Меню Рубрики

С точки зрения химии вода как растворитель

Самым распространенным растворителем на нашей планете является вода. Тело среднего человека массой 70 кг содержит примерно 40 кг воды. При этом около 25 кг воды приходится на жидкость внутри клеток, а 15 кг составляет внеклеточная жидкость, в которую входят плазма крови, межклеточная жидкость, спинномозговая жидкость, внутриглазная жидкость и жидкое содержимое желудочно-кишечного тракта. У животных и растительных организмов вода составляет обычно более 50%, а в ряде случаев содержание воды достигает 90—95%.

Вследствие своих аномальных свойств вода уникальный растворитель, прекрасно приспособленный для жизнедеятельности.

Прежде всего вода хорошо растворяет ионные и многие полярные соединения. Такое свойство воды связано в значительной мере с ее высокой диэлектрической проницаемостью (78,5).

Другой многочисленный класс веществ, хорошо растворимых в воде, включает такие полярные органические соединения, как сахара, альдегиды, кетоны, спирты. Их растворимость в воде объясняется склонностью молекул воды к образованию полярных связей с полярными функциональными группами этих веществ, например с гидроксильными группами спиртов и сахаров или с атомом кислорода карбонильной группы альдегидов и кетонов. Ниже приведены примеры водородных связей, важных для растворимости веществ в биологических системах. Вследствие высокой полярности вода вызывает гидролиз веществ.

Так как вода составляет основную часть внутренней среды организма, то она обеспечивает процессы всасывания, передвижения питательных веществ и продуктов обмена в организме.

Необходимо отметить, что вода является конечным продуктом биологического окисления веществ, в частности глюкозы. Образование воды в результате этих процессов сопровождается выделением большого количества энергии приблизительно 29 кДж/моль.

Важны и другие аномальные свойства воды: высокое поверхностное натяжение, низкая вязкость, высокие температуры плавления и кипения и более высокая плотность в жидком состоянии, чем в твердом.

Для воды характерно наличие ассоциатов групп молекул, соединенных водородными связями.

В зависимости от сродства к воде функциональные группы растворяемых частиц подразделяются на гидрофильные (притягивающие воду), легко сольватируемые водой, гидрофобные (отталкивающие воду) и дифильные.

К гидрофильным группам относятся полярные функциональные группы: гидроксильная —ОН, амино —NH2 , тиольная —SH, карбоксильная —СООН.

К гидрофобным — неполярные группы, например углеводородные радикалы: СНз—(СН2)п —, С6Н5 —.

К дифильным относят вещества (аминокислоты, белки), молекулы которых содержат как гидрофильные группы (—ОН, —NH2 , —SH, —СООН), так и гидрофобные группы: (СН3, (СН2)п ,С6Н5—).

При растворении дифильных веществ происходит изменение структуры воды как результат взаимодействия с гидрофобными группами. Степень упорядочения молекул воды, близко расположенных к гидрофобным группам, увеличивается, и контакт молекул воды с гидрофобными группами сводится к минимуму. Гидрофобные группы, ассоциируясь, выталкивают молекулы воды из области своего расположения.

Процесс растворения

Природа процесса растворения сложна. Естественно, возникает вопрос, почему некоторые вещества легко растворяются в одних растворителях и плохо растворимы или практически нерастворимы в других.

Образование растворов всегда связано с теми или иными физическими процессами. Одним из таких процессов является диффузия растворенного вещества и растворителя. Благодаря диффузии частицы (молекулы, ионы) удаляются с поверхности растворяющегося вещества и равномерно распределяются по всему объему растворителя. Именно поэтому в отсутствие перемешивания скорость растворения зависит от скорости диффузии. Однако нельзя лишь физическими процессами объяснить неодинаковую растворимость веществ в различных растворителях.

Великий русский химик Д. И. Менделеев (1834—1907) считал, что важную роль при растворении играют химические процессы. Он доказал существование гидратов серной кислоты H24*H2O, H24*2H2O, H24*4H2О и некоторых других веществ, например, С2Н5ОН*3Н2О. В этих случаях растворение сопровождается образованием химических связей частиц растворяемого вещества и растворителя. Этот процесс называется сольватацией, в частном случае, когда растворителем является вода, гидратацией.

Как установлено, в зависимости от природы растворенного вещества сольваты (гидраты) могут образовываться в результате физических взаимодействий: иондипольного взаимодействия (например, при растворении веществ с ионной структурой (NaCI и др.); дипольдипольного взаимодействия при растворении веществ с молекулярной структурой (органические вещества)).

Химические взаимодействия осуществляются за счет донорноакцепторных связей. Здесь ионы растворенного вещества являются акцепторами электронов, а растворители (Н2О, NН3) донорами электронов (например, образование аквакомплексов), а также в результате образования водородных связей (например, растворение спирта в воде).

Доказательствами химического взаимодействия растворенного вещества с растворителем являются тепловые эффекты и изменение окраски, сопровождающие растворение.

Например, при растворении гидроксида калия в воде выделяется теплота:

А при растворении хлорида натрия теплота поглощается:

Теплота, выделяемая или поглощаемая при растворении 1 моля вещества, называется теплотой растворения Qраств

В соответствии с первым началом термодинамики

где ΔНраств изменение энтальпии при растворении данного количества вещества.

Растворение в воде безводного сульфата меди белого цвета приводит к появлению интенсивной голубой окраски. Образование сольватов, изменение окраски, тепловые эффекты, как и ряд других факторов, свидетельствуют об изменении химической природы компонентов раствора при его образовании.

Таким образом, в соответствии с современными представлениями, растворение физико-химический процесс, в котором играют роль как физические, так и химические виды взаимодействия.

Подпишитесь и получайте дополнительные скидки

Вода с химической точки зрения – строение, взаимодействие.

  • О компании

Компания «Вода 095» — первый лоукостер в сфере доставки питьевой воды для кулера.
Мы предлагем простое и недорогое решение вопроса питьевой воды. Наше предложение больше всего подойдет для офисов, складов, зон обслуживания клиентов, там где потребляется достаточно большое количество воды. У нас нет сложных условий работы, Вы оплачиваете- мы доставляем. Дешево. Быстро. Удобно.

Адрес
119620 , г. Москва , Солнцевский проспект, д. 14

Email
info@voda095.ru ООО «Вода 095»

Каталог статей

Вода́ (оксид водорода) — прозрачная жидкость, не имеющая цвета (в малом объёме) и запаха. Химическая формула: Н2O. В твёрдом состоянии называется льдом или снегом, а в газообразном — водяным паром. Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, лёд на полюсах).

Является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы).

Вода имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды.

Физические свойства

Вода обладает рядом необычных особенностей:

• При таянии льда его плотность увеличивается (с 0,9 до 1 г/см³). Почти у всех остальных веществ при плавлении плотность уменьшается.

• При нагревании от 0 °C до 4 °C (точнее, 3,98 °C) вода сжимается. Благодаря этому могут жить рыбы в замерзающих водоёмах: когда температура падает ниже 4 °C, более холодная вода как менее плотная остаётся на поверхности и замерзает, а подо льдом сохраняется положительная температура.

• Высокая температура и удельная теплота плавления (0 °C и 333,55 кДж/кг), температура кипения (100 °C) и удельная теплота парообразования (2250 КДж/кг [1]), по сравнению с соединениями водорода с похожим молекулярным весом.

• Высокая теплоёмкость жидкой воды.

• Высокое поверхностное натяжение.

• Отрицательный электрический потенциал поверхности воды.

Все эти особенности связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Каждая молекула воды может участвовать максимум в четырёх водородных связях: 2 атома водорода — каждый в одной, а атом кислорода — в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4 °С этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные — атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.
Чистая (не содержащая примесей) вода — хороший изолятор. При нормальных условиях вода слабо диссоциирована и концентрация протонов (точнее, ионов гидроксония H3O+) и гидроксильных ионов HO- составляет 0,1 мкмоль/л. Но поскольку вода — хороший растворитель, в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.

Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60 % парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.

При атмосферном давлении вода замерзает (превращается в лёд) при температуре в 0 °C и кипит (превращается в водяной пар) при температуре 100 °C. При снижении давления температура плавления воды медленно растёт, а температура кипения — падает. При давлении в 611,73 Па (около 0,006 атм) температура кипения и плавления совпадает и становится равной 0,01 °C. Такое давление и температура называются тройной точкой воды. При более низком давлении вода не может находиться в жидком состоянии, и лёд превращается непосредственно в пар. Температура возгонки льда падает со снижением давления.

При росте давления температура кипения воды растёт, плотность водяного пара в точке кипения тоже растёт, а жидкой воды — падает. При температуре 374 °C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают. При более высоком давлении нет разницы между жидкой водой и водяным паром, следовательно, нет и кипения или испарения.

Так же возможны метастабильные состояния — пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, нетрудно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0 °C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.


Изотопные модификации воды.

И кислород, и водород имеют природные и искусственные изотопы. В зависимости от типа изотопов, входящих в молекулу, выделяют следующие виды воды:
• Лёгкая вода (просто вода).
• Тяжёлая вода (дейтериевая).
• Сверхтяжёлая вода (тритиевая).


Химические свойства

Вода является наиболее распространённым растворителем на Земле, во многом определяющим характер земной химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ. Её иногда рассматривают, как амфолит — и кислоту и основание одновременно (катион H+ анион OH-). В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода (или ионов гидроксония), pKa ≈ ок. 16.
Сама по себе вода относительно инертна в обычных условиях, но её сильно полярные молекулы сольватируют ионы и молекулы, образуют гидраты и кристаллогидраты. Сольволиз, и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

Вода в природе

В атмосфере нашей планеты вода находится в виде капель малого размера, в облаках и тумане, а также в виде пара. При конденсации выводится из атмосферы в виде атмосферных осадков (дождь, снег, град, роса). В совокупности жидкая водная оболочка Земли называется гидросферой, а твёрдая криосферой. Вода является важнейшим веществом всех живых организмов на Земле. Предположительно, зарождение жизни на Земле произошло в водной среде.

Материал из Википедии — свободной энциклопедии

Химические свойства воды. Вода как растворитель

Вода имеет исключительно важное значение для жизнедеятельности клеток, тка­ней и органов всех организмов на Земле, так как является средой, в которой происходят все реакции, лежащие в основе обмена веществ и энергии . Помимо этого вода выполняет роль растворителя для различ­ных химических веществ.

По отношению к воде все вещества делятся на два типа:

  • гидрофильные — хорошо растворимые в воде (многие соли, спирты, кислоты, моносахариды и дисахариды и др.);
  • гидрофобные — плохо растворимые в воде (жиры, полисахариды, сложные эфиры, жирные кислоты и др.).

Очевидно, не напрасно природа для строения оболочки живой клет­ки отобрала два слоя гидрофильных белков и поместила между ними один слой гидрофобных жиров. Именно такое устройство мембраны позволяет ей избирательно пропускать внутрь и наружу те или иные вещества.

Взаимодействие воды с гидрофильными веществами определяет та­кое явление, как осмос — диффузия воды через полупроницаемую мем­брану, разделяющую два раствора. При этом возникает осмотическое давление, которое является результатом диффузии молекул воды из раствора меньшей концентрации в раствор большей концентрации. Эф­фекты, связанные с осмотическим давлением, играют большую роль в природе: они обеспечивают проникновение минеральных веществ из почвы в растения, а также обмен веществ в живых организмах.

Вода — среда и причина диссоциации электролитов . Замечатель­ными гидрофильными веществами являются электролиты — соедине­ния, которые в водной среде и под действием её молекул распадаются на ионы — диссоциируют. Обмен такими веществами внутри организ­ма и между организмом и окружающей средой происходит на уровне образовавшихся в результате диссоциации ионов. Приведем основные классы неорганических соединений в свете теории электро­литической диссоциации.

Кислоты диссоциируют на катионы водорода и анионы кислотного остатка, например:

Вода в химии

Читайте также:

  1. III. ТУШЕНИЕ ПОЖАРОВ НА ОБЪЕКТАХ НЕФТЕХИМИИ
  2. ВОПРОСЫ К ЭКЗАМЕНУ ПО ФАРМАЦЕВТИЧЕСКОЙ ХИМИИ
  3. Достижения в основных направлениях современной химии
  4. Законы термохимии
  5. И ПРЕДСТАВЛЕНИЯ ХИМИИ
  6. Исторический очерк аналитической химии
  7. История развития биохимии
  8. История становления методики обучения химии, педагоги-химики прошлого и настоящего времени (самостоятельное изучение).
  9. Катодом в электрохимии называется электрод, на котором протекает реакция восстановления, т. е. присоединение электронов.
  10. Качественные реакции неорганической химии.
  11. Качественные реакции органической химии.

Вода как растворитель имеет громадное значение и в промышленности, и в быту. Трудно найти какое-нибудь производство, в котором вода не использовалась бы как растворитель. Возьмём, например, производство сахара. Горячая вода извлекает из тонких стружек сахарной свёклы сахар; затем после очистки раствор упаривается, и из него выделяются кристаллы сахара. Без воды работа сахарного завода немыслима. Невозможно себе представить выделку кожи, травление и крашение различных тканей, мыловарение и множество других производств без использования водных растворов различных веществ.

Вода как растворитель представляет особенно большой интерес для химии.

Химики очень часто применяют воду для очистки получаемых ими продуктов. Эта очистка основана на том, что большинство веществ растворяется в горячей воде лучше, чем в холодной. Так, например, в 100 граммах воды при температуре в 100 градусов растворяется 342 грамма едкого натрия, а при 20 градусах 109 граммов, при 100 градусах в том же количестве воды растворяется 291 грамм борной кислоты, а при 20 градусах около 40 граммов. Желая получить чистое вещество, поступают так. Загрязнённое вещество растворяют в воде до тех пор, пока не получится насыщенный раствор, т. е. такой, в котором вещество больше уже не растворяется. Затем фильтрованием удаляют нерастворимые примеси и охлаждают жидкость. При этом образуется пересыщенный раствор, из которого по мере понижения температуры выпадает всё больше и больше чистых кристаллов вещества. Растворимые же примеси остаются в растворе. Растворение и кристаллизацию повторяют несколько раз, в зависимости от того, насколько чистый продукт надо получить. Если растворимость изменяется с повышением температуры незначительно (как, например, у поваренной соли: при 100 градусах в 100 граммах воды растворяется 39,1 грамма соли, а при нуле градусов 35,6 грамма), растворы упаривают. Так получают, например, выварочную соль.

Однако вода ценна не только как средство для очистки веществ. Очень часто она играет незаменимую роль как единственно возможная среда для протекания тех или иных химических процессов.

Одним из условий возникновения реакции является столкновение участвующих в ней молекул. В случае, если взаимодействуют газообразные вещества или жидкости, такое столкновение осуществляется легко: молекулы газов и жидкостей достаточно подвижны. Но как провести реакцию между твёрдыми веществами? Ведь в них движение молекул весьма стеснено, так как каждая из молекул закреплена в определённом месте кристалла, где она может только колебаться. Вы можете насыпать в стакан немного соли и лимонной или щавелевой кислоты, но реакции между ними не дождётесь: эта смесь может простоять без всяких изменений сколь угодно долго. Как же быть? Здесь на помощь снова приходит вода. Прибавьте в тот же стакан воды. Сода и кислота растворятся в воде, и мельчайшие частички их получат возможность сталкиваться друг с другом. Между ними моментально начнётся химическая реакция, которую легко заметить по выделению из раствора пузырьков одного из продуктов реакции — углекислого газа.

Известно, что очень крепкую серную кислоту можно свободно перевозить в стальных цистернах — корпус цистерны ею не разрушается. Но если серная кислота разбавлена водой, стальные цистерны использовать уже нельзя, так как водный раствор серной кислоты легко разъедает железо.

Вещества не взаимодействуют друг с другом, если они не растворены, — гласит старинное правило химиков.

Вода отличается ещё одним важным свойством: она сама способна соединяться с очень многими веществами, быть активным участником различных химических процессов.

Вода способна соединяться с простыми веществами как металлами, так и неметаллами.

Например, неметалл хлор даёт с водой смесь кислот: соляную и хлорноватистую. Если хлор пропускать через воду, к которой прибавлен едкий натр, то в результате реакции получается «жавелевая вода», хорошее белящее средство.

С натрием, калием и некоторыми другими металлами вода бурно взаимодействует. При этом получаются едкие щёлочи и выделяется газ водород.

Вода вступает в реакции и со многими сложными веществами. Мы здесь укажем только несколько примеров этих реакций, приводящих к образованию очень важных в химической промышленности веществ — оснований (или гидроокисей) и кислот.

Читайте также:  Дефекты зрения у детей и их методы

Всем знакома негашёная известь. Это — соединение металла кальция с кислородом или окись кальция. Её получают накаливанием известняка и используют в качестве строительного материала. Если негашёную известь облить водой, то вода химически соединится с нею. Этот процесс называется гашением, а получающийся продукт — гашёной известью или гидроокисью кальция. Она находит широкое техническое применение.

Таким же способом — соединением окислов металлов с водой — могут быть получены и многие другие гидроокиси.

При взаимодействии воды с неметаллическими окислами получаются также необходимые для промышленности продукты — кислоты. Так, окисел азота (двуокись), растворяясь в воде, образует азотную и азотистую кислоты. Эта реакция используется в химической промышленности для получения азотной кислоты. Она же приводит к образованию аммиачной селитры из аммиака, воды и азота в воздухе во время грозы.

Не менее важна реакция между водой и трёхокисью серы: продукт этой реакции — серная кислота, имеющая применение во многих отраслях промышленности.

Во всех перечисленных здесь веществах, которые образуются при участии воды, вода входит в состав вещества как неотъемлемая часть. Это — так называемая конституционная вода. Выделить конституционную воду, не разрушая вещества, нельзя.

Но есть такие соединения веществ с водой, в которых взаимодействующие молекулы сохраняют некоторую самостоятельность. Это — так называемые кристаллогидраты. Они получаются при кристаллизации веществ из водных растворов. Частицы растворённого вещества прочно удерживают около себя молекулы воды, и эти молекулы полностью или частично входят в состав выделяющихся из раствора кристаллов.

Содержащаяся в кристаллах вода, кристаллизационная вода, находится в соединении с молекулами вещества в строго определённых количествах. Так, в кристаллах медного купороса каждая молекула купороса связывает одну, три или пять молекул воды, в кристаллах соды — десять молекул, в кристаллах азотнокислого олова — двадцать молекул воды. Поваренная соль, сахар и многие другие вещества кристаллизуются без воды. Исследования тепловых, электрических и других свойств кристаллогидратов показали, что кристаллизационная вода ведёт себя как твёрдое вещество.

Многие кристаллогидраты непрочны. Так, например, сода теряет свою кристаллизационную воду, находясь просто в воздухе: её прозрачные кристаллы мутнеют и рассыпаются в порошок. Кристаллы медного купороса теряют 80 процентов воды при нагревании до 100 градусов, а остальные 20 процентов только при 240 градусах. При этом синие кристаллы превращаются в белый порошок.

Процесс потери кристаллизационной воды называется выветриванием.

Некоторые безводные кристаллы очень жадно притягивают к себе воду, причём притягивают её в гораздо большем количестве, чем это нужно для образования соответствующего кристаллогидрата; в результате этого они расплываются. Так расплываются поташ, хлористый кальций. Эти вещества используются как поглотители влаги при высушивании различных веществ.

Нам осталось сказать ещё об одном важном для химии свойстве воды — о её способности ускорять течение различных реакций.

Многие химические реакции протекают с неизмеримо малой скоростью, но в присутствии даже ничтожных количеств определённых веществ идут в сотни и тысячи раз быстрее. Вещества, которые ускоряют течение химической реакции, но сами не входят в состав конечных продуктов реакции, называются катализаторами. К числу катализаторов относится и вода, причём каталитическое действие её весьма разносторонне.

Мы знаем, что железо на воздухе ржавеет, что гремучий газ при нагревании взрывается, плавиковая кислота разъедает стекло, натрий и фосфор быстро окисляются на воздухе, хлор активно действует на металлы… Но оказывается, что во всех этих случаях катализатором является вода. При полном отсутствии влаги скорость этих процессов ничтожна. Сухой гремучий газ, например, не взрывается даже при значительном нагревании, а железо в воздухе, лишённом воды, становится таким же устойчивым, как золото или платина.

Можно сказать, что если бы вода не обладала каталитическим действием, мы составили бы совершенно иное представление о химических свойствах окружающих нас веществ.

Растворами называются гомогенные системы, содержащие не менее двух веществ. Могут существовать растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же аг­регатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке — растворенным веществом.

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы.

Газообразными растворами являются воздух и другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жид­костей и твердых тел с жидкостями.

Твердыми растворами являются многие сплавы, например, металлов друг с другом, стёкла. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наи­более распространенным растворителем из неорганических ве­ществ, конечно же, является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол, четыреххлористый углерод и др.

В процессе растворения частицы (ионы или молекулы) рас­творяемого вещества под действием хаотически движущихся час­тиц растворителя переходят в раствор, образуя в результате бес­порядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие — в ограниченных (хлорид натрия и вода).

Сущность процесса образования раствора можно показать на примере растворения твердого вещества в жидкости. С точки зрения молекулярно-кинетической теории растворение протекает следующим образом: при внесении в растворитель какого-либо твердого вещества, например, поваренной соли, частицы ионов Na + и Cl — , находящиеся на поверхности, в результате колебатель­ного движения, увеличивающегося при соударении с частицами растворителя, могут отрываться и переходить в растворитель. Этот процесс распространяется на следующие слои частиц, кото­рые обнажаются в кристалле после удаления поверхностного слоя. Так постепенно частицы, образующие кристалл (ионы или молекулы), переходят в раствор. На рис дана наглядная схема разрушения ионной кристаллической решетки NaСl при раство­рении в воде, состоящей из полярных молекул.

Частицы, перешедшие в раствор, вследствие диффузии распределяются по всему объему растворителя. С другой стороны, по мере увеличения концентрации частицы (ионы, молекулы), на­ходящиеся в непрерывном движении, при столкновении с твердой поверхностью еще не растворившегося вещества могут задерживаться на ней, т.е. растворение всегда сопровождается обратным явлением — кристаллизацией. Может наступить такой момент, когда одновременно выделяется из раствора столько же частиц (ионов, молекул), сколько их переходит в раствор — наступает равновесие.

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называютнасыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, — ненасыщенным.

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) — величина постоянная.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы — растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы — растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе.

Сравнивая растворимость различных веществ, мы видим, что насыщенные растворы малорастворимых веществ являются разбавленными, а хорошо растворимых веществ — хотя и ненасы­щенные, но довольно концентрированными.

В зависимости от то­го, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворынеэлектролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов за­ключается в том, что они проводят электрический ток.

23. Электролиты и неэлектролиты.

Электролиты и неэлектролиты. Растворы электролитов

Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами.
Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.
Одни вещества в растворенном или расплавленном состоянии проводят электрический ток, другие — нет. В этом можно убедиться с помощью прибора, состоящего из угольных электродов, присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие электрического тока в цепи. Если опустить электроды в раствор сахара, то лампочка не загорается. Если же опустить электроды в раствор поваренной соли, то лампочка ярко вспыхнет. Следовательно, сахар (раствор) — неэлектролит, т.к. не проводит электрический ток, а раствор поваренной соли — электролит, т.к. проводит электрический ток.
Опытным путем было доказано, что к электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.
Электролиты — проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и протекает ток. Очевидно, что чем больше ионов в растворе, тем лучше он проводит электрический ток. Чистая вода электрический ток проводит очень плохо.
Распад молекул электролита на ионы под воздействием молекул растворителя называется электролитической диссоциацией.

Так, хлорид натрия NaCl при растворении в воде полностью распадается на ионы натрия Na+ и хлорид-ионы Сl-. Вода образует ионы водорода Н+ и гидроксид-ионы ОН

лишь в очень незначительных количествах.
Кроме хорошей электропроводности растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств в 1887 г. шведский ученый С. Аррениус предложил теорию электролитической диссоциации.
1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы — положительные и отрицательные.
Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома — это простые ионы (Na+, Mg2+, Аl3+ и т. д.) — или из нескольких атомов — это сложные ионы (NO-3, SO2-4, PO3-4 и т.д.). Многие ионы окрашены. Например, ион MnO-4 имеет малиновый цвет, ион CrO2-4 — желтый, ионы Na+ и Сl- бесцветны. Само название «ион» в переводе с греческого означает «странствующий». В растворе ионы беспорядочно передвигаются («странствуют») в различных направлениях.
2. При действии электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные — к аноду. Поэтому первые называются катионами, вторые — анионами. Направленное движение ионов происходит в результате притяжения их к противоположно заряженным электродам.
3. Диссоциация — обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).
Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита КА на катион К+ и анион А- в общем виде записывается так:
КА К++А-
Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

24. Теория электролитической диссоциации.

лектролиты – вещества, водные растворы и расплавы которых проводят электрический ток. Эти вещества имеют ионную и ковалентную сильнополярную связи. Электролитами являются кислоты, основания, соли. Поведение электролитов в растворе объясняет теория электролитической диссоциации, сформулированнаяСванте Аррениусом в 1887 году. Теория состоит из следующих положений:

1. При растворении в воде электролиты распадаются на положительно и отрицательно заряженные ионы. Процесс распада электролита на ионы называется электролитической диссоциацией.Электролитическая диссоциация – процесс обратимый. Обратная реакция называется моляризацией.

2. Под действием электрического напряжения катионы двигаются к катоду, а анионы – к аноду.

3. Степень электролитической диссоциации зависит от природы электролита, температуры, концентрации.

Степень электролитической диссоциации – это величина, которая показывает отношение числа распавшихся на ионы молекул к общему числу молекул в растворе. Обозначается a. Измеряется в % (долях). N – общее число молекул в растворе, n – число диссоциированных молекул.

В зависимости от величины степени электролитической диссоциации электролиты разделяют на сильные и слабые:

Дата добавления: 2015-05-09 ; Просмотров: 982 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Вода с точки зрения химии.

Огромная роль воды в жизни человека и природы послужила причиной того, что она была одним из первых соединений, привлекших внимание ученых. Тем не менее, изучение воды еще далеко не закончено.

Общие свойства воды.

Вода в силу популярности ее молекул способствует разложению контактирующих с ней молекул солей на ионы, но сама вода проявляет большую устойчивость и в химически чистой воде содержится очень мало ионов по H + и OH — .

Вода – инертный растворитель; химически не изменяется под действием большинства технических соединений, которые не растворяет. Это очень важно для всех живых организмов на нашей планете, поскольку необходимые тканям питательные вещества поступают в водных растворах в сравнительно мало измененном виде. В природных условиях вода всегда содержит то или иное количество примесей, взаимодействуя не только с твердыми и жидкими веществами, но растворяя также и газы.

Даже из свежевыпавшей дождевой воды можно выделить несколько десятков миллиграммов различных растворенных в ней веществ на каждый литр объема. Абсолютно чистую воду никогда и никому еще не удавалось получить ни в одном из ее агрегатных состояний; химически чистую воду, в значительной мере лишенную растворенных веществ, производят путем длительной и кропотливой очистки в лабораториях или на специальных промышленных установках.

В природных условиях вода не может сохранить «химическую чистоту». Постоянно соприкасаясь со всевозможными веществами, она фактически всегда представляет собой раствор различного, зачастую очень сложного свойства. В пресной воде содержание растворенных веществ обычно превышает 1 г/л. От нескольких единиц до десятков граммов на литр колеблются содержание солей в морской воде: например, в Балтийском море их всего 5 г/л, в Черном – 18, а в Красном море – даже 41 г/л.

Солевой состав морской воды в основном на 89% слагается из хлоридов (преимущественно хлорида натрия, калия, кальция), 10% приходится на сульфаты (натрия, калия, магния) и 1% — на карбонаты (натрия, кальция) и другие соли. Пресные воды содержат обычно больше всего до 80% карбонатов (натрия, кальция), около 13% сульфатов (натрия, калия, магния) и 7% хлоридов (натрия и кальция).

Вода хорошо растворяет газы (особенно при низких температурах), главным образом кислород, азот, диоксид углерода, сероводород. Количество кислорода иногда достигает 6 мг/л. В минеральных водах типа нарзан общее содержание газов может составлять до 0,1%. В природной воде присутствуют гумусовые вещества – сложные органические соединения, образующиеся в результате неполного распада остатков растительных и животных тканей, а также соединения типа белков, сахаров, спиртов.

Вода обладает исключительно высокой теплоемкостью. Теплоемкость воды принята за единицу. Теплоемкость песка, например, составляет 0,2, а железа – лишь 0,107 теплоемкости воды. Способность воды накапливать большие запасы тепловой энергии позволяет сглаживать резкие температурные колебания на прибрежных участках Земли в различные времена года и в различную пору суток: вода выступает как бы регулятором температуры на всей нашей планете.

Следует отметить особое свойство воды – ее высокое поверхностное напряжение – 72,7 эрг/см 2 (при 20С). В этом отношении из всех видов жидкостей вода уступает только ртути. Подобное свойство воды во многом обусловлено водородными связями между отдельными молекулами H2O. Особенно наглядно проявляется поверхностное напряжение в прилипании воды ко многим поверхностям – смачивании. Установлено, что вещества – глина, песок, стекло, ткани, бумага и многие другие, легко смачиваемые водой, непременно имеют в своем составе атомы кислорода. Такой факт оказался ключевым при объяснении природы смачивания: энергетически неуравновешенные молекулы поверхностного слоя воды получают возможность образовать дополнительные связи с «чужими» атомами кислорода.

Смачивание и поверхностное натяжение лежат в составе явления, названного капиллярностью: в узких каналах вода способна подниматься на высоту гораздо большую, чем та, которую «позволяет» сила тяжести для столбика данного сечения.

В капиллярах вода обладает поразительными свойствами. Б.В. Дерягин установил, что в капиллярах вода, сконденсировавшаяся из водяного пара, не замерзает при 0 и даже при снижении температуры на десятки градусов.

Молекулы воды отличаются большой термической устойчивостью, при деструкции по схеме: 2H2O  2H2 + O2 + 2245,6 КДж. Начинается при температурах выше 1000С, и при 2000С составляет лишь 1,8%. При 5000С водяной пар со взрывом нацело разлагается на водород и кислород.

Вода относится к слабым электролитам: H2O  H + + OH —

Вода весьма реакционно-способное вещество: может проявлять как окислительные, так и восстановительные свойства. Так, под действием сильных восстановителей вода проявляет окислительные свойства: на холоде окисляет щелочные и щелочноземельные металлы, а при температуре накаливания – железо, углерод и др.

Под действием сильных окислителей (фтор, хлор, электрический ток) воды проявляет восстановительные свойства. Так, реакцию взаимодействия со фтором можно представить следующим образом:

Существует три типа присоединения воды к молекулам других веществ: по ионному, координатному и адсорбционному типу.

Присоединение по ионному типу происходит к оксидам щелочных, щелочноземельных и редкоземельных металлов, а также к кислотным оксидам:

Вода, присоединяемая по ионному типу, называется конституционной. Она удаляется при нагревании с большим трудом. Так отщепление от едкого натра начинается при 1388С:

К ионам металлов – комплексообразователей присоединение идет по координатному принципу:

Полученные соединения называются аквакомплексами, а вода, вошедшая в их состав, — кристаллизационной. Кристаллизационная вода удаляется легче, чем конституционная, например, при выветривании.

Различные вещества адсорбируют на своей поверхности некоторое количество воды за счет межмолекулярных сил притяжения. Вода, присоединенная по абсорбционному типу, называется гигроскопической; она удаляется легче, чем кристаллизационная.

Ионный состав природных вод.

Происходящее в почвах окисления органических веществ вызывают расход кислорода и выделение углекислоты, поэтому в воде при фильтрации её через почву возрастает содержание углекислоты, что приводит к обогащению природных вод карбонатами кальция, магния и железа, с образованием растворимых в воде кислых солей типа:

Читайте также:  Как принимать чернику для восстановления зрения

Бикарбонаты присутствуют почти во всех водах в тех или иных количествах. Большую роль в формировании химического состава воды играют подстилающие почву грунты, с которыми вода вступает в соприкосновение, фильтруясь и растворяя некоторые минералы. Особенно интенсивно обогащают воды осадочные породы, такие, как известняки, доломиты, мергели, гипс, каменная соль и др. В свою очередь почва и породы обладают способностью адсорбировать из природной воды некоторые ионы (например, Са +2 , Mg +2 ), замещая их эквивалентным количество других ионов (Na + , К + ).

Подпочвенными водами легче всего растворяются хлориды и сульфаты натрия и магния, хлорид кальция. Силикатные и алюмосиликатные породы (граниты, кварцевые породы и т.д.) почти нерастворимы в воде и содержащей углекислоту и органические кислоты.

Наиболее распространенными в природных водах являются следующие ионы: С1 — , SO4 — , НСО3, СО3 — , Na + , Mg 2+ , Са 2+ , H + .

Ион хлора присутствует почти во всех природных водоемах, причем его содержание меняется в очень широких пределах. Сульфат — ион также распространен повсеместно. Основным источником растворенных в воде сульфатов является гипс. В подземных водах с содержанием сульфат — иона обычно выше, чем в воде рек и озер. Из ионов щелочных металлов в природных водоемах в наибольших количествах находится ион натрия, который является характерным ионом сильноминерализованных вод морей и океанов.

Ионы кальция и магния в маломинерализованных водах занимают первое место. Основным источником ионов кальция является известняки, а магния — доломиты (MgCO3, СаСО3). Лучшая растворимость сульфатов и карбонатов магния позволяет присутствовать ионам магния в природных водах в больших концентрациях, чем ионов кальция.

Ионы водорода в природной воде обусловлены диссоциацией угольной кислоты. Большинство природных вод имеют рН в пределах 6,5 — 8,5. Для поверхностных вод, в связи с меньшим содержанием в них углекислоты, рН обычно выше, чем для подземных.

Соединения азота в природной воде представлены ионами аммония, нитритными, нитратными ионами за счет разложения органических веществ животного и растительного происхождения. Ионы аммония, кроме того, попадают в водоемы со сточными промышленными водами.

Соединения железа очень часто встречаются в природных водах, причем переход железа в раствор может происходить под действием кислорода или кислот (угольной, органических). Так, например, при окислении весьма распространенного в породах пирита получается сернокислое железо:

а при действии угольной кислоты – карбонат железа:

Соединения кремния в природных водах могут быть в виде кремниевой кислоты. При рН 8 кремниевая кислота находится практически в недиссоциированном виде; при рН 8 кремниевая кислота присутствует совместно с HSiO3 , а при рН >П — только HSiOз . Часть кремния находится в коллоидном состоянии, с частицами состава HSiO2H2O , а также в виде поликремневой кислоты: XSiO2H2O. В природных водах присутствуют также Аl 3+ , Mg 2+ и другие катионы.

Помимо веществ ионного типа природные воды содержат также газы и органические и грубодисперсные взвеси. Наиболее распространенными в природных водах газами являются кислород и углекислый газ. Источником кислорода является атмосфера, углекислоты — биохимические процессы, происходящие в глубинных слоях земной коры, углекислота из атмосферы.

Из органических веществ, попадающих извне, следует отметить гуминовые вещества, вымываемые водой из гумусовых почв (торфяников, сапропелитов и др.). Большая часть из них находится в коллоидном состоянии. В самих водоемах органические вещества непрерывно поступают в воду в результате отмирания различных водных организмов. При этом часть из них остается взвешенной в воде, а другая опускается на дно, где происходит их распад.

Грубодисперсные примеси, обуславливающие мутность природных вод, представляют собой вещества минерального и органического происхождения, смываемые с верхнего покрова земли дождями или талыми водами во время весенних паводков.

С точки зрения химии вода как растворитель

Вода – наиболее распространенная жидкость на планете, а ее формула – H2O – пожалуй, известнейшая химическая запись в мире.

Наверное, это одно из наиболее загадочных веществ на Земле. Во все времена люди верили в сверхспособности воды: в древние века говорили о «мертвой» и «живой» воде, сегодня все чаще можно услышать о мистических свойствах структурированной жидкости. А исследователи, чем дольше изучают свойства этой субстанции, тем больше потрясающих открытий делают. И даже когда порой кажется, что все открытия уже давно сделаны, ученые все равно находят новые страницы в «биографии» воды, неведомые досель «таланты» этой чудо-жидкости.

Так чем является эта дивная жидкость, о которой рассказывали сказки и легенды наши предки, перед которой и ныне преклоняются верующие во всем мире, без которой не было бы жизни на планете, да и, собственно, из которой началась история Земли? Так что на самом деле известно человеку о воде, кроме того, что она покрывает примерно 70 процентов всей площади планеты, а мы сами почти на две третьих состоим из этой субстанции. Сейчас попробуем понять, какая роль отведена воде во Вселенной.

Вода с точки зрения химии

H2O – невероятно простая формула, но за ней стоит самая важная и, наверное, наиболее загадочная субстанция на планете. И даже химия, как наука, обязана своим существованием жидкости – ведь начиналась с исследования именно водных растворов. Хоть формула воды на первый взгляд и не представляет собой ничего сложного, исследователи признаются: эта субстанция пока недостаточно изучена, она кроет в себе еще много тайн, которые человечеству предстоит открыть.

Вода, или как называют ее химики, оксид водорода, состоит из двух атомов водорода и одного – кислорода. Соединяясь, эти три элемента создают невероятно прочную связь, разрушить которую не так просто. Весь секрет в том, что ионы водорода настолько малы, что могут проникать в оболочку кислородного атома соседней молекулы. Так образуется прочное соединение, объединяющее 4 элементы. Сила этой связи оберегает структуру воды от разрушения уже на протяжении миллионов лет.

Интересно, что «вода» – не единственное название этой субстанции. Имен у нее, как ни странно, достаточно много. Это для нас она – просто вода. А люди науки называют эту прозрачную жидкость оксидом или гидроксидом водорода, оксиданом, монооксидом дигидрогена, дигидромонооксидом и даже гидроксильной кислотой.
И кстати о кислоте. Вода с точки зрения химии рассматривается, как амфолит – вещество, одновременно обладающее свойствами кислоты и основания. И в этом также состоит одно из уникальных свойств воды.

Дигидроген является химически активным веществом, растворителем других элементов – органических и неорганических. И еще в школе нас учили, что Н2О реагирует с активными металлами (например, кальцием, калием, натрием), галогенами, такими как фтор или хлор, а также с солями, кислотами и множеством других соединений. Кроме того, при нагревании вступает в реакции с некоторыми другими элементами (железом, магнием, углем, метаном, алкилгалогенидами).

Когда вода не бывает жидкой

Пожалуй, нет нужды напоминать, что вода – это бесцветная субстанция без вкуса и запаха, а в зависимости от условий, может быть в жидком состоянии, паром или льдом. И мы все настолько привыкли к этому, что данный факт не удивляет даже детей. Хотя на самом деле, на всей планете только вода способна на такие «фокусы» – ни одна друга субстанция не может позволить себе подобные перевоплощения. И это снова-таки – благодаря особенному типу связей внутри молекулы.

100 градусов – не всегда точка кипения

Общеизвестно, когда термометр показывает 0 градусов, вода замерзает, а при 100 по Цельсию – закипая, превращаясь в пар. Но этот закон «работает» только при условии «правильного» атмосферного давления – 760 мм рт. ст. (1 атмосфера). Пропорционально снижению давления растет точка таянья льда, а температура закипания, наоборот, снижается. При понижении атмосферного давления до определенного показателя, вода теряет способность оставаться жидкой: при температурных колебаниях лед сразу превращается в пар и наоборот. Если давление повышать, можно достичь другого интересного эффекта: для плавки льда понадобится температура выше комнатной. А если бы в формуле Н2О вместо кислорода были его «соседи» по таблице Менделеева (например, сера или селен), субстанция закипала бы уже при 80 градусах.

Но в физике существует еще такое понятие как тройная точка воды. Этот термин обозначает момент, когда вода существует одновременно в трех состояниях: твердом, жидком и газообразном. Ученые говорят, что для достижения такого эффекта необходимо давление в 0,006 атмосферы и температура 0,001 градуса по Цельсию.

И еще одна удивительная способность. Если в составе воды нет растворенных газов, она не превратится в лед даже при 70 градусах мороза и не закипит даже при +150.

Объемы вне правил

Плотность – еще один из физических параметров, характерных для всех веществ на планете. Вода – не исключение. Но и здесь не обошлось без «сюрпризов». Н2О и в этих характеристиках сумела «выбиться» за пределы законов физики.

Ученые доказали, что плотность любого вещества зависит от температуры и объема. С повышением температуры увеличиваются объемы вещества и снижается его плотность. Но это правило перестает работать с водой, температура которой от 0 до 4 градусов по Цельсию. Если точнее, с повышением температуры объемы воды наоборот уменьшаются. И только из-за того, что плотность льда ниже, чем жидкой воды, водоемы всегда начинают намерзать сверху, а не снизу. А ледяная корка, образовавшаяся сверху, не дает промерзнуть остальной жидкости.

И еще несколько уникальных возможностей

Кроме того, как само собой полагается, воспринимаем факт, что оксид водорода в нормальных условиях (при определенных показателях температуры и давления) – это бесцветная жидкость без вкуса и запаха. Но, оказывается, в таких обстоятельствах сохранять текучесть способна только вода. В аналогичной ситуации другие похожие соединения водорода предстают перед человеком в виде газов. И снова все это – заслуга специфических связей внутри молекулы Н2О.

Вы никогда не задумывались, почему, опрокинув стакан, жидкость не «разлетается» по сторонам, не рассыпается, а образовывает лужу с четко очерченными краями? Благодаря специфике молекулы воды, субстанция сохраняет вязкость и высокое поверхностное натяжение (по этому показателю монооксид дигидрогена проигрывает только ртути).

Оксид водорода является одним из лучших веществ-растворителей. Избегая научной терминологии, этот процесс можно описать примерно так. Молекулы воды берут в кольцо каждую молекулу растворяемого вещества. Но не хаотично, а по определенной схеме: ионы с положительным зарядом притягивают к себе атомы кислорода, а отрицательно заряженные частицы – водород. По такому же принципу вода заполняет пространство в клетках всех живых организмов.

А поскольку в воде почти всегда есть какие-либо соли, то есть присутствуют ионы с положительным и отрицательным зарядом, она также обладает способностью электропроводности. При этом чистая вода, не содержащая в себе примесей других ионов, наоборот является идеальным изолятором.

Откуда взялась Н2О на планете

Вода имеет жизненно важное значение для выживания человечества. Сегодня мы знаем многое об этой субстанции, кроме главного и самого первого: откуда взялась на планете вода. Пожалуй, каждый припомнит картинку из средней школы, на которой изображен цикл кругооборота воды. Учитель рассказывал, как эта жидкость испаряется из океанов и озер, конденсируется, образует облака и в виде дождя возвращается снова на землю. Во всем этом, конечно, есть смысл. За исключением единственной вещи. Эта школьная картинка никоим образом не объясняла, откуда взялась самая первая вода….

Есть мнение, что история появления воды на нашей планете насчитывает около 13,8 миллиарда лет до Большого взрыва. Астрономы считают, что жидкость на Землю перенесли кометы и астероиды, которые атаковали нашу планету на протяжении миллионов лет. Но так ли это все происходило на самом деле, сегодня еще трудно ответить. А научные споры продолжаются.
И совсем недавно исследователи из Гавайского университета, проанализировав состав скал на острове Баффинова Земля (Канада) пришли к неожиданному выводу. Они выдвинули новую теорию – о так называемой «родной» воде на Земле. Скалы на острове «выросли» непосредственно из мантии, без каких-либо влияний земной коры. И вот в их составе исследователи обнаружили стеклянные кристаллы, а в них – капельки воды. И что интересно, химический состав «освобожденной» из скалы жидкости идентичен формуле остальной воды на планете.

Гавайские ученые не берутся опровергать теорию об астероидах и кометах, но призывают научный мир по-новому взглянуть на возможные источники праводы на нашей планете. Возможно, когда Земля была еще молодой, ее подпитывала влага из нескольких источников?…

Влага на планете

На Земле, как подсчитали исследователи, есть немало-немного – почти полторы тысячи миллионов км куб Н2О.

При этом, убеждают ученые, эта величина стабильна и количество жидкости на планете не меняется вот уже на протяжении миллионов лет.

Часть ее – поверхностная. Это именно те запасы, которые видны даже из Космоса, это та жидкость, благодаря которой наша планета получила название Голубой шар. И именно Всемирный океан послужил началом всего живого на планете. Как это произошло? По мнению многих ученых, миллиарды лет тому назад в замкнутых водоемах концентрировались органические соединения, которые потом и помогли зародиться жизни. Ученым еще предстоит изучить, как это все происходило, но то, что вода – праматерь всего живого, современной наукой воспринимается как аксиома.

Вторая часть планетарной влаги – это подземные запасы. Чаще всего они представляют собой своеобразные гигантские сосуды, содержащие в себе под высочайшим давлением воду. Первые подземные «резервуары» открываются геологам уже на глубине всего нескольких метров. Именно эти водные запасы служат «донорами» для бытовых колодцев. Меж тем, учитывая, что верхний слой земли довольно рыхлый, эти кладези влаги часто бывают грязными и не подходят для питья.

Но, впрочем, даже в доисторические времена люди умели очищать воду, делая ее подходящей для использования. К примеру, еще древние египтяне первыми на планете описали способы очистки воды. Эта древняя инструкции «производства» жидкости для питья датируется примерно 1500 годами до нашей эры. Чтобы сделать жидкость безопасной для употребления, древние жители берегов Нила чаще всего кипятили ее, нагревали на солнце либо погружали в воду кусок раскаленного железа. А чтобы сделать ее прозрачной, пропускали кипящую жидкость через слой песка и гравия. Сегодня человечество прибегает к другим методам очистки воды, используя знания химии и физики.

Почти 70 процентов поверхности Земли покрыты водой. Но 97 % от всей влаги на планете – это соленая субстанция, насыщенная разными минералами и химическими соединениями. Теоретически человек может использовать ее для питья после очистки от примесей. Но на практике это довольно трудно и крайне дорого. Еще приблизительно 2 процента водных запасов планеты – пресная жидкость, хранящаяся в ледниках на Северном и Южном полюсах. Эти запасы также могли бы послужить человеку для утоления жажды, если бы не одно «но» – слишком уж далеко расположены эти «кладези» от места обитания людей. Немного больше, чем полтора процента от всех запасов, составляют подземные воды, а 0,001 % влаги хранится в облаках. И только менее 1 процента резервов Н2О реально доступно людям. Но и это еще не все водные запасы Земли. Больше 6 тысяч км куб. жидкости содержится во всех живых организмах на планете. А это растения, животные и мы с вами. Ведь помним, что человек – это 60-70 процентов Н2О.

Если рассчитать процентное соотношение всей воды на планете, то получится, что:

  • 97,54 % – это океаны;
  • 1,81 % – ледники;
  • 0,63 % – подземные воды;
  • 0,009 % – реки и озера;
  • 0,007 % – соленая вода на материках;
  • 0,001 % – вода в атмосфере.

Виды земной воды

Вода на Земле представлена в соленом виде (более 97 процентов), пресном (2,5 процента) и в виде рассолов (жидкость с примесью солей, отрутохимикатов, органических соединений).

Но это не единственная классификация воды. Обращая внимание на содержание кальция и магния в ее составе, различают мягкую и жесткую воду. Учитывая характер водородного изотопа, вода бывает легкая, тяжелая и сверхтяжелая. Помимо этого, некоторые классификации отделяют от «общего водного котелка» талую субстанцию, структура которой, как порой убеждают, идентична протоплазме клеток нашего организма и обладает полезными свойствами.

Вода и…климат

Известно, что оксид водорода способен отдавать тепло, почти не снижая собственной температуры. Это собственно один из факторов, от которых зависит климат на планете. К тому же земные рельефы по большому счету – это также, образно говоря, дело рук воды. Будучи вторым по подвижности (после воздуха) веществом на планете, монооксид дигидрогена способен перемещаться на большие дистанции, «гравируя» рельефы на своем пути.

Но Земля – не единственное место «обитания» воды. Эта субстанция часто встречается в Космосе, правда, чаще в виде льдов или пара. И именно этот факт позволяет некоторым ученым предполагать, что жизнь на других планетах также возможна. Исследователи Космоса считают, что некоторые кометы на 50 процентов состоят из воды (в виде льда). А в 2009 году сотрудники НАСА получили достоверные свидетельства того, что и на Луне присутствует лед, причем в достаточно большом количестве. Кроме того, вода-лед есть на спутниках Сатурна и Юпитера (Европа, Тефия, Энцелада, Ганимеда), в составе астероидов, а также предполагают, что Н2О есть и на транснептуновых объектах.

А вот атмосфера практически всех планет Солнечной системы (и Солнца в том числе) содержит в себе воду в виде пара. Больше всего таких запасов есть в атмосфере Меркурия – примерно, 3,4 %. Для сравнения: земная атмосфера над тропиками содержит около 3-4 % пара, а в Антарктике – всего 2х10−5 %.

Но на этом водные запасы Космоса не ограничиваются. Есть мнение, что вода в жидком виде – обычное явление на некоторых спутниках планет. Пока самые большие надежды ученые возлагают на спутник Юпитера – Европу.

Принято полагать, что человек на 2/3 состоит из воды. Но на самом деле, этот показатель не статический, и водный процент в составе нашего тела колеблется на протяжении всей жизни.

Больше всего влаги есть в человеческом эмбрионе. Зародыш будущего человека – это приблизительно 97 % воды. Немного меньше, в пределах 92 процентов жидкости, содержится в теле новорожденного. Подростки – это уже 80 % воды, а взрослые «наводнены» на 70-75 процентов. И, как вы уже догадались, меньше всего Н2О в организме людей преклонного возраста – только 60 %. Не потому ли с годами человек теряет жизненные силы и начинает болеть? Неужели от воды зависит качество нашей жизни?

Читайте также:  Допуски по зрению для водителей категории в

Пожалуй, вода – единственное вещество, на отсутствие которого организм реагирует почти мгновенно и сразу же серьезными последствиями. Считается, что без пищи человек может продержаться несколько недель. Дефицит витаминов, микро- и макронутриентов вызовет негативные последствия также через некоторое время. Но достаточно всего на несколько дней отказаться от воды, чтоб организм дал понять: это катастрофа. Терять свои «влажные» запасы мы начинаем уже при первых проявлениях жажды. Достаточно лишиться только 5 % жидкости, чтоб возникли трудности с глотательным синдромом, начались галлюцинации и обмороки, нарушились слух и зрение. Если вовремя не восстановить водный баланс, возможен летальный исход.

Функции воды в организме:

  • выводит токсины, шлаки, соли и продукты жизнедеятельности;
  • транспортирует полезные вещества ко всем органам;
  • способствует сокращению мышц;
  • играет роль смазки для суставов;
  • регулирует кроветворение, артериальное давление;
  • активизирует работу мозга;
  • «запускает» обменные процессы;
  • поддерживает стабильную температуру тела;
  • защищает органы от повреждений;
  • прибавляет силу и энергию.

Польза для человека

Вода – это главный компонент всех тканей в человеческом организме.

В каждом органе концентрация жидкости разная. Самые большие запасы влаги сосредоточиваются в глазном теле (которое почти на 99 % состоит из воды), а самые низкие – в эмали зубов (только 0,2 %). Высокая концентрация воды есть также в головном мозге (почти 70 процентов), поэтому без жидкости робота органа стала бы невозможной.

Монооксид дигидрогена вокруг нас повсюду. Да и мы сами также своего рода являемся водой. Как-никак, более половины человеческого тела – это Н2О, и для абсолютно всех биохимических процессов внутри нас также необходима вода. Итак, как оксид водорода влияет на функционирование организма?

Правильный водный баланс в организме способствует нормальному пищеварению. Вода помогает быстро и легко избавляться от продуктов жизнедеятельности, снижает нагрузку на почки и печень во время очищения организма, предотвращает возникновение запоров.

  1. Здоровье сердечно-сосудистой системы.

Существует связь между количеством потребление питьевой воды и риском развития ишемической болезни сердца. Опасность возникновения кардиологических болезней значительно ниже в тех, кто отдает предпочтение чистой питьевой воде, вместо сладких соков и газировок.

Потоотделение в тренажерном зале заставляет мышцы терять влагу, и когда ее недостаточно, мускулы устают быстрее. Поэтому для поддержания энергии во время длительных тренировок важно восстанавливать запасы жидкости в теле.

Причиной прыщей и воспалений на коже часто являются токсины. Быстро очистить организм поможет дополнительное употребление воды. Также правильный баланс влаги защитит кожу от преждевременного старения, пересыхания и возникновения морщин.

Недавние исследования позволили ученым выдвинуть интересную теорию. По их мнению, развитие рака мочевого пузыря по большому счету зависит от уровня воды в организме: чем выше показатель влаги в теле, тем ниже риск заболеть. Ученые объясняют эту теорию тем, что частое мочеиспускание позволяет быстрее (и в бОльших количествах) выводить из организма канцерогены, предотвращая их накопление в пузыре. По этому же принципу, считают исследователи, можно защитить себя от рака молочной железы и кишечника.

Почки выводят токсины, помогают контролировать баланс жидкости в организме и артериальное давление. Единственный способ поддержать правильную работу органа – потреблять достаточное количество жидкости.

  1. Защита для хрящей и суставов.

Влага позволяет хрящам вокруг суставов оставаться эластичными и увлажненными, а для самых суставов вода служит своеобразной смазкой. Кстати, околосуставные хрящи почти на 85 процентов состоят из монооксида дигидрогена, поэтому столь важно поддерживать здоровый уровень влаги.

  1. Значительность для мозга.

Обезвоживание крайне негативно сказывается на тканях головного мозга, который без влаги начинает ссыхаться. Без поддержания надлежащего водного баланса ему труднее выполнять свои функции, особенно во время экзаменов или ответственных дел.

  1. От респираторной вирусной инфекции.

Опыт, проведенный при участии 400 людей, показал: для того, чтоб уберечь себя от инфекций и респираторных заболеваний во время эпидемии, достаточно регулярно полоскать горло обычной чистой водой. Люди, принимавшие участие в эксперименте, реже болели, а недуг протекал более легко, без усложнений.

  1. Выносливость и бдительность под контролем.

Обезвоживание всегда вызывает слабость и быструю утомляемость. Заметили, что начали чаще уставать, а силы покидают вас? Подсчитайте, сколько воды выпиваете в сутки. Возможно причина утомления – в нехватке жидкости в организме. А если на протяжении длительного времени понадобится сохранять бдительность, стоит позаботиться, чтоб под рукой всегда была бутылка с негазированной водой. Обезвоживание ведет к ухудшению концентрации внимания, а также снижает сосредоточенность, ухудшает моторику и память.

Еще одно интересное исследование показало: настроение напрямую зависит от количества воды в теле. Чем выше процент обезвоживания, тем хуже расположение духа. Интересно и то, что, по мнению исследователей, вода также является средством против депрессий. После приема теплого душа в организме активизируется выработка окситоцина – гормона, вызывающего расслабление.

  1. Этот лечебный шум прибоя…

Высказывание, что можно вечно смотреть на огонь и воду, известно многим. Правда, на воду надо не просто смотреть, а еще и слушать ее звуки, которые, по мнению исследователей, обладают терапевтическим эффектом. Неприятные шумы общественного транспорта, строительных инструментов и крики ведут к повышению артериального давления, ускоряют пульс, вызывая выброс гормона стресса. А звуки воды, напротив, принадлежат к числу наиболее приятных для человека. Они способны успокаивать и благотворно влиять на весь организм.

Также есть мнение, что люди, живущие на побережье, обладают более крепким здоровьем, а аквааэробика приносить больше пользы, в частности для сердечно-сосудистой системы, чем занятия на суше.

Помимо этого, пользу для сердца приносит вода в виде пара. Достаточно на протяжении месяца проводить по 15 минут в сауне, чтоб сердце начало лучше перекачивать кровь.

Сколько влаги необходимо человеку

Сколько воды необходимо пить ежедневно? На этот, казалось бы, простой вопрос нет однозначного ответа. На протяжении многих лет ученые проводили много исследований, и каждый раз озвучивали разные цифры. На самом деле, единого ответа и не существует. Все зависит от возраста, пола, среды обитания и рода деятельности человека. К примеру, люди, живущие на побережье, получают дополнительную влагу из воздуха, поэтому могут позволить себе выпивать немного меньше жидкости, чем другие. А вот жители жарких стран, наоборот, должны как можно тщательнее контролировать свой водный баланс, так как более подвержены обезвоживанию.

Употребление жидкости в меньшем количестве, чем этого требует организм, ведет к серьезным нарушениям в работе систем и органов. Но чрезмерное водопитие не менее опасно для здоровья. Так кому и сколько воды положено?

При нормальных обстоятельствах количество влаги в организме контролирует жажда и мочеотделение. И это обычный водный цикл. Меж тем, не стоит забывать, что жажда может быть признаком некоторых болезней, в частности сахарного диабета. Поэтому, если желание пить не пропадает на протяжении долгого времени, лучше, не откладывая, обратиться к врачу.

В 2010 году на своем очередном съезде диетологи Европы предложили минимальными нормами потребления воды считать:

  • 2 л – для мужчин;
  • 1,6 л – для женщин.

Но это только приблизительные цифры, которые не учитывают образ жизни и физическую активность человека.

Помимо этого существует формула, по которой можно рассчитать более точную суточную норму, исходя из массы тела. Для этого достаточно знать, что на 1 кг веса должно приходиться по 30 г воды ежедневно.

Кому больше?

Однако бывают ситуации, когда организм нуждается в повышенном потреблении жидкости:

  • запор (увеличение потребления жидкости поможет справиться с проблемой);
  • рак (люди, употребляющие много воды, менее склонны к раку мочевого пузыря и кишечника);
  • камни в почках (правильное водопитие служит профилактикой болезни).

Потребность организма в воде увеличивается во время кормления грудью и в преклонном возрасте.

Жаркая погода, повышенная потливость, расстройство пищеварения, сопровождающееся рвотой и поносом, также являются причинами прибавить еще несколько стаканов воды к обычной суточной норме.

Позаботиться о дополнительной бутылке питьевой воды стоит и людям, чрезмерно потребляющим соль. Наверное, всем известно, что после слишком соленой пищи всегда хочется пить. Таким образом организм сигнализирует о необходимости дополнительной воды, так как лишняя соль искажает состав крови.

Суточная норма потребления жидкости также зависит от погодных условий. За окном высокая температура и пониженная влажность? Это идеальные условия для перегревания тела. Чтобы защититься от «закипания», тело начинает интенсивно покрываться потом. Поэтому во избежание обезвоживания важно регулярно восстанавливать утраченные организмом запасы влаги.

Признаки обезвоживания

Чувство жажды и темный цвет мочи с острым запахом – явные признаки обезвоживания организма.

Среди других симптомов:

  • вялость;
  • головокружение, обморок;
  • повышение температуры тела;
  • спазмы в мышцах;
  • боли в суставах;
  • галлюцинации;
  • спутанность сознания;
  • повышение холестерина;
  • ухудшение слуха и зрения;
  • сухость во рту.

Но наиболее серьезное последствие дефицита влаги – загущение крови. В такой консистенции она не способна эффективно выполнять свои функции: органы недополучают кислород, а продукты обмена не покидают организм, отравляя его. От недостатка жидкости в теле страдают все слизистые оболочки. Не получая необходимого количества влаги, они пересыхают и начинают трескаться. Сухая кожа, акне, ломкие волосы, налет на языке, запах изо рта, нервозность, рассеянность и мигрени также являются внешними признаками дегидратации.

Что интересно, риску обезвоживания более подвержены люди из крайних возрастных групп, то есть дети и пожилые. Если младенец начал дышать быстрее, стал сонным и вялым, а количество мокрых пеленок за сутки значительно уменьшилось, это может служить сигналом о дегидратации. Недостаток влаги в пожилом организме обычно вызывает путаницу в сознании.

Важно помнить, что причиной быстрого обезвоживания могут послужить диарея, рвота, обильное потоотделение во время лихорадки. Согласно исследованиям, потеря примерно полутора процента влаги вызывает ухудшение настроения, снижение концентрации и головные боли. А дегидратация на 2-3 процента отрицательно сказывается на функционировании мозга.

Кроме этого, обезвоживание может стать причиной таких болезней, как:

  • ожирение;
  • артрит;
  • гастрит и запоры;
  • камни в желчном пузыре.

Опасный монооксид дигидрогена

По большому счету чрезмерное употребление воды не становит опасности для здорового организма. Человек, чьи почки функционируют справно, способен быстро избавиться от избытка влаги. Однако стабильная гипергидратация (чрезмерное насыщение организма водой) опасна вымыванием полезных солей. В частности, некоторые спортсмены (особенно участники марафонских забегов), употребляющие слишком много воды, страдают острым дефицитом натрия. А вот для людей с больными почками или сердечными проблемами избыток влаги в организме может стать серьезной проблемой – вызвать отеки, опухание лодыжек.

Об избытке Н2О организм может «рассказать» избыточным весом, отеками, обильным потоотделением и повышенным давлением. В особо тяжелых случаях возможны нарушения в работе сердца и легких.

Правильный водный баланс – важный аспект для здоровья и жизни человека. По этой причине, природа наделила нас «механизмами» для регулировки уровня влаги в теле. Когда «показатель» опускается ниже допустимого, мы ощущаем жажду.

От чего зависит процент Н2О в организме

Процент влаги в организме – индивидуальный показатель для каждого человека.

На количество жидкости влияет пол, возраст, место проживания, образ жизни и строение тела. Кстати, у тучных процент жидкости в организме более высокий, чем у людей с нормальным или недостаточным весом.

Но не только физиология определяет водный процент тела. Характер питания также сказывается на этом показателе. Алкоголь, кофе, курение и потребление мяса в большом количестве ускоряют выведение влаги. Вызвать водный дисбаланс также могут газировки, в составе которых есть химические вещества, ускоряющие дегидратацию. Эти знания важно учитывать, составляя индивидуальную программу потребления воды. А вот обычная поваренная соль поможет задержать влагу в теле. Помня об этом легко предотвратить обезвоживание в жаркую погоду или после пищевых расстройств.

Предупредить потери влаги поможет «коктейль» из 1,5 г соли, 2,5 г витамина С и 5 г глюкозы, разведенных в полулитре воды. Данный рецепт активно используют путешественники в условиях нехватки питьевой жидкости.

Усвояемость жидкости

Полезной для человека считается только чистая вода, без вредных примесей. Важно избегать так называемой «тяжелой» субстанции, которая является изотопом Н2О. Ее главное отличие – в структуре молекулы, а это впоследствии усложняет протекание всех биохимических процессов в организме. Многие исследователи рекомендуют отдавать предпочтение «легкому» варианту воды – талой. Считается, что эта жидкость способна благотворно влиять на сердечно-сосудистую систему, метаболические процессы и регенерацию тканей.

Также процесс усвояемости воды напрямую зависит от состояния здоровья (ухудшается при обезвоживании и в старческом возрасте). В особо тяжелых случаях водный баланс тела восстанавливают с помощью физиологического или раствора Рингера-Локка, введенных внутривенно.

Вода спасет от лишних килограммов

Любительницы всяческих диет для похудения, скорее всего, знают: бороться с чрезмерным аппетитом помогает вода. Разыгрался голод? Обмануть организм легко. Для этого достаточно выпить стакан теплой воды, которую тело воспримет в качестве пищи.

Кроме того, согласно исследованиям, 500 мл жидкости способны временно (на протяжении 90 минут) ускорять метаболизм на 25-30 процентов. А выпитые 2 л воды в день, по подсчетам ученых, увеличивают расход энергии примерно на 96 калорий. При этом лучше отдавать предпочтение холодной воде – организм потратить дополнительные калории на согревание жидкости.

Иные исследования показали: стакан воды, выпитый примерно за полчаса до еды, также способен уменьшить количество употребляемых калорий. Особенно эффективно этот «трюк» работает в пожилом организме. А сидящим на диете достаточно выпивать перед едой 2 стакана воды, чтобы за 12 недель сбросить на 44 процента больше лишнего веса.

Но на этом влияние воды на вес тела ограничивается. Дефицит Н2О, наоборот, может послужить причиной ожирения. И все дело в том, что испытывающий жажду организм, пребывая в состоянии стресса, посылает мозгу сигналы… о голоде. Человек принимается кушать, а лишние калории откладываются в виде подкожного жира.

Запивать или не запивать – вот в чем вопрос…

Первое, второе и компот – этот обеденный набор известен всем еще с детского сада. В этом рационе все, казалось бы, правильно, кроме порядка приема продуктов. Обычно компот, чай или воду мы оставляем на окончание трапезы. И в этом вся ошибка. Если выпитая перед едой жидкость нормализирует физиологические процессы в организме и способствует понижению холестерина в крови, то все напитки после трапезы – только во вред. Врачи выступают категорически против такой практики, поскольку вода разбавляет желудочный сок, замедляя, тем самым, процесс пищеварения. Поэтому любой напиток следует потреблять не ранее чем через полтора-два часа после еды. Но питаться всухомятку также не стоит. Бутерброды, выпечку и другую сухую пищу лучше кушать с напитками или чистой водой.

Но воду можно не только пить…

Рекомендация многих диетологов состоит в том, чтобы употреблять, как минимум, 8 стаканов жидкости в сутки. Для некоторых это может показаться слишком сложным. Но кто сказал, что всю норму надо выпивать? Часть из нее можно… кушать.

Источниками примерно 20 % воды в обычном рационе являются фрукты и овощи. Многие из них более чем на 90 процентов состоят из жидкости, например арбуз. А вот груши содержат в себе примерно 84 % влаги, в бананах найдется не более 74 % воды. Но все фрукты – это еще и превосходные источники клетчатки. Это значит, что при потреблении минимума калорий легко достичь чувства сытости. То же самое можно сказать и про овощи.

Мясо и рыба, хоть и содержат в себе не так много воды, как растительная пища, но все же могут послужить источником Н2О. Например, камбала на 79 % состоит из воды, куриное мясо – на 69 %, а говяжий фарш содержит 63 % влаги. Что касается куриных яиц, то они также являются водой – на 75 процентов. Относительно высокое содержание монооксида дигидрогена – в йогуртах (примерно 89 %), молоке (87 %) и мороженом (61 %). А вот в сырах твердых сортов не стоит искать больше чем 40 % влаги.

15 наиболее «водных» продуктов:

  • огурец (содержание воды – 96,7 %);
  • листовой салат (96,6%);
  • сельдерей (95,4%);
  • редис (95,3 %);
  • томаты (94,5 %);
  • зеленый перец (93,9 %) (в красных и желтых сортах содержание воды – 92%);
  • цветная капуста (92,1 %)
  • арбуз (91,5 %);
  • шпинат (91,4 %);
  • карамболь (91,4 %);
  • клубника (91 %);
  • брокколи (90,7%);
  • грейпфрут (90,5%);
  • молодая морковь (90,4%);
  • дыня (90,2%).

Интересные факты о воде:

  1. Согласно прогнозам ООН, 2/3 населения планеты столкнутся с дефицитом воды уже к 2025 году.
  2. Употребление слишком большого количества монооксида дигидрогена может вызвать смерть (так называемая водная интоксикация).
  3. Вода – наиболее распространенное вещество на планете.
  4. Если бы все мировые запасы Н2О уместились в 4-литровом кувшине, количество жидкости, подходящей для использования человеком, ровнялось бы 1 столовой ложке.
  5. При некоторых условиях горячая вода может замерзать быстрее, чем холодная (Эффект Мпембы).
  6. Каждый день человек выдыхает немного больше чем стакан воды.
  7. При замерзании вода расширяется на 9 %.
  8. Наивысший процент Н2О – в огурцах и в теле медузы (около 95%).
  9. Оксид водорода в жидком виде отражает 5% солнечных лучей, в то время как снег – более 85 %.
  10. Морская вода замерзает при температуре примерно минус 2 градуса по Цельсию.
  11. Если бы поверхность Земли была абсолютно ровной, Мировой океан поднялся бы над ней на 3 км.
  12. Водные запасы в мантии нашей планеты в 10 раз превышают запасы Мирового океана.
  13. Восьмая часть суши оказалась бы под водой, если бы растаяли все ледники.

И это, пожалуй, еще далеко не все, чем может удивить нас вода. Людям науки, наверное, предстоит и дальше делать потрясающие открытия об этой необыкновенной субстанции. А пока человечество, как и сотни лет тому назад, наслаждается видом морских волн и каплями утренней росы и с замиранием сердца трепещет перед водной стихией во время наводнений и гроз, восхищаясь красотой и силой воды.

Источники:
  • http://voda095.ru/articles/voda_s_khimicheskoy_tochki_zreniya/
  • http://aquabionicavip.ru/publ/6-1-0-5
  • http://doklad-referat.ru/%D0%A5%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D1%81%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0_%D0%B2%D0%BE%D0%B4%D1%8B
  • http://studopedia.su/16_49925_voda-v-himii.html
  • http://studfiles.net/preview/406205/page:3/
  • http://foodandhealth.ru/komponenty-pitaniya/voda/