Меню Рубрики

Строение вещества с точки зрения молекулярно кинетической теории

Нас окружают разнообразные предметы. Мы можем увидеть, что это либо твердые тела, либо жидкости, либо газы. Возникает масса вопросов обо всем, что нас окружает. Ответы на многие вопросы дает молекулярно-кинетическая теория.

Молекулярно-кинетическая теория – это совокупность воззрений, используемых для описания наблюдаемых и измеряемых свойств вещества на основе изучения свойств атомов и молекул данного вещества, их взаимодействия и движения.

Основные положения молекулярно-кинетической теории

Все тела состоят из частиц – атомов, молекул, ионов.
Все частицы находятся в непрерывном хаотическом тепловом движении.
Между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Таким образом, в молекулярно-кинетической теории объектом исследования является система, состоящая из большого количества частиц – макросистема. Для объяснения поведения такой системы законы механики не применимы. Поэтому основным методом исследования является статистический метод изучения свойств вещества.

Для объяснения и предсказания явлений важно знать основные характеристики молекул:

Оценка размера молекулы может быть сделана как размер кубика a в котором содержится одна молекула, исходя из плотности твердых или жидких веществ и массы одной молекулы:

  1. Масса молекул

Отношение массы вещества m к числу молекул N в данном веществе:

  1. Относительная молекулярная масса

Отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:

  1. Количество вещества

Количество вещества равно отношению числа частиц N в теле (атомов – в атомарном веществе, молекул – в молекулярном) к числу молекул в одном моле веществаNА:

  1. Постоянная Авогадро

Количество молекул, содержащихся в 1 моль вещества.

  1. Молярная масса

Молярной массой вещества называют массу вещества, взятого в количестве 1 моля.

В Международной системе единиц молярная масса вещества выражается в кг/моль.

  1. Взаимодействие (количественно на основе опытов)

Для взаимодействия молекул характерно одновременно и притяжение, и отталкивание: на расстояниях r r – притяжение, причем оно быстро убывает. На расстоянии r система двух молекул обладает минимумом потенциальной энергии (сила взаимодействия равна нулю) – это состояние устойчивого равновесия

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях. С точки зрения МКТ агрегатные состояния различаются по значению среднего расстояния между молекулами и характеру движения молекул друг относительно друга.

Основные положения молекулярно-кинетической теории неоднократно подтверждались различными физическими экспериментами. Например, исследованием:

Б) Броуновского движения

Молекулярно-кинетическая теория объясняет строение и свойства тел на основе движения и взаимодействия атомов, молекул и ионов. В основе МКТ лежат три положения, которые полностью подтверждены экспериментально и теоретически:

1) все тела состоят из частиц – молекул, атомов, ионов;

2) частицы находятся в непрерывном хаотическом тепловом движении;

3) между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Молекулярное строение вещества подтверждается непосредственным наблюдением молекул в электронных микроскопах, а также растворением твердых веществ в жидкостях, сжимаемостью и проницаемостью вещества. Тепловое движение – броуновским движением и диффузией. Наличие межмолекулярного взаимодействия прочностью и упругостью твердых тел, поверхностным натяжением жидкостей.

Строение вещества с точки зрения молекулярно кинетической теории

Молекулярная физика и термодинамика – это по существу две разные по своим подходам, но тесно связанные науки, занимающиеся одним и тем же – изучением макроскопических свойств физических систем, но совершенно разными методами.

В основе молекулярной физики или молекулярно-кинетической теории лежат определенные представления о строении вещества. Для установления законов поведения макроскопических систем, состоящих из огромного числа частиц, в молекулярной физике используются различные модели вещества, например, модели идеального газа.

Молекулярная физика является статистической теорией, т. е. теорией, которая рассматривает поведение систем, состоящих из огромного числа частиц (атомов, молекул), на основе вероятностных моделей. Она стремится на основе статистического подхода установить связь между экспериментально измеренными макроскопическими величинами (давление, объем, температура и т.д.) и микроскопическими характеристиками частиц, входящих в состав системы (масса, импульс, энергия и т.д.).

В отличие от молекулярно-кинетической теории, термодинамика при изучении свойств макроскопических систем не опирается ни на какие представления о молекулярной структуре вещества. Термодинамика является наукой феноменологической . Она делает выводы о свойствах вещества на основе законов, установленных на опыте, таких, как закон сохранения энергии. Термодинамика оперирует только с макроскопическими величинами (давление, температура, объем и т.п.), которые вводятся на основе физического эксперимента.

Оба подхода – термодинамический и статистический – не противоречат, а дополняют друг друга. Только совместное использование термодинамики и молекулярно-кинетической теории может дать наиболее полное представление о свойствах систем, состоящих из большого числа частиц.

Молекулярно-кинетическая теория

3.1. Основные положения МКТ

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.

В основе молекулярно-кинетической теории лежат три основных положения:

Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

Атомы и молекулы находятся в непрерывном хаотическом движении.

Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Рисунок 3.1.1.

Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение . Это тепловое движение мельчайших микроскопических частиц, взвешенных в жидкости или газе. Оно было открыто английским ботаником Р. Броуном в 1827 г. Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую (рис. 3.1.1). Теория броуновского движения была создана А. Эйнштейном в 1905 г. Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена, проведенных в 1908–1911 гг.

Главный вывод теории А. Эйнштейна состоит в том, что квадрат смещения броуновской частицы от начального положения, усредненный по многим броуновским частицам, пропорционален времени наблюдения .

Это соотношение выражает так называемый диффузионный закон . Как следует из теории коэффициент пропорциональности монотонно возрастает с увеличением температуры.

Постоянное хаотичное движение молекул вещества проявляется также в другом легко наблюдаемом явлении – диффузии . Диффузией называется явление проникновения двух или нескольких соприкасающихся веществ друг в друга. Наиболее быстро процесс протекает в газе, если он неоднороден по составу. Диффузия приводит к образованию однородной смеси независимо от плотности компонентов. Так, если в двух частях сосуда, разделенных перегородкой, находятся кислород O2 и водород H2, то после удаления перегородки начинается процесс взаимопроникновения газов друг в друга, приводящий к образованию взрывоопасной смеси – гремучего газа. Этот процесс идет и в том случае, когда легкий газ (водород) находится в верхней половине сосуда, а более тяжелый (вислород) – в нижней.

Значительно медленнее протекают подобные процессы в жидкостях. Взаимопроникновение двух разнородных жидкостей друг в друга, растворение твердых веществ в жидкостях (например, сахара в воде) и образование однородных растворов – примеры диффузионных процессов в жидкостях.

В реальных условиях диффузия в жидкостях и газах маскируется более быстрыми процессами перемешивания, например, из-за возникновения конвекционных потоков.

Наиболее медленно процесс диффузии протекает в твердых телах. Однако, опыты показывают, что при контакте хорошо очищенных поверхностей двух металлов через длительное время в каждом из них обнаруживается атомы другого металла.

Диффузия и броуновское движение – родственные явления. Взаимопроникновение соприкасающихся веществ друг в друга и беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходят вследствие хаотичного теплового движения молекул.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы представляют собой сложные пространственные структуры, содержащие как положительные, так и отрицательные заряды. Если расстояние между молекулами достаточно велико, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания. Зависимости результирующей силы и потенциальной энергии взаимодействия между молекулами от расстояния между их центрами качественно изображены на рис. 3.1.2. При некотором расстоянии сила взаимодействия обращается в нуль. Это расстояние условно можно принять за диаметр молекулы. Потенциальная энергия взаимодействия при минимальна. Чтобы удалить друг от друга две молекулы, находящиеся на расстоянии , нужно сообщить им дополнительную энергию . Величина называется глубиной потенциальной ямы или энергией связи .

Рисунок 3.1.2.

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка . Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше.

Беспорядочное хаотическое движение молекул называется тепловым движением . Кинетическая энергия теплового движения растет с возрастанием температуры . При низких температурах средняя кинетическая энергия молекулы может оказаться меньше глубины потенциальной ямы . В этом случае молекулы конденсируются в жидкое или твердое вещество; при этом среднее расстояние между молекулами будет приблизительно равно . При повышении температуры средняя кинетическая энергия молекулы становится больше , молекулы разлетаются, и образуется газообразное вещество.

В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом ( аморфные тела ) или образовывать упорядоченные объемные структуры ( кристаллические тела ) (см. §3.6).

В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему. Этим объясняется текучесть жидкостей. Близко расположенные молекулы жидкости также могут образовывать упорядоченные структуры, содержащие несколько молекул. Это явление называется ближним порядком в отличие от дальнего порядка , характерного для кристаллических тел.

В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка , т. е. в десятки раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе .

В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль).

Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в углерода 12 C. Молекула углерода состоит из одного атома.

Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро :

.

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории.

Количество вещества определяется как отношение числа частиц (молекул) вещества к постоянной Авогадро :

Массу одного моля вещества принято называть молярной массой . Молярная масса равна произведению массы одной молекулы данного вещества на постоянную Авогадро:

.

Молярная масса выражается в килограммах на моль (). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса .

За единицу массы атомов и молекул принимается массы атома изотопа углерода 12 C (с массовым числом ). Она называется атомной единицей массы ():

.

Эта величина почти совпадает с массой протона или нейтрона. Отношение массы атома или молекулы данного вещества к массы атома углерода 12 C называется относительной массой .

Молекулярно-кинетическая теория

Молекулярная физика – это раздел физики, в котором законы механики применяются не к каждой отдельной частице вещества, а к их совокупности. При этом используются усреднённые физические величины.

Молекулярно-кинетическая теория (МКТ) – это теория, которая рассматривает строение вещества с точки зрения трёх основных положений.

Основные положения молекулярно-кинетической теории

1. Все вещества состоят из частиц (молекул, атомов);

Атом – наименьшая частица химического элемента, которая обладает его свойствами.

Молекула – наименьшая частица вещества, которая обладает его химическими свойствами.

В состав молекулы может входить различное число атомов. Так, молекулы углерода и инертных газов одноатомны, молекулы таких веществ, как водород и азот – двухатомны, воды – трехатомны и т.д. Молекулы наиболее сложных веществ – высших белков и нуклеиновых кислот – построены из сотни тысяч атомов. При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов число различных веществ очень велико.

Молекула определенного вещества имеет иные физические свойства нежели само вещество. Такие свойства, как температура плавления и кипения, механическая прочность и твердость, определяются прочностью связи между молекулами в данном веществе при данном его агрегатном состоянии . Поэтому применение подобных понятий к отдельной молекуле не имеет смысла.
Плотность – это свойство, которым отдельная молекула обладает и которое можно вычислить. Однако плотность молекулы всегда больше плотности вещества (даже в твердом состоянии), потому что в любом веществе между молекулами всегда имеется некоторое свободное пространство.
Электрическая проводимость, теплоемкость, определяются не свойствами молекул, а структурой веществ в целом. Эти свойства сильно изменяются при изменении агрегатного состояния вещества, тогда как молекулы при этом не претерпевают глубоких изменений. Таким образом, понятия о некоторых физических свойствах не применимы к отдельной молекуле, но сами эти свойства по своей величине различны для молекулы и вещества в целом.

Не во всех случаях частицы, образующие вещество, представляют собой молекулы. Многие вещества в твердом и жидком состоянии, например, большинство солей, имеют не молекулярную, а ионную структуру. Некоторые вещества имеют атомное строение. В веществах, имеющих ионное или атомное строение, носителем химических свойств являются не молекулы, а те комбинации ионов или атомов, которые образуют данное вещество.

Доказательства положения:

1. Фотографии поверхности физического тела, сделанные с помощью туннельного микроскопа (был создан в середине 80-х годов сотрудниками знаменитой компьютерной фирмы IBM (г. Цюрих) Г. Биннингом и Г. Рорером, удостоенными за его изобретение Нобелевской премии);

2. Закон постоянных отношений Джона Дальтона.

Первое убедительное, хотя и косвенное, доказательство существования атомов и молекул было получено английским химиком Д. Дальтоном (1766—1844). Дальтон объяснил закон постоянных отношений. Согласно этому закону при образовании любых химических соединений массы реагирующих веществ находятся в строго определенных отношениях. Так, например, при образовании воды из водорода и кислорода отношение масс прореагировавших газов водорода и кислорода всегда равно 1:8. Этот факт становится понятным лишь в том случае, если допустить, что при образовании мельчайшей частички воды — молекулы — некоторое определенное число атомов водорода соединяется с определенным числом атомов кислорода. Молекула воды состоит из двух атомов водорода и одного атома кислорода. Поэтому отношение масс водорода и кислорода при образовании воды должно быть равно отношению удвоенной массы атома водорода к массе атома кислорода. Это отношение не может измениться ни при каких условиях.

2. Молекулы (атомы) вещества находятся в беспрерывном хаотическом (тепловом) движении;

Характер движения зависит от агрегатного состояния вещества, а скорость – от температуры.

Доказательства положения:

Явление диффузии, броуновское движение, осмос.

Диффузия – процесс проникновения молекул одного вещества в межмолекулярные промежутки другого вследствие теплового движения частиц этих веществ.

Осмос – односторонняя диффузия через полупроницаемую перегородку (мембрану), которая отделяет раствор от чистого растворителя или раствора меньшей концентрации.
Обусловлен стремлением системы к термодинамическому равновесию и выравнивания концентрации раствора с обеих сторон мембраны. Характеризуется осмотическим давлением, которое равно избыточному внешнему давлению, которое необходимо создать со стороны раствора, чтобы прекратить осмос. Играет важную роль физиологических процессах, используется при исследовании полимеров, биологических структур. Благодаря осмосу питательные вещества и вода из пищеварительного тракта проникают в организм и непосредственно в клетки живых существ, вода из почвы проникает в корни растений и т.д.

3. Молекулы (атомы) взаимодействуют между собой, между частицами действуют силы притяжения и отталкивания;

Эти силы действуют одновременно.

На определённом расстояния между молекулами (r) эти силы равны между собой. На расстояниях r r – притяжения.

Доказательства положения:

Существование жидкостей и твердых тел. Силами притяжения и отталкивания молекул объясняются упругость и прочность твердых тел.

Относительная молекулярная (атомная) масса химического элемента

Для определения масс отдельных атомов принята особая единица, которая равна 1/12 массы атома Карбона (углерода). Поскольку атомы одного и того же химического элемента отличаются массой (изотопы), поэтому в таблице Менделеева значения относительных молекулярных (атомных) масс нецелые.

Относительная молекулярная (атомная) масса химического элемента Мr – это число, которое показывает, во сколько раз средняя масса его молекулы m (атома) больше чем 1/12 массы атома Карбона m0C, то есть

Количество вещества

Количество вещества (ν) определяется числом N структурных частиц (атомов, молекул или других частиц) в образце. [ν] = 1 моль.

Моль – это количество вещества, которое содержит столько же структурных частиц данного вещества, сколько атомов Карбона содержится в 12 г углерода.

NА = 6,02·10 23 (моль -1 ) – постоянная Авогадро (количество атомов или молекул в 1 моле любого вещества).
Установлено, что в 12 г углерода содержится 6·10 23 атомов, таким образом, 1 моль води – это 6·10 23 молекул води, 1 моль Сульфура – это 6·10 23 атомов серы).

Согласно закону Авогадро 1 моль идеального газа занимает при нормальных условиях объём 22,4 л/моль.

Молярная масса

Молярная масса М вещества – это величина, которая равна отношению его массы m к соответствующему количеству вещества ν; или молярная масса вещества – это масса одного моля вещества. [М] = 1 г/моль. Тогда

Масса молекулы m вещества связана с его молярной массой соотношением

Масса тела можно выразить через массу одной молекулы и число молекул:

Числовое значение молярной массы вещества совпадает с числовым значением относительной молекулярной (атомной) массой элемента.

Пример, М(CuSO4) = 64 + 32 + 4·16 = 160 г/моль; Мr (CuSO4) = 160

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

GOS / 5 Основы МКТ

Молекулярно-кинетическая теория (сокращённо МКТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

все тела состоят из частиц: атомов, молекул и ионов;

частицы находятся в непрерывном хаотическом движении (тепловом);

частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

Изменение агрегатных состояний вещества

На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения. Термин же молекулярно-кинетическая теория в современной теоретической физике уже практически не используется, хотя он встречается в учебниках по курсу общей физики.

Идеальный газматематическая модель газа, в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объем молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми — Дирака или Бозе — Эйнштейна)

Классический идеальный газ

Объём идеального газа линейно зависит от температуры при постоянном давлении

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

Диаметр молекулы пренебрежимо мал по сравнению со средним расстоянием между ними ().

Импульс передается только при соударениях, то есть силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях.

Суммарная энергия частиц газа постоянна, если отсутствует теплопередача и газ не совершает работы.

В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно полному импульсу, переданному при столкновении частиц со стенкой в единицу времени, внутренняя энергия — сумме энергий частиц газа.

По эквивалентной формулировке идеальный газ — такой газ, который одновременно подчиняется закону Бойля — Мариотта и Гей-Люссака [8] , то есть:

где — давление,— абсолютная температура. Свойства идеального газа описываютсяуравнением Менделеева — Клапейрона

,

где универсальная газовая постоянная, — масса,молярная масса.

где концентрация частиц, постоянная Больцмана.

Для любого идеального газа справедливо соотношение Майера:

где универсальная газовая постоянная, — молярнаятеплоемкость при постоянном давлении, — молярная теплоемкость при постоянном объёме.

Статистический расчет распределения скоростей молекул был выполнен Максвеллом.

Рассмотрим результат, полученный Максвеллом в виде графика.

Молекулы газа при своем движении постоянно сталкиваются. Скорость каждой молекулы при столкновении изменяется. Она может возрастать и убывать. Однако среднеквадратичная скорость остается неизменной. Это объясняется тем, что в газе, находящемся при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Скорость отдельной молекулы с течением времени может меняться, однако доля молекул со скоростями в некотором интервале скоростей остается неизменной.

Нельзя ставить вопрос: сколько молекул обладает определенной скоростью. Дело в том, что, хоть число молекул очень велико в любом даже малом объеме, но количество значений скорости сколь угодно велико (как чисел в последовательном ряде), и может случиться, что ни одна молекула не обладает заданной скоростью.

Рис. 3.3

Задачу о распределении молекул по скоростям следует сформулировать следующим образом. Пусть в единице объема n молекул. Какая доля молекул имеет скорости от v1 до v1 + Δv? Это статистическая задача.

Основываясь на опыте Штерна, можно ожидать, что наибольшее число молекул будут иметь какую-то среднюю скорость, а доля быстрых и медленных молекул не очень велика. Необходимые измерения показали, что доля молекул , отнесенная к интервалу скорости Δv, т.е. , имеет вид, показанный на рис. 3.3. Максвелл в 1859 г. теоретически на основании теории вероятности определил эту функцию. С тех пор она называется функцией распределения молекул по скоростям или законом Максвелла.

Выведем функцию распределения молекул идеального газа по скоростям

— интервал скоростей вблизи скорости .

— число молекул, скорости которых лежат в интервале .

— число молекул в рассматриваемом объеме.

— угол молекул, скорости которых принадлежат интервалу .

— доля молекул в единичном интервале скоростей вблизи скорости .

— формула Максвелла.

Используя статистические методы Максвелла получим следующую формулу:

.

— масса одной молекулы, — постоянная Больцмана.

Наивероятнейшая скорость определяется из условия .

Решая получаем ;.

Обозначим ч/з .

Тогда .

Рассчитаем долю молекул в заданном интервале скоростей вблизи заданной скорости в заданном направлении.

.

.

— доля молекул, которые имеют скорости в интервале ,,.

Развивая идеи Максвелла Больцман рассчитал распределение молекул по скоростям в силовом поле. В отличие от распределения Максвелла в распределении Больцмана вместо кинетической энергии молекул фигурирует сумма кинетической и потенциальной энергии.

В распределении Максвелла: .

В распределении Больцмана: .

В гравитационном поле .

Для концентрации молекул идеального газа имеет место формула:

— концентрация молекул на высоте исоответственно.

— распределение Больцмана.

— концентрация молекул у поверхности Земли.

— концентрация молекул на высоте .

Теплоемкостью тела называется физическая величина, равная отношению

, .

Теплоемкость одного моля – молярная теплоемкость

.

Т.к. — функция процесса, то.

Учитывая ;

;

.

— формула Майера.

Т.о. задача вычисления теплоемкости сводится к нахождению .

.

Одноатомный газ

Для одного моля: , отсюда.

(модель жесткой гантели).

Полное число степеней свободы :

.

Тогда , то;.

Это значит, что теплоемкость должна быть постоянной. Вместе с тем опыт говорит, что теплоемкость зависит от температуры.

При понижении температуры «замараживаются» сначала колебательные степени свободы, а затем и вращательные степени свободы.

Согласно законам квантовой механики энергия гармонического осциллятора с классической частотой может принимать только дискретный набор значений

; ;;

Сравним теоретические данные с опытными.

Видно, что 2-х атомных газов равняется, но изменяется при низких температурах вопреки теории теплоемкости.

Такой ход кривой отсвидетельствует о «замораживании» степеней свободы. Наоборот при больших температурах подключаются дополнительные степени свободы эти данные ставят под сомнение теорему о равномерном распределении. Современная физика позволяет объяснить зависимость отиспользуя квантовые представления.

Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности двухатомных газов) от температуры. Согласно положениям квантовой механики, энергия вращательного движения молекул и энергия колебаний атомов могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии (), то при столкновении молекул вращательные и колебательные степени свободы практически не возбуждаются. Поэтому при низких температурах поведение двухатомного газа подобно поведению одноатомного. Так как разность между соседними вращательными уровнями энергии значительно меньше, чем между соседними колебательными уровнями (), то с ростом температуры сначала возбуждаются вращательные степени свободы. В результате этого возрастает теплоемкость. При дальнейшем увеличении температуры возбуждаются и колебательные степени свободы, и происходит дальнейший рост теплоемкости. А. Эйнштейн, приближенно считал, что колебания атомов кристаллической решетки независимы. Используя модель кристалла как совокупность независимо колеблющихся с одинаковой частотой гармонических осцилляторов, он создал качественную квантовую теорию теплоемкости кристаллической решетки. Эта теория впоследствии была развита Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми. Рассмотрев непрерывный спектр частот осцилляторов, Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания на низких частотах, соответствующих упругим волнам. Тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно–волновому дуализму свойств вещества, упругие волны в кристалле сопоставляют сквазичастицами–фононами, обладающими энергией .Фонон – квант энергии упругой волны, являющийся элементарным возбуждением, ведущим себя подобно микрочастице. Как квантование электромагнитного излучения привело к представлению о фотонах, так квантование упругих волн (как результата теплового колебания молекул твердых тел) привело к представлению о фононах. Энергия кристаллической решетки складывается из энергии фононного газа. Квазичастицы (в частности фононы) сильно отличаются от обычных микрочастиц (электронов, протонов, нейтронов и т.д.), так как они связаны с коллективным движением многих частиц системы.

Фононы не могут возникать в вакууме, они существуют только в кристалле.

Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке – импульс при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.

Фононы имеют спин, равный нулю, и являются бозонами, а потому фононный газ подчиняется статистике Бозе–Эйнштейна.

Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным.

Применение статистики Бозе–Эйнштейна к фононному газу (газу из независимых бозе–частиц) привело Дебая к следующему количественному выводу. При высоких температурах, которые много больше характеристической температуры Дебая (классическая область), теплоемкость твердых тел описывается законом Дюлонга и Пти, согласно которому молярная теплоемкость химически простых тел в кристаллическом состоянии одинакова и не зависит от температуры. При низких температурах, когда (квантовая область), теплоемкость пропорциональна третьей степени термодинамической температуры: Характеристическая температура Дебая равна: , где – предельная частота упругих колебаний кристаллической решетки.

Центральное понятие этой темы — понятие молекулы; слож­ность его усвоения школьниками связана с тем, что молекула — объект, непосредственно ненаблюдаемый. Поэтому учитель дол­жен убедить десятиклассников в реальности микромира, в возмож­ности его познания. В связи с этим большое внимание уделяют рассмотрению экспериментов, доказывающих существование и движение молекул и позволяющих вычислить их основные ха­рактеристики (классические опыты Перрена, Рэлея и Штерна). Кроме этого, целесообразно ознакомить учащихся с расчетными методами определения характеристик молекул. При рассмотрении доказательства существования и движения молекул рассказывают учащимся о наблюдениях Броуном беспо­рядочного движения мелких взвешенных частиц, которое не прекращалось в течение всего времени наблюдения. В то время не было дано правильного объяснения причины этого движения, и лишь спустя почти 80 лет А. Эйнштейн и М. Смолуховский построили, а Ж. Перрен экспериментально подтвердил теорию броу­новского движения. Из рассмотрения опытов Броуна необходимо сделать следую­щие выводы: а) движение броуновских частиц вызывается уда­рами молекул вещества, в котором эти частицы взвешены; б) броуновское движение непрерывно и беспорядочно, оно зави­сит от свойств вещества, в котором частицы взвешены; в) движе­ние броуновских частиц позволяет судить о движении молекул среды, в которой эти частицы находятся; г) броуновское движение доказывает существование молекул, их движение и непрерывный и хаотический характер этого движения. Подтверждение такого характера движения молекул было по­лучено в опыте французского физика Дюнуайе (1911 г.), который показал, что молекулы газа движутся в различных направлениях и в отсутствие соударений их движение прямолинейно. В настоя­щее время факт существования молекул ни у кого не вызывает сомнения. Развитие техники позволило непосредственно наблю­дать крупные молекулы. Рассказ о броуновском движении целесообразно сопровождать демонстрацией модели броуновского движения в вертикальной проекции с помощью проекционного фонаря или кодоскопа, а так­же показом кинофрагмента «Броуновское движение» из кинофиль­ма «Молекулы и молекулярное движение». Кроме того, полезно провести наблюдение броуновского движе­ния в жидкостях с помощью микроскопа. Препарат изготавлива­ют из смеси равных частей двух растворов: 1%-ного раствора серной кислоты и 2%-ного водного раствора гипосульфита. В ре­зультате реакции образуются частицы серы, которые находятся в растворе во взвешенном состоянии. Две капли этой смеси поме­щают на предметное стекло и наблюдают за поведением частиц серы. Препарат можно изготовить из сильно разбавленного рас­твора молока в воде или из раствора акварельной краски в воде. При обсуждении вопроса о размерах молекул рассматривают сущность опыта Р. Рэлея, который заключается в следующем: на поверхность воды, налитой в большой сосуд, помещают каплю оливкового масла. Капля растекается по поверхности воды и об­разует круглую пленку. Рэлей предположил, что, когда капля пере­стает растекаться, ее толщина становится равной диаметру одной молекулы. Опыты показывают, что молекулы различных веществ имеют разные размеры, но для оценки размеров молекул прини­мают величину, равную 10 -10 м. В классе можно проделать ана­логичный опыт. Для демонстрации расчетного метода определения размеров молекул приводят пример вычисления диаметров молекул различ­ных веществ по их плотностям и постоянной Авогадро. Представить малые размеры молекул школьникам трудно, по этому полезно привести ряд примеров сравнительного характера. Например, если увеличить все размеры во столько раз, чтобы молекула была видна (т. е. до 0,1 мм), то песчинка превратилась бы в стометровую скалу, муравей увеличился бы до размеров океанского корабля, человек обладал бы ростом 1700 км. Число молекул в количестве вещества 1 моль можно опреде­лить по результатам опыта с мономолекулярным слоем. Зная диа­метр молекулы, можно найти ее объем и объем количества ве­щества 1 моль, который равен где р — плотность жидкости. Отсюда определяют постоянную Аво­гадро. Расчетный метод заключается в определении числа молекул в количестве вещества 1 моль по известным значениям молярной массы и массы одной молекулы вещества. Значение постоянной Авогадро, по современным данным, 6,022169*10 23 моль -1 . С рас­четным методом определения постоянной Авогадро можно ознако­мить учащихся, предложив ее вычислить по значениям молярных масс разных веществ. Следует ознакомить школьников с числом Лошмидта, которое показывает, какое число молекул содержится в единице объема газа при нормальных условиях (оно равно 2,68799*10 -25 м -3 ). Де­сятиклассники могут самостоятельно определить число Лошмидта для нескольких газов и показать, что оно во всех случаях одно и то же. Приводя примеры, можно создать у ребят представление о том, насколько большим является число молекул в единице объе­ма. Если в резиновом воздушном шаре сделать прокол настолько тонкий, что через него каждую секунду будет выходить по 1 000 000 молекул, то понадобится примерно 30 млрд. лет, чтобы все молекулы вышли. Один из методов определения массы молекул основан на опыте Перрена, который исходил из того, что капли смолы в воде ведут себя так же, как молекулы в атмосфере. Перрен подсчитывал число капелек в разных слоях эмульсии, выделив с помощью мик­роскопа слои толщиной 0,0001 см. Высота, на которой таких капе­лек в два раза меньше, чем у дна, была равна h = 3*10 -5 м. Мас­са одной капли смолы оказалась равной М = 8,5*10 -18 кг. Если бы наша атмосфера состояла только из молекул кислорода, то на высоте Н=5 км плотность кислорода была бы в два раза меньше, чем у поверхности Земли. Записывают пропорцию m/M=h/H, откуда находят массу молекулы кислорода m=5,1*10 -26 кг. Предлагают учащимся самостоятельно рассчитать массу молекулы водорода, плотность которого в два раза мень­ше, чем у поверхности Земли, на высоте H=80 км. В настоящее время значения масс молекул уточнены. Напри­мер, для кислорода установлено значение 5,31*10 -26 кг, а для во­дорода — 0,33*10 -26 кг. При обсуждении вопроса о скоростях движения молекул уча­щихся знакомят с классическим опытом Штерна. При объяснении опыта целесообразно создать его модель с помощью прибора «Вращающийся диск с принадлежностями». На краю диска в вер­тикальном положении укрепляют несколько спичек, в центре диска — трубку с желобом. Когда диск неподвижен, шарик, опу­щенный в трубку, скатываясь по желобу, сбивает одну из спичек. Затем диск приводят во вращение с определенной скоростью, за­фиксированной по тахометру. Вновь пущенный шарик отклонится от первоначального направления движения (относительно диска) и собьет спичку, находящуюся на некотором расстоянии от первой. Зная это расстояние, радиус диска и скорость шарика на ободе диска, можно определить скорость движения шарика по радиусу. После этого целесообразно рассмотреть сущность опыта Штерна и конструкцию его установки, используя для иллюстрации кино­фрагмент «Опыт Штерна». Обсуждая результаты опыта Штерна, обращают внимание на то, что существует определенное распределение молекул по ско­ростям, о чем свидетельствует наличие у полоски напыленных атомов определенной ширины, причем толщина этой, полоски различна. Кроме того, важно отметить, что молекулы, движу­щиеся с большой скоростью, оседают ближе к месту напротив щели. Наибольшее число молекул имеет наиболее вероятную скорость. Необходимо сообщить учащимся, что теоретически закон рас­пределения молекул по скоростям был открыт Дж. К. Максвел­лом. Распределение молекул по скоростям может быть промодели­ровано на доске Гальтона. Вопрос о взаимодействии молекул школьники уже изучали в VII классе, в X классе знания по этому вопросу углубляют и рас­ширяют. Необходимо подчеркнуть следующие моменты: а) меж­молекулярное взаимодействие имеет электромагнитную природу; б) межмолекулярное взаимодействие характеризуется силами при­тяжения и отталкивания; в) силы межмолекулярного взаимодейст­вия действуют на расстояниях, не больших 2—3 диаметров моле­кул, причем на этом расстоянии заметна лишь сила притяжения, силы отталкивания практически равны нулю; г) по мере умень­шения расстояния между молекулами силы взаимодействия уве­личиваются, причем сила отталкивания растет быстрее (пропорционально г -9 ), чем сила притяжения (пропорционально r -7 ). Поэтому при уменьшении расстояния между молекулами сначала преобладает сила притяжения, затем при некотором расстоянии rо сила притяжения равна силе отталкивания и при дальнейшем сближении преобладает сила отталкивания. Все вышесказанное целесообразно проиллюстрировать графи­ком зависимости от расстояния сначала силы притяжения, силы отталкивания, а затем равнодействующей силы. Полезно постро­ить график потенциальной энергии взаимодействия, который в дальнейшем можно использовать при рассмотрении агрегатных состояний вещества. Внимание десятиклассников обращают на то, что состоянию устойчивого равновесия взаимодействующих частиц соответствует равенство нулю равнодействующей сил взаимодействия и наи­меньшее значение их взаимной потенциальной энергии. В твердом теле энергия взаимодействия частиц (энергия свя­зи) много больше кинетической энергии их теплового движения, поэтому движение частиц твердого тела представляет собой коле­бания относительно узлов кристаллической решетки. Если кинети­ческая энергия теплового движения молекул много больше потен­циальной энергии их взаимодействия, то движение молекул полно­стью беспорядочное и вещество существует в газообразном состоянии. Если кинетическая энергия теплового движения частиц сравнима с потенциальной энергией их взаимодействия, то веще­ство находится в жидком состоянии.

Читайте также:  Как врачи определяют зрение у ребенка
Источники:
  • http://physics.ru/courses/op25part1/content/chapter3/section/paragraph1/theory.html
  • http://www.easyphysics.in.ua/10class/molecular_physics/%D0%BC%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%BE-%D0%BA%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F/
  • http://studfiles.net/preview/6015859/