Меню Рубрики

Типы систем с точки зрения синергетики

Основные понятия синергетики

На первом этапе развития под синергетикой понимали область научных исследований, целью которых было выявление общих закономерностей в процессах образования, устойчивости и разрушения упорядоченных временных и пространственных структур в сложных неравновесных системах различной природы: физических, химических, биологических, социальных и т. д. Здесь «совместное, согласованное действие» может быть как следствием самоорганизации (в результате развития собственных неустойчивостей в системе), так и следствием вынужденной организации за счет внешних воздействий. Пример последней — известная синхронизация мод в многомодовом лазере с помощью внешнего периодического воздействия. Однако в настоящее время можно констатировать, что в подавляющем большинстве случаев изучается именно самоорганизация; «Самоорганизация социальных, экономических и исторических процессов», «Явления самоорганизации в системах с многовариантным поведением» и т. д. Это логично, потому что в принципе вынужденную организацию можно описать в рамках самоорганизации, если включить внешние силы как часть новой, более полной системы.

Обоснованием целесообразности синергетических исследований является установленный факт, что кооперация многих подсистем какой–либо системы подчиняется одним и тем же принципам независимо от природы подсистем. Познание этих принципов позволяет по–новому подойти и к проблеме рационального управления развитием сложных систем. С точки зрения синергетики нельзя, например, при управлении развитием природной или социальной системы навязывать несвойственные ей формы организации. Изучив систему, необходимо не увеличивать силу управляющего воздействия, а увеличивать согласованность воздействия с собственными тенденциями системы.

Объекты исследований синергетики

Объединяющим началом в синергетике являются объекты исследований — открытые сложные нелинейные системы с обратными связями. Разумеется, такие системы изучались и ранее без использования термина «синергетика». Общая трудность подобных исследований — исключительная трудность точного математического описания, особенно если в системе работает множество обратных связей. Ввиду широкого использования в синергетике аналогий полезно проследить, как методически решаются подобные проблемы в наиболее успешных работах.

Синергетика и синергетики

Подобно тому, как кибернетике Винера предшествовала кибернетика Ампера, имевшая весьма косвенное отношение к «науке об управлении, получении, передаче и преобразовании информации в кибернетических системах», синергетика Хакена имела своих «предшественниц» по названию: синергетику Ч. Шеррингтона, синергию С. Улана и синергетический подход И. Забуского.

Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями.

С. Улам был непосредственным участником одного из первых численных экспериментов на ЭВМ первого поколения (ЭНИВАКе).- проверке гипотезы равнораспределения энергия по степеням свободы. Эксперимент, проведенный над числовым аналогом системы кубических осцилляторов, привел к неожиданному результату, породив знаменитую проблему Ферми-Пасты-Улама: проследив за эволюцией распределения энергии по степеням свободы на протяжении достаточно большого числа циклов, авторы не обнаружили ни малейшей тенденции к равнораспределению. С. Улам, много работавший с ЭВМ, понял всю важность и пользу «синергии, т. е. непрерывного сотрудничества между машиной и ее оператором», осуществляемого в современных машинах за счет вывода информации на дисплей.

Решение проблемы Ферми — Пасты — Улама было получено в начале 60-х годов М. Крускалом и Н.Забуским, доказавшим, что система Ферми – Пасты — Улама представляет собой разностный аналог уравнения Кортевега-де Вриза и что равнораспределению энергии препятствует солитон (термин, предложенный H. Забуским), переносящий энергию из одной группы мод в другую. Реалистически оценивая ограниченные возможности как аналитического, так и численного подхода к решению нелинейных задач, И. Забуский пришел к выводу о необходимости единого синтетического подхода. По его словам, «синергетический подход к нелинейным математическим и физическим задачам можно определить как совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений».

Если учесть сложность систем и состояний, изучаемых синергетикой Хакена, то станет ясно, что синергетический подход Забуского (и как составная часть его — синергия Улама) займет достойное место среди прочих средств и методов Х-науки. Иначе говоря, уповать только на аналитику было бы чрезмерным оптимизмом.

Особенность синергетики как науки

В отличие от большинства новых наук, возникавших, как правило, на стыке двух ранее существовавших и характеризуемых проникновением метода одной науки в предмете другой, Х-наука возникает, опираясь не на граничные, а на внутренние точки различных наук, с которыми она имеет ненулевые пересечения: в изучаемых Х-наукой системах, режимах и состояниях физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов Х-науки.

Эту особенность Х-науки (если X — синергетика) подробно охарактеризовал Хакен: «Данная конференция, как и все предыдущие, показала, что между поведением совершенно различных систем, изучаемых различными науками, существуют поистине удивительные аналоги. С этой точки зрения данная конференция служит еще одним примером существования новой области науки — Синергетики. Разумеется, Синергетика существует не сама по себе, а связана с другими науками, по крайней мере, двояко. Во-первых, изучаемые Синергетикой системы относятся к компетенции различных наук. Во-вторых, другие науки привносят в Синергетику свои идеи. Ученый, пытающийся проникнуть в новую область, естественно, рассматривает ее как продолжение своей собственной области науки. Математики, занимающиеся теорией бифуркаций, предпочли озаглавить доклад «Теория Бифуркаций и ее приложения». Физики, изучающие фазовые переходы, представили доклад под названием «Неравновесные фазовые переходы», а специалисты по статистической механике сочли более уместным назвать тот же подход «неравновесной нелинейной статистической механикой». Другие усматривали в новой области дальнейшее развитие «термодинамики необратимых процессов», третьи нашли рассматриваемый круг явлений особенно подходящим для применения теории катастроф (сохранив за не поддающимися пока решению проблемами название «обобщенных катастроф»). Некоторые математики склонны рассматривать весь круг проблем с точки зрения структурной устойчивости. Все перечисленные мной разделы науки весьма важны для понимания образования макроскопических структур образования в процессе самоорганизации, но каждый из них упускает из виду нечто одинаково существенное. Укажу лишь некоторые из пробелов. Мир — не лазер. В точках бифуркации решающее значение имеют флюктуации, т. е. стохастические процессы. Неравновесные фазовые переходы обладают некоторыми особенностями, отличными от обычных фазовых переходов, например чувствительны к конечным размерам образцов, форме границ и т. п. В равновесной статистической механике не существуют самоподдерживающиеся колебания. В равновесной термодинамике широко используются такие понятия, как энтропия, производство энтропии и т. д., неадекватные при рассмотрении неравновесных фазовых переходов. Теория катастроф основана на использовании некоторых потенциальных функций, не существующих для систем, находящихся в состояниях, далеких от теплового равновесия. В мои намерения, разумеется, не входит критика тех или иных областей науки. Я хочу лишь подчеркнуть то, что представляется особенно важным: в настоящее время назрела острая необходимость в создании особой науки, которая бы объединила все перечисленные мной аспекты. Для науки безразлично, будет ли она называться «Синергетикой». Важно, что она существует.

Итак, Х-наука делает первые шаги, и существует сразу не в одном, а в нескольких вариантах, отличающихся не только названиями, но и степенью общности и акцентами в интересах.

Теория диссипативных структур

Бельгийская школа. И. Пригожина развивает термодинамический подход к самоорганизации. Основное понятие синергетики Хакена (понятие структуры как состояния, возникающего в результате когерентного (согласованного) поведения большого числа частиц) бельгийская школа заменяет более специальным понятием диссипативной структуры. В открытых системах, обменивающихся с окружающей средой потоками вещества или энергии, однородное состояние равновесия может терять устойчивость и необратимо переходить в неоднородное стационарное состояние, устойчивое относительно малых возмущений. Такие стационарные состояния получили название диссипативных структур. Примером диссипативных структур могут служить колебания в модели Лефевра-Николиса-Пригожина (так называемом брюсселяторе).

Теория автоволновых процессов

Распространение понятий равновесной термодинамики на состояния, далекие от равновесия, и, в частности, принцип эволюции Гленсдорфа-Пригожина вызвали критику со стороны «синергетиков». Так, Ландауэр построил контрпример, показывающий, что никакая функция состояния, в том числе и энтропия, не может быть положена в основу критерия устойчивости состояния, как это сделано в принципе эволюции Гленсдорфа-Пригожина. Отечественная школа нелинейных колебаний и волн, основоположником которой по праву считается Л. И. Мандельштам, рассматривает общую теорию структур в неравновесных средах как естественное развитие и обобщение на распределенные системы идей и подхода классической теории нелинейных колебаний. Еще в ЗО-х годах Л. И. Мандельштам сформулировал программу выработки «нелинейной культуры, включающей надежный математический аппарат и физические представления, адекватные новым задачам, выработать нелинейную интуицию, годную там, где оказывается непригодной интуиция, выработанная на линейных задачах».

Разработанная почти полвека назад, эта программа становится особенно актуальной в наши дни существенной «делинеаризации» всей науки. Без наглядных и емких физических образов, адекватных используемому аппарату, немыслимо построение общей теории структур, теории существенно нелинейной. Вооружая физика концентрированным опытом предшественников, эти образы позволяют ему преодолевать трудности, перед которыми заведомо мог бы спасовать исследователь, полагающийся только на свои силы. В этом отношении физические образы Л. И. Мандельштама представляют собой глубокую аналогию со структурным подходом Э. Нётер, научившей математиков за конкретными деталями задачи различать контуры общей схемы — математической структуры, задаваемой аксиоматически. Суть структурного подхода, сформулированного Н. Бурбаки, звучит как парафраза манделынтамовской программы создания нелинейной культуры: «Структуры» являются орудиями математика; каждый раз, когда он замечает, что между элементами, изучаемыми им, имеют место отношения, удовлетворяющие аксиомам структуры определенного типа, он сразу может воспользоваться всем арсеналом общих теорем, относящихся к структурам этого типа, тогда как раньше он должен был бы мучительно выковывать сам средства, необходимые для того, чтобы штурмовать рассматриваемую проблему, причем их мощность зависела бы от его личного таланта, и они были бы отягчены часто излишне стеснительными предположениями, обусловленными особенностями изучаемой проблемы».

Следуя Р. В. Хохлову, возникновение волн и структур, вызванное потерей устойчивости однородного равновесного состояния, иногда называют автоволновыми процессами (по аналогии с автоколебаниями). На первый план здесь выступает волновой характер образования структур: независимость их характерных пространственных и временных размеров от начальных условий (выход на промежуточную асимптотику, а в некоторых случаях — от краевых условий и геометрических размеров системы.

Синергетика и кибернетика

Задачу выяснить с общих позиций закономерности процессов самоорганизации и образования структур ставит перед собой не только Х-наука. Важную роль в понимании многих существенных особенностей этих процессов сыграл, например, кибернетический подход, противопоставляемый иногда как абстрагирующийся «от конкретных материальных форм» и поэтому противопоставляемый синергетическому подходу, учитывающего физические основы спонтанного формирования структур. В этой связи небезынтересно отметить, что создатели кибернетики и современной теории автоматов могут по праву считаться творцами или предтечами Х-науки. Так, Винер и Розенблют рассмотрели задачу о радиально-несимметричном распределении концентрации в сфере. А. Тьюринг в известной работе предложил одну из основных базовых моделей структурообразования и морфогенеза, породившую огромную литературу: систему двух уравнений диффузии, дополненных членами, которые описывают реакции между «морфогенами». Тьюринг показал, что в такой реакционно-диффузионной системе может существовать неоднородное (периодическое в пространстве и стационарное во времени) распределение концентраций.

В русле тех же идей — изучения реакционно-диффузионных систем — мыслил найти решение проблемы самоорганизации и Дж. фон Нейман. По свидетельству А. Беркса, восстановившего по сохранившимся в архиве фон Неймана отрывочным записям структуру самовоспроизводящегося автомата, фон Нейман «предполагал построить непрерывную модель самовоспроизведения, основанную на нелинейных дифференциальных уравнениях в частных производных, описывающих диффузионные процессы в жидкости. В этой связи интересно отметить, что фон Нейман получил не только математическое образование, но и подготовку инженера-химика.

Структура и хаос

Где лежит граница между регулярной, но сложно организованной структурой и хаосом? Критерием может служить устойчивость возникающих в процессе течения образований по отношению к малым возмущениям. Если такая устойчивость отсутствует, детерминированное описание теряет смысл, и необходимо использовать статистические методы. Впервые на связь между статистическим подходом и неустойчивостью указывал еще Анри Пуанкаре.

Из сказанного ясно, что теоретический анализ процессов хаотизации (зарождения турбулентности) в различных средах также должен быть включен в круг проблем, изучаемых синергетикой. Естественно отнести к ним и исследование общих свойств хаотических режимов, возникающих вслед за разрушением регулярных структур.

Как же возникает хаотическое движение? Казалось бы, путей его возникновения должно быть очень много. Однако выяснилось, что число сценариев процесса хаотизации совсем невелико. Более того, некоторые из них подчиняются универсальным закономерностям, и не зависят (!) от природы системы. Одни и те же пути развития хаоса присуши самым разнообразным физическим, химическим, биологическим и др. объектам. Универсальное поведение напоминает обычные фазовые переходы второго рода, а введение ренормгрупповых и скейлинговых методов, известных в статистической механике, открывает новые перспективы в изучении хаотической динамики.

В течение долгого времени представление о хаотических колебаниях ассоциировалось с допущением, что в системе необходимо возбуждение по крайней мере чрезвычайно большого числа степеней свободы. Эта концепция, по–видимому, сформировалась под действием понятий, сложившихся в статистической механике: в газе движение каждой отдельной частицы в принципе предсказуемо, но поведение системы из очень большого числа частиц чрезвычайно сложно, и поэтому детализированное динамическое описание теряет всякий смысл. Отсюда — потребность в статистическом описании. Однако, как показали многочисленные исследования, статистические законы, а вместе с ними и статистическое описание не ограничены только очень сложными системами с большим числом степеней свободы. Дело здесь не в сложности исследуемой системы и не внешних шумах, а в появлении при некоторых значениях параметров экспоненциальной неустойчивости движения.

Какие же законы управляют хаосом? Возможно ли создать математический аппарат, позволяющий непротиворечиво описывать хаотическую динамику и предсказывать появление хаоса в тех или иных системах? Наконец, можно ли найти методы предсказания поведения хаотических систем? Ответами на эти и ряд других вопросов занимается так называемая «теория динамического (или детерминированного) хаоса», являющаяся одним из разделов нелинейной динамики. К настоящему времени разработаны методы классификации различных типов хаоса, найдены закономерности его развития, созданы методы, позволяющие отличить, например в эксперименте, хаос от белого шума, и т. п. Более того, было обнаружено и строго обосновано, что сложное пространственно–временное поведение распределенных сред с громадным числом степеней свободы может быть адекватно описано нелинейными системами небольшой размерности.

Физически осмысленное понятие детерминированного описания заключается в том, что начальное состояние процесса задается в силу неизбежных флюктуаций некоторым вероятностным распределением. Задача состоит в том, чтобы на основании известного начального распределения предсказать его эволюцию. Если малые возмущения начального условия с течением времени не нарастают (т. е. имеет место устойчивость), то поведение такой системы является предсказуемым. В противном случае процесс может быть описан только вероятностным образом. По существу именно эти соображения легли в основу современного представления о динамическом хаосе.

Как известно, математическим образом установившихся периодических колебаний является предельный цикл, а квазипериодических — инвариантный тор. И устойчивые циклы, и инвариантные торы являются аттракторами (буквально — «притягателями»), поскольку в прямом смысле они притягивает все близкие траектории. Физически это означает, что при отклонении от таких колебаний (вследствие каких–либо воздействий) система спустя некоторое время вновь возвращается к ним, т. е. такое движение как бы притягивает. Простым примером здесь может служить обычный часовой маятник.

Если диссипативная система проявляет хаотические свойства, то математически это соответствует наличию в ее фазовом пространстве странного (иногда говорят хаотического) аттрактора. Данное понятие впервые было введено в известной работе Д. Рюэля и Ф. Такенса «О природе турбулентности» в 1971 г. и означало притягивающее множество, отличное от конечного объединения гладких подмногообразий. Появление такого подмножества в системах дифференциальных уравнений тогда казалось экзотикой, отсюда и название — странные аттракторы.

Понятие структуры, основное для всех наук, занимающихся теми или иными аспектами процессов самоорганизации, при любой степени общности предполагает некую «жесткость» объекта — способность сохранять тождество самому себе при различных внешних и внутренних изменениях. Интуитивно понятие структуры противопоставляется понятию хаоса как состоянию, полностью лишенному всякой структуры. Однако, как показал более тщательный анализ, такое представление о хаосе столь же неверно, как представление о физическом вакууме в теории поля как о пустоте: хаос может быть различным, обладать разной степенью упорядоченности, разной структурой.

Одним из сенсационных открытии было обнаружение Лоренцом сложного поведения сравнительно простой динамической системы из трех обыкновенных дифференциальных уравнений первого порядка с квадратичными нелинейностями. При определенных значениях параметров траектория системы вела себя столь запутанным образом, что внешний наблюдатель мог бы принять ее характеристики за случайные.

Природа странного аттрактора Лоренца была изучена совместными усилиями физиков и математиков. Как и в случае многих других моделей Х-теории, выяснилось, что система Лоренца описывает самые различные физические ситуации — от тепловой конвекции в атмосфере до взаимодействия бегущей электромагнитной волны с инверсно-заселенной двухуровневой средой (рабочим телом лазера), когда частота волны совпадает с частотой перехода. Из экзотического объекта странный аттрактор Лоренца оказался довольно быстро низведенным до положения заурядных «нестранных» аттракторов — притягивающих особых точек и предельных циклов. От него стали уставать: легко ли обнаруживать странные аттракторы буквально на каждом шагу!

Но в запасе у странного аттрактора оказалась еще одна довольно необычная характеристика, оказавшаяся полезной при описании фигур и линий, обойденных некогда вниманием Евклида, — так называемая фрактальная размерность.

Мандельброт обратил внимание на то, что довольно широко распространенное мнение о том, будто размерность является внутренней характеристикой тела, поверхности, тела или кривой неверно (в действительности, размерность объекта зависит от наблюдателя, точнее от связи объекта с внешним миром).

Читайте также:  Помогут ли глазные капли вернуть зрение

Суть дела нетрудно уяснить из следующего наглядного примера. Представим себе, что мы рассматриваем клубок ниток. Если расстояние, отделяющее нас от клубка, достаточно велико, то клубок мы видим как точку, лишенную какой бы то ни было внутренней структуры, т. е. геометрический объект с евклидовой (интуитивно воспринимаемой) размерностью 0. Приблизив клубок на некоторое расстояние, мы будем видеть его как плоский диск, т. е. как геометрический объект размерности 2. Приблизившись к клубку еще на несколько шагов, мы увидим его в виде шарика, но не сможем различить отдельные нити — клубок станет геометрическим объектом размерности 3. При дальнейшем приближении к клубку мы увидим, что он состоит из нитей, т. е. евклидова размерность клубка станет равной 1. Наконец, если бы разрешающая способность наших глаз позволяла нам различать отдельные атомы, то, проникнув внутрь нити, мы увидели бы отдельные точки — клубок рассыпался бы на атомы, стал геометрическим объектом размерности.

Но если размерность зависит от конкретных условий, то ее можно выбирать по-разному. Математики накопили довольно большой запас различных определений размерности. Наиболее рациональный выбор определения размерности зависит от того, для чего мы хотим использовать это определение. (Ситуация с выбором размерности вполне аналогична ситуации с вопросом: «Сколько пальцев у меня на руках: 3 + 7 или 2 + 8?» До тех пор, пока мы не вздумали надеть перчатки, любой ответ можно считать одинаково правильным. Но стоит лишь натянуть перчатки, как ответ на вопрос становится однозначным: «5 + 5».)

Мандельброт предложил использовать в качестве меры «нерегулярности» (изрезанности, извилистости и т. п.) определение размерности, предложенное Безиковичем и Хаусдорфом. Фракталь (неологизм Мандельброта) — это геометрический объект с дробной размерностью Безиковича-Хаусдорфа. Странный аттрактор Лоренца — один из таких фракталей.

Размерность Безиковича-Хаусдорфа всегда не меньше евклидовой и совпадает с последней для регулярных геометрических объектов (для кривых, поверхностей и тел, изучаемых в современном учебнике евклидовой геометрии). Разность между размерностью Безиковича-Хаусдорфа и евклидовой — «избыток размерности» — может служить мерой отличия геометрических образов от регулярных. Например, плоская траектория броуновской частицы имеет размерность по Безиковичу-Хаусдорфу 1. больше 1, но меньше 2: эта траектория уже не обычная гладкая кривая, но еще не плоская фигура. Размерность Безиковича-Хаусдорфа странного аттрактора Лоренца больше 2, но меньше 3: аттрактор Лоренца уже не гладкая поверхность, но еще не объемное тело.

О степени упорядоченности или неупорядоченности («хаотичности») движения можно судить и по тому, насколько равномерно размазан спектр, нет ли в нем заметно выраженных максимумов и минимумов. Эта характеристика лежит в основе так называемой топологической энтропии, служащей, как и ее статистический прототип, мерой хаотичности движений.

Существуют и другие характеристики, позволяющие судить об упорядоченности хаоса.

Как ни парадоксально, новое направление, столь успешно справляющееся с задачей наведения порядка в мире хаоса, существенно меньше преуспело в наведении порядка среди структур.

В частности, при поиске и классификации структур почти не используется понятие симметрии, играющее важную роль во многих разделах точного и описательного естествознания.

Так же как и размерность, симметрия существенно зависит от того, какие операции разрешается производить над объектом. Например, строение тела человека и животных обладает билатеральной симметрией, но операция перестановки правого и левого физически не осуществима. Следовательно, если ограничиться только физически выполнимыми операциями, то билатеральной симметрии не будет. Симметрия — свойство негрубое: небольшая вариация объекта, как правило, уничтожает весь запас присущей ему симметрии.

Если определение симметрии выбрано, то оно позволяет установить между изучаемыми объектами отношение эквивалентности. Все объекты подразделяются на непересекающиеся классы. Все объекты, принадлежащие одному и тому же классу, могут быть переведены друг в друга надлежаще выбранной операцией симметрии, в то время как объекты, принадлежащие различным классам, ни одной операцией симметрии друг в друга переведены быть не могут.

Симметрию следует искать не только в физическом пространстве, где разыгрывается процесс структурообразования, но и в любых пространствах, содержащих «портрет» системы.

В работе предпринята попытка сформулировать требования симметрии, которым должна удовлетворять биологическая система. По мысли автора, «существо дела здесь состоит в эволюционном приспособлении биологических систем организмов к физическим и геометрическим характеристикам внешнего мира, в котором они себя «проявляют». Биомеханика движений скелета, «константности» психологии восприятия, биохимические универсалии жизненных процессов, движения и потоки, связанные с морфогенезом, — все это реакции отдельных видов организмов на соответствующие инвариантности, свойственные геометрико-физико-химическим характеристикам внешней среды, которые организмы «сумели» идентифицировать и включить в свою филогению в процессе эволюции. Чем больше инвариантных, регулярных свойств своего внешнего мира смог распознать и «учесть» организм, тем больше хаоса удается ему устранить из внешней среды, что в койне концов обеспечивает его преимущества с точки зрения принятия решений, уменьшения фрустрации, доминирования и, по существу, выживания».

Классифицировать структуры можно и по степени их сложности. Однако и в этом направлении предприняты лишь первые шаги.

Сложность поведения даже простых моделей (термин «элементарных» применительно к этим моделям так же, как и в случае элементарных частиц, отражает скорее уровень наших знаний о них, чем их истинную сложность) навела исследователей на мысль обратиться к аксиоматическому методу с тем, чтобы, следуя Гильберту, отделить существенные особенности модели от несущественных, случайных и тем самым облегчить построение моделей, воспроизводящих нужный режим поведения.

С. Улам и другие авторы рассмотрели отображения плоскости на себя, производимые по определенным правилам (аксиомам). Наиболее эффектным оказалось отображение, предложенное Копуэем, — его знаменитая игра «Жизнь».

Играют на плоскости, разбитой на квадратные клетки одного и того же размера. Каждая клетка может находиться в одном из двух состояний: либо быть занятой (например, фишкой), либо пустой. Начальное состояние (начальная расстановка фишек) может быть выбрана произвольно. Последующие состояния клеток зависят от занятости соседних клеток на предыдущем ходу. Соседними считаются восемь клеток, непосредственно примыкающих к данной (имеющих с ней либо общую сторону — примыкание справа, слева, сверху и снизу, либо общую вершину — примыкание по диагонали). Игра состоит из дискретной последовательности ходов. На каждом ходу ко всем клеткам доски применяются следующие три правила (аксиомы).

I. Выживание. Клетка остается занятой на следующем ходу, если на предыдущем были заняты две, или три соседние с ней клетки.

2. Гибель. Клетка становится свободной на следующем ходу, если на предыдущем было занято более трех или менее двух соседних клеток (в первом случае клетка «погибает» из-за перенаселения, во втором — из- за чрезмерной изоляции).

3. Рождение. Свободная клетка становится занятой на следующем ходу, если на предыдущем были заняты три и только три соседние клетки.

Кажущаяся простота правил Конуэя обманчива: как и простые динамические системы, доска с расставленными на ней фишками может перейти в весьма сложные режимы, имитирующие процессы гибели (полное уничтожение всех расставленных в начальной позиции фишек), неограниченный рост, устойчивое стационарное состояние (система с определенной периодичностью в пространстве), периодические по времени осцилляции.

10. Поиски универсальной модели

Сложность поведения простых моделей и неисчерпаемое разнообразие моделируемых объектов наводят на мысль о поиске некоего универсального класса моделей, которые могли бы воспроизводить требуемый тип поведения любой системы.

Рассмотрим, например, систему уравнений химической кинетики, описывающую редкую ситуацию: досконально известный механизм m-стадийной реакции (m — число элементарных актов), в которой принимает участие п веществ. Алгоритм выписывания динамической системы по схеме реакции однозначно определен. В таких системах «химического типа» удалось установить существование довольно сложных режимов (например, каталитический триггер или каталитический осциллятор). В то же время известно, что далеко не всякую динамическую систему с полиномиальной правой частью можно интерпретировать как описывающую некую гипотетическую химическую реакцию: некоторые концентрации в случае произвольно заданной системы могут становиться отрицательными. Возникает вопрос: всякую ли динамическую систему с полиномиальной правой частью можно промоделировать системой типа химической кинетики? Ответ (положительный) был получен М. Д. Корзухиным, доказавшим теорему об асимптотической воспроизводимости любого режима, осуществимого в системах с полиномиальной правой частью, системами типа химической кинетики (быть может, с большим числом «резервуарных» переменных, концентрации которых в ходе реакции считаются неизменными).

Синергетика интересна не только своими математическими результатами, открытием удивительного мира эволюционирующих и самоорганизующихся структур, но и своими разветвленными приложениями. Можно надеяться, что синергетика способна нам помочь и в понимании перехода от неживого к живому, биологической эволюции, психики человека, социальных организаций, течения человеческой истории. Синергетика устанавливает мостики между «мертвой» и живой природой, между целеподобностью поведения природных систем и разумностью человека, между процессом рождения нового в природе, творчеством природы и креативностью человека. В определенных классах неорганических систем ведется поиск живого, элементов самодостраивания, регенерации, морфогенеза, в живом — поиск свойств неживого, того, что обще ему с царством неорганической природы, что уже переформировано в неживом, предано в законах эволюции Вселенной.

Речь идет не просто о внешнем сходстве или метафорическом сравнении структурообразований мертвой и живой природы, яркие формы выражения которого доступны перу писателя. Речь даже не об аналогии, а об изоморфизме живого и неживого, об общности образцов эволюции и эволюционных структурообразований, о выявлении неких универсальных закономерностей эволюции и самоорганизации мира. С помощью синергетики осуществляется выход на наиболее абстрактный и глубокий уровень сравнения, вырабатываются некие общие модели, устанавливаются закономерности трансдисциплинарного типа.

По сути дела, строится своеобразный параллельный мир, мир математических моделей. При изучении этого мира обнаруживаются парадоксальные свойства нелинейных процессов, а именно: локализация процессов в открытых диссипативиых средах (образование самоподдерживающихся структур в сплошных средах), спектры структур–аттракторов, как наиболее устойчивые образования, к которым эволюционируют процессы в такого рода средах, способы резонансного возбуждения структур–аттракторов, различные типы сверхбыстрого развития процессов, так называемые режимы с обострением. Далее осуществляется попытка как бы «примерить» этот, в определенной мере искусственный, мир математических моделей к реальному миру, «опрокинуть» его на реальный мир, идентифицировать открываемые свойства нелинейных процессов с известными, но порой труднообъяснимыми свойствами окружающего нас природного мира. И в ряде случаев наблюдаются совпадения, открываются возможности для перетолкования тех явлений организации и эволюции, которые стали нам привычными.

Предлагаемые модельные представления, разумеется, не претендуют на то, чтобы заменить существующие физические и химические модели, в том числе сложившиеся квантово–механические представления. Но сама возможность по–другому взглянуть на реальность, на как будто бы уже на века утвердившиеся представления об атомах, Вселенной, физических, химических и биологических структурах, не может быть оставлена без внимания. На относительно простых математических моделях делаются попытки понять принципы эволюции и самоорганизации сложного.

В отличие от констатации принципиальных различий между живой и неживой природой синергетика позволяет увидеть те общие принципы, которые соединяют то и другое.

Что такое синергетика простыми словами

Синергетика: определение из Википедии

Синерге́тика (от др.-греч. συν- — приставка со значением совместности и ἔργον «деятельность»), или теория сложных систем — междисциплинарное направление науки, изучающее общие закономерности явлений и процессов в сложных неравновесных системах (физических, химических, биологических, экологических, социальных и других) на основе присущих им принципов самоорганизации. Синергетика является междисциплинарным подходом, поскольку принципы, управляющие процессами самоорганизации, представляются одними и теми же безотносительно природы систем, и для их описания должен быть пригоден общий математический аппарат.
Основное понятие синергетики — определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния. В обозначенных системах неприменимы ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии, что может привести к образованию новых структур и систем, в том числе и более сложных, чем исходные. В отдельных случаях образование новых структур имеет регулярный, волновой характер, и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).
Феномен появления структур часто трактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направления эволюции: от элементарного и примитивного — к сложносоставному и более совершенному. С мировоззренческой точки зрения синергетику иногда позиционируют как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций, подобно тому, как некогда кибернетика определялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т. д. Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды. Аналогичным образом, и расширительное толкование применимости методов синергетики также подвергается критике.

На текущей странице дано определение слова синергетика простым языком. Надеемся, что после прочтения этого объяснения простыми словами, у вас больше не осталось вопросов, что такое синергетика.

Понятие синергетики, её предмет и методы

Термин «Синергетика» придумал и ввел в обиход Ричард Бакминстер Фуллер. Так же он является в США интересным дизайнером, архитектор и немного изобретателем. Но над этим понятием он работал не один. После Ричарда немецкий физик Герман Хакен выдвинул предположение о «синергетике». Он предложил, что синергетика — это совокупный, коллективный эффект взаимодействия множественного числа подсистем, которые образуют устойчивые структуры, а также самоорганизацию в сложных системах[6, с.89].

Это определение перетерпело еще несколько изменений и в наше время СИНЕРГЕТИКА имеет несколько частей в определении. Итак: слово произошло от греч. synergetikos — совместный, согласованно действующий.

Определение. Во-первых, синергетика – это научное направление(отрасль науки), которая изучает процессы образования, а также коллективных взаимодействий элементов системы и ее подсистем. Синергетика:

(1) происходит в открытых системах в неравновесных условиях;

(2) сопровождается интенсивным обменом вещества и энергии подсистем с системой и системы с окружающей средой;

(3) характеризуется самопроизвольной поведением объектов, сочетающейся с их взаимосодействием и

(4) имеет результатом упорядочение, затем наступает момент самоорганизации и уменьшение энтропии, а также система эволюционирует.

Синергетика сначала позиционировалась как межнаучный подход. Для описания принципов, выполняющие процессы самоорганизации, одни и те же (безотносительно природы систем), и поэтому им необходим для описания общий математический аппарат.

С точки мировоззрения синергетику иногда называют как дающую единую основу для описания появления механизмов любых, каких-либо нововведений. Толкование применимости методов синергетики также, как и многих других методов, подвергается критике.

Первое понятие синергетики – это структурное определение. Оно говорит о том, что это состояние системы, которое получилось в результате неопределенного, неоднозначного и многовариантного поведения таких структур или сред (содержащие много элементов и факторов), в которых не существует деградации к стандартному типа термодинамического усреднения для замкнутых систем. Системы развиваются в результате открытости, притока энергии извне, нелинейности внутренних процессов, обнаружение особых режимов с обострением и наличия более одного устойчивого состояния. Причем в этой система возникают и появляются новые структуры, образующие новые системы, которые оказываются сложнее, чем первоначальные. Все из-за того, что в данных системах не возможно из-за условий существования применить второе начало термодинамики и теорему Пригожина о минимуме скорости производства энтропии.

Этот феномен объясняется синергетикой как всеобщий механизм обще рассматриваемого направления эволюции в природе: от примитивного и элементарного – к более высокому, сложносоставному уровню организации.

В некоторых случаях присутствует регулярный процесс образования новых структур и имеет волновой характер. В таком случае они называются автоволновыми процессами.

Область исследований синергетики не может быть определена чёткими границами и имеет возможность быть ограниченой, так как её интересы затрагивают все отрасли естествознания. Общий признак — есть наблюдение динамики всех необратимых процессов и выработка в корне новых новаций. Математический аппарат синергетики сконструирован из разных областей теоретической физики: нелинейной неравновесной термодинамики , тензорного анализа, теории групп, теории катастроф, дифференциальной топологии, неравновесной статистической физики. Несколько школ существует, и в их рамках развивается синергетический подход:

1. Первая школа – школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена. Герман Хакен является профессором Института теоретической физики в Штутгарте с 1960 года. В 1973 году он огромную группу учёных собрал вокруг серии книг шпрингера по синергетике. Эта серия включает в себя на данный момент 69 изданных томов с огромным набором теоретических, прикладных и научно-популярных работ, имеющих синергетики основание методов: от лазерной техники и физики твёрдого тела и до биофизики а так же проблем искусственного интеллекта.

2. Еще одна школа – физико-математическая и физико-химическая Брюссельская школа имени Ильина Пригожина, в которой были сформулированны первые теоремы (1947 г). В этой школе изучали математическую теорию существования структур диссипатии, что означает состояние устойчивости, которое при условии диссипации энергии в неравновесной среде возникает и приходит из внешнего мира, вне систсемы. Диссипативная система иногда называется ещё стационарной открытой системой или неравновесной открытой системой. В истории ее рассматривали и публиковали мировоззренческие основания теории самоорганизации, как парадигмы эволюционизма, являющимся универсальным. Теперь в США работают основные представители этой школы, и они не используют термин «синергетика», а разработанную ими методологию называют «теорией диссипативных структур» или просто «неравновесной термодинамикой», показывая продолжение работ своей школы пионерским работам Ларса Онзагера в области необратимых химических реакций (1931 г)[10, с.208].

Читайте также:  Влияние на зрение головной боли в

Для рассмотрения систем, которые состоят из большого числа частей и взаимодействуют между собой каким либо способом, изучали и продолжают изучать многие науки. Существует несколько подходов. Одни из них делят систему на части, чтобы потом при изучении различных деталей, пытаться строить какие то правдоподобные гипотезы о функционировании или структуре системы как целого. Другие изучают систему как одно целое, без учёта тонко настроенных взаимодействий частей. Как и любой подход, и тот, и другой подходы имеют свои несомненные плюсы и также недостатки. Синергетика как бы соединяет мостом разлом, разделяющий первый, редукционистский, подход от второго, холистического. Соединяя таких различных два экстремистских подхода, синергетика выступает как звено, тогда ее можно рассматривать на промежуточном, мезоскопическом уровне, а также рассматривать макроскопические процессы и их проявления, происходящие на микроскопическом уровне.

Что такое синергетика

Которые возникают сами собой без особого руководства, как свойство самоорганизации, и направления системы, действующей извне. Это обстоятельство значительно, что синергетику можно было бы определить как науку о самоорганизации.

Редукционистский подход с его основным акцентом на деталях совместен с необходимостью обработки, что не совсем возможно для наблюдателя, даже имеющего сверхсовременную вычислительную технику, объемом информации о подсистемах, их структуре, функционирования и взаимодействии. Различными способами происходит сжатие информации до некоторых пределов. Один из них применяется в статистической физике и оказывается в отказе от лишней многоинформационности описания и в переходе от конкретных характеристик отдельных частей к усредненным каким либо способом характеристикам системы. Импульс, полученный стенкой сосуда во время удара о нее одной частицы газа, видим мы как усреднение эффекта от ударов большого числа частиц — давлением. Вместо раздельных составляющих системы статистическая физика видит множества составляющих, взамен действия, которое производит индивидуальная подсистема, — совместные эффекты, получаемые ансамблем подсистем.

Синергетика решает такие проблемы, когда сжимается информация с помощью другого подхода. Вместо огромного числа ньюансов, которые влияют на состояние компонент вектора состояния системы. Синергетика взымает вполне ограниченное число параметров порядка, от которых имеется зависимость вектора с компонентами состояния системы и они же оказывают воздействие на параметры порядка. Переход от векторных компонент состояния к малым по количеству параметрам порядка выделяет смысл одного из принципов синергетики, который является основным – принципа подчинения. Зависимость параметров порядка от компонент вектора состояния обратная и образует то, что обычно называются круговой причинностью.

Основные принципы синергетического подхода:

  • Иерархическая структуризация природы. Бывает три вида открытых систем, нелинейных разного организационного уровня: динамически стабильные, адаптивные, эволюционирующие, пожалуй, самые сложные системы.
  • Образование связи между структурами происходит через хаотическое, или по другому неравновесное состояние систем соседствующих различных уровней.
  • Неравновесность. Важный принцип, способствующий появлению новых организаций, нового порядка, новых систем, другими словами происходит развитие.
  • Когда происходит нелинейное объединение динамической системы, новообразование не равно сумме частей, но показывает, являет систему другой организации или другого уровня систему.
  • Так же существует общие свойства для всех систем, которые эволюционируют, в порядке хронологии: неравновесность, спонтанное образование новых локальных образований, изменения на макроскопическом уровне, появление новых свойств системы, этапы самоорганизации и фиксации новых качеств системы.
  • Одинаково происходит переход от состояния неупорядоченного к состоянию порядка все развивающиеся системы (для описания всего многообразия их эволюций подходит обобщённый математический аппарат синергетики)
  • Развивающиеся системы всегда открыты, в них происходит обмен энергией и веществом с внешней средой, за счёт этого и происходят процессы локальной упорядоченности и самоорганизации.
  • Когда система сильно неравновесная, то факторы воздействия из внешней части фиксируются те, которые в более равновесном состоянии не воспринимались.
  • Независимость элементов относительная в условиях неравновесия в системе уступает место совместному поведению элементов: если равновесие близко, то элемент работает только с соседними элементами, вдалеке от равновесия — он фиксирует всю систему целиком, поэтому согласованность поведения элементов увеличивается в разы.
  • Возможно действие бифуркационных механизмов в неравновесных состояниях. В системе существуют аттракторы – кратковременные точки раздвоения перехода к тому или иному относительно долговременному режиму системы. Предсказать заранее невозможно, какой аттракторов займёт система.

Дата добавления: 2015-10-06; просмотров: 616 | Нарушение авторских прав

Что такое синергетика

Синергетика — это междисциплинарное направление научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем (состоящих из п одсистем), наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природ.

Синергетика изначально заявлялась как междисциплинарный подход, так как принципы, управляющие процессами самоорганизации, представляются одними и теми же (безотносительно природы систем) и для их описания должен быть пригоден общий математический аппарат.

С мировоззренческой точки зрения синергетику иногда позиционируют, как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций подобно тому, как некогда кибернетика определялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т.п. и т.д.

Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды.

Аналогично — и расширительное толкование применимости методов синергетики также подвергается критике.

Основное понятие синергетики — определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния. В означенных системах не выполняется ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии, что может привести к образованию новых структур и систем, в том числе и более сложных, чем исходные.

Этот феномен трактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направления эволюции: от элементарного и примитивного — к сложносоставному и более совершенному.

В отдельных случаях образование новых структур имеет регулярный, волновой характер и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).

Автором термина «Синергетика» является Ричард Бакминстер Фуллер — известный дизайнер, архитектор и изобретатель из США.

Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями.

С. Улам, много работавший с ЭВМ, в 1964 году в своей книге «Нерешенные математические задачи» высоко оценил синергию — непрерывное сотрудничество между машиной и её оператором, осуществляемое за счёт вывода информации на дисплей.

Убедившись на практике исследований сложных систем в ограниченности по отдельности как аналитического, так и численного подхода к решению нелинейных задач, И. Забуский в 1967 году пришёл к выводу о необходимости единого «синергетического» подхода, понимая под этим «…совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений». Определение термина «синергетика», близкое к современному пониманию, ввёл Герман Хакен в 1977 году в своей книге «Синергетика».

Область исследований синергетики чётко не определена и вряд ли может быть ограничена, так как её интересы распространяются на все отрасли естествознания, Общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций. Математический аппарат синергетики скомбинирован из разных отраслей теоретической физики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии, неравновесной статистической физики. Существуют несколько школ, в рамках которых развивается синергетический подход:

Школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте. В 1973 году он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта;

Физико-химическая и математико-физическая Брюссельская школа Ильи Пригожина, в русле которой формулировались первые теоремы (1947 г), разрабатывалась математическая теория поведения диссипативных структур (термин Пригожина), раскрывались исторические предпосылки и провозглашались мировоззренческие основания теории самоорганизации, как парадигмы универсального эволюционизма. Эта школа, основные представители которой работают теперь в США, не пользуется термином «синергетика», а предпочитает называть разработанную ими методологию «теорией диссипативных структур» или просто «неравновесной термодинамикой», подчёркивая преемственность своей школы пионерским работам Ларса Онзагера в области необратимых химических реакций (1931 г);

Концептуальный вклад в развитие синергетики внёс академик Н-Н. Моисеев — идеи универсального эволюционизма и коэволюции человека и природы;

Математический аппарат теории катастроф пригодный для описания многих процессов самоорганизации разработан российским математиком В. И. Арнольдом и французским математиком Рене Томом;

В рамках школы академика А. А. Самарского и члена-корреспондента РАН С. П. Курдюмова разработана теория самоорганизации на базе математических моделей и вычислительного эксперимента (включая теорию развития в режиме с обострением;

Синергетический подход в биофизике развивается в трудах членов-корреспондентов РАН М. В. Волькенштейна и Д. С. Чернавского;

Синергетический подход в теоретической истории развивается в работах Д. С. Чернавского, Г. Г. Малинецкого, Л.

Синергетика

И. Бородкина, С. П. Капицы, А. В. Коротаева, Манекина Р. В., С. Ю. Малкова, П. В. Турчина, В. Г. Буданов, А. П. Назаретяна и др.;

Приложения синергетики распределились между различными направлениями:

○ теория динамического хаоса исследует сверхсложную упорядоченность, напр. явление турбулентности;

○ теория детерминированного хаоса исследует хаотические явления, возникающие в результате детерминированных процессов (в отсутствие случайных шумов);

○ теория фракталов занимается изучением сложных самоподобных структур, часто возникающих в результате самоорганизации. Сам процесс самоорганизации также может быть фрактальным;

○ теория катастроф исследует поведение самоорганизующихся систем в терминах бифуркация, аттрактор, неустойчивость;

○ лингвистическая синергетика и прогностика.

Остановимся особо на основных принципах синергетики в естествознании:

Природа иерархически структурирована в несколько видов открытых нелинейных систем разных уровней организации: в динамически стабильные, в адаптивные, и наиболее сложные — эволюционирующие системы;

Связь между ними осуществляется через хаотическое, неравновесное состояние систем соседствующих уровней;

Неравновесность является необходимым условием появления новой организации, нового порядка, новых систем, т. е — развития;

Когда нелинейные динамические системы объединяются, новое образование не равно сумме частей, а образует систему другой организации или систему иного уровня;

Общее для всех эволюционирующих систем: неравновесность, спонтанное образование новых микроскопических (локальных) образований, изменения на макроскопическом (системном) уровне, возникновение новых свойств системы, этапы самоорганизации и фиксации новых качеств системы;

При переходе от неупорядоченного состояния к состоянию порядка все развивающиеся системы ведут себя одинаково (в том смысле, что для описания всего многообразия их эволюций пригоден обобщённый математический аппарат синергетики;

Развивающиеся системы всегда открыты и обмениваются энергией и веществом с внешней средой, за счёт чего и происходят процессы локальной упорядоченности и самоорганизации;

В сильно неравновесных состояниях системы начинают воспринимать те факторы воздействия извне, которые они бы не восприняли в более равновесном состоянии;

В неравновесных условиях относительная независимость элементов системы уступает место корпоративному поведению элементов: вблизи равновесия элемент взаимодействует только с соседними, вдали от равновесия — «видит» всю систему целиком и согласованность поведения элементов возрастает;

В состояниях, далеких от равновесия, начинают действовать бифуркационные механизмы — наличие кратковременных точек раздвоения перехода к тому или иному относительно долговременному режиму системы — аттрактору. Заранее невозможно предсказать, какой из возможных аттракторов займёт система;

Синергетика объясняет процесс самоорганизации в сложных системах следующим образом:

Система должна быть открытой. Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции;

Открытая система должна быть достаточно далека от точки термодинамического равновесия. В точке равновесия сколь угодно сложная система обладает максимальной энтропией и не способна к какой-либо самоорганизации. В положении, близком к равновесию и без достаточного притока энергии извне, любая система со временем ещё более приблизится к равновесию и перестанет изменять своё состояние;

Фундаментальным принципом самоорганизации служит возникновение нового порядка и усложнение систем через флуктуации (случайные отклонения) состояний их элементов и подсистем. Такие флуктуации обычно подавляются во всех динамически стабильных и адаптивных системах за счёт отрицательных обратных связей, обеспечивающих сохранение структуры и близкого к равновесию состояния системы. Но в более сложных открытых системах, благодаря притоку энергии извне и усилению неравновесности, отклонения со временем возрастают, накапливаются, вызывают эффект коллективного поведения элементов и подсистем и, в конце концов, приводят к «расшатыванию» прежнего порядка и через относительно кратковременное хаотическое состояние системы приводят либо к разрушению прежней структуры, либо к возникновению нового порядка. Поскольку флуктуации носят случайный характер, то появление любых новаций в мире (эволюций, революций, катастроф) обусловлено действием суммы случайных факторов. Об этом говорили античные философы Эпикур (341-270 до н. э) и Лукреций Кар (99-45 до н. э);

Самоорганизация, имеющая своим исходом образование через этап хаоса нового порядка или новых структур, может произойти лишь в системах достаточного уровня сложности, обладающих определённым количеством взаимодействующих между собой элементов, имеющих некоторые критические параметры связи и относительно высокие значения вероятностей своих флуктуаций.

В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления коллективного поведения элементов системы и тем самым возникновения самоорганизации. Недостаточно сложные системы не способны ни к спонтанной адаптации, ни, тем более, к развитию и при получении извне чрезмерного количества энергии теряют свою структуру и необратимо разрушаются;

Этап самоорганизации наступает только в случае преобладания положительных обратных связей, действующих в открытой системе, над отрицательными обратными связями.

Функционирование динамически стабильных, неэволюционирующих, но адаптивных систем — а это и гомеостаз в живых организмах и автоматические устройства — основывается на получении обратных сигналов от рецепторов или датчиков относительно положения системы и последующей корректировки этого положения к исходному состоянию исполнительными механизмами.

В самоорганизующейся, в эволюционирующей системе возникшие изменения не устраняются, а накапливаются и усиливаются вследствие общей положительной реактивности системы, что может привести к возникновению нового порядка и новых структур, образованных из элементов прежней, разрушенной системы. Таковы, к примеру, механизмы фазовых переходов вещества или образования новых социальных формаций;

Самоорганизация в сложных системах, переходы от одних структур к другим, возникновение новых уровней организации материи сопровождаются нарушением симметрии. При описании эволюционных процессов необходимо отказаться от симметрии времени, характерной для полностью детерминированных и обратимых процессов в классической механике.

Самоорганизация в сложных и открытых — диссипативных системах, к которым относится и Жизнь, и Разум, а согласно общей теории относительности и вся Вселенная в целом, приводят к необратимому разрушению старых и к возникновению новых структур и систем, что наряду с явлением неубывания энтропии в закрытых системах обуславливает наличие «стрелы времени» в Природе.

Таким образом, мы рассмотрели основные принципы синергетики и историю ее формирования, как междисциплинарной науки. Перейдем к социальным технологиям.

Социальные технологии — это совокупность методов и приёмов, позволяющих добиваться результатов в задачах взаимодействия между людьми.

Более широко социальную технологию можно определить как последовательность этапов социального взаимодействия, в ходе которой каждый субъект, участвующий во взаимодействии, реализует собственную управленческую стратегию по отношению к другим и формирует социальную действительность. Социальные технологии используются, в частности, в таком особом виде социальной инновационной деятельности как управленческий консалтинг.

Можно определить социальную технологию как структуру коммуникативных воздействий, которые изменяют социальные ситуации или социальные системы, в том числе отдельного человека как единичную социальную систему.

Основные виды социальных технологий используются в экономической, политической, социальной, управленческой и духовной культурах.

Разработка социальных технологий — тонкий процесс требующий широкого междисциплинарного подхода. В этом контексте, с позиции синергетики, разрабатываются особые высокие социальные технологии, которые активно применяются в современной общественной жизни.

Слово синергетический

Слово синергетический английскими буквами(транслитом) — sinergeticheskii

Слово синергетический состоит из 15 букв: г е е е и и и й к н р с с т ч

Значения слова синергетический.

Что такое синергетика простыми словами

Что такое синергетический?

СИНЕРГЕТИЧЕСКИЙ. 1. Вообще – работающий вместе, кооперативно. 2. В физиологии – характеристика органов, мышц или различных элементов большой, координированной системы, которые все функционируют вместе в комбинации, выполняя некоторую единую задачу.

Оксфордский словарь по психологии. — 2002

СИНЕРГЕТИЧЕСКИЙ ПОДХОД – совокупность принципов, основой которой является рассмотрение объектов как самоорганизующихся систем (подробная характеристика синергетики…

Философия науки и техники. — 2010

Синергетический подход — один из видов системного подхода, описывающий многомерность современной педагогической науки и как системы знаний, и как феномена культуры, и как социального института.

Научно-педагогический глоссарий учителя экономики

Гибридный синергетический привод

Гибри́дный синергети́ческий при́вод (англ. Hybrid Synergy Drive, HSD; произносится [ха́йбрид си́неджи драйв]) — технология силовой установки автомобиля, основанная на синергетическом эффекте…

Синергетический эффект в системе маркетинга

Синергетический эффект в системе маркетинга — результат ориентации всех субъектов маркетинговой системы в процессе их взаимодействия на нужды потребителя, удовлетворение его потребностей.

Багиев Н. Маркетинг: терминологический словарь

Читайте также:  Термин личность преступника с точки зрения юридической психологии понимается как

Орфографический словарь. — 2004

СИНЕРГЕТИЧЕСКАЯ СВЯЗЬ (synergy) Выгода от объединения различных видов бизнеса. Например, если компания А имеет солидный запас хороших идей, пригодных для освоения, но небольшие производственные мощности или фонды…

Райзберг Б.А. Современный экономический словарь. — 1999

СИНЕРГЕТИЧЕСКАЯ СВЯЗЬ (synergy) Выгода от объединения различных видов бизнеса. Например, если компания А имеет солидный запас хороших идей, пригодных для освоения, но небольшие производственные мощности или фонды…

Райзберг Б.А. Современный экономический словарь. — 1999

СИНЕРГЕТИЧЕСКОЕ ДЕЙСТВИЕ СИНЕРГЕТИЧЕСКОЕ ДЕЙСТВИЕ синергизм, взаимодействие факторов, при котором эффект оказывается большим, чем сумма влияний от действия отдельных факторов…

СИНЕРГЕТИЧЕСКОЕ ДЕЙСТВИЕ синергизм, взаимодействие факторов, при котором эффект оказывается большим, чем сумма влияний от действия отдельных факторов; увеличение силы воздействия одного фактора при наличии в среде других однонаправленных факторов.

СИНЕРГЕТИЧЕСКАЯ ЭПИСТЕМОЛОГИЯ — применение идей синергетики к формулированию и решению эпистемологических проблем, поставленных постнеклассической наукой…

Прохоров Б.Б. Экология человека. — 2005

Примеры употребления слова синергетический

В ряде регионов страны уже наблюдается синергетический эффект от создания новых рабочих мест.

Наличие нефтеперерабатывающих, нефтехимических, а также транспортных мощностей группы «ЛУКОЙЛ» в регионе позволит реализовать существенный синергетический эффект.

Но синергетический эффект от присоединения ФСФР к ЦБ будет больше, считает он.

По словам Л. Федуна, эти активы принесут компании не только увеличение добычи, но и хороший синергетический эффект.

Покупка газодобывающей дочки АЛРОСА даст дополнительный синергетический эффект активам, которые перешли под контроль Роснефти после приобретени Итеры.

Характеристика синергетики как новой отрасли науки

Большинство реальных процессов в природе носит необратимый характер, и фактор времени играет существенную роль для их описания. Однако долгое время в естественных науках изучались только обратимые процессы. В классической механике достаточно было задать систему координат и скорость движущегося тела, для того чтобы определить характер его движения. С помощью математических вычислений, зная начальные условия, можно было определить положение тела в любой момент, как в прошлом, так и в настоящем или будущем.

Впервые фактор времени был учтен в физике при описании тепловых процессов в термодинамике. В науку было введено понятие энтропии – меры беспорядка в системе. Однако понимание необратимости процессов в термодинамике, связанных с повышением энтропии, дезорганизацией и разрушением системы, конфликтовало с явлениями самоорганизации и усложнения систем, которые наблюдались в живой природе. Эволюция живых систем вопреки законам возрастания энтропии наоборот приводила к их усложнению и повышению степени самоорганизации. Конфликт физических и биологических представлений удалось разрешить после того, как наука обратилась к понятию открытой системы. В закрытых системах, которые рассматривались классической физикой в качестве естественных, не происходит обмена энергией и веществом с внешним миром. В замкнутых системах вектор протекания процессов направлен от упорядоченности через равновесие к хаосу. Такие системы стремятся к состоянию максимальной неупорядоченности. Основными характеристиками процессов в замкнутых системах являются равновесность и линейность.

Открытые системы, напротив, обмениваются энергией, веществом и информацией с внешним миром. В таких системах при определенных условиях могут самопроизвольно возникать новые упорядоченные структуры, повышающие степень самоорганизации системы. Ключ к пониманию процессов самоорганизации был найден в представлении о взаимодействии системы с окружающей средой. Основными характеристиками процессов в открытых системах являются неравновесность и нелинейность [1].

Изучением открытых неравновесных систем занимается синергетика. Синергетика возникла на стыке физики и химии в 70-е гг. XX в., а затем приобрела статус междисциплинарного подхода. Термин «синергетика» происходит от греч. Sinergia – сотрудничество, совместное действие.

Большой вклад в становление новой отрасли науки внесли такие ученые, как немецкий физик, профессор Штутгартского университета Г. Хакен (он и ввел в научный обиход термин «синергетика»), бельгийский физико-химик русского происхождения, профессор Брюссельского университета И. Пригожин, химик-экспериментатор Н. П. Белоусов (Институт биофизики Министерства здравоохранения СССР), биофизик А. М. Жаботинский (Институт биофизики АН СССР).

Синергетика так же, как кибернетика, изучает системы с обратной связью. Однако в отличие от кибернетики, изучающей динамическое равновесие в самоорганизующихся системах, синергетика исследует механизмы возникновения новых структур за счет разрушения старых, а не процессы стабилизации. Синергетические системы функционируют в соответствии с принципом положительной обратной связи. Синергетика является наиболее общей на данный момент теорией самоорганизации и изучает закономерности этих явлений во всех типах материальных систем. Синергетика претендует на открытие универсальных механизмов самоорганизации, как в живой, так и в неживой природе.

Исходным принципом синергетической концепции является различие процессов в открытых и закрытых системах. Синергетика в качестве предмета изучения выбирает открытые системы. По мнению ее создателей, именно открытые системы являются универсальными, а протекающие в них процессы способствуют самоорганизации мира.

Опираясь на это знание, синергетика предлагает следующее объяснение механизма возникновения порядка из хаоса. Пока система находится в состоянии термодинамического равновесия, все ее элементы ведут себя независимо друг от друга и на создание упорядоченных структур неспособны. В какой-то момент поведение открытой системы становится неоднозначным. Та точка, в которой проявляется неоднозначность процессов, называется точкой бифуркаций (разветвления). В точке бифуркации изменяется роль внешних для системы влияний: ничтожно малое воздействие приводит к значительным и даже непредсказуемым последствиям. Между системой и средой устанавливается отношение положительной обратной связи, т. е. система начинает влиять на окружающую среду таким образом, что формирует условия, способствующие изменениям в ней самой. Таким образом, система противостоит разрушительным влияниям среды, меняя условия своего существования.

Под влиянием энергетических взаимодействий с окружающей средой в открытых системах возникают так называемые эффекты согласования и кооперации, когда различные элементы начинают действовать в унисон. Такое согласованное поведение синергетика называет когерентным. Как следствие происходят процессы упорядочения, возникновения из хаоса новых структур. После возникновения новая структура, называемая диссипативной, включается в дальнейший процесс самоорганизации материи. Диссипативные структуры возникают за счет рассеяния (диссипации) энергии, использованной системой, и получения новой энергии из окружающей среды. Диссипативная структура как бы извлекает порядок из окружающей среды, повышая собственную внутреннюю упорядоченность и увеличивая хаос и беспорядок во внешнем мире.

Таким образом, внешние взаимодействия оказываются фактором внутренней самоорганизации систем, которые в свою очередь способствуют самоорганизации других систем и т. д. Взаимодействие системы со средой оказывается существенным условием ее эволюции. Процессы самоорганизации характеризуются нелинейностью, наличием обратных связей, открывающих большие возможности управляющего воздействия.

Синергетика ведет к важному гносеологическому выводу, а именно: надо раз и навсегда расстаться с мечтами о каком-то идеально эффективном понятийном аппарате, который позволил бы точно описывать строение больших систем во всех деталях. Можно сказать, что современная наука уже достигла некоего идеала в своем извечном стремлении понять природу такой, какая она есть. Сама природа ничего не просчитывает до последней детали. Поняв это и приняв к сведению, наука становится в чем-то самом главном уже заодно с природой. Теория динамического хаоса показала, что поведение даже простых систем может быть неупорядоченным. Дальше оказалось, что и сложные самоорганизующиеся системы должны вести себя достаточно неупорядоченно. Это открытие означало большой шаг на пути органичного синтеза теории диссипативных структур и теории динамического хаоса как основных направлений синергетики [3].

Большинство исследователей считает, что синергетика представляет собой особого рода «симбиоз» идей неклассической физики, кибернетики и системного подхода о происхождении, становлении и преобразовании нелинейных системных образований. Не случайно синергетический подход определяется ими как постнеклассическое междисциплинарное направление исследований открытых неравновесных и нелинейных систем с целью изучения процессов – самоорганизации и саморазвития социальных и природных явлений.

Известный российский философ Е. Н. Князева обращает внимание на своеобразие этого научного направления, которое заключается в том, что синергетика не только синтезирует фрагменты обыденного и научного знания, но и связывает эпохи – древность с современными достижениями науки, и даже принципиально различные, восточный и западный, способы мышления и восприятия. От Востока синергетика воспринимает и развивает идеи целостности, цикличности, единого пути, которому следует мир в целом и человек в нем; от Запада – опору на анализ, эксперимент, общезначимость научных выводов, их транслируемость от одной научной школы к другой, от науки к обществу. Исходя из специфических особенностей нового направления исследований, Е. Н. Князева и другие ученые склонны считать синергетику скорее подходом к пониманию развития открытых нелинейных систем и особым современным стилем мышления.

В дальнейшем синергетические программы стали включать в качестве объектов изучения социальные явления, тем самым ученые стремились выявить общие принципы и закономерности процессов самоорганизации и саморазвития в системах самой разной природы. Постепенно идеи синергетики проникают в педагогическую науку и практику, формируя новые представления о механизмах функционирования и развития таких самоорганизующихся и саморазвивающихся систем, как личность ребенка и учителя, как ученический коллектив и сообщество педагогов, как учреждение образования и его окружающая среда.

Основные понятия и принципы синергетического подхода

Основными понятиями синергетики являются «самоорганизация», «открытость», «нелинейность», «неравновесность», «бифуркация», «флуктуация», «диссипативные структуры», «аттрактор». Они редко используются в педагогической литературе и чтобы точнее понимать их содержание используем небольшой словарь педа­гога-воспитателя по данной проблеме:

самоорганизация – это процесс или совокупность про­цессов, происходящих в системе, способствующих поддержанию ее оптимального функционирования, содействующих самодостраиванию, самовосстановлению и самоизменению данного системного образования;

открытость – это свойство системы, обусловленное наличием у нее коммуникационных каналов с внешней средой для обмена веществом, энергией и информацией;

нелинейность – это наличие у системы множества вариантов, в том числе и альтернативных, возможных путей развития и способов ответных реакций системы на воздействия извне;

неравновесность — это качество системы, находящейся вдали от состояния равновесия;

бифуркация (в переводе с латинского языка означает «раздвоение») – это ветвление путей эволюции (развития) открытой нелинейной системы;

флуктуация (в переводе с латинского языка означает «колебание») – это случайное отклонение (изменение) величин, характеризующих систему, от их средних значений, ведущее при определенных условиях к образованию новой структуры и системного качества, т. е. к возникновению новой системы;

диссипативные структуры (понятие введено И. Пригожиным) – это новые структуры, возникающие в системе при удалении ее от состояния равновесия и рассеивании свободной энергии;

аттрактор (близко к понятию «цель») – это относительно конечное, устойчивое состояние системы, которое как бы притягивает к себе все множество «траекторий» движения (развития) системного объекта.

Роль принциповв данном подходе выполняют паттерны (образцы) синергетического мышления.

Суть понятия «Синергетика»

Опираясь на публикации известных ученых-синергетиков, обозначим те паттерны, которые содержат в себе новое знание о самоорганизации и саморазвитии открытых нелинейных систем и позволяют обогатить наши представления о педагогических явлениях и процессах. К числу таких паттернов относятся следующие:

1. Практически все существующие системы являются нелинейными и открытыми и, следовательно, их функционирование и развитие строится на основе механизмов и процессов самоорганизации и саморазвития.

Для возникновения и протекания процессов самоорганизации и саморазвития служат предпосылками: а) способность системы обмениваться со средой энергией, веществом и информацией; б) достаточная удаленность системы от точки равновесия; в) неравновесность системы, вследствие чего усиление флуктуации может привести к дезорганизации прежней структуры.

2. Хаос выполняет конструктивную роль в процессах самоорганизации: с одной стороны, он разрушителен, так как хаотические малые флуктуации в определенных условиях приводят к разрушению сложных систем; с другой – он созидателен, так как лежит в основе механизма объединения простых структур в сложные, согласования темпов их эволюции, вывода системы на аттрактор развития. Разрушая, хаос строит, а строя, он приводит к разрушению.

3. Для жизнедеятельности саморегулирующихся систем важное значение имеют не только устойчивость и необходимость, но и неустойчивость и случайность. «Процесс самоорганизации, – отмечает Г. И. Рузавин, – происходит в результате взаимодействия случайности и необходимости и всегда связан с переходом от неустойчивости к устойчивости. Хотя устойчивость, стабильность, равновесие представляют собой необходимые условия для существования и функционирования вполне определенной, конкретной системы, тем не менее переход к новой системе и развитие в целом невозможны без ликвидации равновесия, устойчивости и однородности. Новый порядок и динамическая структура возникают благодаря усилению флуктуации…» [2, 144]

4. Новое появляется в результате бифуркаций как непредсказуемое, и в то же время новое «запрограммировано» в виде спектра возможных путей развития, спектра относительно устойчивых структур – аттракторов эволюции.

5. Системе нельзя навязывать то, что вступает в противоречие с ее внутренним содержанием и логикой развертывания ее внутренних процессов. Эффективное управление системой возможно при осознании тенденций ее развития и резонансного воздействия на систему и ее компоненты, при котором внешнее влияние согласуется с внутренними свойствами системы.

6. Замкнутость системы способна рождать такой тип устойчивости, который может препятствовать ее развитию или даже привести к эволюционному тупику [2].

Итак, синергетический подход – это методологическая ориентация в познавательной и практической деятельности, предполагающая применение совокупности идей, понятий и методов в исследовании и управлении открытыми нелинейными самоорганизующимися системами.

(от греч. synergeia — сотрудничество, содействие, соучастие) — междисциплинарное направление научных исследований, в рамках которого изучаются общие закономерности процессов перехода от хаоса к порядку и обратно (процессов самоорганизации и самопроизвольной дезорганизации) в открытых нелинейных системах физической, химической, биологической, экологической, социальной и др. природы. Термин «С.» был введен в 1969 Г. Хакеном. С. как научное направление близка к ряду др. направлений, таких, как нелинейная динамика, теория сложных адаптивных систем, теория диссипативных структур (И. Пригожин), теория детерминированного хаоса, или фрактальная геометрия (Б. Мандельброт), теория автопоэзиса (X. Матурана и Ф. Варела), теория самоорганизованной критичности (П. Бак), теория нестационарных структур в режимах с обострением (А.А. Самарский, С.П. Курдюмов). Термин «С.» иногда используется как обобщенное название научных направлений, в рамках которых исследуются процессы самоорганизации и эволюции, упорядоченного поведения сложных нелинейных систем. С. можно рассматривать как современный этап развития идей кибернетики (Н. Винер, У.Р. Эшби) и системного анализа, в т.ч. построения общей теории систем (Л. фон Бер-таланфи). Суть подхода С. заключается в том, что сложноор-ганизованные системы, состоящие из большого количества элементов, находящихся в сложных взаимодействиях друг с другом и обладающих огромным числом степеней свободы, могут быть описаны небольшим числом существенных типов движения (параметров порядка), а все прочие типы движения оказываются «подчиненными» (принцип подчинения) и могут быть достаточно точно выражены через параметры порядка. Поэтому сложное поведение систем может быть описано при помощи иерархии упрощенных моделей, включающих небольшое число наиболее существенных степеней свободы. В замкнутых, изолированных и близких к равновесию системах протекающие процессы, согласно второму началу термодинамики, стремятся к тепловому хаосу, т.е. к состоянию с наибольшей энтропией. В открытых системах, находящихся далеко от состояний термодинамического равновесия, могут возникать упорядоченные пространственно-временное структуры, т.е. протекают процессы самоорганизации. Структуры-аттракторы показывают, куда эволюционируют процессы в открытых и нелинейных системах. Для всякой сложной системы, как правило, существует определенный набор возможных форм организации, дискретный спектр структур-аттракторов эволюции. Критический момент неустойчивости, когда сложная система осуществляет выбор дальнейшего пути эволюции, называют точкой бифуркации. Вблизи этой точки резко возрастает роль незначительных случайных возмущений, или флуктуации, которые могут приводить к возникновению новой макроскопической структуры. Структуры самоорганизации, обладающие свойством самоподобия, или масштабной инвариантности, называют фрактальными структурами. Будучи междисциплинарным направлением исследований, С. влечет за собой глубокие мировоззрен- ческие следствия. Возникает качественно иная, отличная от классической науки картина мира. Формируется новая парадигма, изменяется вся концептуальная сетка мышления. Происходит переход от категорий бытия к со-бытию, событию; от существования к ста- новлению, сосуществованию в сложных эволюциони-рующих структурах старого и нового; от представлений о стабильности и устойчивом развитии к представлениям о нестабильности и метастабильности, оберегаемом и самоподдерживаемом развитии (sustainable development); от образов порядка к образам хаоса, генерирующего новые упорядоченные структу-ры; от самоподдерживающихся систем к быстрой эво-люции через нелинейную положительную обратную связь; от эволюции к коэволюции, взаимосвязанной эволюции сложных систем; от независимости и обособленности к связности, когерентности автономного; от размерности к соразмерности, фрактальному самоподобию образований и структур мира. В новой синергетической картине мира акцент падает на становление, коэволюцию, когерентность, кооператив-ность элементов мира, нелинейность и открытость (различные варианты будущего), возрастающую слож-ность формообразований и их объединений в эволю-ционирующие целостности. С. придает новый импульс обсуждению традиционных филос. проблем случайности и детерминизма, хаоса и порядка, открытости и цели эволюции, потенциального (непроявленного) и актуального (проявленного), части и целого. О Хакен Г. . М, 1980; Он же. . Иерархии неустойчивостей в самоорганизующихся системах и устройствах. М., 1985; Пригожий И., Стенгерс И. Порядок из хаоса. Новый диалогчеловека с природой. М., 1986; Нико- лис Г., Пригожий И. Познание сложного. М., 1990; Князева Е.Н., Курдюмов С.П. как новое мировидение: диалог с И. Пригожиным//Вопросы философии. 1992.№12; Князева Е.Н., Курдюмов С.П. Законы эволюции и самооргани-зации сложных систем. М., 1994; Капица С.П., Курдюмов С.П,, Малинецкий Г.Г. и прогнозы будущего. М., 1997; Онтология и эпистемология синергетики. М., 1997; Режимы с обострением. Эволюцияидеи: Законы коэволюции сложных структур. М., 1998; Князева Е., ТуробовА. Единая наукао единой природе // Новый мир. 2000. № 3. Е.Н. Князева

Поделиться:

Синергетика

Общая психология. Словарь. Под ред. А.В. Петровского

Источники:
  • http://magictemple.ru/sinergetika-chto-jeto/