Меню Рубрики

Сканер радужной оболочки глаза в телефоне как работает

Новые телефоны Apple и Samsung используют инфракрасный свет для подтверждения вашей личности. Но могут ли инфракрасные лучи, используемые для идентификации лица и сканера радужной оболочки глаза, повредить ваши глаза?

Это справедливый вопрос. Большинство людей мало знает об инфракрасном свете, и трудно найти информацию, которая объясняет потенциальные риски инфракрасного излучения. Не говоря уже о том, что отказ от ответственности Samsung по поводу сканера Iris делает инфракрасный сканер пугающим. Но что такое инфракрасный свет, и должны ли мы беспокоиться об этом?

Инфракрасный свет (ИК) является формой невидимого (для человека) излучения, и он занимает нижнюю часть электромагнитного спектра. Как видимый свет, микроволны и радиоволны, ИК является формой неионизирующего излучения. Он не лишает молекулы электронов, и не вызывает рак (уже легче!).

Важно знать, что ИК-излучение может исходить из многих мест. В некотором смысле, вы можете считать ИК естественным побочным продуктом производства тепла. Ваш тостер излучает инфракрасный свет, солнце излучает инфракрасный свет, костры излучают инфракрасный свет. Интересно, что 95% энергии, производимой флуоресцентными лампами, переводится в ИК. Даже ваше тело излучает инфракрасный свет, и именно так работают тепловизионные камеры в шпионских фильмах.

ИК-светодиод, встроенный в ваш телефон, классифицируется как ближний ИК (700-900 нм). Он охватывает линию между спектром видимого света и ИК-спектром. Ближний ИК-диапазон очень похож на видимый свет, но нам сложно его увидеть.

Излучение как видимого, так и ближнего инфракрасного света может нагревать объекты в зависимости от интенсивности света и времени воздействия. Длительное воздействие ИК-излучения высокой интенсивности и видимого света (взгляд на солнце или яркую лампочку) может привести к обесцвечиванию фоторецепторов и развитию катаракты. Чтобы потерять зрение из-за действия источника видимого или инфракрасного света низкой интенсивности, вам нужно держать глаза открытыми в пределах миллиметра от источника света в течение почти 20 минут. Это может произойти с лампочкой или ИК-светодиодом.

Основной проблемой ближнего ИК является отсутствие защитной реакции. Видимый свет легко определить, когда вы подвергаетесь воздействию слепящего источника, и ваши рефлексы заставляют вас прищуриться или отвести взгляд. Но ваши глаза не созданы, чтобы видеть ИК-свет, поэтому невозможно определить, когда вы подвергаетесь воздействию опасного количества. Вы же знаете, что нельзя смотреть на затмение, даже если оно не кажется таким ярким?

Дальнее инфракрасное излучение (25-350 мкм) невидимо и не используется в вашем телефоне. Дальнее инфракрасное излучение перекрывается с микроволнами в электромагнитном спектре, и, подобно микроволнам, дальнее инфракрасное излучение вызывает нагревание молекул воды. Как вы можете догадаться, длительное воздействие дальнего инфракрасного излучения может вызвать ожоги глаз и кожи, но нам не нужно об этом беспокоиться, поскольку ваш телефон использует только ближнее инфракрасное излучение.

Iris Scanner и Face ID – это формы биометрической идентификации, которые используются для разблокировки телефона и для открытия конфиденциальных приложений (например, банковских приложений). Оба процесса похожи и просты для понимания. Новые телефоны Apple и Samsung оснащены ИК-светодиодом, который излучает ближний ИК-свет, и ИК-камерой, способной захватывать ИК-свет.

С помощью Iris Scanning ваш Samsung Galaxy освещает ваши глаза инфракрасным светодиодом и снимает инфракрасную фотографию. Затем ваш телефон смотрит на детали ваших глаз и сравнивает их с предыдущими фотографиями. Если телефон может подвердить, что вы – это вы, то он разблокируется.

Но программное обеспечение для идентификации лица в iPhone X не просто сканирует ваши глаза; он сканирует всё ваше лицо. У iPhone X есть ИК-светодиод с точечной матрицей, когда он включается, всё ваше лицо освещается сотнями крошечных ИК-точек. Телефон делает инфракрасную фотографию, и эта фотография используется для проверки соответствия трехмерной структуры вашего лица с имеющимися данными.

Возможно, вы заметили, что ИК-светодиод на iPhone X невидим, а ИК-подсветка на Samsung Galaxy довольно заметна. Это потому, что Samsung намеренно продвигает свой ИК-светодиод как можно дальше в визуальный спектр. Верьте или нет, полоса инфракрасного света, которая перекрывает спектр видимого света, показывает больше текстуры и пигментации, чем инфракрасный свет с более низким спектром.

Если вам интересно, с какой именно областью инфракрасного спектра работают Samsung и iPhone… мы не знаем точных цифр. На страницах, посвященных Samsung Galaxy и iPhone X даже не упоминаются ИК-светодиоды. Но, зная, что ИК-камеры в вашем телефоне должны улавливать много деталей, чтобы сделать проверку эффективной, можно с уверенностью предположить, что они охватывают длину волны от 870 до 950 нм – точку перекрытия между ближним ИК-диапазоном и видимым светом.

Кроме того, биометрическая документация Renesas классифицирует ИК-светодиоды в телефонах как «малоопасные». По стандартам OSHA, инфракрасные продукты с низким уровнем риска не являются достаточно мощными, чтобы нагревать ваши глаза, и они не способны вызвать повреждение глаз при нормальном использовании.

Если вы ведёт запрос «ИК-сканер радужной оболочки», то найдёте многих людей, которые спрашивают, может ли инфракрасный свет повредить ваши глаза. И это справедливый вопрос. Большинство людей ничего не знают об ИК, и пугающий отказ от ответственности для сканера Iris Samsung предупреждает, что эпилептики, дети и люди, которые часто испытывают обмороки, должны избегать использования сканера Iris. (Интересно, что заявление об отказе ответственности Apple не делает таких предупреждений.)

Ваши результаты Google также покажут вам много дезинформации, опубликованной пользователями и блоггерами Reddit. Новостные и технические сайты бездумно републикуют эту ерунду, которая затрудняет поиск точной информации об ИК-сканере на вашем смартфоне. Откровенная дезинформация вредна для всех, поэтому мы потратим немного времени, чтобы опровергнуть некоторые слухи.

  1. Сразу скажем, ИК не вызывает рак. ИК является формой неионизирующего излучения, что означает, что он не может лишить молекулы своих электронов и не может вызвать рак. Рентгеновские лучи, гамма-лучи и высокочастотный ультрафиолетовый свет (более сильный, чем черный свет) являются формами ионизирующего излучения и могут вызывать рак. Любой, кто пытается сказать вам, что радиоволны, микроволны или инфракрасное излучение вызывают рак, понятия не имеет, о чём говорит.
  2. Ещё одно большое заблуждение, которое заключается в том, что инфракрасный светодиод в вашем телефоне – это лазер. Это не так. Лазеры имеют узкую длину волны света, и они движутся в одном направлении. Огни вашего смартфона занимают широкую длину волны. Они также рассеиваются линзами и фильтрами, потому что они должны освещать всё лицо.
  3. Наконец, научная статья о влиянии инфракрасного излучения на глаза кроликов напугала многих людей. По существу, кролики подвергались воздействию инфракрасного света, и у них развивались повреждения хрусталика и катаракта. Но если вы потратите минуту на прочтение этой статьи, станет ясно, что вы не сможете применить эти результаты к использованию ИК-сканеров в телефонах.

Прежде всего, ученые в этом исследовании использовали большие лампы для освещения глаз кроликов, и они выполняли эти воздействия в течение 5-10 минут за один раз. Инфракрасный источник в телефоне Samsung или Apple меньше муравья, и загорается только на 10 секунд. Кроме того, ИК-источники, используемые в телефонах, используют только частоту ближнего ИК-диапазона.

Лампы, использованные в исследовании на кроликах, излучали свет частоты ультрафиолетового излучения, частоты видимого света, частоты ближнего ИК-диапазона, средней ИК-частоты и частоты дальнего ИК-диапазона. Как вы, вероятно, знаете, ультрафиолетовый свет достаточно сильный и вызывает солнечные ожоги, а дальний инфракрасный свет похож на микроволновую печь и вызывает нагревание молекул воды.

Мы «очистили воздух» от всякой ерунды, но пугающий отказ от ответственности Samsung по-прежнему довлеет на нами. Несмотря на то, что потребительские ИК-устройства доступны на рынке в течение длительного времени, и есть строгие правила относительно использования ИК-светодиодов, это первый раз, когда мы получаем продукт, который регулярно бьёт ИК-светом в глаза людей. Как мы можем быть уверены, что технология безопасна?

Согласно Renesas и Smartvisionlights, менее 10 секунд визуального воздействия ближнего ИК-диапазона классифицируется как низкий риск. Чтобы инфракрасный светодиод в вашем телефоне повредил ваш глаз, вы должны держать его на расстоянии 1 мм от глаза в течение 17 минут. Это невозможно сделать в случае Galaxy или iPhone, так как оба продукта ограничивают ИК-излучение 10 секундами, и они не будут излучать ИК-свет, если устройство находится на расстоянии меньше 20 см от вашей головы.

В этих документах также упоминается, что «аномально светочувствительные люди» подвержены большему риску повреждения глаз ближним ИК-светом. Интересно отметить, что пределы экспозиции, установленные для ИК-светодиодов, не учитывают «аномально светочувствительных людей», поэтому возможно, что ИК-светодиод в вашем телефоне может повредить ваши глаза, если ваши глаза ненормально светочувствительны. Конечно, если вы необычно светочувствительны, то, вероятно, уже знаете об этом. Выходить на улицу в солнечный день для вас было бы кошмаром.

Как говорится в предупреждении Samsung, людям с эпилепсией или другими чувствительными к свету состояниями не следует использовать ИК-светодиод. Это предупреждение существует, чтобы помочь людям избежать обморока или приступа; это не имеет ничего общего с потерей зрения. Если у вас нет медицинского состояния, вызванного светом, вам не нужно беспокоиться об этом.

Мы также должны принять во внимание некоторые новые исследования, которые показывают, что случайное воздействие инфракрасного света с низким риском на самом деле полезно для глаз. Эти воздействия не являются достаточно длинными или интенсивными для повышения температуры вашего глаза, и они могут стимулировать клетки к исцелению поврежденной ткани. Некоторые ученые экспериментируют с ИК-светодиодами в качестве терапии для глаз, и эти светодиоды примерно такой же интенсивности, как и ИК-светодиоды в вашем телефоне.

Из того, что мы знаем прямо сейчас, мы можем быть уверены, что сканер Iris и Face ID не повредят вашим глазам. Но нет ничего абсолютного. Несмотря на то, что современные научные исследования показывают, что ИК-продукты с низким уровнем риска безвредны, никто не проверял влияние ежедневного воздействия инфракрасного света, скажем, в течение 30 лет.

Если вы обеспокоены тем, что инфракрасный свет от вашего телефона вреден для ваших глаз, то вы можете его выключить.

источник

Не так давно был представлен новый флагман Samsung Galaxy Note 7. Одной из его ключевых функций стала возможность разблокировки устройства при помощи сканирования радужки глаза.

Сканер радужки глаза, это один из устоявшихся штампов киноиндустрии, особенно, когда дело касается шпионских и научно-фантастических фильмов. Теперь эта технология стала не просто выдумкой, а перекочевала в повседневные гаджеты простых людей (а не супершпионов), в частности, в смартфоны, ну по крайней мере один точно. Посмотрим, как эта штука приживётся в смартфоностроении: перекочует ли она к другим производителям или останется бесполезной диковинкой Galaxy Note 7 (или вообще откровенной дичью), как проектор в китайском смартфоне. Тем не менее, нам стало интересно, как устроен этот сканер. Мы разобрались и спешим поделиться этим с вами.

Радужная оболочка наших глаз, как и отпечаток пальца имеет свой неповторимый рисунок. Поэтому это удобное средство аутентификации. Биометрические гражданские паспорта, если вы помните, фиксируют именно эту информацию, потому что в отличие от отпечатка пальцев, радужку глаза подделать пока не представляется возможным. Кроме того со временем она не изменяется.

Однако сканер не просто фотографирует ваш глаз, а потом сверяет с исходником. На практике процедура начинается с направленного инфракрасного луча ближнего спектра. Этот свет для идентификации подходит гораздо лучше, чем дневной, потому что камере легче захватить рисунок радужки, подсвеченный именно ИК-светом. Кроме того, такой сканер может работать в темноте. При этом процедуре идентификации радужной оболочки могут подвергаться даже люди с плохим зрением, так как ИК-луч свободно проходит через прозрачные очки и линзы. После того, как рисунок радужки зафиксирован, алгоритм переводит рисунок радужной оболочки глаза в код, который сравнивается с имеющейся базой.

Захват изображения глаза — полученная картинка — определение радужки и века — выделение этой области — удаление века с картинки — нормализация этой области — транскодирование — сравнение с базой данных

По большей части, сканер нового фаблета от Samsung работает по описанной выше схеме, любопытная деталь заключается в том, что на фронтальной панели Galaxy Note 7 располагается камера, которая занимается исключительно распознаванием радужной оболочки глаза. Почему же фронтальная камера не может выполнять эту задачу? Потому что камера должна быть чувствительна к ИК спектру. В обычных камерах ИК свет фильтруется, так как он портит обычные фотографии. Кроме этого считывающая камера имеет более узкий угол обзора, чтобы видеть глаз пользователя лучше, особенно на расстоянии.

Некоторые пользователи выразили озабоченность по поводу того, что такой сканер в Samsung Galaxy Note 7 может быть небезопасен, в частности, не приведёт ли его частое использование к необратимому повреждению глаз. Такие вопросы вполне резонны, ведь для сканирования смартфон отправляет луч света прямо в ваш глаз, и так как этот свет невидим для человека, то зрачок никак не пытается от него защититься, поэтому свет попадает на сетчатку, не встречая никаких преград.

Читайте также:  Как снять отек под глазом после прыща

На самом деле мы не можем быть на 100% уверенными, что частое использование сканера радужки глаза Samsung Galaxy Note 7 не будет иметь какого-то влияния на наши глаза. Если сейчас эту статью читает окулист, мы будем рады услышать ваше экспертное мнение в этом вопросе.

Сама компания предупреждает пользователей, что подносить смартфон слишком близко к глазам во время идентификации не нужно, если следовать этому предостережению всё должно быть хорошо. Однако так как считывание радужки не такое частое явление, массового тестирования и результатов, сделанных на основе людей, пока нет. Когда они появятся, может быть уже слишком поздно кого-то предупреждать, а может быть и наоборот — придёт подтверждение, что функция полностью безопасна.

Если вы запутались — проясню, да сканирование радужки и сетчатки — процессы схожие, но различаются по основному принципу. При сканировании сетчатки, алгоритм считывает не рисунок сетчатки, а изображение глазного дна. Но для бытовых условий гораздо проще пользоваться сканером радужной оболочки, так как для считывания сетчатки устройство нужно подносить вплотную к глазу. В случае со смартфоном это выглядело бы очень глупо.

В смартфонах уже давно есть считыватели отпечатков пальцев, они быстрые надёжные безопасные и достаточно дешёвые, чтобы быть установленными даже в китайских смартфонах дешевле $200. Зачем тогда нам сканеры радужной оболочки? Главным образом затем, что они в несколько раз более надёжны и безопасны. Главным доводом является то, что отпечатки пальцев мы оставляем почти на каждой поверхности, к которой прикасаемся, а значит копию отпечатка гораздо проще достать. При этом мокрые и грязные пальцы устройству часто тяжело распознать. Получить копию радужной оболочки крайне тяжело, а глаза изнутри никогда не заляпаны грязью, поэтому владельцу воспользоваться аутентификацией в любых условиях гораздо проще. Хотя, в кино уже давно придумали способ, как обойти эту защиту:

Я считаю, что сканер Samsung Galaxy Note 7 не сделает его хитом. Да, эта технология работает и ей можно лихо хвастаться друзьям, но для большинства — использование сканера отпечатка пальцев будет достаточно. Однако не исключено, что новинку оценит, в первую очередь, корпоративный сегмент, которому необходимо лучше, чем остальным защищать информацию на своём смартфоне. Для простых обывателей, думается мне, будет слишком лениво подносить смартфон на определённое расстояние, при этом совершая необходимые действия. Но это не говорит о том, что Samsung не разовьёт технологию или о том, что она неожиданно не выстрелит и перекочует даже в iPhone. Шансы у этой серьёзной игрушки есть.

источник

Мир, в котором очень большую роль играют цифровые технологии, которые обеспечивают сохранность личной информации, требует постоянно совершенствующих мер.

Именно поэтому последняя модель компании Samsung (Galaxy Note 7) была разработана со сканером радужной оболочки глаза, с уже известным всем сканером отпечатков пальцев, а также с платформой безопасности Knox. Информация ниже была опубликована на официальном сайте Samsung, и вам нужно понимать, что все утверждения основаны на словах самой компании. Несмотря на это, в статье описано как работает сканер глаза Iris и приведены инфографики.

Технология сканирования отпечатков пальцев Samsung широко используется для обеспечения безопасности устройства и защиты данных, например, для работы с мобильной платежной системой Samsung Pay. Но в Galaxy Note 7 была интегрирована технология сканирования радужной оболочки, чтобы предоставить пользователям дополнительную форму аутентификации для усиления безопасности. С помощью этой технологии пользователю ненужно даже прикасаться к смартфону, чтобы подтвердить свою личность. Нужно просто смотреть на экран устройства до завершения процесса сканирования.

Сканирование Iris представляет собой автоматизированный метод биометрической идентификации, который использует распознавание образцов радужной оболочки глаза или глаз.

Для получения подтверждения личности устройство сканирует диафрагму, которая представляет собой тонкий слой. Каждый человек имеет уникальный узор радужной оболочки в каждом глазу, который формируется в раннем возрасте и остается неизменным на протяжении жизни. Учитывая, что систему Iris практически невозможно подделать, сканирование радужной оболочки является одной из самых безопасных и надежных биометрических методик. Подобная технология широко применяется для контроля доступа, например, в пункт пограничного контроля и безопасности аэропорта. Samsung получила большой успех, внедрив технологию Galaxy Tab Iris, которая была создана для правительственных организаций Индии.

После того, как смартфон получает информацию о радужной оболочке глаза, он хранит ее в зашифрованном виде. Когда пользователь пытается получить доступ к контенту, например, защищенному приложению, включается в работу инфракрасный LED-луч и камера, чтобы заполучить образец радужной оболочки глаза для распознавания и сравнения с зашифрованным кодом.

Samsung удалось применить два новых компонента для внедрения сканера, при этом, не пожертвовав дизайном. Для этого устройство было оснащено специальной камерой, которая использует специальный фильтр изображения для приема и распознания изображений с помощью инфракрасных LED-лучей. Благодаря лучам сканер способен распознавать изображение даже при плохом освещении. Даже при отсутствии освещения, света от дисплея вполне достаточно.

Технология Iris является очень быстрой и надежной, заявляют в компании. В любом случае, процесс аутентификации происходит быстрее, чем сканирование отпечатка пальцев. С Galaxy Note 7 пользователи могут быть спокойными, зная, что их данные хранится в надежном месте (платформа Knox). Кроме того, если устройство будет украдено или утеряно, никто не сможет воспользоваться зашифрованной информацией.

Сканер радужной оболочки глаза, который используется в Galaxy Note 7, является безопасным для здоровья и получил самую высокую оценку Международной электротехнической комиссии (IEC). Кроме того, устройство автоматически выключится, если человеческий глаз находится слишком близко или слишком долго подвергается воздействию светодиодного датчика.

Используя эту технологию на примере Galaxy Note 7, доступны дополнительные услуги, которые обеспечивают должный уровень безопасности.
Одна из них — Secure Folder, которая позволяет пользователям управлять приложениями и файлами с помощью отпечатков пальцев, сканера радужной оболочки глаза или PIN-кода.

Пользователи могут применять эту услугу, чтобы сохранить личные и персональные данные, например, такие как банковская информация. Это также отличный инструмент для родителей, которые хотят заблокировать доступ к определенным играм или контенту от своих детей. Secure Folder (Безопасная Папка) проста в использовании и имеет несколько ограничений для хранения содержимого или совместного использования приложений на устройстве.

Еще одна дополнительная функция безопасности, Samsung Pass, дает возможность пользователям быстро заходить на веб-сайты с использованием биометрической аутентификации. Чтобы не тратить время на регулярный ввод имени и пароля, Samsung Pass станет стандартной функцией для новых моделей Note линейки Galaxy.

Кроме того, чтобы обеспечить безопасное хранение информации, Samsung также налаживает партнерские отношения с крупными финансовыми учреждениями (Bank of America, Citibank и U.S. Bank), чтобы интегрировать сканер радужной оболочки глаза в мобильные банковские приложения. Но мобильный банкинг — это только начало. Разработчики планируют использовать сканер для прочих видов деятельности. Технология сканирования радужной оболочки от Samsung в будущем будет расширяться и применяться в различных отраслях промышленности.

Поскольку мы храним достаточно много конфиденциальной информации в наших смартфонах, Galaxy Note 7 обеспечивает пользователям безопасность этих данных.

Для предприятий технология сканирования радужной оболочки также может быть применена.

источник

Как работает сканер радужной оболочки глаза и для чего он смартфону? Сканер радужной оболочки глаза в Samsung Galaxy S8 обманули с помощью фото Прибор для считывания сетчатку глаза.

Цена которого составляет всего $229,99. Это первый в мире смартфон который будет оснащен технологией распознавания глаза 2-го поколения.

Однако, когда речь идет о распознавании радужки глаза, люди склонны путать его с другим видом технологии идентификации под названием “сканирование сетчатки”. Сегодня в этой статье мы хотели бы обсудить сходства и различия в деталях между видами сканирования глаз.

Как определяются две технологии идентификации на основе глаз?

Распознавание радужки глаза

Распознавание радужки глаза, как биологическая система аутентификации, представляет собой автоматизированный метод, который использует математические методы распознавания образов на видеоизображении одного или обоих зрачков глаз индивидуума, чей комплекс случайных моделей являются уникальными, стабильными, и их можно увидеть с некоторого расстояния.

Сканирование сетчатки – это совсем другое, основана но глазной биометрической технологии, которая использует уникальные узоры на сетчатке глаза кровеносных сосудов человека. Человеческая сетчатка представляет собой тонкую ткань которая состоит из нервных клеток, расположенных в задней части глаза.

Сходства между распознаванием радужки и сканированием сетчатки глаза.

В биометрии, радужная оболочка и сканирование сетчатки глаза являются “глазной основой” технологии идентификации, которые основаны на уникальных физиологических характеристиках глаза для идентификации личности.

Разница для лучшего понимания

Хоть сканирование радужной оболочки и сетчатки глаза являются “глазно-основанными” биометрическими технологиями,есть еще определенные различия, которые помогут различить два метода. Радужная оболочка глаза всегда описывается как идеальная часть человеческого тела для биометрической идентификации. Причины указанны ниже:

  1. Распознавание радужки глаза применяет алгоритм, который может идентифицировать до 200 точек в том числе кольца, борозды и веснушек внутри радужной оболочки, гораздо более точно чем любая другая технология биометрической идентификации. Таким образом, технология распознавания радужной оболочки рассматривается как технология биометрической идентификации высокой точности. Она позволит значительно снизить уровень ложных совпадений и усилит безопасность личной жизни.
  2. Радужная оболочка каждого человека уникальна и текстура остается удивительно стабильной, которая вряд ли может измениться в течении как минимум двух лет. Точность измерения может зависеть от заболевания.
  3. Распознавание радужки глаза позволяет разблокировать ваш телефон более удобно и быстро. Возьмите свой телефон, сканируйте радужную оболочку, и ваш телефон будет разблокирован в течении одной секунды, быстрее и гораздо удобнее, чем когда-либо. Распознавание радужки глаза ничем не сложнее, чем фотографирование и занимает всего секунду, чтобы разблокировать телефон.
  4. Говорят, что сканирование сетчатки глаза вредно из-за видимого света в глаза; и некоторые ограничения будут происходить в темноте. В то же время, распознаванию радужки глаза нужно всего сделать фотографию для идентификации и так же годна для использования в темной окружающей среде, например в низкой освещенности в помещении или ночью.

Что же касается других преимуществ Распознавание радужки глаза , есть гораздо больше пунктов о которых заслуженно следует упомянуть. С запуском HOMTOM HT10 это принесет более экстраординарный и удивительный опыт для всех.

Технологии сканирования и распознавания радужной оболочки и сетчатки глаза — надежные методы биометрической идентификации. Они обладают различными характеристиками, которые оказывают сильное влияние на их производительность в зависимости от условий окружающей среды и целей внедрения. Оба биометрических метода используют бесконтактные сканеры, но между распознаванием радужной оболочки и сканированием сетчатки глаза есть и заметные различия. Одно из этих различий заключается в том, что распознавание радужной оболочки считается неинвазивным методом, а сканирование сетчатки глаза — инвазивным, так как во время процесса сканирования в глаза попадают лучи видимого света.

Эти биометрические технологии идентификации часто неправильно воспринимаются как одно и то же, несмотря на их отдельные отличия. В этой статье мы обсудим различия между этими двумя технологиями, которые сегодня активно внедряют в системы .

Сетчатка глаза человека представляет собой тончайшую ткань, состоящую из нервных клеток, расположенных в задней части глаза. Из-за сложного расположения капилляров, питающих сетчатку кровью, сетчатка каждого человека является уникальной. Сеть кровеносных сосудов в сетчатке настолько сложна, что отличается даже у идентичных близнецов. Рисунок сетчатки может измениться в результате развития таких заболеваний как, например, сахарный диабет или глаукома, однако, в остальных случаях сетчатка, как правило, остается неизменной с момента рождения до самой смерти.

Биометрическая технология сканирования сетчатки используется для отображения уникального рисунка сетчатки человека. Кровеносные сосуды внутри сетчатки поглощают свет с большей интенсивностью, чем окружающие ткани, поэтому их легко идентифицировать. Сканирование сетчатки глаза осуществляется путем проецирования невоспринимаемого глазом луча инфракрасного света в глаз человека через окуляр сканера. Поскольку кровеносные сосуды сетчатки абсорбируют этот свет интенсивнее, чем остальные части глаза, во время сканирования создается определенный узор, который преобразуется в компьютерный код и сохраняется в базе данных. Сканирование сетчатки также имеет медицинское применение. Такие инфекционные заболевания как СПИД, сифилис, малярия, ветряная оспа, а также такие наследственные заболевания как лейкемия, лимфома и серповидно-клеточная анемия оказывают свое воздействие на глаза. Беременность также влияет на глаза. Кроме того, признаки хронических заболеваний, таких как хроническая сердечная недостаточность или атеросклероз, также сначала проявляются в глазах.

Биометрические системы идентификации на основе сканирования сетчатки глаз в основном используются в государственных учреждениях с высокой степенью защиты, таких как ФБР, ЦРУ и NASA. Одна из причин, почему биометрические решения идентификации на основе считывания сетчатки глаз не были широко распространены — это их высокая стоимость.

Радужная оболочка глаза человека представляет собой тонкую круглую структуру глаза, которая отвечает за контроль размера и диаметра зрачков и, следовательно, количество света, попадающего на сетчатку. «Цвет глаз» — это цвет именно радужной оболочки глаза.

Читайте также:  Почему у кролика стали красные глаза

Распознавание радужной оболочки глаз представляет собой автоматизированный метод биометрической идентификации, который использует математические методы для распознавания уникального рисунка радужной оболочки глаз того или иного человека.

В отличие от сканирования сетчатки глаза, для распознавания радужной оболочки применяется технология использования едва уловимой инфракрасной подсветки, позволяющей получить изображения сложной структуры радужной оболочки глаза. Сотни миллионов людей в странах по всему миру, в целях безопасности и удобства, уже зарегистрированы в системах распознавания радужной оболочки глаза.

Использование биометрической технологии распознавания радужной оболочки глаза для идентификации пациентов в здравоохранении стремительно растет — вслед за применением в сфере пограничного контроля, в системах контроля доступа и . Благодаря сочетанию надежности, точности, скорости и относительно низким затратам (плюс тот факт, что технология является бесконтактной и неинвазивные), технология распознавания радужной оболочки глаз приобретает все большую популярность в качестве решения индивидуальной идентификации в широком спектре отраслей промышленности. Еще одним преимуществом радужной оболочки глаза в целях идентификации является неизменность ее структуры в течение десятилетий после первоначальной регистрации.

В заключение, давайте рассмотрим различия между технологиями распознавания радужной оболочки и сканирования сетчатки глаза:

  • Точность сканирования сетчатки может зависеть от заболевания; структура радужной оболочки является более стабильной.
  • Распознавание радужной оболочки похоже на фотосъемку и может быть сделано с расстояния; в то же время сканирование сетчатки требует очень близкого приближения глаза к окуляру.
  • Распознавание радужной оболочки получило более широкое признание в коммерческой среде, чем сканирование сетчатки глаза.
  • В то время как обе эти технологии являются бесконтактными, сканирование сетчатки глаза считается инвазивной технологией, поскольку подразумевает попадание в глаза лучей видимого света, тогда как распознавание радужной оболочки является неинвазивным.

Важно понимать различия между сканированием сетчатки глаза и распознаванием радужной оболочки, если вы планируете инвестировать в биометрию и ожидаете высокую отдачу от инвестиций. Мы надеемся, что смогли четко указать на различия между этими двумя современными .

Источник blog.m2sys.com. Перевод статьи выполнила администратор сайта Елена Пономаренко

Профилактические осмотры помогают диагностировать многие заболевания на ранних стадиях, однако некоторые из них могут быть обнаружены лишь тогда, когда болезнь уже запущена.

Кроме того, некоторые опасные для жизни патологии не могут быть выявлены в далёких от столицы регионах из-за отсутствия квалифицированных врачей. Изменить сложившееся положения дел могут учёные из Медицинского университета Вены, которые представили доступный сканер сетчатки глаза. С его помощью можно осуществлять раннюю диагностику многих заболеваний, в том числе и сахарного диабета.

Согласно изданию Science Daily, для своей разработки исследователи использовали данные, которые можно «считать» с сетчатки глаза любого человека, а информации она может дать немало. При разработке сканера использовалась технология оптической когерентной томографии (ОКТ), которая в течение 1,2 секунды производит до 40 000 снимков. Полученные данные анализируются алгоритмами на основе искусственного интеллекта, а после система выдает заключение.

Как удалось выяснить, такой метод диагностики без помощи врача-офтальмолога дает возможность выявить наличие у пациента диабета или же вычислить риск его появления, кроме того, можно получить данные о биологическом возрасте, склонности и стаже курения и еще ряде параметров. В обозримом будущем ученые планируют усовершенствовать алгоритм с целью диагностики возрастных дегенеративных нарушений, неврологических проблем, заболеваний почек, сердца и сосудов, печени, а также патологии остальных внутренних органов.

Одной из наиболее важных проблем при использовании сетчатки глаза для распознавания личности является движение головы или глаза во время сканирования. Из-за этих движений может возникнуть смещение, вращение и масштабирование относительно образца из базы данных (рис. 1).

Рис. 1. Результат движения головы и глаза при сканировании сетчатки.

Влияние изменения масштаба на сравнение сетчаток не так критично, как влияние других параметров, поскольку положение головы и глаза более или менее зафиксировано по оси, соответствующей масштабу. В случае, когда масштабирование всё же есть, оно столь мало, что не оказывает практически никакого влияния на сравнение сетчаток. Таким образом, основным требованием к алгоритму является устойчивость к вращению и смещению сетчатки.

Алгоритмы аутентификации по сетчатке глаза можно разделить на два типа: те, которые для извлечения признаков используют алгоритмы сегментации (алгоритм, основанный на методе фазовой корреляции; алгоритм, основанный на поиске точек разветвления) и те, которые извлекают признаки непосредственно с изображения сетчатки (алгоритм, использующий углы Харриса).

В реализации метод фазовой корреляции работает с бинарными изображениями, однако может применяться и для изображений в 8-битном цветовом пространстве.

Пусть и – изображения, одно из которых сдвинуто на относительно другого, а и – их преобразования Фурье, тогда:

Где – кросс-спектр;
– комплексно сопряженное

Вычисляя обратное преобразование Фурье кросс-спектра, получим импульс-функцию:

Найдя максимум этой функции, найдём искомое смещение.

Теперь найдём угол вращения при наличии смещения , используя полярные координаты:

Данная техника не всегда показывает хорошие результаты на практике из-за наличия небольших шумов и того, что часть сосудов может присутствовать на одном изображении и отсутствовать на другом. Чтобы это устранить применяется несколько итераций данного алгоритма, в том числе меняется порядок подачи изображений в функцию и порядок устранения смещения и вращения. На каждой итерации изображения выравниваются, после чего вычисляется их показатель схожести, затем находится максимальный показатель схожести, который и будет конечным результатом сравнения.

Показатель схожести вычисляется следующим образом:

В начале изображения выравниваются при помощи метода фазовой корреляции, описанного в предыдущем разделе. Затем на изображениях ищутся углы Харриса (рис. 2).


Рис. 2. Результат поиска углов Харриса на изображениях сетчатки.

Пусть найдена M+1 точка, тогда для каждой j-й точки её декартовы координаты преобразуются в полярные и определяется вектор признаков где

Модель подобия между неизвестным вектором и вектором признаков размера N в точке j определяется следующим образом:

Где – константа, которая определяется ещё до поиска углов Харриса.

Функция описывает близость и похожесть вектора ко всем признакам точки j.

Пусть вектор – вектор признаков первого изображения, где размера K–1, а вектор – вектор признаков второго изображения, где размера J–1, тогда показатель схожести этих изображений вычисляется следующим образом:

Нормировочный коэффициент для similarity равняется

Коэффициент в оригинальной статье предлагается определять по следующему критерию: если разница между гистограммами изображений меньше заранее заданного значения, то = 0.25, в противном случае = 1.


Рис. 3. Типы признаков (слева – точка бифуркации, справа – точка пересечения).

Для поиска точек, как на рис. 3, сегментированные сосуды сжимаются до толщины одного пикселя. Таким образом, можно классифицировать каждую точку сосудов по количеству соседей S:

  1. если S = 1, то это конечная точка;
  2. если S = 2, то это внутренняя точка;
  3. если S = 3, то это точка бифуркации;
  4. если S = 4, то это точка пересечения.

Далее анализируются 4 соседних пикселя найденной точки, которые ещё не были рассмотрены. Это приводит к 16 возможным конфигурациям (рис. 4). Если пиксель в середине окна не имеет соседей серого цвета, как показано на рис. 4 (a), то он отбрасывается и ищется другой пиксель кровеносных сосудов. В других случаях это либо конечная точка, либо внутренняя (не включая точки бифуркации и пересечения).


Рис. 4. 16 возможных конфигураций четырёх соседних пикселей (белые точки – фон, серые – сосуды). 3 верхних пикселя и один слева уже были проанализированы, поэтому игнорируются. Серые пиксели с крестиком внутри также игнорируются. Точки со стрелочкой внутри – точки, которые могут стать следующим центральным пикселем. Пиксели с чёрной точкой внутри – это конечные точки.

На каждом шаге сосед серого цвета последнего пикселя помечается как пройденный и выбирается следующим центральным пикселем в окошке 3 x 3. Выбор такого соседа определяется следующим критерием: наилучший сосед тот, у которого наибольшее количество непомеченных серых соседей. Такая эвристика обусловлена идеей поддержания однопиксельной толщины в середине сосуда, где большее число соседей серого цвета.

Из вышеизложенного алгоритма следует, что он приводит к разъединению сосудов. Также сосуды могут разъединиться ещё на этапе сегментации. Поэтому необходимо соединить их обратно.

Для восстановления связи между двумя близлежащими конечными точками определяются углы и как на рис. 5, и если они меньше заранее заданного угла то конечные точки объединяются.


Рис. 5. Объединение конечных точек после сжатия.

Чтобы восстановить точки бифуркации и пересечения (рис. 6) для каждой конечной точки вычисляется её направление, после чего производится расширение сегмента фиксированной длины Если это расширение пересекается с другим сегментом, то найдена точка бифуркации либо пересечения.


Рис. 6. Восстановление точки бифуркации.

Точка пересечения представляет собой две точки бифуркации, поэтому для упрощения задачи можно искать только точки бифуркации. Чтобы удалить ложные выбросы, вызванные точками пересечения, можно отбрасывать точки, которые находится слишком близко к другой найденной точке.

Для нахождения точек пересечения необходим дополнительный анализ (рис. 7).


Рис. 7. Классификация точек разветвления по количеству пересечений сосудов с окружностью. (a) Точка бифуркации. (b) Точка пересечения.

Как видно на рис. 7 (b), в зависимости от длины радиуса окружность с центром в точке разветвления может пересекаться с кровеносными сосудами либо в трех, либо в четырёх точках. Поэтому точка разветвления может быть не правильно классифицирована. Чтобы избавиться от этой проблемы используется система голосования, изображённая на рис. 8.


Рис. 8. Схема классификации точек бифуркации и пересечения.

В этой системе голосования точка разветвления классифицируется для трёх различных радиусов по количеству пересечений окружности с кровеносными сосудами. Радиусы определяются как: где и принимают фиксированные значения. При этом вычисляются два значения и означающие количество голосов за то, чтобы точка была классифицирована как точка пересечения и как точка бифуркации соответственно:

Где и – бинарные значения, указывающие идентифицирована ли точка с использованием радиуса как точка пересечения либо как точка бифуркации соответственно.

В случае если то тип точки не определён. Если же значение отличаются друг от друга, то при точка классифицируется как точка пересечения, в противном случае как точка бифуркации.

Само преобразование определяется как:

Где – координаты точки на первом изображении
– на втором изображении

Для нахождения преобразования подобия используются пары контрольных точек. Например, точки определяют вектор где – координаты начала вектора, – длина вектора и – направление вектора. Таким же образом определяется вектор для точек Пример представлен на рис. 9.


Рис. 9. Пример двух пар контрольных точек.

Параметры преобразования подобия находятся из следующих равенств:

Пусть количество найденных точек на первом изображения равняется M, а на втором N, тогда количество пар контрольных точек на первом изображении равно а на втором Таким образом, получаем возможных преобразований, среди которых верным выбирается то, при котором количество совпавших точек наибольшее.

Поскольку значение параметра S близко к единице, то T можно уменьшить, отбрасывая пары точек, неудовлетворяющие следующему неравенству:

Где – это минимальный порог для параметра
– это максимальный порог для параметра
– пара контрольных точек из
– пара контрольных точек из

После применения одного из возможных вариантов выравнивания для точек и вычисляется показатель схожести:

Где – пороговая максимальная дистанция между точками.
В случае если то

В некоторых случаях обе точки могут иметь хорошее значение похожести с точкой . Это случается, когда и находятся близко друг к другу. Для определения наиболее подходящей пары вычисляется вероятность схожести:

Чтобы найти количество совпавших точек строится матрица Q размера M x N так, что в i-й строке и j-м столбце содержится

Затем в матрице Q ищется максимальный ненулевой элемент. Пусть этот элемент содержится в -й строке и -м столбце, тогда точки и определяются как совпавшие, а -я строка и -й столбец обнуляются. После чего опять ищется максимальный элемент. Поиск таких максимумов повторяется до тех пор, пока все элементы матрицы Q не обнулятся. На выходе алгоритма получаем количество совпавших точек C.

Метрику схожести двух сетчаток можно определить несколькими способами:

Где – параметр, который вводится для настройки влияния количества совпавших точек;
f выбирается одним из следующих вариантов:

Метрика нормализуется одним из двух способов:

Где и – некоторые константы.


Рис. 10. Углы, образованные точками разветвления, в качестве дополнительных признаков.

Также можно применять шифр гаммирования. Как известно, сложение по модулю 2 является абсолютно стойким шифром, когда длина ключа равна длине текста, а поскольку количество точек бифуркации и пересечения не превышает порядка 100, но всё же больше длины обычных паролей, то в качестве ключа можно использовать комбинацию хешей пароля. Это избавляет от необходимости хранить в базе данных сетчатки глаза и хеши паролей. Нужно хранить только координаты, зашифрованные абсолютно стойким шифром.

Также была предпринята попытка реализации алгоритма, использующего углы Харриса, но получить удовлетворительных результатов не удалось. Как и в предыдущем алгоритме, возникла проблема в устранении вращения и смещения при помощи метода фазовой корреляции. Вторая проблема связана с недостатками алгоритма поиска углов Харриса. При одном и том же пороговом значении для отсева точек, количество найденных точек может оказаться либо слишком большим либо слишком малым.

Читайте также:  Средство от ячменя на глазу ребенку

В дальнейших планах стоит разработка алгоритма, основанного на поиске точек разветвления. Он требует гораздо меньше вычислительных ресурсов по сравнению с алгоритмом, основанном на методе фазовой корреляции. Кроме того, существуют возможности для его усложнения в целях сведения к минимуму вероятности взлома системы.

Другим интересным направлением в дальнейших исследованиях является разработка автоматических систем для ранней диагностики заболеваний, таких как глаукома, сахарный диабет, атеросклероз и многие другие.

P.s. по немногочисленным просьбам выкладываю

Биометрические системы аутентификации — системы аутентификации , использующие для удостоверения личности людей их биометрические данные.

Биометрическая аутентификация — процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путём преобразования этого образа в соответствии с заранее определенным протоколом аутентификации .

Не следует путать данные системы с системами биометрической идентификации , каковыми являются к примеру системы распознавания лиц водителей и биометрические средства учёта рабочего времени . Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию . Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца).

Различные системы контролируемого обеспечения доступа можно разделить на три группы в соответствии с тем, что человек собирается предъявлять системе:

1) Парольная защита. Пользователь предъявляет секретные данные (например, PIN-код или пароль).

1. Всеобщность: Данный признак должен присутствовать у всех людей без исключения.

2. Уникальность : Биометрия отрицает существование двух людей с одинаковыми физическими и поведенческими параметрами.

3. Постоянство: для корректной аутентификации необходимо постоянство во времени.

4. Измеряемость: специалисты должны иметь возможность измерить признак каким-либо устройством для дальнейшего занесения в базу данных.

5. Приемлемость: общество не должно быть против сбора и измерения биометрического параметра.

Идентификация по отпечаткам пальцев — самая распространенная биометрическая технология аутентификации пользователей. Метод использует уникальность рисунка папиллярных узоров на пальцах людей. Отпечаток , полученный с помощью сканера, преобразовывается в цифровой код , а затем сравнивается с ранее введенными наборами эталонов. Преимущества использования аутентификации по отпечаткам пальцев — легкость в использовании, удобство и надежность. Универсальность этой технологии позволяет применять её в любых сферах и для решения любых и самых разнообразных задач, где необходима достоверная и достаточно точная идентификация пользователей.

Для получения сведений об отпечатках пальцев применяются специальные сканеры. Чтобы получить отчётливое электронное представление отпечатков пальцев, используют достаточно специфические методы, так как отпечаток пальца слишком мал, и очень трудно получить хорошо различимые папиллярные узоры.

Обычно применяются три основных типа сканеров отпечатков пальцев: ёмкостные, прокатные, оптические. Самые распространенные и широко используемые это оптические сканеры, но они имеют один серьёзный недостаток. Оптические сканеры неустойчивы к муляжам и мертвым пальцам, а это значит, что они не столь эффективны, как другие типы сканеров. Так же в некоторых источниках сканеры отпечатков пальцев делят на 3 класса по их физическим принципам: оптические, кремниевые, ультразвуковые [ ] [ ] .

Данная технология биометрической аутентификации личности использует уникальность признаков и особенностей радужной оболочки человеческого глаза. Радужная оболочка — тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре; расположена за роговицей , между передней и задней камерами глаза, перед хрусталиком . Радужная оболочка образовывается ещё до рождения человека, и не меняется на протяжении всей жизни. Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером, рисунок радужки очень сложен, это позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Ученые также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов. Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки. Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование. Затем полученное изображение радужки преобразуется в упрощенную форму, записывается и хранится для последующего сравнения. Очки и контактные линзы, даже цветные, не воздействуют на качество аутентификации . [ ] [ ] .

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

В этом биометрическом методе для аутентификации личности используется форма кисти руки. Из-за того, что отдельные параметры формы руки не являются уникальными, приходится использовать несколько характеристик. Сканируются такие параметры руки, как изгибы пальцев, их длина и толщина, ширина и толщина тыльной стороны руки , расстояние между суставами и структура кости. Также геометрия руки включает в себя мелкие детали (например, морщины на коже). Хотя структура суставов и костей являются относительно постоянными признаками, но распухание тканей или ушибы руки могут исказить исходную структуру. Проблема технологии: даже без учёта возможности ампутации, заболевание под названием «артрит » может сильно помешать применению сканеров.

С помощью сканера, который состоит из камеры и подсвечивающих диодов (при сканировании кисти руки, диоды включаются по очереди, это позволяет получить различные проекции руки), затем строится трёхмерный образ кисти руки. Надежность аутентификации по геометрии руки сравнима с аутентификацией по отпечатку пальца.

Системы аутентификации по геометрии руки широко распространены, что является доказательством их удобства для пользователей. Использование этого параметра привлекательно по ряду причин. Процедура получения образца достаточно проста и не предъявляет высоких требований к изображению. Размер полученного шаблона очень мал, несколько байт. На процесс аутентификации не влияют ни температура , ни влажность , ни загрязнённость. Подсчеты, производимые при сравнении с эталоном, очень просты и могут быть легко автоматизированы .

Системы аутентификации, основанные на геометрии руки, начали использоваться в мире в начале 70-х годов . [ ] [ ]

Биометрическая аутентификация человека по геометрии лица довольно распространенный способ идентификации и аутентификации . Техническая реализация представляет собой сложную математическую задачу. Обширное использование мультимедийных технологий , с помощью которых можно увидеть достаточное количество видеокамер на вокзалах, аэропортах, площадях, улицах, дорогах и других местах скопления людей, стало решающим в развитии этого направления. Для построения трёхмерной модели человеческого лица, выделяют контуры глаз, бровей, губ, носа, и других различных элементов лица, затем вычисляют расстояние между ними, и с помощью него строят трёхмерную модель. Для определения уникального шаблона, соответствующего определенному человеку, требуется от 12 до 40 характерных элементов. Шаблон должен учитывать множество вариаций изображения на случаи поворота лица, наклона, изменения освещённости, изменения выражения. Диапазон таких вариантов варьируется в зависимости от целей применения данного способа (для идентификации, аутентификации, удаленного поиска на больших территориях и т. д.). Некоторые алгоритмы позволяют компенсировать наличие у человека очков, шляпы, усов и бороды . [ ] [ ]

Способ основан на исследованиях, которые показали, что термограмма лица уникальна для каждого человека. Термограмма получается с помощью камер инфракрасного диапазона . В отличие от аутентификации по геометрии лица, данный метод различает близнецов. Использование специальных масок, проведение пластических операций, старение организма человека, температура тела, охлаждение кожи лица в морозную погоду не влияют на точность термограммы. Из-за невысокого качества аутентификации, метод на данный момент не имеет широкого распространения .

Биометрический метод аутентификации по голосу , характеризуется простотой в применении. Данному методу не требуется дорогостоящая аппаратура, достаточно микрофона и звуковой платы . В настоящее время данная технология быстро развивается, так как этот метод аутентификации широко используется в современных бизнес-центрах. Существует довольно много способов построения шаблона по голосу. Обычно, это разные комбинации частотных и статистических характеристик голоса. Могут рассматриваться такие параметры, как модуляция , интонация , высота тона, и т. п.

Основным и определяющим недостатком метода аутентификации по голосу — низкая точность метода. Например, человека с простудой система может не опознать. Важную проблему составляет многообразие проявлений голоса одного человека: голос способен изменяться в зависимости от состояния здоровья, возраста, настроения и т. д. Это многообразие представляет серьёзные трудности при выделении отличительных свойств голоса человека. Кроме того, учёт шумовой компоненты является ещё одной важной и не решенной проблемой в практическом использовании аутентификации по голосу. Так как вероятность ошибок второго рода при использовании данного метода велика (порядка одного процента), аутентификация по голосу применяется для управления доступом в помещениях среднего уровня безопасности, такие как компьютерные классы, лаборатории производственных компаний и т. д.

источник

Первые сообщения о «взломе» биометрических систем защиты флагманских смартфонов компании Samsung (Galaxy S8 и S8+) появились фактически в день их презентации, в конце марта 2017 года. Напомню, что тогда испанский испанский обозреватель MarcianoTech вел прямую Periscope-трансляцию с мероприятия Samsung и обманул систему распознавания лиц в прямом эфире. Он сделал селфи на собственный телефон и продемонстрировал полученное фото Galaxy S8. Как это ни странно, этот простейший трюк сработал, и смартфон был разблокирован.

Однако флагманы Samsung комплектуются сразу несколькими биометрическими системами: сканером отпечатков пальцев, системой распознавания радужной оболочки глаза и системой распознавания лиц. Казалось бы, сканеры отпечатков и радужной оболочки должны быть надежнее? По всей видимости, нет.

Исследователи Chaos Computer Club (CCC) сообщают, что им удалось обмануть сканер радужной оболочки глаза с помощью обыкновенной фотографии, сделанной со средней дистанции. Так, известный специалист Ян «Starbug» Криссер (Jan Krissler) пишет, что достаточно сфотографировать владельца Galaxy S8 таким образом, чтобы его глаза были видны в кадре. Затем нужно распечатать полученное фото и продемонстрировать его фронтальной камере устройства.

Единственная сложность заключается в том, что современные сканеры радужной оболочки глаза (равно как и системы распознавания лиц) умеют отличать 2D-изображения от реального человеческого глаза или лица в 3D. Но Starbug с легкостью преодолел и эту сложность: он попросту приклеил контактную линзу поверх фотографии глаза, и этого оказалось достаточно.

Для достижения наилучшего результата специалист советует делать фото в режиме ночной съемки, так как это позволит уловить больше деталей, особенно если глаза жертвы темного цвета. Также Крисслер пишет, что распечатывать фотографии лучше на лазерных принтерах компании Samsung (какая ирония).

«Хорошей цифровой камеры с линзой 200 мм будет вполне достаточно, чтобы с расстояния до пяти метров захватить изображение, пригодное для обмана системы распознавания радужной оболочки глаза», — резюмирует Крисслер.

Данная атака может оказаться куда опаснее, чем банальный обман системы распознавания лиц, ведь если последнюю нельзя использовать для подтверждения платежей в Samsung Pay, то радужную оболочку глаза для этого использовать как раз можно. Найти качественную фотографию жертвы в наши дни явно не составит труда, и в итоге атакующий сможет не просто разблокировать устройство и получить доступ к информации пользователя, но и похитить средства из чужого кошелька Samsung Pay.

Специалисты Chaos Computer Club предупреждают пользователей, что не стоит доверять биометрическим системам защиты сверх меры и рекомендуют применять старые добрые PIN-коды и графические пароли.

Видеоролик ниже пошагово иллюстрирует все этапы создания фальшивого «глаза» и демонстрирует последующий обман Samsung Galaxy S8.

Представители компании Samsung прокомментировали ситуацию:

«Компании известно об этом сообщении. Samsung заверяет пользователей, что технология распознавания радужной оболочки глаза в Galaxy S8 была разработана и внедрена после тщательного тестирования, чтобы обеспечить высокий уровень точности сканирования и предотвратить попытки несанкционированного доступа.

Описываемый в упомянутом материале способ может быть реализован только с использованием сложной техники и совпадении ряда обстоятельств. Нужна фотография сетчатки высокого разрешения, сделанная на ИК-камеру, контактные линзы и сам смартфон. В ходе внутреннего расследования было установлено, что добиться результата при использовании такого метода невероятно сложно.

Тем не менее, даже при наличии потенциальной уязвимости, специалисты компании приложат все усилия, чтобы в кратчайшие сроки обеспечить безопасность конфиденциальных и личных данных пользователей».

источник

Источники:
  • http://wylsa.com/how-note-7-iris-scanner-works/
  • http://mobcompany.info/interesting/kak-rabotaet-skaner-raduzhnoj-obolochki-glaza-iris-v-galaxy-note-7.html
  • http://www.eco-portal.ru/kak-rabotaet-skaner-raduzhnoi-obolochki-glaza-i-dlya-chego-on.html
  • http://xakep.ru/2017/05/24/iris-recognition-system-bypass/