Меню Рубрики

Строение газообразных веществ с точки зрения мкт

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газ. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул (рис. 10). Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в сосуде молекул газа.

Газы легко сжимаются, так как при сжатии газа уменьшается лишь среднее расстояние между молекулами, но молекулы не «сдавливают» друг друга (рис. 11).

Молекулы с огромными скоростями – сотни метров в секунду – движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам.
Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема.
Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. В жидкостям молекулы расположены почти вплотную друг к другу (рис. 12). Поэтому молекула в жидкости ведет себя иначе, чем в газе. Зажатая, как в клетке, другими молекулами, она совершает «бег на месте» (колеблется около положения равновесия, сталкиваясь с соседними молекулами). Лишь время от времени она совершает «прыжок», прорываясь сквозь «прутья клетки», но тут же попадает в новую «клетку», образованную новыми соседями. Время «оседлой жизни» молекулы воды, т. е. время колебаний около одного определенного положения равновесия, при комнатной температуре равно в среднем 10 –11 с. Время же одного колебания значительно меньше (10 –12 – 10 –13 с). С повышением температуры время «оседлой жизни» молекул уменьшается. Характер молекулярного движения а жидкостях, впервые установленный советским физиком Я. И. Френкелем, позволяет понять основные свойства жидкостей.

Френкель Яков Ильич (1894 – 1952) – выдающийся советский физик-теоретик, внесший значительный вклад в самые различные области физики. Я. И. Френкель – автор современной теории жидкого состояния вещества. Им заложены основы теории ферромагнетизма. Широко известны работы Я. И. Френкеля по атмосферному электричеству и происхождению магнитного поля Земли. Первая количественная теория деления ядер урана создана Я. И. Френкелем.

Молекулы жидкости находятся непосредственно друг возле друга. Поэтому при попытке изменить объем жидкости даже на малую величину начинается деформация самих молекул (рис. 13). А для этого нужны очень большие силы. Этим и объясняется малая сжимаемость жидкостей.

Жидкости, как известно, текучи, т. е. не сохраняют своей формы. Объясняется это следующим. Если жидкость не течет, то перескоки молекул из одного «оседлого» положения в другое происходят с одинаковой частотой но всем направлениям (рис. 12). Внешняя сила заметно не изменяет числа перескоков молекул в секунду, но перескоки молекул из одного «оседлого» положения в другое при этом происходят преимущественно в направлении действия внешней силы (рис. 14). Вот почему жидкость течет и принимает форму сосуда.
Твердые тела. Атомы или молекулы твердых тел в отличие от жидкостей колеблются около определенных положений равновесия. Правда, иногда молекулы изменяют положение равновесия, но происходит это крайне редко. Вот почему твердые тела сохраняют не только объем, но и форму.

Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой, отдельные члены которой беспокойно толкутся на месте, а твердое тело подобно стройной когорте, члены которой хотя и не стоят по стойке «смирно» (вследствие теплового движения), но выдерживают между собой в среднем определенные интервалы. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической . На рисунках 15 и 16 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к геометрически правильным внешним формам. На рисунке 17 показаны якутские алмазы.

Качественное объяснение основных свойств вещества на основе молекулярно-кинетической теории, как вы видели, не является особенно сложным. Однако теория, устанавливающая количественные соотношения между измеряемыми на опыте величинами (давлением, температурой и др.) и свойствами самих молекул, их числом и скоростью движения, весьма сложна. Мы ограничимся рассмотрением теории газов.

1. Приведите доказательства существования теплового движения молекул. 2. Почему броуновское движение заметно лишь у частиц малой массы? 3. Какова природа молекулярных сил? 4. Как силы взаимодействия между молекулами зависят от расстояния между ними? 5. Почему два свинцовых бруска с гладкими чистыми срезами слипаются, если их прижать друг к другу? 6. В чем состоит различие теплового движения молекул газов, жидкостей и твердых тел?

Молекулярная физика – это раздел физики, в котором законы механики применяются не к каждой отдельной частице вещества, а к их совокупности. При этом используются усреднённые физические величины.

Молекулярно-кинетическая теория (МКТ) – это теория, которая рассматривает строение вещества с точки зрения трёх основных положений.

Основные положения молекулярно-кинетической теории

1. Все вещества состоят из частиц (молекул, атомов);

Атом – наименьшая частица химического элемента, которая обладает его свойствами.

Молекула – наименьшая частица вещества, которая обладает его химическими свойствами.

В состав молекулы может входить различное число атомов. Так, молекулы углерода и инертных газов одноатомны, молекулы таких веществ, как водород и азот – двухатомны, воды – трехатомны и т.д. Молекулы наиболее сложных веществ – высших белков и нуклеиновых кислот – построены из сотни тысяч атомов. При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов число различных веществ очень велико.

Молекула определенного вещества имеет иные физические свойства нежели само вещество. Такие свойства, как температура плавления и кипения, механическая прочность и твердость, определяются прочностью связи между молекулами в данном веществе при данном его агрегатном состоянии . Поэтому применение подобных понятий к отдельной молекуле не имеет смысла.
Плотность – это свойство, которым отдельная молекула обладает и которое можно вычислить. Однако плотность молекулы всегда больше плотности вещества (даже в твердом состоянии), потому что в любом веществе между молекулами всегда имеется некоторое свободное пространство.
Электрическая проводимость, теплоемкость, определяются не свойствами молекул, а структурой веществ в целом. Эти свойства сильно изменяются при изменении агрегатного состояния вещества, тогда как молекулы при этом не претерпевают глубоких изменений. Таким образом, понятия о некоторых физических свойствах не применимы к отдельной молекуле, но сами эти свойства по своей величине различны для молекулы и вещества в целом.

Не во всех случаях частицы, образующие вещество, представляют собой молекулы. Многие вещества в твердом и жидком состоянии, например, большинство солей, имеют не молекулярную, а ионную структуру. Некоторые вещества имеют атомное строение. В веществах, имеющих ионное или атомное строение, носителем химических свойств являются не молекулы, а те комбинации ионов или атомов, которые образуют данное вещество.

Доказательства положения:

1. Фотографии поверхности физического тела, сделанные с помощью туннельного микроскопа (был создан в середине 80-х годов сотрудниками знаменитой компьютерной фирмы IBM (г. Цюрих) Г. Биннингом и Г. Рорером, удостоенными за его изобретение Нобелевской премии);

2. Закон постоянных отношений Джона Дальтона.

Первое убедительное, хотя и косвенное, доказательство существования атомов и молекул было получено английским химиком Д. Дальтоном (1766—1844). Дальтон объяснил закон постоянных отношений. Согласно этому закону при образовании любых химических соединений массы реагирующих веществ находятся в строго определенных отношениях. Так, например, при образовании воды из водорода и кислорода отношение масс прореагировавших газов водорода и кислорода всегда равно 1:8. Этот факт становится понятным лишь в том случае, если допустить, что при образовании мельчайшей частички воды — молекулы — некоторое определенное число атомов водорода соединяется с определенным числом атомов кислорода. Молекула воды состоит из двух атомов водорода и одного атома кислорода. Поэтому отношение масс водорода и кислорода при образовании воды должно быть равно отношению удвоенной массы атома водорода к массе атома кислорода. Это отношение не может измениться ни при каких условиях.

2. Молекулы (атомы) вещества находятся в беспрерывном хаотическом (тепловом) движении;

Характер движения зависит от агрегатного состояния вещества, а скорость – от температуры.

Доказательства положения:

Явление диффузии, броуновское движение, осмос.

Диффузия – процесс проникновения молекул одного вещества в межмолекулярные промежутки другого вследствие теплового движения частиц этих веществ.

Осмос – односторонняя диффузия через полупроницаемую перегородку (мембрану), которая отделяет раствор от чистого растворителя или раствора меньшей концентрации.
Обусловлен стремлением системы к термодинамическому равновесию и выравнивания концентрации раствора с обеих сторон мембраны. Характеризуется осмотическим давлением, которое равно избыточному внешнему давлению, которое необходимо создать со стороны раствора, чтобы прекратить осмос. Играет важную роль физиологических процессах, используется при исследовании полимеров, биологических структур. Благодаря осмосу питательные вещества и вода из пищеварительного тракта проникают в организм и непосредственно в клетки живых существ, вода из почвы проникает в корни растений и т.д.

3. Молекулы (атомы) взаимодействуют между собой, между частицами действуют силы притяжения и отталкивания;

Эти силы действуют одновременно.

На определённом расстояния между молекулами (r) эти силы равны между собой. На расстояниях r r – притяжения.

Доказательства положения:

Существование жидкостей и твердых тел. Силами притяжения и отталкивания молекул объясняются упругость и прочность твердых тел.

Относительная молекулярная (атомная) масса химического элемента

Для определения масс отдельных атомов принята особая единица, которая равна 1/12 массы атома Карбона (углерода). Поскольку атомы одного и того же химического элемента отличаются массой (изотопы), поэтому в таблице Менделеева значения относительных молекулярных (атомных) масс нецелые.

Относительная молекулярная (атомная) масса химического элемента Мr – это число, которое показывает, во сколько раз средняя масса его молекулы m (атома) больше чем 1/12 массы атома Карбона m0C, то есть

Количество вещества

Количество вещества (ν) определяется числом N структурных частиц (атомов, молекул или других частиц) в образце. [ν] = 1 моль.

Моль – это количество вещества, которое содержит столько же структурных частиц данного вещества, сколько атомов Карбона содержится в 12 г углерода.

NА = 6,02·10 23 (моль -1 ) – постоянная Авогадро (количество атомов или молекул в 1 моле любого вещества).
Установлено, что в 12 г углерода содержится 6·10 23 атомов, таким образом, 1 моль води – это 6·10 23 молекул води, 1 моль Сульфура – это 6·10 23 атомов серы).

Согласно закону Авогадро 1 моль идеального газа занимает при нормальных условиях объём 22,4 л/моль.

Молярная масса

Молярная масса М вещества – это величина, которая равна отношению его массы m к соответствующему количеству вещества ν; или молярная масса вещества – это масса одного моля вещества. [М] = 1 г/моль. Тогда

Масса молекулы m вещества связана с его молярной массой соотношением

Масса тела можно выразить через массу одной молекулы и число молекул:

Читайте также:  Правильные сайты с точки зрения маркетинга

Числовое значение молярной массы вещества совпадает с числовым значением относительной молекулярной (атомной) массой элемента.

Пример, М(CuSO4) = 64 + 32 + 4·16 = 160 г/моль; Мr (CuSO4) = 160

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Модель строения жидкости в молекулярно-кинетической теории.

Жидкость — вещество в состоянии, промежуточном между твердым и газообразным. Это агрегатное состояние вещества, в котором молекулы (или атомы) связаны между собой настолько, что это позволяет ему сохранять свой объем, но недостаточно сильно, чтобы сохранять и форму.

Свойства жидкостей.

Жидкости легко меняют свою форму, но сохраняют объем. В обычных условиях они принимают форму сосуда, в котором находятся.

Поверхность жидкости, не соприкасающаяся со стенками сосуда, называется свободной повер­хностью. Она образуется в результате действия силы тяжести на молекулы жидкости.

Строение жидкостей.

Свойства жидкостей объясняются тем, что промежутки между их молеку­лами малы: молекулы в жидкостях упакованы так плотно, что расстояние между каждыми двумя молекулами меньше размеров молекул. Объяснение поведения жидкостей на основе характера молекулярного движения жидкости было дано советским ученым Я. И. Френкелем. Оно заклю­чается в следующем. Молекула жидкости колеблется около положения временного равновесия, сталкиваясь с другими молекулами из ближайшего окружения. Время от времени ей удается совершить «прыжок», чтобы покинуть своих соседей из ближайшего окружения и продолжать совершать колебания уже среди других соседей. Время оседлой жизни молекулы воды, т. е. вре­мя колебания около одного положения равновесия при комнатной температуре, равно в среднем 10 -11 с. Время одного колебания значительно меньше — 10 -12 – 10 -13 с.

Поскольку расстояния между молекулами жидкости малы, то попытка уменьшить объем жидкости приводит к деформации молекул, они начинают отталкиваться друг от друга, чем и объ­ясняется малая сжимаемость жидкости. Текучесть жидкости объясняется тем, что «прыжки» молекул из одного оседлого положения в другое происходят по всем направлениям с одинаковой частотой. Внешняя сила не меняет заметным образом число «прыжков» в секунду, она лишь задает их преимущественное направление, чем и объясняется текучесть жидкости и то, что она принимает форму сосуда.

Свойства газа, жидких и твердых тел с точки зрения молекулярно-кинетической теории

Характеристика тепловых явлений в молекулярной физике. Рассмотрение основных положений молекулярно-кинетической теории. Основной порядок взаимодействия молекул. Изучение строения газообразных, жидких и твердых тел. Описание Броуновского движения.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 16.01.2015
Размер файла 358,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГБОУ НПО АО «Профессиональное училище № 1»

РЕФЕРАТ НА ТЕМУ:

«Свойства газа, жидких и твердых тел с точки зрения молекулярно-кинетической теории»

Выполнил: Акишин Дмитрий Андреевич

Проверил: Жубрева Лидия Николаевна

1. Тепловые явления в молекулярной физике

2. Основные положения молекулярно-кинетической теории

3. Взаимодействие молекул

4. Строение газообразных, жидких и твердых тел

5. Броуновское движение

1. Тепловые явления в молекулярной физике

тепловой броуновский кинетический твердый

Тепловые явления привлекали внимание людей с древних времён. Умение добывать и поддерживать огонь сделало человека относительно независимым от колебаний температуры окружающей среды. Это было одним из величайших изобретений человечества. Изменение температуры оказывает влияние на все свойства тел. Кроме механических свойств, при изменении температуры меняются и другие свойства тел, например сопротивление электрическому току, магнитные свойства и др. Так, если сильно нагреть постоянный магнит, то он перестанет притягивать железные предметы. Все перечисленные выше и многие другие тепловые явления подчиняются определённым законам. Открытие законов тепловых явлений позволяет с максимальной пользой применять эти явления на практике и в технике. Молекулярно-кинетическая теория. Ещё философы древности догадывались о том, что теплота — это вид внутреннего движения. Но только в ХVIII в. Начала развиваться последовательная молекулярно — кинетическая теория. Цель молекулярно-кинетической теории — объяснение свойств макроскопических тел и тепловых процессов, протекающих в них, беспорядочно движущихся частиц. Большой вклад в развитие молекулярно-кинетической теории был сделан М.В. Ломоносовым. Он рассматривал теплоту как вращательное движение частиц, составляющих тела.

2. Основные положения молекулярно-кинетической теории

В основе молекулярно-кинетической теории строения вещества лежат три утверждения: вещество состоит из частиц; эти частицы беспорядочно движутся; частицы взаимодействуют друг с другом. Каждое утверждение строго доказано с помощью опытов. Свойства и поведение всех без исключения тел от инфузории до звезды определяются движением взаимодействующих друг с другом частиц: молекул, атомов или ещё более малых образований — элементарных частиц.

Оценка размеров молекул. Для полной уверенности в реальности молекул надо определить их размеры.

Проще всего это сделать, наблюдая расплывание капельки масла, например оливкового, по поверхности воды. Масло никогда не займёт всю поверхность, если сосуд велик. Нельзя заставить капельку объёмом 1 мм(в кубе) расплыться так, чтобы она заняла площадь поверхности более 0,6 м(в квадрате). Объём V слоя масла равен произведению его площади поверхности S на толщину d слоя, т.е V=Sd. Следовательно, размер молекулы оливкового масла равен: d = ? 1,7 Ч см.

При очень малых размерах молекул число их в любом макроскопическом теле огромно. Подсчитаем приблизительное число молекул в капле воды массой 1 г и, следовательно, объёмом 1.

Диаметр молекулы воды равен примерно 3 Ч . Считая, что каждая молекула воды при плотной упаковке молекул занимает объём капли (1 на объём, приходящийся на одну молекулу:

Размеры атома надо запомнить: D ?см ? м.

3. Взаимодействие молекул

Если молекулы существуют и движутся, то между ними обязательно должны действовать силы. Без этого взаимодействия не было бы ни твёрдых, ни жидких тел. Молекула- это сложная система, состоящая из отдельных заряженных частиц: электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, тем не менее между ними на малых расстояниях действуют значительные электрические силы: происходит взаимодействие электронов и атомных ядер соседних молекул.

Если молекулы находятся на расстояниях, превышающих их размеры в несколько раз, то силы взаимодействия практически не сказываются. Силы между электрически нейтральными молекулами являются короткодействующими.

На расстояниях, превышающих 2-3 диаметра молекул, действуют силы притяжения. По мере уменьшения расстояния между молекулами сила притяжения сначала увеличиваются, а затем начинает убывать и убывает до нуля, когда расстояние между двумя молекулами становится равным сумме радиусов молекул.

При дальнейшем уменьшении расстояния электронные оболочки атомов начинают перекрываться и между молекулами возникают быстро нарастающие силы отталкивания.

4. Строение газообразных, жидких и твердых тел

Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул.

Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но молекулы не сдавливают друг друга.

Молекулы с огромными скоростями — сотни метров в секунду -движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. Молекулы жидкости расположены почти вплотную друг к другу, поэтому молекула жидкости ведет себя иначе, чем молекула газа. В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения, сталкиваясь с соседними молекулами. Лишь время от времени она совершает очередной «прыжок», попадая в новое положение равновесия. В этом положении равновесия сила отталкивания равна силе притяжения, т.е. суммарная сила взаимодействия молекулы равна нулю. Время оседлой жизни молекулы воды, т. е. время ее колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10-11 с. Время же одного колебания значительно меньше (10-12-10-13 с). С повышением температуры время оседлой жизни молекул уменьшается. Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я.И. Френкелем, позволяет понять основные свойства жидкостей. Молекулы жидкости находятся непосредственно друг возле друга. При уменьшении объема силы отталкивания становятся очень велики. Этим и объясняется малая сжимаемость жидкостей. Как известно, жидкости текучи, т. е. не сохраняют своей формы. Объяснить это можно так. Внешняя сила заметно не меняет числа перескоков молекул в секунду. Но перескоки молекул из одного оседлого положения в другое происходят преимущественно в направлении действия внешней силы (рис.8.8). Вот почему жидкость течет и принимает форму сосуда.

Атомы или молекулы твёрдых тел колеблются около определённых положений равновесия, поэтому твёрдые тела сохраняют не только объём ,но и форму

Если соединить центр равновесия атомов или ионов твёрдого тела, то получится правильная пространственная решётка, называемая кристалической

Кристаллы — это твёрдые тела, атомы или молекулы которых занимают определённое, порядочное положение в пространстве. Поэтому кристаллы имеют плоские грани. Например крупинка обычной поваренной соли имеет плоские грани, составляющие друг с другом прямые углы.

Правильная внешняя форма не единственное и даже не самое главное следствие упорядоченного строения кристалла. Главное- это зависимость физических свойств от выбранного в кристалле направления. Например, кусок слюды легко расслаивается в одном из направлений на тонкие пластинки, но разорвать его в направлении, перпендикулярном пластинкам, гораздо труднее. Многие кристаллы по-разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Так, кристалл кварца по-разному преломляет свет в зависимости от направления падающих на него лучей. Зависимость физических свойств от направления внутри кристалла называют анизотропией. Все кристаллические тела анизотропны.

Монокристаллы и поликристаллы.

Кристаллическую структуру имеют металлы. Если взять большой кусок металла, то на первый взгляд его кристаллическое строении никак не проявляется ни во внешнем виде куска, ни в его физических свойствах

Обычно металл состоит из огромного количества сросшихся друг с другом маленьких кристалликов. Свойства каждого кристаллика зависят от направления, но кристаллики ориентированы по отношению к друг другу беспорядочно. В результате в объеме, значительно превышающем объем отдельных кристалликов, все направления внутри металлов равноправны и свойства металлов одинаковы по всем направлениям.

Твердое тело, состоящее из большого числа маленьких кристалликов, называют поликристаллическим. Одиночные кристаллы называют монокристаллами.

5. Броуновское движение

Броуновское движение- это тепловое движение взвешенных в жидкости( или газе) частиц.

Наблюдения броуновского движения. Английский ботаник Р.Броун (1773-1858) впервые наблюдал это явление 1827 г. Рассматривая в микроскоп взвешенные в воде споры плауна. Позже он рассматривал и другие мельчайшие частицы, в том числе частички камня египетских пирамид. Сейчас для наблюдения броуновского движения используют частички краски гуммируют, которая нерастворима в воде. Эти частички совершают беспорядочное движение. Броуновское движение — тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растёт. Положения частиц, отмеченные точками, определены через равные промежутки времени — 30 с. Броуновское движение можно наблюдать и в газе. Его совершают взвешенные в воздухе частицы пыли или дыма.

Читайте также:  Таблица для детей когда проверяют зрение

Газы — агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им объём. Вещество в газообразном состоянии широко распространено в природе. Газы образуют атмосферу Земли, в значительных количествах содержатся в твёрдых земных породах, растворены в воде океанов, морей и рек.

Жидкость — агрегатное состояние вещества, промежуточное между твёрдым и газообразным состояниями. Ж., сохраняя отдельные черты как твёрдого тела, так и газа, обладает, однако, рядом только ей присущих особенностей, из которых наиболее характерная — текучесть. Подобно твёрдому телу, Ж. сохраняет свой объём, имеет свободную поверхность, обладает определённой прочностью на разрыв при всестороннем растяжении и т. д.

Твёрдое тело — одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия. Кристаллы характеризуются дальним порядком в расположении атомов. В аморфных телах дальний порядок отсутствует

1. Физика 10 класс Г. Я Мякишев М. «Просвещение» 2007.

2. Арцимович Л. А., Элементарная физика плазмы, 3 изд., М., 2002;

3. Франк-Каменецкий Д. А., Лекции по физике состояний вещества, М., 2003 (переиздание);

4. Френкель Я. И., Собрание избранных трудов, т. 3, М., 2001;

5. Фишер И.3., Статистическая теория жидкостей, М., 2003;

6. Физика простых жидкостей. Экспериментальные исследования, пер. с англ., М., 2002

Размещено на Allbest.ru

Подобные документы

Основные положения атомно-молекулярного учения. Закономерности броуновского движения. Вещества атомного строения. Основные сведения о строении атома. Тепловое движение молекул. Взаимодействие атомов и молекул. Измерение скорости движения молекул газа.

презентация [226,2 K], добавлен 18.11.2013

Анализ теорий, устанавливающих связи между измеряемыми на опыте величинами и свойствами молекул. Идеальный газ как газ, взаимодействие между молекулами которого пренебрежимо мало. Причины возникновения давления газа в молекулярно-кинетической теории.

презентация [151,4 K], добавлен 08.01.2015

Определения молекулярной физики и термодинамики. Понятие давления, основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Уравнение состояния идеального газа (Менделеева — Клапейрона).

презентация [972,4 K], добавлен 06.12.2013

Основные понятия и определения молекулярной физики и термодинамики. Основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Состояние идеального газа (уравнение Менделеева-Клапейрона).

презентация [1,1 M], добавлен 13.02.2016

Вычисление скорости молекул. Различия в скоростях молекул газа и жидкости. Экспериментальное определение скоростей молекул. Практические доказательства состоятельности молекулярно-кинетической теории строения вещества. Модуль скорости вращения.

презентация [336,7 K], добавлен 18.05.2011

Содержание молекулярно-кинетической теории газов. Химический состав жидкости. Особенности межмолекулярного взаимодействия в данном агрегатном состоянии. Механические и тепловые свойства твердых тел. Практическое применение плазмы — ионизованного газа.

контрольная работа [26,0 K], добавлен 27.10.2010

Характеристика законов Бойля-Мариотта, Бойля-Мариотта, Авогадро. Парциальное давление как давление, которое оказывал бы каждый газ смеси, если бы он один занимал объем, равный объему смеси. Знакомство с положениями молекулярно-кинетической теории газа.

презентация [625,5 K], добавлен 06.12.2016

Изучение корпускулярной концепции описания природы, сущность которой в том, что все вещества состоят из молекул — минимальных частиц вещества, сохраняющих его химические свойства. Анализ молекулярно-кинетической теории газа. Законы для идеальных газов.

контрольная работа [112,2 K], добавлен 19.10.2010

Особенности определения давления газа на стенку сосуда с использованием второго закона Ньютона. Связь этой величины со средней кинетической энергией молекул и их концентрацией. Специфика схематичного вывода основного уравнения упрощенным методом.

презентация [316,6 K], добавлен 19.12.2013

Молекулярная физика как раздел физики, в котором изучаются свойства вещества на основе молекулярно-кинетических представлений. Знакомство с основными особенностями равновесной термодинамики. Общая характеристика молекулярно-кинетической теории газов.

курсовая работа [971,8 K], добавлен 01.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Проверено экспертом

твердые : сохраняют форму и объем: молекулы сильно притягиваются , колеблются возле своих мест, упорядоченость в расположении

жидкости : сохраняют объем , но имеют форму сосуда — молекулы способны перескакивать , колебаться , притягиваются слабее , расположены близко , но четкого порядка нетлабо притягиваются

газы : не сохраняют ни формы ни объема, молекулы беспорядочно двигаются , расположены далеко , с

Строение жидких, твёрдых и газообразных тел с точки зрения молекулярно-кинетической теории.

Твёр­дые тела яв­ля­ют­ся пол­ной про­ти­во­по­лож­но­стью газам. В них не про­ис­хо­дит сво­бод­но­го пе­ре­дви­же­ния ча­стиц. Мо­ле­ку­лы на­хо­дят­ся в узлах кри­стал­ли­че­ской ре­шёт­ки. То есть су­ще­ству­ет стро­гий пе­ри­о­ди­че­ский по­ря­док в рас­по­ло­же­нии ча­стиц, со­став­ля­ю­щих твёр­дое тело.

3. Жид­ко­сти, в от­ли­чие от твёр­дых тел, об­ла­да­ют ближ­ним по­ряд­ком в рас­по­ло­же­нии ча­стиц ве­ще­ства.

Урок «Строение газообразных, жидких и твёрдых тел»

Разделы: Физика

Цель урока: Рассмотреть особенности строения и свойства газообразных, жидких и твёрдых тел с точки зрения молекулярно – кинетической теории.

Задачи урока:

  1. Образовательные
  • Способствовать овладению знаниями по теме “Строение газообразных, жидких и твёрдых тел”;
  • Установить характер зависимости сил притяжения и отталкивания от расстояния между молекулами;
  • Учиться решать качественные задачи.
  1. Развивающие

Развивать:

  • наблюдательность, самостоятельность;
  • логическое мышление
  • умение применять знания теории на практике;
  • содействовать развитию речи, мышления
  1. Воспитательные:
  • Формирование представлений о единстве и взаимосвязи явлений природы.
  • Формировать положительное отношение к предмету

Тип урока: Урок изучения нового материала.

Форма урока: комбинированный

Комплексно-методическое обеспечение: Компьютер, экран, мультимедийный проектор, авторская презентация, образцы кристаллов, тестовые задания.

Межпредметные связи:

  • химия
  • информатика

Ход урока

На экране: Презентация (приложение 1)

  1. Организационный этап

Учитель: Здравствуйте. Ещё Наполеон I говорил: “Воображение правит миром”. А Демокрит утверждал, что “Ничего не существует кроме атомов”.

  1. Этап постановки целей и задач урока.

Согласитесь! Мир удивителен и многообразен. Человек издавна пытался объяснить необъяснимое, увидеть невидимое, услышать неслышимое. Оглядываясь вокруг себя, он размышлял о природе и пытался решить загадки, которые она перед ним ставила.

Русский поэт Фёдор Иванович Тютчев писал.

Не то, что мните вы, природа:
Не слепок, не бездушный лик –
В ней есть душа, в ней есть свобода,
В ней есть любовь, в ней есть язык.

Но со временем человек стал понимать, что именно закон стоит во главе всего, что нас окружает.

Вы, конечно же, ежедневно сталкиваетесь с различными физическими явлениями, которыми управляет закон, и в большинстве случаев можете предсказать, как они закончатся. Например, предскажите, чем закончатся следующие события:

  • Если открыть флакон с духами, то …;
  • Если нагреть лед, то …;
  • Если сильно сжать два кусочка пластилина, то …;
  • Если капнуть каплю масла на воду, то …;
  • Если опустить термометр в горячую воду, то …

Учитель: Итак, давая свои ответы, вы руководствовались определенными знаниями, полученными ранее. Мы с вами каждый день наблюдаем целый ряд окружающих нас предметов: столы, стулья, книги, ручки, тетради, автомобили и т.д. Скажите, они нам только кажутся сплошными или они на самом деле являются таковыми?

Ученик: Только кажутся.

Учитель: Тогда скажите, из чего состоят все вещества?

Ученик: Из молекул или атомов

Учитель: А, как вы думаете, молекулы различных веществ одинаковы или нет? Докажите.

Ученик: Нет. Они имеют разные химические соединения.

Учитель: Лед, вода и водяной пар состоят из одних и тех же молекул или нет?

Ученик: Потому что это одно и то же вещество, но в разном виде

Учитель: Вот, ребята, мы и подошли к теме нашего урока. Откройте рабочие тетради, запишите дату и тему нашего урока: “Строение газообразных, жидких и твёрдых тел”.

В мире нет двух совершенно одинаковых предметов. Невозможно найти две одинаковые песчинки в горе песка или два одинаковых листика на дереве, а вот молекулы одного и того же вещества совершенно одинаковы. Например, воду мы привыкли видеть в жидком состоянии. Химическая формула воды H2O. В газообразном состоянии – это пары воды. (Какова химическая формула?). В твёрдом состоянии, это лёд или снег. Всё та же химическая формула — H2O.

Тогда возникает вопрос: если молекулы одного и того же вещества совершенно одинаковы, то почему это вещество может находиться в разных агрегатных состояниях?

Вот на этот вопрос нам с вами и предстоит ответить сегодня на уроке. (Слайд 3)

Различают четыре агрегатных состояния вещества:

  • Твёрдое
  • Жидкое
  • Газообразное
  • Плазменное

Сегодня мы поговорим о трёх из них. Прежде познакомимся с понятием – фазовый переход. (Слайд 4)

Фазовый переход – переход системы из одного агрегатного состояния в другое. При фазовом переходе скачкообразно изменяется какая-либо физическая величина (плотность, внутренняя энергия)

Реализация агрегатного состояния вещества зависит от соотношения кинетической и потенциальной энергии молекул, входящих в его состав.

  1. Этап объяснения нового материала

Перед вами на столах лежат опорные конспекты. (Приложение 3). Что символизирует каждый рисунок? (Разные агрегатные состояния)

Облачко – газообразное состояние вещества, бутылка – жидкое, кубик – твёрдое состояние. Поэтапно разберём строение газообразных, жидких и твёрдых тел. Выводы запишем в тетрадях.

  1. ГАЗЫ (Слайд 6, 10)

Расстояние между атомами или молекулами в газах в среднем во много раз больше размеров самих молекул. Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но молекулы не сдавливают друг друга. Молекулы движутся с огромными скоростями — сотни метров в секунду. Сталкиваясь, они отскакивают друг от друга в разные стороны. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема.

Многочисленные удары молекул о стенки сосуда создают давление газа.

Молекулы жидкости расположены почти вплотную друг к другу, поэтому молекула жидкости ведет себя иначе, чем молекула газа. Зажатая, как в “клетке”, другими молекулами, она совершает “бег на месте” (колеблется около положения равновесия, сталкиваясь с соседними молекулами). Лишь время от времени она совершает “ прыжок”, прорываясь сквозь “прутья клетки”, но тут же попадает в новую клетку, образованную новыми соседями. Время оседлой жизни молекулы воды, т. е. время колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10 -11 с. Время же одного колебания значительно меньше (10 -12 —10 -13 с). С повышением температуры время оседлой жизни молекул уменьшается.

Молекулы жидкости находятся непосредственно друг возле друга. При попытке изменить объем жидкости (даже на малую величину) начинается деформация самих молекул, для этого нужны очень большие силы. Этим и объясняется малая сжимаемость жидкостей.

Читайте также:  Если очки при хорошем зрении от компьютера

Как известно, жидкости текучи, т. е. не сохраняют своей формы, они принимают форму сосуда.

Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я. И. Френкелем, позволяет понять основные свойства жидкостей. (Приложение 5)

Атомы или молекулы твердых тел в отличие от атомов и молекул жидкостей колеблются около определенных положений равновесия. Правда, иногда молекулы меняют положение равновесия, но происходит это редко. Вот почему твердые тела сохраняют не только объем, но и форму.

Есть еще одно важное различие между жидкостями и твердыми телами.

Жидкость можно сравнить с толпой людей, где отдельные индивидуумы беспокойно толкутся на месте, а твердое тело подобно стройной когорте тех же индивидуумов, которые хотя и не стоят по стойке смирно, но выдерживают между собой в среднем определенные интервалы. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической.

На рисунках изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к правильным внешним геометрическим формам.

Итак, пришло время ответить на поставленный в начале урока вопрос: от чего зависит, что одно и то же вещество может находиться в разных агрегатных состояниях?

Ответы учащихся: От расстояния между частицами, от сил взаимодействия, т.е от того, как расположены молекулы, как они движутся и как взаимодействуют друг с другом.

  1. Этап закрепления пройденного материала. Игра “Что за состояние?”

Оценку “5” получает учащийся, набравший наибольшее количество баллов.

  1. Этап проверки полученных на уроке знаний. Тест. (Приложение 4)
  2. Заключительный этап.

А теперь давайте подведем итоги нашей работы на сегодняшнем уроке. Что нового узнали на уроке? Какие оценки получили.

  1. Домашнее задание: § 62, ответить на вопросы после параграфа, заполнить таблицу. (Слайд 38)

Решать загадки можно вечно.
Вселенная ведь бесконечна.
Спасибо всем нам за урок,
А главное, чтоб был он впрок!

Литература:

  1. Г.В. Маркина, издательство Учитель” г. Волгоград, 97
  2. В.А. Волков, Москва “Вако” , 2006 В помощь школьному учителю
  3. Интернет-ресурсы
  4. Г.Я. Мякишев, физика, Москва -2007.
  5. CD “ Электронные уроки и тесты”

Строение газообразных веществ с точки зрения мкт

Молекулярная физика и термодинамика – это по существу две разные по своим подходам, но тесно связанные науки, занимающиеся одним и тем же – изучением макроскопических свойств физических систем, но совершенно разными методами.

В основе молекулярной физики или молекулярно-кинетической теории лежат определенные представления о строении вещества. Для установления законов поведения макроскопических систем, состоящих из огромного числа частиц, в молекулярной физике используются различные модели вещества, например, модели идеального газа.

Молекулярная физика является статистической теорией, т. е. теорией, которая рассматривает поведение систем, состоящих из огромного числа частиц (атомов, молекул), на основе вероятностных моделей. Она стремится на основе статистического подхода установить связь между экспериментально измеренными макроскопическими величинами (давление, объем, температура и т.д.) и микроскопическими характеристиками частиц, входящих в состав системы (масса, импульс, энергия и т.д.).

В отличие от молекулярно-кинетической теории, термодинамика при изучении свойств макроскопических систем не опирается ни на какие представления о молекулярной структуре вещества. Термодинамика является наукой феноменологической . Она делает выводы о свойствах вещества на основе законов, установленных на опыте, таких, как закон сохранения энергии. Термодинамика оперирует только с макроскопическими величинами (давление, температура, объем и т.п.), которые вводятся на основе физического эксперимента.

Оба подхода – термодинамический и статистический – не противоречат, а дополняют друг друга. Только совместное использование термодинамики и молекулярно-кинетической теории может дать наиболее полное представление о свойствах систем, состоящих из большого числа частиц.

Молекулярно-кинетическая теория

3.1. Основные положения МКТ

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.

В основе молекулярно-кинетической теории лежат три основных положения:

Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

Атомы и молекулы находятся в непрерывном хаотическом движении.

Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Рисунок 3.1.1.

Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение . Это тепловое движение мельчайших микроскопических частиц, взвешенных в жидкости или газе. Оно было открыто английским ботаником Р. Броуном в 1827 г. Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую (рис. 3.1.1). Теория броуновского движения была создана А. Эйнштейном в 1905 г. Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена, проведенных в 1908–1911 гг.

Главный вывод теории А. Эйнштейна состоит в том, что квадрат смещения броуновской частицы от начального положения, усредненный по многим броуновским частицам, пропорционален времени наблюдения .

Это соотношение выражает так называемый диффузионный закон . Как следует из теории коэффициент пропорциональности монотонно возрастает с увеличением температуры.

Постоянное хаотичное движение молекул вещества проявляется также в другом легко наблюдаемом явлении – диффузии . Диффузией называется явление проникновения двух или нескольких соприкасающихся веществ друг в друга. Наиболее быстро процесс протекает в газе, если он неоднороден по составу. Диффузия приводит к образованию однородной смеси независимо от плотности компонентов. Так, если в двух частях сосуда, разделенных перегородкой, находятся кислород O2 и водород H2, то после удаления перегородки начинается процесс взаимопроникновения газов друг в друга, приводящий к образованию взрывоопасной смеси – гремучего газа. Этот процесс идет и в том случае, когда легкий газ (водород) находится в верхней половине сосуда, а более тяжелый (вислород) – в нижней.

Значительно медленнее протекают подобные процессы в жидкостях. Взаимопроникновение двух разнородных жидкостей друг в друга, растворение твердых веществ в жидкостях (например, сахара в воде) и образование однородных растворов – примеры диффузионных процессов в жидкостях.

В реальных условиях диффузия в жидкостях и газах маскируется более быстрыми процессами перемешивания, например, из-за возникновения конвекционных потоков.

Наиболее медленно процесс диффузии протекает в твердых телах. Однако, опыты показывают, что при контакте хорошо очищенных поверхностей двух металлов через длительное время в каждом из них обнаруживается атомы другого металла.

Диффузия и броуновское движение – родственные явления. Взаимопроникновение соприкасающихся веществ друг в друга и беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходят вследствие хаотичного теплового движения молекул.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы представляют собой сложные пространственные структуры, содержащие как положительные, так и отрицательные заряды. Если расстояние между молекулами достаточно велико, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания. Зависимости результирующей силы и потенциальной энергии взаимодействия между молекулами от расстояния между их центрами качественно изображены на рис. 3.1.2. При некотором расстоянии сила взаимодействия обращается в нуль. Это расстояние условно можно принять за диаметр молекулы. Потенциальная энергия взаимодействия при минимальна. Чтобы удалить друг от друга две молекулы, находящиеся на расстоянии , нужно сообщить им дополнительную энергию . Величина называется глубиной потенциальной ямы или энергией связи .

Рисунок 3.1.2.

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка . Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше.

Беспорядочное хаотическое движение молекул называется тепловым движением . Кинетическая энергия теплового движения растет с возрастанием температуры . При низких температурах средняя кинетическая энергия молекулы может оказаться меньше глубины потенциальной ямы . В этом случае молекулы конденсируются в жидкое или твердое вещество; при этом среднее расстояние между молекулами будет приблизительно равно . При повышении температуры средняя кинетическая энергия молекулы становится больше , молекулы разлетаются, и образуется газообразное вещество.

В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом ( аморфные тела ) или образовывать упорядоченные объемные структуры ( кристаллические тела ) (см. §3.6).

В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему. Этим объясняется текучесть жидкостей. Близко расположенные молекулы жидкости также могут образовывать упорядоченные структуры, содержащие несколько молекул. Это явление называется ближним порядком в отличие от дальнего порядка , характерного для кристаллических тел.

В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка , т. е. в десятки раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе .

В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль).

Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в углерода 12 C. Молекула углерода состоит из одного атома.

Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро :

.

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории.

Количество вещества определяется как отношение числа частиц (молекул) вещества к постоянной Авогадро :

Массу одного моля вещества принято называть молярной массой . Молярная масса равна произведению массы одной молекулы данного вещества на постоянную Авогадро:

.

Молярная масса выражается в килограммах на моль (). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса .

За единицу массы атомов и молекул принимается массы атома изотопа углерода 12 C (с массовым числом ). Она называется атомной единицей массы ():

.

Эта величина почти совпадает с массой протона или нейтрона. Отношение массы атома или молекулы данного вещества к массы атома углерода 12 C называется относительной массой .

Источники:
  • http://www.easyphysics.in.ua/10class/molecular_physics/%D0%BC%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%BE-%D0%BA%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F/
  • http://www.calc.ru/Model-Stroyeniya-Zhidkosti-V-Molekulyarnokineticheskoy-Teori.html
  • http://revolution.allbest.ru/physics/00507166_0.html
  • http://znanija.com/task/2078741
  • http://otvet.mail.ru/question/190715991
  • http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/529652/
  • http://physics.ru/courses/op25part1/content/chapter3/section/paragraph1/theory.html