Меню Рубрики

Система идентификации личности по радужной оболочке глаза

уЙУФЕНБ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ рбрймпо «гЙТЛПО» ОБ ВБЪЕ ВМПЛБ ДПУФХРБ гйтлпо-4

пФУЛБОЙТПЧБОЩЕ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ

уЙУФЕНБ рбрймпо «гЙТЛПО» ПУОПЧБОБ ОБ ВЙПНЕФТЙЮЕУЛПН НЕФПДЕ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ.

тБУРПЪОБЧБОЙЕ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ СЧМСЕФУС ПДОЙН ЙЪ ОБЙВПМЕЕ ФПЮОЩИ Й ОБДЕЦОЩИ УРПУПВПЧ ВЙПНЕФТЙЮЕУЛПК ЙДЕОФЙЖЙЛБГЙЙ. чЕТПСФОПУФШ ФПЗП, ЮФП УЙУФЕНБ «ОЕ ХЪОБЕФ УЧПЕЗП» ЙМЙ «РТПРХУФЙФ ЮХЦПЗП» ДМС ЬФПЗП НЕФПДБ РТБЛФЙЮЕУЛЙ ТБЧОБ ОХМА.

пДОЙН ЙЪ РТЕЙНХЭЕУФЧ НЕФПДБ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦЛЕ СЧМСЕФУС ЕЗП “ОЕБЗТЕУУЙЧОПУФШ” Л РТПЧЕТСЕНПНХ – ОЕФ ОЕРПУТЕДУФЧЕООПЗП ЛПОФБЛФБ ЮЕМПЧЕЛБ У БРРБТБФХТПК, ЪБИЧБФ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ РТПЙЪЧПДЙФУС РТПУФП РТЙ ЧЪЗМСДЕ Ч ПВЯЕЛФЙЧ УЛБОЕТБ.

уЛБОЕТ БОБМЙЪЙТХЕФ ЛБЮЕУФЧП ЙЪПВТБЦЕОЙС ЗМБЪБ Ч ЛБДТЕ, ПРТЕДЕМСЕФ ГЕОФТ ЪТБЮЛБ, ГЕОФТ ТБДХЦОПК ПВПМПЮЛЙ Й ЕЕ ЗТБОЙГЩ. ъБФЕН РТПЙУИПДЙФ УПРТПЧПЦДБАЭЙКУС УЙЗОБМПН ЪБИЧБФ ЙЪПВТБЦЕОЙС, ЕЗП ЛПДЙТПЧБОЙЕ Й РТПЧЕТЛБ РП вд.

  • ТЕЗЙУФТБГЙС Й ГЙЖТПЧПЕ ЛПДЙТПЧБОЙЕ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ
  • УПЪДБОЙЕ Й ИТБОЕОЙЕ Ч ЬМЕЛФТПООПК вд НБУУЙЧБ ЪБРЙУЕК, ЛБЦДБС ЙЪ ЛПФПТЩИ УПДЕТЦЙФ: ЪБЛПДЙТПЧБООПЕ ЙЪПВТБЦЕОЙЕ ТБДХЦОПК ПВПМПЮЛЙ, ФЕЛУФПЧЩЕ ДБООЩЕ, ЖПФПЗТБЖЙЙ ЪБТЕЗЙУФТЙТПЧБООПК МЙЮОПУФЙ
  • РТПЧЕТЛБ ЛПДБ ТБДХЦОПК ПВПМПЮЛЙ РП вд Ч ТЕЦЙНЕ «ПДЙО-ЛП НОПЗЙН»
  • РТПЧЕТЛБ ЛПДБ ТБДХЦОПК ПВПМПЮЛЙ РП вд Ч ТЕЦЙНЕ «ПДЙО-Л ПДОПНХ»
  • ТБВПФБ У вд: РПМХЮЕОЙЕ ЧЩВПТПЛ ЙЪ вд, УПТФЙТПЧЛБ УРЙУЛПЧ вд, ХДБМЕОЙЕ Й ТЕДБЛФЙТПЧБОЙЕ ЪБРЙУЕК Й Ф.Д.


йОФЕЗТБГЙС УЙУФЕНЩ рбрймпо «гЙТЛПО» Ч улхд

уЙУФЕНБ ТЕЗЙУФТБГЙЙ Й ТБУРПЪОБЧБОЙС РП ТЙУХОЛХ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ рбрймпо «гЙТЛПО» БДБРФЙТПЧБОБ ДМС ЙОФЕЗТБГЙЙ Ч БЧФПНБФЙЪЙТПЧБООЩЕ УЙУФЕНЩ ЛПОФТПМС Й ХРТБЧМЕОЙС ДПУФХРПН (улхд). дМС ЬФЙИ ГЕМЕК ОБ РТЕДРТЙСФЙЙ ТБЪТБВПФБОБ SDK-ВЙВМЙПФЕЛБ рбрймпо гйтлпо SDK, РПУФБЧМСЕНБС УПЧНЕУФОП У ВМПЛПН ДПУФХРБ гйтлпо-4.

рПУФТПЕОЙЕ улхд ОБ ВБЪЕ ВМПЛПЧ ДПУФХРБ гйтлпо-4 ЙМЙ ЙОФЕЗТБГЙС ВМПЛПЧ ДПУФХРБ Ч ДЕКУФЧХАЭХА улхд ПУХЭЕУФЧМСЕФУС РХФЕН ПВТБЭЕОЙС Л ЖХОЛГЙСН ВЙВМЙПФЕЛЙ рбрймпо гйтлпо SDK УП УФПТПОЩ ЛМЙЕОФУЛПЗП РТЙМПЦЕОЙС.

жХОЛГЙЙ ЖБКМПЧПЗП УЕТЧЕТБ ЧПЪМБЗБАФУС ОБ ГЕОФТБМШОЩК ХЪЕМ улхд. чЪБЙНПДЕКУФЧЙЕ ЧУФТПЕООПЗП Ч гйтлпо-4 ЧЩЮЙУМЙФЕМС Й ГЕОФТБМШОПЗП ХЪМБ улхд ПУХЭЕУФЧМСЕФУС Ч МПЛБМШОПК УЕФЙ РП РТПФПЛПМХ Ethernet. рЕТЕДБЮБ ЛПНБОД НЕЦДХ ЧЩЮЙУМЙФЕМЕН Й ПЛПОЕЮОЩН ПВПТХДПЧБОЙЕН улхд – ЮЕТЕЪ ЙОФЕТЖЕКУОЩК РПТФ RS-232 (RS-485).

лБЦДЩК ВМПЛ ДПУФХРБ РПДДЕТЦЙЧБЕФ ЪБИЧБФ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ, ЛБЛ Ч ТЕЦЙНЕ ТЕЗЙУФТБГЙЙ, ФБЛ Й Ч ТЕЦЙНБИ ЧЕТЙЖЙЛБГЙЙ (УТБЧОЕОЙЕ У ЛПОФТПМШОЩН ЫБВМПОПН «ПДЙО-Л-ПДОПНХ») ЙМЙ ЙДЕОФЙЖЙЛБГЙЙ («ПДЙО-ЛП-НОПЗЙН»). дМС ТБВПФЩ Ч ТЕЦЙНЕ ЧЕТЙЖЙЛБГЙЙ ВМПЛ ДПУФХРБ ДПРПМОСЕФУС ХЪМПН УЮЙФЩЧБОЙС РЕТУПОБМШОЩИ ID-ЛБТФ.

лБЦДЩК ВМПЛ ДПУФХРБ РПДДЕТЦЙЧБЕФ УПВУФЧЕООХА ВБЪХ ДБООЩИ ВЙПНЕФТЙЮЕУЛЙИ ДБООЩИ, ЮЕН ПВЕУРЕЮЙЧБЕФУС ЗЙВЛПУФШ ОБУФТПКЛЙ УЙУФЕНЩ Й ЙУЛМАЮБАФУС РПФЕТЙ ЧТЕНЕОЙ, УЧСЪБООЩЕ У ЧОХФТЙУЕФЕЧЩН ЧЪБЙНПДЕКУФЧЙЕН.

ч РТБЛФЙЮЕУЛПК ТЕБМЙЪБГЙЙ улхд ГЕМЕУППВТБЪОП ПУФБЧЙФШ ЖХОЛГЙА ТЕЗЙУФТБГЙЙ ОБ ПДОПН ЙМЙ ОЕУЛПМШЛЙИ ВМПЛБИ ДПУФХРБ. оБ ПУФБМШОЩИ ПУХЭЕУФЧМСЕФУС ФПМШЛП ПРЕТБГЙС ЙДЕОФЙЖЙЛБГЙЙ/ЧЕТЙЖЙЛБГЙЙ.

фЕТТЙФПТЙБМШОПЕ НБУЫФБВЙТПЧБОЙЕ УЙУФЕНЩ ПВЕУРЕЮЙЧБЕФУС ЧЧЕДЕОЙЕН ДПРПМОЙФЕМШОЩИ ВМПЛПЧ ДПУФХРБ У РПДЛМАЮЕОЙЕН ЙИ Л ГЕОФТБМШОПНХ ХЪМХ улхд РП МАВЩН ДПУФХРОЩН МЙОЙСН УЧСЪЙ, РПДДЕТЦЙЧБАЭЙН РТПФПЛПМ TCP/IP. лПМЙЮЕУФЧП ВМПЛПЧ ДПУФХРБ Ч УЙУФЕНЕ ОЕ ПЗТБОЙЮЙЧБЕФУС.

рПДПВОБС УЙУФЕНБ ОБИПДЙФУС Ч РТБЛФЙЮЕУЛПК ЬЛУРМХБФБГЙЙ ОБ ПДОПН ЙЪ РТЕДРТЙСФЙК юЕМСВЙОУЛПК ПВМБУФЙ.

вМПЛ ДПУФХРБ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ гйтлпо-4

вМПЛ ДПУФХРБ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ гйтлпо-4 РТЕДУФБЧМСЕФ УПВПК ПЛПОЕЮОЩК ХЪЕМ ТЕЗЙУФТБГЙЙ Й ТБУРПЪОБЧБОЙС РП ТЙУХОЛХ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ.

вМПЛ ДПУФХРБ РТЕДОБЪОБЮЕО ДМС ЪБИЧБФБ Й БЧФПНБФЙЮЕУЛПЗП УПРПУФБЧМЕОЙС ЙЪПВТБЦЕОЙК ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ ЛБЛ Ч БЧФПОПНОПН ТЕЦЙНЕ, ФБЛ Й Ч УПУФБЧЕ БЧФПНБФЙЪЙТПЧБООПК УЙУФЕНЩ ЛПОФТПМС Й ХРТБЧМЕОЙС ДПУФХРПН (булхд) Ч ТЕЦЙНБИ ЧЕТЙЖЙЛБГЙЙ (УТБЧОЕОЙЕ У ЛПОФТПМШОЩН ЫБВМПОПН «ПДЙО-Л-ПДОПНХ») ЙМЙ ЙДЕОФЙЖЙЛБГЙЙ («ПДЙО-ЛП-НОПЗЙН»).

ч БЧФПОПНОПН ТЕЦЙНЕ ТЕЗЙУФТБГЙС РПМШЪПЧБФЕМЕК, УПЪДБОЙЕ Й ИТБОЕОЙЕ ВБЪЩ ЛМАЮЕК ПУХЭЕУФЧМСЕФУС МПЛБМШОП ОБ ВМПЛЕ ДПУФХРБ. вМПЛ ЧУЕЗДБ ТБВПФБЕФ Ч ТЕЦЙНЕ ЙДЕОФЙЖЙЛБГЙЙ Й РТЙ ХУРЕЫОПН ТБУРПЪОБЧБОЙЙ ХРТБЧМСЕФ ЬМЕЛФТПООЩН ЪБНЛПН.

рТЙ ТБВПФЕ ВМПЛБ Ч УПУФБЧЕ булхд Ч ТЕЦЙНЕ ЧЕТЙЖЙЛБГЙЙ ВБЪБ ДБООЩИ ЛМАЮЕК НПЦЕФ УПЪДБЧБФШУС ОБ РХОЛФЕ ТЕЗЙУФТБГЙЙ Й ИТБОЙФШУС ОБ УЕТЧЕТЕ. булхд ЧЪБЙНПДЕКУФЧХЕФ У ВМПЛПН ДПУФХРБ РП РТПФПЛПМХ, ПРЙУБООПНХ Ч SDK. лМАЮ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ УТБЧОЙЧБЕФУС «ПДЙО-Л-ПДОПНХ» У ЛПОФТПМШОЩН ЫБВМПОПН У РПНПЭША ДПРПМОЙФЕМШОПЗП ЙДЕОФЙЖЙЛБФПТБ — ВЕУЛПОФБЛФОПК ЛБТФЩ, ВТЕМПЛБ Й Ф. Р.

пФМЙЮЙЕ ТБВПФЩ ВМПЛБ Ч УПУФБЧЕ булхд Ч ТЕЦЙНЕ ЙДЕОФЙЖЙЛБГЙЙ УПУФПЙФ Ч ФПН, ЮФП ЛМАЮ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ ЙДЕОФЙЖЙГЙТХЕНПЗП УХВЯЕЛФБ УТБЧОЙЧБЕФУС «ПДЙО-ЛП-НОПЗЙН» УП ЧУЕНЙ ЪБРЙУСНЙ вд, ЪБЗТХЦЕООЩНЙ Ч ВМПЛ ДПУФХРБ булхд.

вМПЛ ДПУФХРБ ТБЪНЕЭБЕФУС Ч ЛПОФТПМЙТХЕНПК ФПЮЛЕ РЕТЕУЕЮЕОЙС ПИТБОСЕНПЗП РЕТЙНЕФТБ Й ЛТЕРЙФУС ОБ ЧЕТФЙЛБМШОПК РПЧЕТИОПУФЙ Ч ОЕРПУТЕДУФЧЕООПК ВМЙЪПУФЙ ПФ ПВПТХДПЧБООПЗП РТПИПДБ Ч ПИТБОСЕНПЕ РПНЕЭЕОЙЕ, У ЧОЕЫОЕК ЕЗП УФПТПОЩ.

вМПЛ ДПУФХРБ ПВПТХДПЧБО ЪЕТЛБМПН РПЪЙГЙПОЙТПЧБОЙС Й ВМПЛПН УЧЕФПДЙПДОПК ЙОДЙЛБГЙЙ, ФБЛЦЕ ТЕБМЙЪПЧБОБ ЖХОЛГЙС ЗПМПУПЧПК РПДУЛБЪЛЙ. чУЕ ЬФЙ ЙОУФТХНЕОФЩ ЙУРПМШЪХАФУС ДМС ХРТПЭЕОЙС РПЪЙГЙПОЙТПЧБОЙС ПВЯЕЛФБ Ч ТБВПЮЕК ПВМБУФЙ УЛБОЕТБ.

дМС ЪБРХУЛБ РТПГЕДХТЩ ЪБИЧБФБ ЙЪПВТБЦЕОЙС ДПУФБФПЮОП РПДПКФЙ Л ВМПЛХ ДПУФХРБ Й ХЧЙДЕФШ Ч ЪЕТЛБМЕ РПЪЙГЙПОЙТПЧБОЙС ПФТБЦЕОЙЕ УЧПЙИ ЗМБЪ. ъБИЧБФ ЙЪПВТБЦЕОЙС РТПЙУИПДЙФ ОБ ТБУУФПСОЙЙ 350—500 НН ПФ РЕТЕДОЕК РБОЕМЙ ВМПЛБ ДПУФХРБ Ч РПМЕ ЪТЕОЙС ЕЗП ПРФЙЮЕУЛПЗП ВМПЛБ.

тЕЗХМЙТПЧЛБ РТЙВПТБ РПД ТПУФ ЮЕМПЧЕЛБ ПУХЭЕУФЧМСЕФУС ЧТХЮОХА, РПЧПТПФПН РЕТЕДОЕК РБОЕМЙ ОБ ОЕПВИПДЙНЩК ХЗПМ.

ч УЛБОЕТЕ ТБДХЦОПК ПВПМПЮЛЙ ТЕБМЙЪПЧБОБ ЖХОЛГЙС БЧФПЖПЛХУБ. йУРПМШЪХЕНБС ЙОЖТБЛТБУОБС РПДУЧЕФЛБ ВЕЪПРБУОБ ДМС ЪТЕОЙС.

ч УЙУФЕНЕ ЙУРПМШЪХАФУС ФПМШЛП ЮЕТОП-ВЕМЩЕ ЙЪПВТБЦЕОЙС ДМС ФПЗП, ЮФПВЩ ОБ ТЕЪХМШФБФ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ ОЕ ЧМЙСМП ГЧЕФПЧПЕ ЙЪНЕОЕОЙЕ ТБДХЦОПК ПВПМПЮЛЙ, РТПЙУИПДСЭЕЕ Ч ТЕЪХМШФБФЕ РЕТЕОЕУЕООЩИ ЪБВПМЕЧБОЙК.

фЕИОЙЮЕУЛЙЕ ИБТБЛФЕТЙУФЙЛЙ ВМПЛБ ДПУФХРБ гйтлпо-4

источник

Авторы: Дегтярева А.А., Вежневец В.П.

Обоснование.

Глаз – пожалуй, единственный внутренний орган человека, который виден снаружи. Поскольку внутренние органы человека уникальны, а изображение глаза к тому же можно легко получить обыкновенным цифровым фотоаппаратом, возник вопрос о том, можно ли использовать рисунок радужки как некоторый код, отличающий одного человека от другого.

Развитие глаз начинается у зародыша человека в начале второго триместра и заканчивается на восьмом месяце беременности (впрочем, это не касается цвета глаз, который может меняться в течение первого года жизни; часто младенцы рождаются голубоглазыми и впоследствии глаза ребенка темнеют). Это означает, что даже у однояйцовых близнецов радужки различны. Рисунок радужки может меняться в течение жизни только вследствие болезней глаза, таких как катаракта, но часто даже на перенесших операцию глазах рисунок остается прежним либо меняется незначительно [3].

Единственной функцией радужки является контролировать количество света, которое попадает на сетчатку глаза через зрачок. Контроль осуществляется сокращением мускулатуры радужки.

Рисунок радужки в большой степени случаен, а чем больше степень случайности, тем больше вероятность того, что конкретный рисунок будет уникальным. Математически описывается степенью свободы. Исследования показали, что текстура радужки имеет степень свободы равной 250, что гораздо больше степени свободы отпечатков пальцев (35) и изображений лиц (20) [2]. Это означает, что использование текстуры радужки для идентификации личности в большой степени оправдано и весьма перспективно.

Идея использовать текстуру радужки для идентификации личности была предложена в 70-80х годах прошлого века. В 1981 Flom (ученый) и Aran Safir (офтальмолог) начали активно изучать научные медицинские доклады об устройстве глаза и, в частности, радужки человека, по результатам исследования сделали вывод о возможности использования текстуры радужки для задач идентификации. В 1987 они обратились в Кэмбридж с приглашением к сотрудничеству ученых в области computer science. На их приглашение откликнулся ученый по имени John Daugman. Заинтересовавшись темой, он начал работать в этом направлении. Результаты своих исследований Daugman впервые опубликовал в 1992 на конференции . На сегодняшний момент работы Daugman’а является основополагающим трудом в данной области. В 1994 году система идентификации личности по радужной оболочке глаза на основе исследований Daugman’а была запатентована (патент 5 291 560). Разумеется, задача не могла остаться без внимания. В 1996 Richard P. Wilds предложил альтернативный метод хранения информации о текстуре, а в 1998 еще один метод был предложен W. Boles. Позже были предложены и другие методы. На настоящий момент три из предложенных подходов получили коммерческое распространение – это подход исследовательских групп Daugman, Noh и Lim [1]. Среди компаний, занимающихся идентификацией, можно назвать Iridian, IriTech, Evermedia. Более подробно об использованных ими, а также других, некоммерческих, методах будет рассказано ниже.

Общий алгоритм

Методы идентификации личности по радужной оболочке построены по одному и тому же принципу – выделение частотной или какой-либо другой информации о текстуре радужки из изображения и сохранение этой информации в виде специального кода (для системы Daugman этот код получил специальное название – IrisCode (радужковый код)). Можно сравнивать коды радужек, и хранить коды радужек разных людей в базе данных. Построение кода производится в три этапа:

1. Выделение радужки из общего изображения

2. Предобработка полученного изображения – например убирание шума(denoising), улучшение изображения (enhansing), в том числе выравнивание гистограммы, убирание блика. Некоторые методы «разворачивают» круглый зрачок в прямоугольное изображение – происходит переход из полярных координат в декартовы. Иногда после такой «развертки» часть изображения отрезается, чтобы накопленная на данном этапе ошибка не повлияла на качество распознавания.

3. Составление кода. Предобработанное изображение фильтруется способом, зависящим от конкретного метода. По результатам фильтрации составляется представление в виде кода.

Для кодов необходимо выработать критерий сравнения. Часто код записывается в виде последовательности битов и критерием сравнения служит код Хэмминга. В частности, код Хэмминга используется в системах Daugman, Tisse [6]. Большинство методов работает с изображениями в градациях серого либо картами яркости изображений, то есть цветовая составляющая является избыточной.

Локализация радужки

Некоторые методы, например Wildes, используют специальное оборудование для захвата изображения, чтобы полученное изображение глаза было высокого разрешения, с хорошей контрастностью, освещением (при этом человек, которого снимают, не должен чувствовать дискомфорта от слишком яркой вспышки), и центрировано (радужка должна находиться в центре изображения). Кроме того, система камер должна быть неинвазивна, то есть не принуждать человека сесть в определенную позу на фиксированном расстоянии от камеры при специальном освещении. Для этого Wildes предлагает специальную систему камер [4]. Иногда, кроме снимка в видимом диапазоне, делается дополнительный снимок инфракрасной камерой [7].

Для того, чтобы отделить собственно радужку от остальных деталей на изображении, в простейшем случае можно использовать выделение краев (путем анализа первой производной) и последующую аппроксимацию границ радужки простыми геометрическими объектами. Так, окружность зрачка и внешнюю границу радужки можно найти при помощи преобразования Хафа (Hough transform) [5]. Другие методы дополнительно определяют границу радужки и век двумя параболами, как Wildes, либо просто отрезают те части изображения, которые могут не относиться к радужке, как Daugman, Ma [4], [5]. Если для захвата изображения не было использовано специальной аппаратуры, может понадобиться предварительное подавление нежелательных эффектов, таких как блик внутри зрачка от вспышки либо другого яркого источника света, если эти артефакты мешают корректной работе алгоритма выделения радужки [6].

Нормализация изображения

Часто для дальнейшей работы производится перевод изображения радужки из полярных координат в декартовы [5], [6], [7], [8], [9]. Однако есть методы и не требующие такого перевода [4], [11]. В частности, [11] использует обратный перевод – из декартовых координат в полярные, причем перевод задается специальным образом так, чтобы окружность границы зрачка и радужки при переводе отобразилась на прямую. К полученному изображению можно применить фильтрацию гауссовым фильтром для устранения высокочастотного шума [5], [8] или медианную фильтрацию [7]. После этого изображение все еще слабоконтрастно, и для повышения надежности производят выравнивание гистограммы (histogram equalization) [5], [8], [9]. Часто помимо этого производится отбрасывание малозначащих частей изображения – это могут быть верхняя и нижняя строки (по несколько пикселей) изображения после его перевода в декартовы координаты [5], [6] или устранение бликующих областей, портящих рисунок радужки [11].

Составление кода

После проведенной предобработки изображение радужки готово к тому, чтобы из него можно было извлечь более формальную информацию. К классическим способам составления кода можно отнести пространственно-частотную свертку изображения фильтрами Габора (Gabor’s filters), предложенную Daugman. Каждый бит кода определяется знаком результата воздействия двухмерного фильтра Габора на некоторую небольшую окрестность текстуры радужки [12]. Для кода Daugman и подобных ему в качестве сравнения используется расстояние Хэмминга (количество отличающихся бит кода). Развитием этого направления является применение специальных симметричных функций Circular symmetric filter [5]. Другой модификацией кода на основе фильтров Габора является составление кода на основе среднего абсолютного отклонения (average absolute deviation, AAD) отфильтрованного изображения от оригинального. В этом случае функцией сравнения будет выступать евклидово расстояние между векторами [8].

Wildes использует декомпозицию изображения на основе Laplacian of Gaussian filters. Результирующее изображение представляется как лапласова (многомасштабная) пирамида изображений, подвергнутых действию гауссовых фильтров, и призвано представлять пространственные характеристики радужки. В этом случае для дальнейшего сравнение используются нормированная корреляция (normalized correlation) обрабатываемого изображения и изображений из базы данных [4]. Нормализованная корреляция показывает меру соответствия точек двух изображений или областей изображений друг другу. Tisse использует многомерное преобразование Гилберта (multidimentional Hilbert transform). [6]. Процесс составления кода похож на составление кода Daugman, и процесс сравнения, соответственно, тоже (расстояние Хэмминга). Авторы работы [11] применяют многомасштабную фильтрацию (scale-space filtering) на основе данных о направлении выпуклости функции изменения яркости исходного изображения. По изображению строятся карта направлений вогнутости – величина вогнутости во внимание не берется, так как является следствием условий съемки (например освещения). Затем для каждой окружности внутри радужки ее сигнал яркости фильтруется scale-space filter-ом, и результатам фильтрации инициируется специальная двоичная переменная. Проделав эту операцию для всех радиусов внутри радужки и набору масштабов, двоичные коды по разным масштабам складываются. Полученный результат используется как одномерный код. Для сравнения результатов используется расстояние Хэмминга.

Обеспечение инварианта относительно масштаба и поворота

Инвариант относительно масштаба входного изображения во многих системах регулируется приведением текстуры радужки к карте фиксированного размера [8]. Обеспечение стабильности относительно поворота достигается за счет хранения нескольких изображений одной радужки в базе данных – под несколькими углами поворота [6], [8], [9].

Классические методы

Система Daugman’а спроектирована в 1992 году. Основа для составления кода – фильтры Габора, критерий сравнения кодов – расстояние Хэмминга. Код представляется в виде двоичной переменной 512 байт (4096 бит), имеющей запатентованное название IrisCode. Это наиболее ранняя и по-видимому наиболее развитая система, имеются коммерческие разработки.

Система была предложена в 1996. Система использует преобразование Хафа для локализации радужки, Лапласову пирамиду фильтров Гаусса (мультимасштаная декомпозиция) для составления кода, в качестве критерия сравнения берется нормализованная корелляция (normalized correlation). Для захвата изображения использует специальное оборудование.

В 98 Boles предложил метод составления кода, основанный на вейвлет-преобразованиях. Изображение радужки представляется одномерной функцией, которая фильтруется вейвлетами специального вида. Код составляется с помощью точек, в которых результирующее представление обнуляется (zero-crossings of one-dimensional wavelet transforms).

Коммерческая разработка. В основе лежит использование анализа независимых компонент с переменной разрешающей способностью (Multiresolution Independent Component Analysis).

По мнению специалистов в области биометрических систем, средства идентификации личности по радужной оболочке глаза способны заменить ключи и персональные идентификационные номера (пины). Рисунок радужной оболочки уникален и не повторяется даже у близнецов. Вероятность того, что два разных человека имеют один и тот же рисунок радужной оболочки глаза, равняется приблизительно 10 -78 , в то время как все население Земли составляет примерно 10 10 . В отличие от других биометрических систем контроля доступа, идентификация по рисунку радужки допускает полностью бесконтактную реализацию. В данной статье изложены основные принципы и дан краткий обзор существующих методов идентификации личности по радужной оболочке глаза.

Список литературы

[2] Resources Related to Biometrics and People with Disabilities, The international Center for Disability Resources on the Internet, http://www.icdri.org/biometrics/biometrics.htm [4] Richard P. Wildes. Iris Recognition: An Emerging Biometric Technology, Proceedings of The IEEE, vol. 85, no. 9, pp. 1347-1347, September 1997 [5] Li Ma, Yunhong Wang, Tieniu Tan. Iris Recognition Using Circular Symmetric Filters, Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02), pp. 20414-20418 [6] Christel-loic Tisse, Lionel Martin, Lionel Torres, Michel Robert. Person identification technique using human iris recognition. Proc. of Vision Interface, pp.294-299, 2002. [7] Jafar M. H. Ali, Aboul Ella Hassanien. An Iris Recognition System to Enhance E-security Environment Based on Wavelet Theory. AMO — Advanced Modeling and Optimization, Volume 5, Number 2, pp. 93-104, 2003 [8] Li Ma, Yunhong Wang, Tieniu Tan. Iris Recognition Based on Multichannel Gabor Filtering. ACCV2002: The 5th Asian Conference on Computer Vision, pp. 23-25 January 2002, Melbourne, Australia. [9] Yong Zhu, Tieniu Tan and Yunhong Wang. Biometric Personal Identification Based on Iris Patterns. Proc. of IAPR, Inter. Conf. Pattern Recognition(ICPR’2000), vol. II, pp. 805-808, 2000. [10] Seung-In Noh, Kwanghuk Pae1, Chulhan Lee, and Jaihie Kim. Multiresolution Independent Component Analysis for Iris Identification. The 2002 International Technical Conference on Circuits/Systems, Computers and Communications, 2002, Phuket, Tailand, July 2002. [11] Kyong Woo Nam, Kyong Lok Yoon, Jun Sung Bark, Woo S. Yang. A Feature Extraction Method for Binary Iris Code Construction. Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004)

источник

Дактилоскопия — наиболее известный и распространенный метод установления личности по биометрическому параметру, отлично зарекомендовала себя в криминалистике XX века и помогла раскрыть ни одну сотню преступлений. Однако технологии не стоят на месте, и отпечатки пальцев перестали быть единственным «ключом» к идентификации.

Современная техника научились узнавать пользователей по сетчатке и радужной оболочке глаза, форме лица и рук и ряду динамических характеристик — голосу, биологической активности сердца, рукописному и клавиатурному почерку.

Подобно отпечатку пальца, рисунок радужной оболочки глаза является уникальной характеристикой человека, а метод установления личности по этому биометрическому параметру, по мнению экспертов, превосходит в надежности привычную дактилоскопию. Для того, чтобы зафиксировать узор на радужке, нужна фотокамера с высоким разрешением. Полученное изображение увеличивается и преобразуется в уникальный код, присваиваемый человеку.

Рисунок радужки, который окончательно формируется на втором году жизни ребенка, практически не изменяется в течение жизни, если человек не получает травм и не страдает от серьезных офтальмологических патологий. В то же время, папиллярный узор отпечатка пальца подвержен изменению даже в результате мелких бытовых повреждений — ожогов или порезов, что делает этот метод идентификации менее эффективным, чем анализ радужной оболочки.

Достоинством метода является и простота в сканировании. Человеку не обязательно сосредоточенно смотреть в одну точку, ведь пятна на сетчатке находятся прямо на поверхности глазного яблока и легко считываются на расстоянии, не превышающем 1 метр. Использовать данный метод удобно в банковских организациях или общественном транспорте. Заинтересовались технологией и производители смартфонов — в 2015 году в Японии в продажу поступила первая модель со сканером радужной оболочки — Fujitsu Arrows NX F-04G. По мнению разработчиков, внедрение технологии идентификации по радужке глаза поможет защитить личные данные владельцев смартфонов.

Просканировать сетчатку — внутреннюю оболочку глазного яблока, реагирующую на свет, сложнее: для этого к кровеносным сосудам задней стенки глаза через зрачок посылают низкоинтенсивные инфракрасные световые лучи. Подобный метод установления личности считается высокоэффективным и активно используется на правительственных и военных объектах.

Капилярный рисунок сетчатки различается даже у близнецов, что снижает вероятность ошибки идентификации. Однако, в 2012 году ученые из Университета Нотр-Дам в США обнаружили погрешности в определении личностей людей, чьи данные были внесены в базу ранее 2008 года, и доказали, что, в отличие от рисунка на радужной оболочке, рисунок сетчатки подвержен ряду возрастных изменений.

И снова производители мобильных гаджетов не остались в стороне. Ряд компаний (например, китайская ZTE CORPORATION) работает на созданием комбинированных технологий идентификации по сетчатке и радужке.

Метод установления личности по чертам кажется экспертам одним из наиболее перспективных, во многом благодаря своей «привычности»: люди с легкостью идентифицируют друг друга по лицам, так почему бы не научить этому компьютер? В основе технологии — создание двухмерных или трехмерных «карт» человеческих черт — система запоминает и опознает контуры носа и губ, форму бровей, расстояние между отдельными чертами.

Разработчики систем биометрического анализа отечественной компании BioLink называют распознавание по лицу второй по распространенности и популярности биометрической технологией. Однако, «опознание» по геометрии лица — задача трудоемкая, ведь на восприятие машины влияет освещение, угол наклона головы, наличие макияжа.

Наиболее эффективно техника распознает статичные изображения — фотографии. Так, система искусственного интеллекта FaceNet, созданная Google, “опознала” 99,63% фото пользователей интернета.

Одна из новейших технологий динамической биометрической идентификации — установление личности на основе данных о работе сердечно-сосудистой системы.

В 2014 году Канадская компания Bionym представила миру устройство, позволяющее использовать ЭКГ человека в качестве персонального идентификатора. «В научном сообществе существует устоявшаяся идея о том, что уникальность и постоянство человеческого сердечного ритма позволяет использовать его в качестве биометрического идентификатора», — заметил генеральный директор Bionym Карл Мартин. — «В сущности, нужно сделать следующее: взять форму ЭКГ и подвергнуть ее машинному анализу, чтобы выявить уникальные и постоянные особенности».

Высокую эффективность технологии отметили отечественные специалисты по безопасности. «Кардиограмма, как оказывается, тоже может быть вполне перспективным средством биометрической аутентификации,» — отмечали эксперты «Лаборатории Касперского».

Подобные разработки уже сейчас ведутся в России. Например, представители отечественной компании CardioQVARK (о них уже были статьи на Хабре и Гиктаймс), производящей чехлы-кардиомониторы для iPhone, в работе «Исследование искусственных нейронных сетей в задаче идентификации личности по электрокардиосигналу» показали, что их продукт может помочь в установлении личности пользователей.

Основное назначение устройства — удаленный контроль за состоянием здоровья пациентов-сердечников, однако возможность сделать экспресс-анализ состояния сердечно-сосудистой системы позволит идентифицировать человека без временных затрат. Процедура снятия ЭКГ при помощи чехла от CardioQVARK предельно проста и занимает всего лишь несколько секунд: достаточно приложить пальцы к датчикам и результат ЭКГ появится на экране гаджета и в приложении для врача.

Биометрический метод идентификации по голосу прост в применении — достаточно оснастить аналитическое устройство микрофоном и записать «звучание» конкретного человека. Широкое распространение данного метода обусловлено наличием микрофона и возможности записи звука на большинстве современных мобильных гаджетов и компьютеров. Однако, технология имеет ряд существенных недостатков: голос одного и того же человека может звучать по-разному в зависимости от его психологического и физического состояния, уровня шума, качества микрофона.

Редакторы Хабра врываются в велосезон, каждый по-своему

источник

2.2 Идентификация по радужной оболочке глаз

Первооткрывателем в области идентификации личности по радужной оболочке глаза является доктор Джон Даугман. В 1994 г. он запатентовал в США метод распознавания радужной оболочки глаза (US Patent S, 291, 560). Разработанные им алгоритмы используются до сих пор.

С помощью этих алгоритмов необработанные видеоизображения глаза преобразуются в уникальный идентификационный двоичный поток Iris-код, полученный в результате определения позиции радужки, ее границы и выполнения других математических операций для описания текстуры радужки в виде последовательности чередования фаз, похожей на штрих-код.

Полученный таким образом Iris-код используется для поиска совпадений в базах данных (скорость поиска — около 1 млн. сравнения Iris-кодов в 1 с) и для подтверждения или неподтверждения заявленной личности

Преимущество сканеров для радужной оболочки глаза состоит в том, что они не требуют от пользователя сосредоточения на цели, так как образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза может быть отсканировано на расстоянии менее 1 м, что делает возможным использование сканеров для радужной оболочки глаза, допустим, в банкоматах. Разработкой технологии идентификации личности на основе принципа сканирования радужной оболочки глаза в настоящее время занимаются более 20 компаний, в том числе British Telecom, Sensar, японская компания Oki.

Различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

В качестве примера современной системы идентификации на основе анализа радужной оболочки глаза рассмотрим решение, предложенное компанией LG.

Система IrisAccess позволяет менее чем за 1 с отсканировать рисунок радужной оболочки глаза, обработать и сравнить с 4 тыс. других записей, которые она хранит в своей памяти, а затем послать соответствующий сигнал в охранную систему. Технология — полностью бесконтактная. На основе изображения радужной оболочки глаза строится компактный цифровой код размером 512 байт. Устройство имеет высокую надежность по сравнению с большинством известных систем биометрического контроля, поддерживает объемную базу данных, выдает звуковые инструкции на русском языке, позволяет интегрировать в систему карты доступа и ПИН-клавиатуры. Один контроллер поддерживает четыре считывателя Система может быть интегрирована с LAN Система IrisAccess 3000 состоит из оптического устройства внесения в реестр E01J3000, удаленного оптического устройства R01J3000, контрольного устройства опознавания ICLI3000, платы захвата изображения, дверной интерфейсной платы и PC-сервера. Если требуется осуществлять контроль за несколькими входами, то ряд удаленных устройств, включая ICU3000 и R01J3000, может быть подключен к PC-серверу через локальную сеть (LAN).

Представляет интерес камера для идентификации личности путем сканирования радужной оболочки глаза, используемая в системах защиты и безопасности для компьютеров типа десктоп/лэптоп. Разработки визуальных систем (Vision Systems) компании Panasonic и хорошо показавшие себя на прак-тике разработки в области идентификации личности на основе рисунка радужной оболочки глаз компании Iridian Technologies позволили создать легкие в использовании и отличающиеся высокой точностью средства, которые можно использовать в широком диапазоне современных и будущих потребностей в области обеспечения безопасности.

Камера Authenticam™ компании Panasonic в сочетании с программным продуктом PrivatelD™ компании Indian Technologies представляет собой экономически выгодный и надежный путь обеспечения безопасности доступа. Для такой камеры характерны безопасность и простота использования. Достаточно взглянуть в объектив камеры с расстояния приблизительно 50 см, и менее чем через 2 с произойдет захват изображения.

Программный продукт PrivatelD™ обрабатывает рисунок радужной оболочки глаз и кодирует полученную информацию в виде 512-байтовой записи IrisCode. Эти записи вводятся для хранения в память и используются для сравнения с другими записями кодов IrisCodes — для идентификации личности при любых транзакциях и деловых операциях, когда для сравнения представляется радужная оболочка глаза живого человека.

Дифференциатор ключей для идентификации личности по рисунку радужной оболочки глаза осуществляет поиск в базе данных для нахождения соответствующего идентификационного кода. При этом база данных может состоять из неограниченного числа записей кодов IrisCode. Технология допуска, основанная на сканировании радужной оболочки глаза, уже несколько лет успешно применяется в государственных организациях США и в учреждениях с высокой степенью секретности (в частности, на заводах по производству ядерного вооружения). Эффективность этого способа доказана, он безопасен для пользователя и надежен в работе. Он обеспечивает моментальную аутентификацию личности, предназначенную для замены символов ПИН-кодов и паролей.

Многие эксперты подчеркивают «незрелость» технологии, хотя потенциальные возможности метода достаточно высоки, так как характеристики рисунка радужной оболочки человеческого глаза достаточно стабильны и не изменяются практически в течение всей жизни человека, невосприимчивы к загрязнению и ранам. Отметим также, что радужки правого и левого глаза по рисунку существенно различаются. Этот метод идентификации отличается от других большей сложностью в использовании, более высокой стоимостью аппаратуры и жесткими условиями регистрации.

источник

На крупных и мелких предприятиях, секретных объектах, в банковской системе, магазинах используется биометрическая идентификация. Это распознавание конкретного человека по каким-либо данным. Обилие методов идентификации поражает разнообразием:

  • по отпечаткам пальцев;
  • распознавание радужной оболочки и сетчатки глаза;
  • по рисунку вен на руках;
  • 2D и 3D распознавание лица;
  • по голосу;
  • по геометрии рук, ушных раковин;
  • по походке;
  • по ДНК;
  • по рукописному почерку и ритму печатания на клавиатуре;
  • по сердечному ритму и др.

Идентификация осуществляется для контроля доступа, учета рабочего времени, защиты от проникновения посторонних лиц на объект, противодействия хищения и порчи имущества.

Для каждого метода идентификации выпускается специальное оборудование. Принцип его работы состоит в следующем. Сначала сканируется отпечаток, сетчатка, лицо и т. д. Затем аппарат извлекает индивидуальную информацию и формирует шаблон, который вносится в базу данных. Впоследствии при сканировании объекта, его параметры каждый раз сравниваются с шаблоном.

Комбинирование нескольких методов позволяет существенно повысить уровень безопасности. Но в основном популярностью пользуется сканирование отпечатков, радужной оболочки и сетчатки, лица.

Метод получил широкое распространение еще в прошлом веке, но в основном использовался для установления личности преступников. Сегодня его применяют для проведения бесконтактных платежей, на пропускных пунктах, проходных предприятий. Он популярен, потому что вероятность найти двух людей на планете с идентичными отпечатками сводится к нулю.

Принцип работы основывается на том, что человек прикладывает палец к сканеру, считывающему информацию. Это данные о расположении арочных и спиральных линий, замкнутых участках папиллярного узора, а также об их количестве. После сравнения с шаблоном устройство выдает информацию по распознаванию. Если по какой-либо причине оно не находит информацию о сотруднике который точно есть в базе данных, то дополнительно запрашивается введение кода.

Биометрическая идентификация личности по отпечатку пальца занимает мало времени (около одной секунды), поэтому через устройство проходит большое количество людей за короткое время. Стоимость сканеров достаточно низкая, а выбор производителей очень широк.

При ожогах, порезах, воздействии клея или химических реактивов отпечаток становится невозможно идентифицировать, и компьютер выдает отказ в доступе. Поэтому лучше внедрять допуск не по одному отпечатку пальцу, а по нескольким. Наиболее рельефный папиллярный рисунок на большом и среднем пальце.

Из-за некоторых особенностей кожи (чрезмерная сухость или влажность, слишком высокая или низкая температура) отпечаток не может быть считан.

Пока не существуют аппаратов, позволяющие отсканировать отпечаток во время движения, но ученые ведут разработки в этом направлении

Радужная оболочка у каждого человека уникальна, вероятность совпадения рисунка радужки еще меньше, чем отпечатков пальцев. Особенностью является то, что радужная оболочка практически не изменяется с двухлетнего возраста, а вероятность ее повреждения возможна только в результате серьезной травмы.

Существует два типа оборудования для сканирования радужки. Первые необходимо настраивать самостоятельно, то есть посетитель сам наводит камеру, принимает определенную позу, и ждет, пока аппарат подаст сигнал о считывании данных. Сканеры второго типа самостоятельно наводятся на глаза и сканируют их. Далее аппараты проводят поиск по базе данных со скоростью около 150 тысяч сравнений в секунду.

Оборудование имеет высокую стоимость, поскольку представлено на рынке всего несколькими производителями и занимает очень маленький его сегмент (6-9%). Купить готовую модель практически невозможно: системы изготавливаются на основе индивидуальных требований заказчика.

Высокая скорость сканирования. Это позволяет использовать метод на предприятиях-гигантах.

Попытка подделки радужной оболочки ни разу не увенчалась успехом.

Сканирование происходит бесконтактным методом, во время него человек не испытывает неприятных ощущений.

Этот метод – один из самых точных, но из-за сложности используется только в секретных лабораториях, на военных базах и других режимных объектах с высоким уровнем безопасности. Суть метода заключается в сканировании капилляров сетчатки. Они всегда находятся в неподвижном состоянии, в течение жизни их расположение и структура не меняется. Исключения составляют только тяжелые глазные болезни, повреждающие сосуды, или глубокие травмы.

Биометрические устройства идентификации личности по сетчатке – это сложные оптические системы, работающие с помощью инфракрасного излучения. Человек становится перед сканером неподвижно, а устройство считывает данные в течение нескольких секунд, а затем отыскивает совпадения по базе.

Процент отказа в допуске на объект очень низок. Подделка капиллярного рисунка сетчатки технически невозможна.

Из недостатков можно отметить длительность процедуры, во время которой нельзя двигаться, смотреть в разные стороны, моргать, а это вызывает неприятные ощущения. Системы для сканирования сетчатки достаточно сложно найти на рынке, поскольку этот метод менее популярен, чем идентификация дактилоскопическим методом или по радужной оболочке.

Это способ бесконтактной идентификации, при котором лицо человека сканируется и сравнивается с изображением в базе данных. Допуск разрешается при совпадении определенного количества точек на изображении.

Ранее 2D применялся только в криминалистике, а изображения сравнивались вручную. С появлением компьютерных технологий метод усовершенствовался. Его применяют в некоторых супермаркетах Японии для проведения бесконтактных платежей, для защиты смартфонов от несанкционированного доступа, на небольших предприятиях, численностью до 100 человек, для контроля доступа.

К плюсам относят возможность распознавания лица на большом расстоянии, достаточно высокую скорость обработки данных. При сканировании человек не испытывает дискомфорта или неприятных ощущений. Биометрические средства идентификации для 2D сканирования стоят не слишком дорого.

проблемы с идентификацией при изменении освещения (слишком солнечно или пасмурно);

камеру возможно обмануть (например, изготовление маски, использование близнеца или очень похожего человека);

недопустимо изменение мимики, устройство может отказать в допуске;

головные уборы, прически, борода, щетина, очки ухудшают считывание данных.

Метод схож с технологией 2D. Для создания шаблона для базы данных применяется только одна камера, но человек не стоит перед ней неподвижно, а поворачивает голову в разные стороны. На лицо проецируется сетка, которая повторяет все изгибы и неровности головы. Далее изображение обрабатывается специальной программой, удаляются элементы, которые могут повлиять в дальнейшем на результаты сканирования (очки, борода, волосы и др.). Выделяются основные элементы: разрез глаз, форма носа, подбородка, рта. Память устройства фиксирует вид не только анфас, но и профиль, поворот в три четверти. Это позволяет распознать человека с любого ракурса.

Сканирование происходит в течение одой или двух секунд, если используются 2-3 камеры, то время обработки уменьшается, а результат будет более точным.

Высокая степень достоверности результатов обусловлена отсутствие чувствительности к внешним факторам. На них не влияет изменение прически, появление растительности на лице, недостаточное или слишком яркое освещение. По уровню надежности метод часто сравнивают с идентификацией по отпечаткам пальцев. Фальсификация результатов достаточно проблематична. 3D идентификация появилась не так давно, поэтому еще ведутся разработки по усовершенствованию алгоритмов.

Из недостатков отмечается высокая стоимость оборудования для сканирования, не слишком широкий выбор на рынках. Изменение мимики в некоторых случаях приводит к получению неверного результата.

Распознавание по рисунку вен на ладонях – это новинка в биометрии, появившаяся не более 5-10 лет назад. Метод основывается на считывании расположения кровеносных сосудов с тыльной или внутренней стороны ладони с помощью инфракрасного излучения. Гемоглобин крови поглощает ИК лучи, и на камере они будут видны в виде темных линий. У каждого человека рисунок вен уникальный, его подделка невозможна.

Существуют два способа васкулярной идентификации:

Reflection – все компоненты устройства размещаются на одной плоскости. Человеку никуда не нужно засовывать руку, он просто подносит ее к терминалу.

Transmission – сверху устанавливается источник ИК-излучения, а снизу – камера и фильтр. Таким образом, удается получить более четкое изображение рисунка вен.

Из положительных сторон выделяют высокую гигиеничность – ладонь не контактирует с поверхностью терминала. Тепловое излучение в маленькой дозе не представляет опасности для здоровья. Степень достоверности результатов очень высокая, сравнима только с методом сканирования радужной оболочки глаза. На распознавание не влияют порезы, ожоги, загрязненность рук, состояние кожи (высокая или низкая влажность). Фальсификация невозможна. Скорость считывания данных очень высокая, что позволяет использовать этот способ на предприятиях с большим количеством сотрудников.

Устройство биометрической идентификации по рисунку вен имеет не слишком высокую стоимость. На рынке оборудование представлено в достаточно широком ассортименте.

Отрицательных сторон у васкулярной идентификации практически нет. На достоверность результатов влияют только тяжелые заболевания сосудов (например, артрит), из-за которых расположение вен и их толщина меняются.

В «большую тройку биометриков» входят распознавание по отпечаткам пальцев, радужке и геометрии лица (2D и 3D). Они широко представлены на рынке, имеют высокую степень достоверности результатов, не вызывают неприятных ощущений у объекта сканирования. Немного уступает по популярности идентификация по рисунку вен, но это обусловлено только ее новизной. У нее один из самых высоких показателей защиты от подделок.

Самыми дешевыми методами признаны: распознавание по отпечаткам и геометрии лица 2D. Но у второго способа плохие статические показатели при изменении освещенности, мимики, угла обзора, дополнительных факторов (бороды, усов, головного убора, прически). Поэтому он имеет ограниченную сферу применения.

Точность некоторых систем можно значительно увеличить. Если сканировать сразу несколько отпечатков пальцев на обеих руках, то подделать результат будет весьма трудно, да и при повреждениях кожи уровень отказа в доступе значительно снизится. При сканировании радужки можно делать это сразу для двух глаз. Это исключит возможность ошибки устройства.

Для секретных объектов с высокими требованиями к безопасности эксперты рекомендуют использовать идентификацию по радужной оболочке, сочетая ее с 3D сканированием, что позволит идентифицировать человека без его ведома.

Для компаний с невысокими требованиями безопасности и коллективом до пяти сотен человек, рекомендуется применять дактилоскопическое распознавание или идентификацию по рисунку вен.

источник

В некоторых системах идентификации в качестве ключа используется глаз человека. Существует две разновидности этих систем, использующие разные идентификаторы. В первом случае в качестве «носителя» идентификационного кода применяется рисунок капилляров (кровеносных сосудов) на сетчатке (дне) глаза, а во втором — узор радужной оболочки глаза.
Для начала рассмотрим способ идентификации по узору кровеносных сосудов, расположенных на поверхности глазного дна (сетчатке). Сетчатка расположена глубоко внутри глаза, но это не останавливает современные технологии. Более того, именно благодаря этому свойству, сетчатка — один из наиболее стабильных физиологических признаков организма. Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Для этих целей используется лазерный луч мягкого излучения. Вены и артерии, снабжающие глаз кровью, хорошо видны при подсветке глазного дна внешним источником света. Еще в 1935 году Саймон и Голдштейн доказали уникальность дерева кровеносных сосудов глазного дна для каждого конкретного индивидуума.
Сканеры для сетчатки глаза получили большое распространение в сверхсекретных системах контроля доступа, так как у них один из самых низких процентов отказа доступа зарегистрированных пользователей. Кроме того, в системах предусмотрена защита от муляжа.
В настоящее время широкому распространению этого метода препятствует ряд причин:
высокая стоимость считывателя;
невысокая пропускная способность;
психологический фактор.
Невысокая пропускная способность связана с тем, что пользователь должен в течение нескольких секунд смотреть в окуляр на зеленую точку.
Примером такого устройства распознавания свойств сетчатки глаза может служить продукция EyeDentify’s. Она использует камеру с сенсорами, которые с короткого расстояния (менее 3 см) измеряют свойства сетчатки глаза. Пользователю достаточно взглянуть одним глазом в отверстие камеры ICAM 2001, и система принимает решение о праве доступа. Основные характеристики считывателя ICAM 2001:
время регистрации (enrolment) — менее 1 мин;
время распознавания при сравнении с базой эталонов в 1 500 человек — менее 5 с; средняя пропускная способность — 4—7 с.
И тем не менее, эти системы совершенствуются и находят свое применение. В США, например, разработана новая система проверки пассажиров, основанная на сканировании сетчатки глаза. Специалисты утверждают, что теперь для проверки не нужно доставать из кармана бумажник с документами, достаточно лишь пройти перед камерой. Исследования сетчатки основываются на анализе более 500 характеристик. После сканирования код будет сохраняться в базе данных вместе с другой информацией о пассажире, и в последующем идентификация личности будет занимать всего несколько секунд. Использование подобной системы будет абсолютно добровольной процедурой для пассажиров.
Английская Национальная физическая лаборатория (National Physical Laboratory, NPL), по заказу организации Communications Electronics Security Group, специализирующейся на электронных средствах защиты систем связи, провела исследования различных биометрических технологий идентификации пользователей.
В ходе испытаний система распознавания пользователя по сетчатке глаза не разрешила допуск ни одному из более чем 2,7 млн «посторонних», а среди тех, кто имел права доступа, лишь 1,8% были ошибочно отвергнуты системой (проводилось три попытки доступа). Как сообщается, это был самый низкий коэффициент ошибочных решений среди проверяемых систем биометрической идентификации. А самый большой процент ошибок был у системы распознавания лица — в разных сериях испытаний она отвергла от 10до 25% законных пользователей.
Еще одним уникальным для каждой личности статическим идентификатором является радужная оболочка глаза. Уникальность рисунка радужной оболочки обусловлена генотипом личности, и существенные отличия радужной оболочки наблюдаются даже у близнецов. Врачи используют рисунок и цвет радужной оболочки для диагностики заболеваний и выявления генетической предрасположенности к некоторым заболеваниям. Обнаружено, что при ряде заболеваний на радужной оболочке появляются характерные пигментные пятна и изменения цвета. Для ослабления влияния состояния здоровья на результаты идентификации личности в технических системах опознавания используются только черно-белые изображения высокого разрешения.
Идея распознавания на основе параметров радужной оболочки глаза появилась еще в 1950-х годах. Джон Даугман, профессор Кембриджского университета, изобрел технологию, в состав которой входила система распознавания по радужной оболочке, используемая сейчас в Nationwide ATM. В то время ученые доказали, что не существует двух человек с одинаковой радужной оболочкой глаза (более того, даже у одного человека радужные оболочки глаз отличаются), но программного обеспечения, способного выполнять поиск и устанавливать соответствие образцов и отсканированного изображения, тогда еще не было.
В 1991 году Даугман начал работу над алгоритмом распознавания параметров радужной оболочки глаза и в 1994 году получил патент на эту технологию. С этого момента ее лицензировали уже 22 компании, в том числе Sensar, British Telecom и японская OKI.
Получаемое при сканировании радужной оболочки глаза изображение обычно оказывается более информативным, чем оцифрованное в случае сканирования отпечатков пальцев.
Уникальность рисунка радужной оболочки глаза позволяет выпускать фирмам целый класс весьма надежных систем для биометрической идентификации личности. Для считывания узора радужной оболочки глаза применяется дистанционный способ снятия биометрической характеристики.
Системы этого класса, используя обычные видеокамеры, захватывают видеоизображение глаза на расстоянии до одного метра от видеокамеры, осуществляют автоматическое выделение зрачка и радужной оболочки. Пропускная способность таких систем очень высокая. Вероятность же ложных срабатываний небольшая. Кроме этого, предусмотрена защита от муляжа. Они воспринимают только глаз живого человека. Еще одно достоинство этого метода идентификации — высокая помехоустойчивость. На работоспособность системы не влияют очки, контактные линзы и солнечные блики.
Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Даже у людей с ослабленным зрением, но с неповрежденной радужной оболочкой, все равно могут сканироваться и кодироваться идентифицирующие параметры. Даже если есть катаракта (повреждение хрусталика глаза, которое находится позади радужной оболочки), то и она никак не влияет на процесс сканирования радужной оболочки. Однако плохая фокусировка камеры, солнечный блик и другие трудности при распознавании приводят к ошибкам в 1% случаев.
В качестве такого устройства идентификации можно привести, например, электронную систему контроля доступа «Iris Access 3000», созданную компанией LG. Эта система за считанные секунды считывает рисунок оболочки, оцифровывает его, сравнивает с 4000 других записей, которые она способна хранить в своей памяти, и посылает соответствующий сигнал в систему безопасности, в которую она интегрирована. Система очень проста в эксплуатации, но при этом, данная технология
обеспечивает высокую степень защищенности.
Считыватель сетчатки объекта. Модель ICAM 2001. В состав системы входят:
устройство регистрации пользователей EOU 3000;
оптическое устройство идентификации / оптический считыватель ROU 3000;
контроллер двери ICU 3000;
сервер.
Устройство регистрации пользователей EOU 3000 обеспечивает начальный этап процесса регистрации пользователей. Оно снимает изображение радужной оболочки глаза при помощи камеры и подсветки. В процессе получения изображения и при его завершении устройство использует голосовую и световую подсказку.
Оптическое устройство идентификации, оно же оптический считыватель ROU 3000, содержит элементы для получения изображения радужной оболочки глаза. Голосовая и световая индикация информирует пользователя, определен он системой или нет.
Контроллер двери ICU 3000 создает специальный код (IrisCode) изображения сетчатки глаза, получаемой от считывателя ROU, сравнивает этоткод с уже имеющимися в его памяти кодами изображений. При идентификации соответствующего кода, результат сообщается голосом из динамика в считывателе ROU
3000. К контроллеру возможно подключение до четырех считывателей ROD 3000, что обеспечивает управление четырьмя дверями.
Сервер выполнен на базе персонального компьютера. Он выполняет функции главного сервера, сервера,
станции регистрации пользователей, станции мониторинга и управления системой. Главный сервер контролирует передачу информации из базы данных по запросу от одного сервера другим серверам. Сервер отвечает за управление рабочими станциями и контроллерами дверей ICU. Станция ввода изображения обеспечивает регистрацию пользователей при помощи устройства EOU 3000. Станция мониторинга производит отслеживание статуса контроллеров ICU, оптических считывателей ROU? устройства регистрации и состояния дверей ROU. Станция управления обеспечивает поддержку основной базы данных пользователей, загрузку необходимых данных в контроллер ICU.
Пример построения системы доступа на основе электронной системы распознавания радужной оболочки глаза «Iris Access 3000» представлен на рисунке.

Перспективы распространения этого способа биометрической идентификации для организации доступа в компьютерных системах очень хорошие. Тем более, что сейчас уже существуют мультимедийные мониторы со встроенными в корпус видеокамерами. Поэтому на такой компьютер достаточно установить необходимое программное обеспечение, и система контроля доступа готова к работе. Понятно, что и ее стоимость при этом будет не очень высокой.

Акции! Скидки!

При заказе монтажа Охранно-пожарной сигнализации, пожаротушения скидка на техническое обслуживание смонтированных систем 30%.

При заказе огнезащитной обработки свыше 1500 м2 протокол испытаний образцов из ИПЛ бесплатно.

Обслуживание пожарной сигнализации от 1000 рублей в месяц .

Проект бесплатно.

При заказе пожарной или охранной сигнализации
от 50 000 рублей проект бесплатно.

Работаем по бартеру.

Вы оплачиваете оборудование и материалы, оплата работ возможна бартером.

источник

На сегодняшний день использование оборудования идентификации по глазу в системах безопасности и контроля доступа наиболее востребовано, ведь подделать уникальную радужную оболочку глаза не представляется возможным. Скорость же распознавания непрерывно растет, позволяя идентифицировать идущего человека на расстоянии нескольких метров за 1 секунду.

Внедрение системы идентификации человека по радужной оболочке глаз открывает огромные возможности для систем безопасности и контроля доступа, в том числе благодаря интеграции с кадровыми, управленческими и охранными программами.

Испытайте самую надежную в мире биометрическую технологию распознавания по глазу для контроля доступа и обеспечения безопасности!

+ Надежность 100%

Карточки, брелки имеют свойство теряться и забываться, могут быть переданы другому лицу или скопированы. Даже отпечатки пальцев могут стираться у людей некоторых профессий.

Индивидуальная радужная оболочка глаз же в течение жизни остается стабильной и защищена от внешних воздействий прозрачной роговицей. Совпадений среди людей не выявлено, более того оболочки левого и правого глаз различны.

Идентификация по глазу не требует прикоснуться к чему-либо. Специализированная камера «поймает» глаза на расстоянии.

Не нужно замирать перед камерой-сканером с открытым глазом, как показываю в фильмах. Камера выхватит необходимые данные, когда человек подходит к пропускному пункту на расстояние 1-2 метров.

+ Годовое обслуживание в подарок

Оборудование для распознавания личности по радужной оболочке глаз может быть установлено на любом объекте от частного дома до аэропорта. Система эффективно используется на объектах

  • с высокой проходимостью (вокзалы, аэропорты)
  • особо важных объектах (государственные учреждения и пр.)
  • особо охраняемых объектах (оборонные предприятия, банки и др.)
  • в местах повышенного скопления людей (транспорт, стадионы и др.)
  • в бизнес центрах и фитнес-клубах
  • на предприятиях среднего и крупного бизнеса
  • на объектах с жестким контролем доступа

Позвоните нам или оставьте заявку, — мы подскажем, как оборудовать самую надежную систему идентификации.

Оборудование и программное обеспечение систем идентификации человека по радужной оболочке глаза до недавнего времени привозилось из Японии и США. В 2017 году успешное тестирование прошла отечественная разработка Взор, доказавшая свою эффективность при значительно меньшей цене.

Среди явных плюсов российского оборудования

  • низкая стоимость
  • поддержка
  • доступность обслуживания и ремонтопригодность
  • высокое качество с более, чем 99% точностью.

Для эффективной работы системы контроля доступа потребуется комплексный поход с учетом индивидуальных характеристик объекта и входной группы, где устанавливается портал идентификации по глазу. Ведь если не сделать преграду, портал можно обойти либо пройти в темных очках, или с закрытыми глазами, или физически устранить барьер. Чтобы таких ситуаций не происходило, обустраивается контрольно-пропускной пункт с ограждениями, сигнализацией и контролем со стороны охраны.

Чтобы идентифицировать человека, данные о нем уже должны быть в системе, соответственно всех посетителей и сотрудников потребуется занести в базу, где индивидуальное изображение глаза соотносится с именем, должностью и (или) паспортными данными.

Таким образом эффективно работающая система включает в себя:

  • портал идентификации по глазам
  • контрольно-пропускной пункт с обустройством физических барьеров, видеонаблюдения и места для охраны
  • комплексная система безопасности объекта, не позволяющая миновать КПП
  • компьютер или сервер.

источник

Наступили времена, когда дактилоскопия, сканирование сетчатки глаза или особенности голоса из шпионских атрибутов перешли к обеспечению безопасности и комфорта в различных сферах современной жизни. Речь идет о биометрических технологиях.

Идентификация личности по биометрическим параметрам

Биометрией называется совокупность способов и устройств для идентификации человека, которые основаны на его уникальных физиологических или поведенческих характеристиках.

Этот вид идентификации может применяться для предотвращения запрещенного доступа в здания, к компьютерам, банкоматам, мобильным телефонам и так далее.

Биометрические свойства это:

  • отпечатки пальцев;
  • геометрия лица;
  • радужная оболочка глаз;
  • рисунок сетчатки;
  • голос;
  • почерк;
  • печать на клавиатуре;
  • узор вен на руках и др.

Преимущества биометрической идентификации

Биометрическая защита дает больший эффект по сравнению, например, с использованием паролей, смарт-карт, PIN-кодов, жетонов или технологии инфраструктуры открытых ключей. Это объясняется возможностью биометрии идентифицировать не устройство, но человека.

Обычные методы защиты чреваты потерей или кражей информации, которая становится открытой для незаконных пользователей. Исключительный биометрический идентификатор, например, отпечатки пальцев, является ключом, не подлежащим потере.

Классификация способов биометрии

По типу используемой информации биометрическая идентификация делится на:

  • Статические способы, основанные на уникальных свойствах, данных человек от рождения и неотъемлемых от него. Физиологические показатели (геометрия ладони или папиллярный узор пальцев) являются неизменными для человека.
  • Динамические способы, основанные на поведенческой (то есть динамической) характеристике личности. Эти особенности характерны для подсознательных движений при воспроизведении каких-либо действий (речи, подписи, динамики клавиатурного набора). Такие поведенческие характеристики испытывают влияние управляемых и не очень управляемых психических факторов. Из-за их переменчивости биометрические образцы должны обновляться при их использовании.

Далее будут рассмотрены способы биометрической идентификации, соответствующие видам перерабатываемой информации.

Способы идентификации личности по биометрическим параметрам

Дактилоскопия

Этот метод опознавания является самым распространенным. Он использует неповторимость папиллярных узоров пальцев для каждого человека. Специальным сканером получают изображение пальцевого отпечатка. Оно трансформируется в цифровой код и сопоставляется с шаблоном, введенным ранее.

Процесс идентификациидлитсяне больше нескольких секунд. Определенный недостаток, сдерживающий развитие этого метода, состоит в предубеждении некоторых людей, не желающих оставлять данные о своих отпечатках пальцев. Контраргумент разработчиков аппаратуры заключается в том, что информация о папиллярном узоре не хранится, а хранится только короткий идентификационный код, выстроенный по отпечатку пальца и не позволяющий воссоздать узор для сравнения. Преимуществом метода является простота в использовании, надежность и удобство.

Отождествление по форме руки

Этот статический метод основан на измерении формы кисти руки. Она также является уникальным биометрическим параметром человека. Специальное устройство позволяет получить трехмерный вид кисти. В результате получают измерения для создания уникального цифрового кода, идентифицирующего человека.

Данный метод по своей технологии и точности сопоставим с методом отождествления по отпечатку пальца, хотя само устройство для реализации метода занимает много места. Чрезвычайно мала вероятность наличия двух идентичных кистей рук, имеющих одинаковую геометрию, хотя руки с возрастом меняются.

Сегодня идентификация по геометрии руки применяется в законодательных органах, больницах, международных аэропортах и т. д.

Аутентификация радужной оболочки

Основой этого метода является исключительность узора на радужной оболочке глаза. Для его выполнения нужна камера, чтобы получать изображение глаза с достаточным разрешением, и специальное программное обеспечение для выделения из полученного изображения рисунка на радужной оболочке. По нему и создается цифровой код, служащий для идентификации человека.

Достоинством сканеров является то, что от человека не требуют сосредотачиваться на цели, поскольку образец пятен радужной оболочки сосредоточен на поверхности глаза. Сканирование возможно на расстоянии меньше 1 м. Это удобно для использования, например, в банкоматах.

Идентификация по сетчатке глаза

Сетчатки сканируется с помощью низкоинтенсивного инфракрасного света, который направляется к кровеносным сосудам задней стенки глаза через зрачок. Сканеры сетчатки широко распространены в системах доступа на секретные объекты, поскольку у них почти не бывает неправильного разрешения доступа. Ошибки могут объясняться отклонением головы от эталонного положения и неправильной фокусировкой взгляда на источнике света.

Даже у близнецов различается капиллярный рисунок сетчатки. Вот почему этот способ может успешно использоваться для идентификации личности.

Недостатком таких систем можно отнести психологический фактор: не каждый человек может смотреть в темное отверстие, в котором в глаз что-то светит. Кроме того, эти системы чувствительны к неверной ориентации сетчатки, поэтому надо внимательно следить за положением глаза по отношению к отверстию.

Форма лица как объект для идентификации

Этот статический метод идентификации заключается в создании двух- или трехмерного образа лица человека. Камерой и специализированным программным обеспечением на изображении лица подчеркиваются контуры глаз, губ, бровей, носа и т. д. Затем вычисляют расстояния между этими элементами и прочие параметры. По этим сведениям создается образ, который для сравнения преобразуется в цифровую форму.

Этот способ относится к наиболее динамично развивающимся направлениям в индустрии биометрии. Его привлекательность основана на том, что не требуется специального дорогого оборудования. Достаточно персонального компьютера и видеокамеры. Кроме того, отсутствует физический контакт с устройствами. Не нужно прикасаться ни к чему, либо останавливаться, специально ожидая срабатывания системы.

Распознавание по рукописному почерку

Основой идентификации по почерку служит уникальность и стабильность этого фактора для каждого человека. Характеристики измеряются, переводятся в цифровой вид и подвергаются компьютерной обработке. То есть для сравнения выбирается не письмо как продукт, а сам процесс.

Распространены два метода обработки данных: обычное сравнение с образцом и динамическая верификация. Первый ненадежен, потому что подпись не всегда одинакова. Такой метод приводит к большому проценту ошибок. Динамическая верификация состоит в более сложных вычислениях. Этим методом в реальном времени регистрируются параметры самого процесса подписи: скорость движения руки на различных участках, силу давления и длительность разных этапов подписи. Это исключает подделку, так как невозможно в точности скопировать движения руки автора подписи.

Распознавание по клавиатурному почерку

Этот метод, в общем, аналогичен описанному выше, однако подпись в нем заменяется неким кодовым словом, а из оборудования нужна лишь обычная клавиатура. Основной идентификационной характеристикой является динамика клавиатурного набора кодового слова.

Согласно современным исследованиям, клавиатурный почерк обладает определенной стабильностью, благодаря чему можно однозначно идентифицировать личность. Исходными данными является время между нажатием клавиш и их удержания. Причем время между нажатием показывает темп работы, а удержания — стиль работы, то есть плавное нажатие либо резкий удар.

Вначале на этапе фильтрации удаляются данные о «служебных» клавишах – функциональных, управления курсором и т. д.

Потом выделяются следующие характеристики пользователя:

  • число ошибок в процессе набора;
  • время между нажатиями на клавиши;
  • скорость набора;
  • время на удержание клавиш;
  • аритмичность при наборе.

Распознавание по голосу

Биометрический метод идентификации голоса удобен в применении. Причинами его внедрения являются широкое распространение телефонных сетей и встраивание микрофонов в компьютеры. Недостатками можно считать факторы, оказывающие влияние на распознавание: помехи в микрофонах, окружающие шумы, ошибки в процессе произнесения, разное эмоциональное состояние человека при идентификации и т. п.

Главное в построении устройств аутентификации по голосу – выбор параметров, лучше всего описывающих индивидуальность голоса. Эти параметры сигнала называются признаками индивидуальности. Такие признаки, кроме данных об особенностях голоса, должны иметь и другие свойств. Например, они должны легко измеряться, и мало зависеть от шумов и помех. Кроме того, они должны обладать стабильностью во времени и сопротивляться имитации.

Разработаны системы с применением метода комбинированного анализа голоса с мимикой. Оказывается, мимика говорящего отличает только его и будет иной у произносящего те же слова другого человека.

Термографическое наблюдение лицевых артерий и вен

Идентификация человека по лицу сильно упрощаются, если перейти в инфракрасный диапазон световых волн. Термография идентифицируемого лица выявляет уникальность расположения на лице артерий, снабжающих кожу кровью. Вопроса подсветки для этих биометрических устройств не существует, поскольку они воспринимают лишь температурные перепады лица и свет им не нужен. Эффективность распознавания не зависит от перегрева или переохлаждения лица, естественного старения личности, пластических операций, так как они не изменяют внутреннее положение сосудов.

Способом лицевой термографии можно различать близнецов, лицевые кровеносные сосуды которых сильно различаются.

В этом способе идентификации используется специализированная видеокамера инфракрасного дальнего диапазона.

Идентификация по венам руки

На биометрическом рынке присутствуют устройства, которые построены на анализе индивидуального расположения вен на руках. Во внимание принимается рисунок вен, расположенных на тыльной стороне кисти сжатой в кулак руки. Наблюдение за рисунком вен осуществляет телевизионная камера при инфракрасной подсветке. При вводе изображения производится его бинаризация, выделяющая вены. Подобное оборудование производит единственная английская фирма Vinchek.

Перспективы биометрии

Доминирующим способом идентификации личности по-прежнему остается распознавание отпечатков пальцев. Для этого существуют две главные причины:

  • во многих странах начался переход на паспорта с биометрическими данными;
  • разработка обновленных моделей сканеров пальцевых отпечатков для применения в маленьких устройствах (сотовые телефоны, карманные ПК, ноутбуки).

Существенное расширение можно ожидать в секторе идентификации по подписи в связи с широким внедрением цифровой электронной подписи. Распознавание голоса тоже может набрать обороты благодаря реализации крупных проектов в строительстве интеллектуальных зданий.

Основные прогнозы сводятся к тому, что внедрение биометрических устройств безопасности в скором будущем приобретет лавинный характер. Борьба с глобальным терроризмом потребует практического использования любых достижений в этой сфере. Благодаря интенсивному развитию мультимедийных и цифровых технологий и дальнейшее их удешевление позволят разработать и внедрить принципиально новые системы идентификации.

Определенные биометрические технологии сейчас проходят стадию разработки и некоторые из них признаны перспективными:

  • термограмма лица в инфракрасном диапазоне;
  • характеристики ДНК;
  • спектроскопия кожи пальцев;
  • отпечатки ладоней;
  • форма ушной раковины;
  • параметры походки человека;
  • индивидуальные запахи человека;
  • уровень солености кожи.

Эти способы биометрической идентификации на сегодняшний день можно считать сформировавшимися. Возможно, скоро они перейдут от научных исследований к коммерческим технологиям.

источник

Источники:
  • http://masters.donntu.org/2010/fknt/kolesnik/library/article6.htm
  • http://habr.com/post/311876/
  • http://www.kazedu.kz/referat/189175/2
  • http://www.biotime.ru/company_biotime/novosti/biometricheskaya-identifikatsiya/
  • http://txcom.ru/identifikatsiya-po-glazu
  • http://intelcentre.ru/services/identifikatsiya-po-glazu
  • http://www.mirprognozov.ru/prognosis/society/sposobyi-identifikatsii-lichnosti-cheloveka/
Читайте также:  Лечение глаз у собаки в домашних условиях