предметов по его отличительным признакам. Результат определения такого типа представляет собой суждение – характеристику обозначаемых данным термином предметов. Номинальное определение – это определение, посредством которого раскрывается значение вводимого термина или выражения. Номинальное определение есть условие или соглашение относительно употребления данной знаковой формы. Определение в этом случае представляет собой ответ на вопрос, что называют или будут называть данным термином, что имеют в виду или будут иметь в виду под данным выражением. 2. По структуре выделяют определения явные и неявные, в зависимости от того, выделяются ли в качестве самостоятельных (непересекающихся) частей определяемое выражение (Dfd) и определяющее (Dfn). Явное определение – это определение, в котором выражаются существенные признаки определяемого предмета и которое имеет вид равенства или эквивалентности – Dfd = Dfn. Данный вид определения является наиболее простой и употребительной формой определений. К виду явных определений относятся определение через род и видовое отличие, и его разновидность – генетическое определение. Неявное определение – это определение, в котором содержание понятия выводится из отношения к другим понятиям. Неявные определения отличаются от явных тем, что в них нельзя выделить в качестве самостоятельных частей определяемое (Dfd) и определяющее выражения (Dfn) и, следовательно, нельзя представить их в виде равенства или эквивалентности. К неявным определениям относятся определения через отношение предмета к своей противоположности, контекстуальные, остенсивные и др. Правила определения 1. Определение должно быть соразмерным. Правило соразмерности требует, чтобы объем определяемого понятия был равен объему определяющего, т. е. соблюдалось равенство – Dfd = Dfn. Нарушение этого правила ведет к ошибкам определения. 2. В определении не должно быть круга. Понятие не должно определяться через самого себя. Ошибка, которая получается вследствие нарушения этого правила, называется порочным кругом. Она встречается в двух разновидностях: круг в определении и тавтология. Круг в определении означает, что при определении понятия прибегают к другому понятию, которое, в свою очередь, определяется при помощи первого. 3. Определение должно быть ясным, не допускающим двусмысленности, т. е. должно быть сформулировано в однозначно определенных терминах, предметные значения которых должны быть известны. Нельзя определять понятия через такие термины, которые сами нуждаются в определениях. Ошибка подобного рода называется определением неизвестного через неизвестное. Например, «агностицизм – это разновидность скептицизма». 4. Определение по возможности не должно быть отрицательным, поскольку такого рода определение не указывает на существенный признак, характеризующий предмет и отличающий его от других предметов. Например, «роза – не верблюд».

Читайте также:  До какого минуса можно делать лазерную коррекцию зрения

9 Деление понятий. Деление понятий – это операция разбиения объема понятия на подвиды, представляющие собой совокупности предметов, мыслимых в этом понятии. Процесс деления может быть охарактеризован так же, как процесс выявления возможных видовых понятий. В составе каждого деления выделяют: делимое понятие, т. е. понятие, которое делят; основание деления, т. е. признак, по которому происходит деление; члены деления – видовые понятия по отношению к исходному. Принято различать правильное и неправильное деление. Деление является правильным, если оно удовлетворяет следующим пяти условиям или правилам деления. 1. Деление должно происходить по одному определенному основанию. При этом основание деления может представлять собой сочетание двух или даже более различных признаков. Несоблюдение этого правила приводит к логической ошибке – «смешению оснований». 2. Полученные при делении понятия должны быть попарно несовместимы. Примером логической ошибки на это правило является операция деления понятия «параллелограмм» на «прямоугольники», «ромбы» и «квадраты», поскольку такие пары понятий, как «квадрат» и «ромб», «квадрат» и «прямоугольник», не взаимоисключающие. 3. Члены деления должны исчерпывать объем делимого понятия, т. е. объединение их должно быть равно этому объему. Нарушение этого правила приводит к двоякого рода ошибке. Во-первых, «неполное деление», которое имеет место, когда в результате деления указаны не все виды делимого родового понятия. Во-вторых, «деление с излишним членом», которое имеет место в том случае, когда кроме видов делимого понятия указывают члены деления, не являющиеся видами данного рода. 4. Никакой из членов деления не должен быть пустым классом. 5. Деление должно быть непрерывным, т. е. все его члены являются ближайшими видами объема исходного понятия, выделяемыми по выбранному основанию. Логическая ошибка, возникающая при несоблюдении этого правила – «скачок в делении». Правильным будет сначала разделить понятие «сказуемое» на «простое» и «составное», а затем «составное» разделить на «составное глагольное» и «составное именное». В логике принято различать два вида деления: по видоизменению признака и дихотомическое. Деление по видоизменению признака – это деление с произвольным числом классов, в каждом из которых определенный признак, выступающий основанием для деления, присутствует, но проявляется в разной степени. Дихотомическое деление – деление на два взаимоисключающих множества. В процессе дихотомического деления делимое понятие делится на два противоречащих понятия. Преимуществом данного вида деления является простота самой операции, гарантирующая отсутствие таких ошибок, как перекрещивание членов деления, т. е. случаев, когда члены деления не исключают друг друга, а также отсутствие необходимости уточнять состав объема делимого понятия дополнительно к той, которая выделяет положительный член. В случае операции деления содержание делимого понятия всегда можно утверждать относительно каждого члена деления, получая при этом истинные высказывания. В случаях же членения предмета на части получаются бессмысленные высказывания.

10 Ограничение и обобщение понятий. В основе перехода от родовых понятий к видовым и от видовых к родовым лежит формально-логический закон обратного отношения между содержанием и объемом понятий. Ограничение понятий – это логическая операция, посредством которой совершается переход от понятия с большим объемом (род) к понятию с меньшим объемом (вид) посредством прибавления к содержанию родового понятия видообразующего признака. Ограничение одного и того же понятия может идти по разным направлениям, поскольку ограничение понятия есть его конкретизация, которая связана с учетом особенностей при образовании более узкого понятия. Ограничить понятие – значит перейти от понятия с большим объемом, но меньшим содержанием к понятию с меньшим объемом, но большим содержанием. Таким образом, ограничение понятий в терминах описанных выше отношений между понятиями представляет собой переход от подчиняющего понятия к подчиненному, а с точки зрения объемов понятий – это переходы от классов (множеств) к подклассам (подмножествам). Пределами ограничения являются единичные понятия. Например, результатом ограничения понятия «студент» является понятие «студент-юрист Петров». Обобщение понятий – это логическая операция, посредством которой совершается переход от понятия с меньшим объемом (вид), к понятию с большим объемом (род), при этом содержание второго понятия уменьшается согласно закону обратного отношения, но это не значит, что при этом уменьшается количество его признаков. Это означает лишь то, что содержание второго понятия логически следует из содержания первого.

11Операции с объемами (классами) понятий. Класс, или множество (т. е. совокупность предметов, охватываемая объемом понятия), может включать в себя подклассы, или подмножества. Понятие, из объема которого происходит выделение подкласса, называется родовым, или родом; понятие, объем которого выделяется из родового понятия – видовым, или видом (например, наука – родовое понятие, химия – видовое). Класс (множество) – это совокупность предметов, которые можно мыслить вместе на основании удовлетворения ими каким-либо условиям или признакам. Классы могут быть единичными, т. е. состоящими только из одного элемента; конечными, состоящими из конечного числа элементов; бесконечными – элементы которых принципиально не допускают пересчета, например, бесконечным классом является класс всех четных чисел; неопределенными; пустыми, т. е. вовсе не содержать элементов, и универсальными, которые противополагаются пустым классам и состоят из всех объектов подлежащей рассмотрению предметной области. Подкласс (подмножество) – это такое множество, каждый элемент которого в то же время является элементом более широкого множества. Из двух и более классов с помощью определенных операций можно образовать новый класс. Основными операциями над классами являются объединение классов (сложение), пересечение классов (умножение), образование дополнения к классу (отрицание) и вычитание класса (разность). Объединением классов (сложением) называется логическая операция, в результате которой образуется новый класс, состоящий из таких объектов, каждый из которых является элементом, по крайней мере, одного из слагаемых классов. Пересечением классов (умножением) – называется логическая операция, в результате которой образуется новый класс, состоящий из общих умножаемым классом элементов. Класс А∩В, полученный в результате умножения, называется произведением. Свойства дополнения: Отношения между дополняемым классом и его дополнением есть отношения противоречия, которое характеризуется тем, что каждый из объектов какой-нибудь универсальной области может мыслиться в объеме только одного из противоречащих понятий.

12 Суждение как форма мышления. Суждение можно определить как форму мысли, содержащую описание некоторой ситуации и утверждение или отрицание наличия этой ситуации в действительности, в связи, с чем суждение определяют обычно как утверждение или отрицание чего-либо о чем-либо. Впрочем, отрицание наличия некоторой ситуации в действительности есть утверждение ее отсутствия. Поэтому можно сказать, что суждение всегда есть некоторое утверждение, а именно утверждение о наличии или отсутствии некоторой ситуации в действительности. Таким образом, именно наличие утверждения или отрицания описываемой ситуации отличает суждение от понятия. Характерной особенностью суждения с логической точки зрения является то, что оно – при логически правильном его построении – всегда истинно или ложно. И связано это как раз с наличием в суждении утверждения или отрицания чего-либо. Понятие, которое в отличие от суждения содержит только описание предметов и ситуаций с целью их мысленного выделения, не имеет истинностных характеристик. Суждение следует отличать и от предложения. Звуковая оболочка суждения – предложение. Суждение всегда является предложением, но не наоборот. Суждение выражается в повествовательном предложении, в котором утверждается, отрицается или сообщается что-либо. Таким образом, вопросительное, побудительное и повелительное предложения суждениями не являются. Структуры предложения и суждения не совпадают. Грамматический строй одного и того же предложения различается в разных языках, тогда как логический строй суждения всегда одинаков у всех народов. Следует отметить также отношения между суждением и высказыванием. Высказывание – это термин математической логики, которым обозначается предложение естественного или искусственного языка, рассматриваемое с точки зрения его истинности, ложности, действительности, необходимости и возможности. Суждение является содержанием любого высказывания. Такие предложения, как «число n является простым», невозможно считать высказыванием, так как о нем нельзя сказать, является ли оно истинным или ложным. В зависимости от того, какое содержание будет иметь переменная «n», можно установить его логическое значение. Подобные выражения называются пропозициональными переменными. Высказывание обозначается одной какой-либо буквой латинского алфавита. Оно рассматривается как неразложимая единица. Это значит, что в нем не разглядывается никакая структурная единица в качестве его части. Такое высказывание называется атомарным (элементарным) и соответствует простому суждению. Из двух и более атомарных высказываний посредством логических операторов (связок) образуется сложное или молекулярное высказывание. В отличие от высказывания суждение представляет собой конкретное единство субъекта и объекта, связанных по смыслу. Примеры суждений и высказываний: Простое высказывание – А; простое суждение – «S есть (не есть) P». Сложное высказывание – A⊃B; сложное суждение – «если S1 есть P1, то S2 есть P2».

Укажите понятие находящееся с точки зрения формальной логики

Предлагаемый тест поможет в изучении логики. Он может использоваться для самостоятельной подготовки, а также – при контроле и закреплении основного аудиторного материала. Он также может быть использован преподавателями для проведения контрольных и зачетно-экзаменационных мероприятий по курсу логики.

Тест включает в себя 100 заданий закрытого типа, что намного ускоряет проверочную работу преподавателя. Задания охватывают все разделы логики и позволяют не только проверить наличие у учащихся нужной суммы знаний, но и оценить уровень их логической культуры.

Предлагаемые варианты ответов составлены таким образом, что каждый из них может быть выбран неподготовленным учащимся в качестве правильного, поэтому тест невозможно выполнить формально, наугад выбирая подходящий вариант ответа. Для его успешного выполнения необходимы реальные знания и навыки по курсу логики. Такое построение тестовых заданий делает их более сложными, но в то же время более интересными и намного повышает эффективность контроля знаний и навыков учащихся.

При оценке результатов теста можно использовать следующую систему:

• наука об умозаключениях и доказательствах;

• наука о правилах мышления;

• наука о формах и законах мышления;

• наука о формах и законах познания.

2. Формальная логика появилась:

• в эпоху Возрождения.

3. Формальная логика является:

4. Создателем логики считается древнегреческий философ:

5. С точки зрения формальной логики высказывание: «Все Снегурочки – это геометрические фигуры»:

• представляет собой абсурд;

• лишено всякого смысла;

• выражает пример классической нелепости;

• построено по форме: «Все A есть B».

Читайте также:  Что такое класс с точки зрения ооп

6. Математическая или символическая логика появилась:

• тогда же, когда и традиционная логика;

• в начале нашей эры;

• в середине XX в.

7. Интуитивная логика – это:

• совершенное незнание законов правильного мышления, приводящее любое рассуждение к многочисленным ошибкам и ложным выводам;

• стихийно сформированное в процессе жизненного опыта знание форм и принципов правильного мышления;

• теоретические знания, оставшиеся у человека после изучения курса логики в школе или вузе;

• полное искажение теоретической логики;

• ничто из перечисленного.

8. Древнегреческие философы, которые изобретали разнообразные приёмы нарушения логических законов с целью доказать всё, что угодно, – это:

• слово или словосочетание;

10. Любое понятие имеет:

11. Любое понятие выражается в форме:

• слова или словосочетания;

12. Содержание понятия – это:

• совокупность всех объектов, которые оно охватывает;

• наиболее важные признаки того объекта, который оно выражает;

• то суждение, в котором оно может употребляться;

• слово или словосочетание, в котором оно выражается;

• объект, который оно обозначает.

13. Объём понятия – это совокупность:

• объектов, охватываемых этим понятием;

• всех слов или словосочетаний, которые могут его выражать;

• всех значений, которые могут в него вкладываться;

• наиболее важных признаков того объекта, который оно обозначает;

• всех рассуждений, в которых оно употребляется;

• всех людей, которым известно это понятие.

Формальная логика

Экономическая теория, как и любая другая наука, обладает не только специфическим предметом, но и особым методом исследования. Слово «метод» происходит от греческого methodos, что буквально означает «путь к чему-либо». Поэтому метод можно определить в самом широком смысле как деятельность, направленную на достижение какой-либо цели. Метод науки, с одной стороны, отражает уже познанные законы исследуемой сферы окружающего мира, а с другой — выступает как средство последующего познания.

Таким образом, метод одновременно является и результатом процесса исследования, и его предпосылкой. Сохраняя в себе свойства и законы изучаемого объекта, он в то же время несет на себе отпечаток целесообразной деятельности познающего его субъекта.

Объективное переходит в субъективное, и наоборот. Обычно метод исследования формируется на базе определенной методологии, включающей в себя мировоззренческий подход, исследование предмета, структуры и места данной науки в общей системе знаний и собственно метод.

В ходе процесса познания происходит постоянное взаимодействие предмета и метода. Предмет предполагает определенный метод исследования, а метод формирует предмет.

Первым методом, который использовала экономическая наука, была формальная логика.

Формальная логика это изучение мысли со стороны ее структуры, формы.

Основателем формальной логики считается Аристотель,открывший своеобразную форму умозаключения (силлогизм) и сформулировавший основные законы логики. Ученики Аристотеля назвали эту новую книгу «органон», то есть «орудие познания». Термин «логика» («слово», «разум», «закономерность») появился позже у стоиков, и лишь в XVII в. в процессе создания диалектической логики эту традиционную логику стали вслед за И. Кантом называть формальной.

Простейшей категорией формальной логики является понятие — оно фиксирует мысль о предмете.Обычно понятие определяется через более широкое понятие путем добавления к родовому признаку видового различия.

Суждение это мысль, в которой утверждается или отрицается что-либо о чем-либо. Формой взаимосвязи суждений выступает умозаключение.

Умозаключение представляет собой прием мышления, посредством которого из некоторого исходного знания получается выводное знание.

Наиболее известной формой умозаключения является силлогизм.Он утверждает,что если свойство Р принадлежит каждому из предметов, образующих данный класс, то это свойство будет принадлежать и любому индивидуальному предмету, относимому к этому классу.

Это называется аксиомой силлогизма. Формальная логика разработала обширный набор методов и приемов познания. Важнейшие из них — это анализ и синтез, индукция и дедукция, сравнение, аналогия, гипотеза, доказательство, определенные законы мышления.

Анализ- это метод познания, состоящий в расчленении целого на составные части, синтезметод, состоящий в соединении отдельных частей в единое целое.Будучи наипростейшим, метод анализа оказывается и наименее удовлетворительным. Это метод эмпиризма. Неправильно проведенный анализ может превратить конкретное в абстрактное, умертвить живое. Недостатки анализа в образовании понятий в какой-то мере снимаются синтезом. Однако ни анализ, ни синтез не раскрывают внутренние противоречия предмета и, следовательно, не отражают самодвижения, развития анализируемого объекта. Поэтому этот метафизический метод не в состоянии указать путь к нахождению начала исследования. Аналогичными недостатками обладают и индукция с дедукцией.

Индукция это метод познания, основанный на умозаключениях от частного (особенного) к общему;

Дедукцияметод, основанный на умозаключениях от общего к частному (особенному). Слабость индукции в том, что она не может строго обосноватьобщее, так как исходит лишь из рассмотрения части совокупности. Недостаток дедукции в том, что она не может строго обосновать общую предпосылку.

Важную роль в формальной логике играет сравнениеметод, определяющий сходство или различие явлений и процессов.Он широко используется при систематизации и классификации понятий, так как позволяет соотнести неизвестное с известным, выразить новое через имеющиеся понятия и категории. Однако роль сравнения в познании нельзя переоценивать Оно, как правило, носит поверхностный характер, отражая лишь первые шаги исследования. В то же время сравнение готовит предпосылки для проведения аналогии.

Аналогия это метод познания, основанный на переносе одного или ряда свойств с известного явления на неизвестное.В общей форме умозаключение по аналогии записывается следующим образом. Если А и В имеют общие свойства и А имеет свойство С, то и В имеет свойство С.

Аналогия — это частный случай индукции. Она играет важную роль в выдвижении предположений, получении нового знания. Многие открытия в политической экономии были сделаны по аналогии. Ф. Кенэ, например, предложил плодотворную аналогию между кровообращением в человеческом организме и движением товарных и денежных потоков в организме социальном. Это позволило ему построить первую макроэкономическую модель воспроизводства. Изучение механического равновесия привело А. Курно к идее экономического равновесия. Аналогия, таким образом, играет важную роль в рождении новых идей и формулировке гипотез. Она существенно облегчает понимание сложных процессов, являясь основой научного моделирования. Нередко аналогия позволяет правильно поставить проблему, определив направление дальнейшего исследования.

Проблемаэто четко сформулированный вопрос или комплекс вопросов, возникших в процессе познания.Постановка проблемы возможна до начала исследования, в ходе исследования и в ходе его завершения. Если проблемы сформулированы до начала исследования, такие проблемы называют явными, если нет — то неявными. Методы решения проблемы могут быть известны заранее, а могут быть найдены в процессе работы. В зависимости от того, что известно (формулировка проблемы, метод ее решения или ответ), можно дать простейшую типологию проблемных ситуаций (см. табл. 1—1).

Первый случай представляет собой показательные задачи (известно все — проблема, метод ее решения и ответ). Второй случай — типовые школьные задачи (известно все, кроме ответа). Третий случай — риторические проблемы — головоломки. Четвертый случай — это классические научные проблемы. Пятый случай иллюстрирует ситуацию, когда правильное понимание формулировки проблемы приходит только в конце исследования. Шестой случай соответствует ситуации, когда в экономике используют методы других наук. Седьмая ситуация иллюстрирует догматическую теорию, обладающую готовыми ответами на все проблемы; восьмая — это софизмы, парадоксы, антиномии.

Принципиально новому решению задачи способствует постановка проблемы в форме антиномии. Антиномия это противоречие, в котором тезис и антитезис имеют равную силу и в одинаковой степени покоятся на одних и тех же основаниях. Формулировка проблемы в форме антиномии позволяет отразить противоречивоеразвитие как реального объекта, так и знаний о нем. Однако с точки зрения формальной логики антиномия неразрешима, поскольку отрицает ее основные законы.

На ограниченность формальной логики указывает и апория утверждение, противоречащее практическому опыту.

Постановка проблемы в форме парадокса (антиномии, апории или даже софизма) способствует рождению гипотез. Гипотеза — это метод познания, заключающийся в выдвижении научно обоснованного предположения о возможных причинах или связях явлений и процессов. Гипотеза возникает тогда, когда появляются новые факторы, противоречащие старой теории. Научная теория состоит из ядра и защитного пояса (см. рис. 1—3).

Ядро — наиболее фундаментальные положения теории; защитный пояс образуют вспомогательные гипотезы, которые конкретизируют теорию, расширяя область ее применения.

Доказанные гипотезы сливаются с ядром, недоказанные служат объектом полемики с оппонентами, защищая ядро теории. Например, ядром марксизма являются трудовая теория стоимости, теория прибавочной стоимости, всеобщий закон капиталистического накопления, а их защитным поясом — закон тенденции нормы прибыли к понижению и другие законы.

Под доказательством в формальной логике понимается обоснование истинности одной мысли с помощью других.Формальная логика предлагает универсальную структуру доказательства. Она состоит из тезиса, оснований доказательства (аргументов) и способа доказательства (демонстрации).

Существуют различные виды доказательства. В зависимости от его целей выделяют доказательства истинности и ложности (опровержение); в зависимости от способа доказательства — прямые и косвенные; в зависимости от оснований доказательства — теоретические и эмпирические.

Основные законы формальной логики(см рис. 1—6):

1. Закон тождества (А=А);

2. Закон противоречия (А и А, А Λ А);

3. Закон исключенного третьего (А и А, А V А);

4. Закон достаточного основания.

Закон тождестваозначает, что каждая мысль должна иметь строго определенное устойчивое содержание. Он направлен против расплывчатости и неопределенности в экономическом мышлении Этот закон запрещает, с одной стороны, тавтологию (когда одно явление называют разными терминами), а с другой — подмену одних понятий другими. Закон тождества ориентирует на связь и соподчиненность категорий, четкое разграничение родовых и видовых признаков.

Закон противоречияозначает, что две противоположные мысли об одном и том же предмете, взятом в одном и том же времени, отношении и т. д., не могут быть истинными.

Закон исключенного третьегоутверждает, что из двух отрицающих друг друга мыслей об одном и том же предмете, взятом в одном и том же времени, отношении и т. д , одно непременно истинно.

Закон достаточного основаниятребует, чтобы всякая истинная мысль обосновывалась другими мыслями, истинность которых была доказана ранее.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 7702 — | 6713 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источники:
  • http://studfiles.net/preview/5946921/
  • http://www.k2x2.info/nauchnaja_literatura_prochee/kratkii_kurs_logiki_iskusstvo_pravilnogo_myshlenija/p8.php
  • http://studopedia.ru/3_169109_formalnaya-logika.html