Меню Рубрики

С точки зрения волновой теории свет это

На протяжении всей жизни нас окружают удивительные вещи, предметы, места. Мы видим их, но вовсе не потому, что они существуют, а благодаря свету.

Если бы не свет, то у живых существ не было бы зрения как инструмента, и нам пришлось бы довольствоваться другими органами чувств. Как кроты, проживающие под землей, довольствуются слухом. Что же представляет собой свет? Что это за понятие с точки зрения физики и какое значение он имеет для жизни на Земле?

Тайну света люди пытались раскрыть в течение многих столетий, однако приблизиться к разгадке удалось только в XVIII веке. Сначала датский физик Ганс Эрстеда выяснил, что электроток способен оказывать влияние на стрелку в магнитном компасе, а затем британский математик Джеймс Максвелл сумел доказать, что магнитные и электрические поля существуют в виде волн, распространяющихся со скоростью света.

Из этого ученые дали определение света как формы электромагнитного излучения, которое воспринимается глазом человека.

Какова природа света?

Установить природу света помогают оптические явления, изучением которых занимается оптика. Эта наука стала одним из первых разделов физики, установившим двойственную природу света. Согласно корпускулярной теории, свет – это поток частиц, называемых фотонами и квантами.

По волновой теории, свет являет собой совокупность электромагнитных волн, при этом возникающие в природе оптические эффекты становятся результатом сложения данных волн. Что интересно, и теория о потоках частиц, и теория о волнах имеют право на жизнь.

Какие характеристики имеет свет?

Как и любое природное явление, свет обладает множеством уникальных характеристик, среди которых одной из важнейших является цвет. Электромагнитное излучение, воспринимаемое нашим глазом, различается по диапазону длин и частоте волны, что, в свою очередь, влияет на световой спектральный состав. К примеру, фиолетовый цвет видится при длине волн 380–440 нм и частоте 790–680 ТГц, а желтый – при показателях 565–590 нм и 530–510 ТГц.

Помимо цвета, свет обладает способностью перемещаться в пространстве, преломляться и отражаться. Преломление света представляет собой изменение направления электромагнитных волн. В нашей обыденной жизни такое явление встречается повсеместно. Например, если посмотреть на стакан чая, в котором находится ложка, можно заметить, что на границе воздуха и жидкости она будто «преломлена».

Аналогично привычным явлением для нас является отражение света, позволяющее увидеть себя в водной глади, зеркале или на блестящих предметах. К другим характеристикам можно отнести способность света к поляризации и изменению интенсивности.

Какова скорость света?

Скорость света рассчитывается в двух субстанциях – в вакууме и прозрачной среде. В первом случае ее показатели неизменны. В космическом пространстве скорость света является фундаментальной постоянной единицей и составляет 299 792 458 метров в секунду.

Считается, что помимо света, с аналогичной скоростью в природе распространяются электромагнитные излучения (например, рентгеновские лучи или радиоволны) и, возможно, гравитационные волны. Скорость света, находящегося в прозрачной среде, может меняться в зависимости от фазы колебательных движений.

В связи с этим различают фазовую скорость, которая обычно (но необязательно) меньше скорости в вакууме, и групповую – всегда меньше скорости в вакууме.

Как свет воспринимается глазом?

Как говорилось выше, способность человека видеть окружающие предметы существует только благодаря свету. При этом мы не смогли бы воспринимать электромагнитные излучения, если бы в наших глазах не было специальных рецепторов, которые реагируют на данное излучение. Глазная сетчатка человека состоит из двух типов клеток – палочек и колбочек. Первые высоко чувствительны к освещению, поэтому могут работать только при низкой освещенности, то есть отвечают за ночное зрение. При этом они демонстрируют мир исключительно в черно-белых цветах.

Колбочки обладают пониженной чувствительностью к свету и обеспечивают дневное зрение, позволяющее видеть цветное изображение. Спектральный состав света хорошо воспринимается благодаря тому, что в наших глазах существуют 3 вида колбочек, которые различаются между собой распределением чувствительности.

3.2. Законы отражения и преломления света

Корпускулярная теория очень просто объясняла явления геометрической оптики, описываемые в терминах распространения световых лучей. С точки зрения волновой теории, лучи — это нормали к фронту волны. Принцип Гюйгенса также позволяет объяснить законы геометрической оптики на основе волновых представлений о природе света.

Закон отражения

Когда световые волны достигают границы раздела двух сред, направление их распространения изменяется. Если они остаются в той же среде, то происходит отражение света.

Отражение света — это изменение направления световой волны при падении на границу раздела двух сред, в результате чего волна продолжает распространяться в первой среде.

Закон отражения света хорошо известен:

Падающий луч, перпендикуляр к границе раздела двух сред в точке падения и отраженный луч лежат в одной плоскости, причем угол падения равен углу отражения.

Направления распространения падающей и отраженной волн показаны на рис. 3.2.

Рис. 3.2. Отражение света от плоской поверхности

Закон отражения может быть выведен из принципа Гюйгенса. Действительно, допустим, что плоская волна, распространяющаяся в изотропной среде, падает на границу раздела двух сред АС (рис. 3.3).

Рис. 3.3. Применение принципа Гюйгенса к выводу закона отражения

Достаточно рассмотреть два параллельных луча I и в падающем пучке. Углом падения называют угол между нормалью п к поверхности раздела и падающим лучом I. Плоский фронт AD падающей волны сначала достигнет границы раздела двух сред в точке А, которая станет источником вторичных волн. Согласно принципу Гюйгенса, из нее, как из центра, будет распространяться сферическая волна. Через время

,

то есть с запаздыванием во времени на , луч из падающего пучка придет в точку С, которая в этот момент времени также станет источником вторичной волны. Но, к этому моменту вторичная сферическая волна, распространяющаяся из точки А, уже будет иметь радиус (как и должно быть: ). Мы знаем теперь положение двух точек фронта отраженной волны — С и В. Чтобы не загромождать рисунок, мы не показываем вторичных волн, испущенных точками между А и С, но линия CD будет касательной (огибающей) ко всем из них. Стало быть, действительно является фронтом отраженной волны. Направление ее распространения (лучи II и ) ортогонально фронту CD. Из равенства треугольников ABC и ADC вытекает равенство углов

что, в свою очередь, приводит к закону отражения

На рис. 3.4 представлена интерактивная модель отражения света.

Рис. 3.4. Изучение закона отражения света

Закон преломления

Если световые волны достигают границы раздела двух сред и проникают в другую среду, то направление их распространения также изменяется — происходит преломление света.

Преломление света — это изменение направления распространения световой волны при переходе из одной прозрачной среды в другую.

Направление распространения падающей и преломленной волны показано на рис. 3.5.

Рис. 3.5. Преломление света на плоской границе раздела двух прозрачных сред

Закон преломления гласит:

Падающий луч, перпендикуляр к границе раздела сред в точке падения и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления постоянно для данной пары сред и равно показателю преломления второй среды относительно первой

Здесь показатель преломления среды, в которой распространяется преломленная волна, показатель преломления среды, в которой распространяется падающая волна.

Закон отражения также вытекает из принципа Гюйгенса. Рассмотрим (рис. 3.6) плоскую волну (фронт АВ), которая распространяется в среде с показателем преломления , вдоль направления I со скоростью

Эта волна падает на границу раздела со средой, в которой показатель преломления равен , а скорость распространения

Рис. 3.6. К выводу закона преломления света с помощью принципа Гюйгенса

Время, затрачиваемое падающей волной для прохождения пути ВС, равно

За это же время фронт вторичной волны, возбуждаемой в точке А во второй среде, достигнет точек полусферы с радиусом

В соответствии с принципом Гюйгенса положение фронта преломленной волны в этот момент времени задается плоскостью DC, а направление ее распространения — лучом III, перпендикулярным к DC. Из треугольников и следует

Таким образом, закон преломления света записывается так:

На рис. 3.7 представлена интерактивная модель преломления света на границе раздела двух сред.

Рис. 3.7. Изучение закона преломления

Для еще одной иллюстрации применения принципа Гюйгенса рассмотрим пример.

Пример. На плоскую границу раздела двух сред падает нормально луч света. Показатель преломления среды непрерывно увеличивается от ее левого края к правому (рис. 3.8). Определим, как будет идти луч света в этой неоднородной среде.

Рис. 3.8. Искривление луча света в неоднородной среде

Пусть фронт волны АА подошел к границе раздела сред. Точки раздела сред можно рассматривать как центры вторичных волн. Через время испущенные вторичные сферические волны достигают точек на расстоянии от фронта АА. Поскольку показатель преломления среды растет слева направо, эти расстояния убывают слева направо. Огибающая к вторичным волнам — новый фронт ВВ — повернется. Если теперь взять точки фронта ВВ за источники вторичных волн, то за время они породят волны, образующие фронт СС. Он еще более повернут. Его точки порождают фронт DD и т. д. Проводя нормаль к волновым фронтам в разные моменты времени, получаем путь светового луча в среде с переменным показателем преломления (зеленая линия). Видно, что луч искривляется в сторону увеличения показателя преломления. Аналогия: если притормозить левые колеса автомобиля, его повернет налево. Для света степень «торможения» растет с ростом показателя преломления среды: .

Эта задача имеет отношение к явлению, наблюдающемуся на море. Когда ветер дует с берега, иногда возникает так называемая «зона молчания»: звук колокола с судна не достигает берега. Обычно говорят, что звук относится ветром. Но даже при сильном урагане скорость ветра примерно в 10 раз меньше скорости звука, так что «отнести» звук ветер никак не может. Объяснение заключается в том, что скорость встречного ветра у поверхности моря вследствие трения меньше, чем на высоте. Поэтому скорость звука у поверхности больше, и линия распространения звука загибается кверху, не попадая на берег.

http://www.nvtc.ee/e-oppe/Sidorova/objects/index.html – Законы преломления, отражения света. Зеркала. Теория и примеры задач. В «Итоговых заданиях» — кроссворд.

http://publ.lib.ru/ARCHIVES/B/. – Тарасов Л.В., Тарасова А.Н., «Беседы о преломлении света».

Принцип Ферма.

Итак, волновая оптика способна объяснить явления отражения и преломления света столь же успешно, как и геометрическая оптика. В основу последней, трактующей явления на основе законов распространения лучей, положен принцип Ферма:

Свет распространяется по такому пути, для прохождения которого требуется минимальное время.

Для прохождения участка пути свету требуется время

где v=с/п — скорость света в среде. Таким образом, время t, затрачиваемое светом на путь от точки 1 до точки 2, равно

Введем величину с размерностью длины, которая называется оптической длиной пути:

Пропорциональность t и L позволяет сформулировать принцип Ферма следующим образом:

Свет распространяется по такому пути, оптическая длина которого минимальна.

Рассмотрим путь света из точки S в точку С после отражения от плоскости АВ (рис. 3.9).

Рис. 3.9. Применение принципа Ферма к отражению света

Непосредственное попадание света из S в С невозможно из-за экрана. Нам надо найти точку О, отразившись в которой луч попадет в точку С. Среда, в которой проходит луч, однородна. Поэтому минимальность оптической длины пути сводится к минимальности его геометрической длины. Рассмотрим зеркальное изображение S’ точки S. Геометрические длины путей SOC и S’OC равны. Поэтому минимальность длины SOC эквивалентна минимальности длины S’OC. А минимальная геометрическая длина пути из S’ в С будет соответствовать прямой, соединяющей точки S’ и С. Пересечение этой прямой с плоскостью раздела сред дает положение точки О. Отсюда следует равенство углов:

Читайте также:  Славяне кавказцы евреи с точки зрения днк генеалогии

то есть закон отражения света.

Рассмотрим теперь явление преломления света (рис. 3.10).

Рис. 3.10. Применение принципа Ферма к преломлению света

Определим положение точки О, в которой должен преломиться луч, распространяясь от S к С, чтобы оптическая длина пути L была минимальна. Выражение для L имеет вид

Найдем величину х, соответствующую экстремуму оптической длины пути:

С точки зрения волновой теории свет это

Для улучшения этой статьи желательно ? :
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Проставить интервики в рамках проекта Интервики.
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Проставить для статьи более точные категории.

Wikimedia Foundation . 2010 .

Смотреть что такое «Волновая теория света» в других словарях:

волновая теория света — banginė šviesos teorija statusas T sritis fizika atitikmenys: angl. undulatory theory of light; wave theory of light vok. Wellentheorie des Lichtes, f rus. волновая теория света, f pranc. théorie ondulatoire de la lumière, f … Fizikos terminų žodynas

Волновая теория — света одна из теорий, объясняющих природу света. Основное положение теории основывается на том, что свет имеет волновую природу, то есть ведёт себя как электромагнитная волна (от длины которой зависит цвет видимого нами света). Теория… … Википедия

ВОЛНОВАЯ ОПТИКА — раздел физ. оптики, изучающий совокупность явлений, в к рых проявляется волн. природа света. Представления о волн. хар ре распространения света восходят к основополагающим работам голл. учёного 2 й пол. 17 в. X. Гюйгенса. Существ. развитие В. о.… … Физическая энциклопедия

ТЕОРИЯ НАУЧНАЯ — наиболее развитая форма организации научного знания, дающая целостное представление о закономерностях и существенных связях изучаемой области действительности. Примерами Т.н. являются классическая механика И. Ньютона, корпускулярная и волновая… … Философская энциклопедия

теория — (от греч. theoria наблюдение, рассмотрение, исследование) наиболее развитая форма организации научного знания, дающая целостное представление о закономерностях и существенных связях определенной области действительности. Примерами Т. являются… … Словарь терминов логики

Теория колебаний — теория, рассматривающая всевозможные колебания, абстрагируясь от их физической природы. Для этого используется аппарат дифференциального исчисления. Содержание 1 Гармонические колебания … Википедия

Волновая поверхность — Волновая поверхность геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе. Если источником волны является точка, то волновые поверхности в однородном и изотропном пространстве представляют собой… … Википедия

Волновая функция — Квантовая механика … Википедия

Теория пластичности — Теория пластичности раздел механики сплошных сред, задачами которого является определение напряжений и перемещений в деформируемом теле за пределами упругости. Строго говоря, в теории пластичности предполагается, что напряженное состояние… … Википедия

Теория упругости — Механика сплошных сред … Википедия

Объясните пожалуйста смысл волновой теории света?

Смысл эксперимента Юнга заключался в том, что если источник света является точкой, то образуемые им тени четко ограничены или кажутся таковыми; иначе говоря, свет не обходит закругленные углы. Но к ньютоновским временам Франческо Гримальди (1618-1663) уже продемонстрировал существование дифракции — явления, при котором свет совершенно точно огибает углы, хотя и в малой степени.

Вспомним, почему мы прекратили описание оптических явлений. Нашей целью было ввести другую теорию света, отличную от корпускулярной, но также пытающуюся объяснить ту же область фактов. Чтобы сделать это, мы должны были прервать наш рассказ и ввести понятие волн. Теперь мы можем вернуться к нашему предмету.

Первым, кто выдвинул совершенно новую теорию света, был современник Ньютона — Гюйгенс. В своем трактате о свете он писал:

«Если, кроме того, свет употребляет для своего прохождения некоторое время,— что мы сейчас проверим,— то из этого следует, что это движение, сообщенное окружающей материи, следует одно за другим во времени; поэтому оно, подобно звуку, распространяется сферическими поверхностями и волнами; я называю их волнами по тому сходству, которые они имеют с волнами, образующимися на воде, когда в нее брошен камень, и представляющими собой последовательно расширяющиеся круги, хотя они и возникают от другой причины и находятся лишь на плоской поверхности».

По Гюйгенсу, свет — это волна, передача энергии, а не субстанции. Мы видели, что корпускулярная теория объясняет многие наблюденные факты. В состоянии ли это сделать и волновая теория? Мы должны снова поставить те вопросы, на которые уже дали ответ с помощью корпускулярной теории, чтобы увидеть, может ли волновая теория ответить на них с таким же успехом. Сделаем это здесь в форме диалога между Н и Г, где Н — собеседник, убежденный в справедливости корпускулярной теории Ньютона, а Г — убежденный в справедливости теории Гюйгенса. Ни тому, ни другому не разрешено применять доводов, полученных после того, как работа обоих великих мастеров была закончена.

Н. В корпускулярной теории скорость света имеет вполне определенный смысл. Это — скорость, с которой корпускулы движутся в пустом пространстве. Что она означает в волновой теории?

Г. Конечно, она означает скорость световой волны. Всякому известно, что волна распространяется с некоторой определенной скоростью, и то же должно быть с волнами света.

Н. Это не так просто, как кажется. Звуковые волны распространяются в воздухе, морские волны в воде. Каждая волна должна иметь материальную среду, в которой она распространяется. Но свет проходит через вакуум, в то время как звук не проходит. Предположить волну в пустом пространстве фактически означает вовсе не предполагать никакой волны.

Г. Да, это трудность, хотя и не новая для меня. Мой учитель изучал ее очень внимательно и решил, что единственный выход — предположить существование гипотетической субстанции, эфира,— передающей среды, заполняющей всю вселенную. Вселенная, так сказать, погружена в эфир. Если у нас есть смелость ввести это понятие, то все становится ясным.

Н. Но я возражаю против такого предположения. Во-первых, оно вводит новую гипотетическую субстанцию, а мы уже имеем слишком много субстанций в физике. Имеется также и другое основание против него. Вы не сомневаетесь в том, что мы должны все объяснять в пределах механики. А как относительно эфира? В состоянии ли вы ответить на простой вопрос о том, как эфир построен из своих элементарных частиц и как он обнаруживается в других явлениях?

Вспомним, почему мы прекратили описание оптических явлений. Нашей целью было ввести другую теорию света, отличную от корпускулярной, но также пытающуюся объяснить ту же область фактов. Чтобы сделать это, мы должны были прервать наш рассказ и ввести понятие волн. Теперь мы можем вернуться к нашему предмету.

Первым, кто выдвинул совершенно новую теорию света, был современник Ньютона — Гюйгенс. В своем трактате о свете он писал:

«Если, кроме того, свет употребляет для своего прохождения некоторое время,— что мы сейчас проверим,— то из этого следует, что это движение, сообщенное окружающей материи, следует одно за другим во времени; поэтому оно, подобно звуку, распространяется сферическими поверхностями и волнами; я называю их волнами по тому сходству, которые они имеют с волнами, образующимися на воде, когда в нее брошен камень, и представляющими собой последовательно расширяющиеся круги, хотя они и возникают от другой причины и находятся лишь на плоской поверхности».

По Гюйгенсу, свет — это волна, передача энергии, а не субстанции. Мы видели, что корпускулярная теория объясняет многие наблюденные факты. В состоянии ли это сделать и волновая теория? Мы должны снова поставить те вопросы, на которые уже дали ответ с помощью корпускулярной теории, чтобы увидеть, может ли волновая теория ответить на них с таким же успехом. Сделаем это здесь в форме диалога между Н и Г, где Н — собеседник, убежденный в справедливости корпускулярной теории Ньютона, а Г — убежденный в справедливости теории Гюйгенса. Ни тому, ни другому не разрешено применять доводов, полученных после того, как работа обоих великих мастеров была закончена.

Н. В корпускулярной теории скорость света имеет вполне определенный смысл. Это — скорость, с которой корпускулы движутся в пустом пространстве. Что она означает в волновой теории?

Г. Конечно, она означает скорость световой волны. Всякому известно, что волна распространяется с некоторой определенной скоростью, и то же должно быть с волнами света.

Н. Это не так просто, как кажется. Звуковые волны распространяются в воздухе, морские волны в воде. Каждая волна должна иметь материальную среду, в которой она распространяется. Но свет проходит через вакуум, в то время как звук не проходит. Предположить волну в пустом пространстве фактически означает вовсе не предполагать никакой волны.

Г. Да, это трудность, хотя и не новая для меня. Мой учитель изучал ее очень внимательно и решил, что единственный выход — предположить существование гипотетической субстанции, эфира,— передающей среды, заполняющей всю вселенную. Вселенная, так сказать, погружена в эфир. Если у нас есть смелость ввести это понятие, то все становится ясным.

Н. Но я возражаю против такого предположения. Во-первых, оно вводит новую гипотетическую субстанцию, а мы уже имеем слишком много субстанций в физике. Имеется также и другое основание против него. Вы не сомневаетесь в том, что мы должны все объяснять в пределах механики. А как относительно эфира? В состоянии ли вы ответить на простой вопрос о том, как эфир построен из своих элементарных частиц и как он обнаруживается в других явлениях?

Вспомним, почему мы прекратили описание оптических явлений. Нашей целью было ввести другую теорию света, отличную от корпускулярной, но также пытающуюся объяснить ту же область фактов. Чтобы сделать это, мы должны были прервать наш рассказ и ввести понятие волн. Теперь мы можем вернуться к нашему предмету.

Первым, кто выдвинул совершенно новую теорию света, был современник Ньютона — Гюйгенс. В своем трактате о свете он писал:

«Если, кроме того, свет употребляет для своего прохождения некоторое время,— что мы сейчас проверим,— то из этого следует, что это движение, сообщенное окружающей материи, следует одно за другим во времени; поэтому оно, подобно звуку, распространяется сферическими поверхностями и волнами; я называю их волнами по тому сходству, которые они имеют с волнами, образующимися на воде, когда в нее брошен камень, и представляющими собой последовательно расширяющиеся круги, хотя они и возникают от другой причины и находятся лишь на плоской поверхности».

По Гюйгенсу, свет — это волна, передача энергии, а не субстанции. Мы видели, что корпускулярная теория объясняет многие наблюденные факты. В состоянии ли это сделать и волновая теория? Мы должны снова поставить те вопросы, на которые уже дали ответ с помощью корпускулярной теории, чтобы увидеть, может ли волновая теория ответить на них с таким же успехом. Сделаем это здесь в форме диалога между Н и Г, где Н — собеседник, убежденный в справедливости корпускулярной теории Ньютона, а Г — убежденный в справедливости теории Гюйгенса. Ни тому, ни другому не разрешено применять доводов, полученных после того, как работа обоих великих мастеров была закончена.

Читайте также:  Как пройти цветоощущение при проверки зрения

Н. В корпускулярной теории скорость света имеет вполне определенный смысл. Это — скорость, с которой корпускулы движутся в пустом пространстве. Что она означает в волновой теории?

Г. Конечно, она означает скорость световой волны. Всякому известно, что волна распространяется с некоторой определенной скоростью, и то же должно быть с волнами света.

Н. Это не так просто, как кажется. Звуковые волны распространяются в воздухе, морские волны в воде. Каждая волна должна иметь материальную среду, в которой она распространяется. Но свет проходит через вакуум, в то время как звук не проходит. Предположить волну в пустом пространстве фактически означает вовсе не предполагать никакой волны.

Г. Да, это трудность, хотя и не новая для меня. Мой учитель изучал ее очень внимательно и решил, что единственный выход — предположить существование гипотетической субстанции, эфира,— передающей среды, заполняющей всю вселенную. Вселенная, так сказать, погружена в эфир. Если у нас есть смелость ввести это понятие, то все становится ясным.

Н. Но я возражаю против такого предположения. Во-первых, оно вводит новую гипотетическую субстанцию, а мы уже имеем слишком много субстанций в физике. Имеется также и другое основание против него. Вы не сомневаетесь в том, что мы должны все объяснять в пределах механики. А как относительно эфира? В состоянии ли вы ответить на простой вопрос о том, как эфир построен из своих элементарных частиц и как он обнаруживается в других явлениях?

Что такое свет? Развитие двух теорий света

История развития представлений о природе света, развитие оптики. Теория И. Ньютона: корпускулярная теория цвета. Теория Х. Гюйгенса: волновая теория света. Опыты Т. Юнга и последующие открытия. Электромагнитная теория света. Природа света XX века.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 15.12.2015
Размер файла 27,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

по дисциплине «Основы физики»

на тему: «Что такое свет? Развитие двух теорий света»

Исполнитель: студентка группы

1. История развития представлений о природе света

1.1 Древние времена

1.2 Развитие оптики

1.3 Развитие истории природы света

2. Теории XVII века

2.1 Теория И. Ньютона. Корпускулярная теория цвета

2.2Теория Х. Гюйгенса. Волновая теория света

3. XVIII — XIX век

3.1 Дальнейшее развитие волновой оптики

3.2 Опыты Томаса Юнга и последующие открытия

3.3 Электромагнитная теория света

4. Природа света XX века

Список использованной литературы

Задача: проследить историческое развитие природы света; рассмотреть две теории света.

Размышлять о природе света начали еще в древние времена. Первые гипотезы были наивны и туманны.

Свет — чрезвычайно важный вид энергии. Жизнь на земле зависит от солнечного света. Кроме того, свет — это излучение, которое дает нам зрительные ощущения. Мы видим предметы, когда свет от них достигает наших глаз. Эти предметы либо сами излучают свет, либо отражают свет излучаемый другими предметами, либо пропускают его через себя.

Интерференция — физическое явление перераспределения волновой энергии в пространстве при наложении монохроматичных (одинаковой частоты колебаний) волн.

Поляризация — физический процесс создания определенного направления колебаний вектора напряженности в электромагнитной волне.

Дисперсия — зависимость показателя преломления вещества от длинны волны падающего излучения.

Дифракция (результат интерференции) — физическое явление нарушения прямолинейного распространения волн в неоднородных средах.

Фотоэффект — явление вырывания электронов с поверхности тел под действием света.

Эффект Комптона — явление изменения длины волны излучения при его рассеивании

природа свет корпускулярный юнг

1. История развития представлений о природе света

1.1 Древние времена

Жизнь на Земле возникла и существует благодаря солнечному свету. Благодаря ему мы воспринимаем и познаем окружающий мир. Лучи света сообщают нам о положении близких и отдаленных предметов, об их форме и цвете.

Основы теории света были заложены еще в глубокой древности.

Евклид и Аристотель (300-250 гг до н.э.) опытным путем установили такие основные законы оптических явлений, как прямолинейное распространение света и независимость световых пучков, отражение и преломление. Так же Аристотелю приписывают утверждение, что свет есть нечто, исходящее из глаз. Лучи света как бы ощупывают предметы, доставляя наблюдателю информацию об их форме и качестве. Естественно, возникал вопрос, почему же в таком случае человек не видит в темноте?

В школе Пифагора утверждали, что лучи Солнца «проникают через густой и холодный эфир». Впервые появляется мысль о том, что свет каким-то образом передается материальной средой — эфиром.

Греческий философ Платон (427-327 г. до н.э.) создал одну из первых теорий света. Он понял, что именно солнце — истинная причина всех видимых вещей.

Несмотря на то, что теоретические положения древних философов, а позднее и ученых средних веков, были недостаточными и противоречивыми, они способствовали формированию правильных взглядов на сущность световых явлений и положили начало дальнейшему развития теории света и созданию разнообразных оптических приборов. По мере накопления новых исследований о свойствах световых явлений изменилась точка зрения на природу света. Ученые считают, что историю изучения природы света следует начинать с XVII века.

1.2 Развитие оптики

Независимо от гипотез о происхождении света развивалась геометрическая оптика.

До второй половины XVII в. оптика представляла, по существу, один из разделов геометрии. Световой луч — прямая линия и светящаяся точка — начало этой линии. Далее были установлены законы отражения и преломления света. Первый был известен еще в Древней Греции. Закон преломления света открыли независимо друг от друга голландский ученый Виллеброд Снеллиус (1591—1626) и французский ученый Рене Декарт (1596—1650).

В эпоху Возрождения оптика входит в практику, становится жизненно важной областью физики в связи с созданием подзорной трубы (1609) и микроскопа (1637).

Усовершенствованием оптических приборов занимаются естествоиспытатели разнообразных научных направлений, Создание рациональных конструкций оптических приборов требовало устранения сферических и хроматических аберраций. Исследование последних и явилось началом развития физической оптики.

Сравнение расчетов оптических приборов с опытом ясно показало недостаточность принципов геометрической оптики для правильного описания и объяснения распространения света.

Первой проблемой физической оптики была проблема цветности световых лучей. До XVII в. естествоиспытатели, следуя традиции Аристотеля, считали, что цвета являются результатом смешения света с темнотой в разных пропорциях. Были также известны призматические цвета. Появление их относили или за счет каких-то особенностей источника света, или за счет особых свойств тела, имеющего данный цвет. Чешский естествоиспытатель Мариус Марци де Кронланд указал, что проблему можно решить, разгадав происхождение призматических цветов. Он впервые высказал правильную мысль, что «различные виды призматических цветов являются частями с различными преломлениями», однако дальше он не пошел.

Еще более трудная проблема физической оптики возникает во второй половине XVII в. В 1655 г. в Болонье был напечатан трактат иезуита Франческо Мария Гримальди, в котором было впервые описано явление дифракции света. В темную комнату сквозь узкое отверстие был пропущен солнечный свет. В световой конус Гримальди поместил, палку и наблюдал характер тени на белом экране. Образовалась картина, которая свидетельствовала о том, что лучи света могут отклоняться от прямолинейного распространения. Варьируя условия опыта, Гримальди нашел, что это новое физическое явление, и назвал его дифракцией.

Проблема цвета, связанная с ней проблема совершенствования оптических инструментов, необходимость объяснения явления дифракции — все это настоятельно требовало создания действенной системы оптических представлений, определенных гипотез о природе света. Назрела необходимость построения физической основы оптики.

1.3 Развитие истории природы света

В XVII веке датский астроном Ремер (1644-1710) измерил скорость распространения света.

Итальянский физик Гримальди (1618-1663) открыл явление дифракции.

Гениальный английский ученый И.Ньютон (1642-1727) развил корпускулярную теорию света, открыл явления дисперсии и интерференции.

Э.Бартолин (1625-1698) обнаружил двойное лучепреломление в исландском шпате, заложив тем самым основы кристаллооптики.

Гюйгенс (1629-1695) положил начало волновой теории света.

2. Теории XVII века

2.1 Теория И. Ньютона. Корпускулярная теория цвета

В XVII веке делаются первые попытки теоретического обоснования наблюдаемых световых явлений.

Фундамент учения о свете заложил Исаак Ньютон. В 1672 г. Ньютон прислал секретарю Лондонского Королевского общества Ольденбургу письмо, в котором высказал намерение сделать сообщение на еженедельном заседании Общества «Об одном философском открытии». Письмо кончалось так. «По моему суждению, это страннейшее, если не самое значительное открытие, которое когда-либо делалось в отношении действий природы».

Корпускулярная теория света, развитая Ньютоном, состоит в том, что световое излучение рассматривается как непрерывный поток мельчайших частиц — корпускул, которые испускаются источником света и с большой скоростью летят в однородной среде прямолинейно и равномерно.

1) Свет состоит из малых частичек вещества, испускаемых во всех направлениях по прямым линиям, или лучам, светящимся телом, например, горящей свечой. Если эти лучи, состоящие из корпускул, попадают в наш глаз, то мы видим их источник.

2) Световые корпускулы имеют разные размеры. Самые крупные частицы, попадая в глаз, дают ощущение красного цвета, самые мелкие — фиолетового.

3) Белый цвет — смесь всех цветов: красного, оранжевого, желтый, зеленый, голубой, синий, фиолетовый.

4) Отражение света от поверхности происходит вследствие отражения корпускул от стенки по закону абсолютного упругого удара.

5) Явление преломления света объясняется тем, что корпускулы притягиваются частицами среды. Чем среда плотнее, тем угол преломления меньше угла падения.

6) Явление дисперсии света, открытое Ньютоном в 1666 г., он объяснил следующим образом. Каждый цвет уже присутствует в белом свете. Все цвета передаются через межпланетное пространство и атмосферу совместно и дают эффект в виде белого света. Белый свет — смесь разнообразных корпускул — испытывает преломление, пройдя через призму. С точки зрения механической теории, преломления обязано силам со стороны частиц стекла, действующим на световые корпускулы. Эти силы различны для разных корпускул. Они наибольшие для фиолетового и наименьшие для красного цвета. Путь корпускул в призме для каждого цвета будет преломляться по- своему, поэтому белый сложный луч расщепится на цветные составляющие лучи.

7) Ньютон наметил пути объяснения двойного лучепреломления, высказав гипотезу о том, что лучи света обладают «различными сторонами» — особым свойством, обуславливающим их различную преломляемость при прохождении двоякопреломляющего тела.

Корпускулярная теория Ньютона удовлетворительно объяснила многие оптические явления, известные в то время. Ее автор пользовался в научном мире колоссальным авторитетом, и вскоре теория Ньютона приобрела многих сторонников во всех странах. Цвета тонких пластинок, ньютоновские кольца, дифракционные явления требовали признания волнового элемента в световых лучах. Одна корпускулярная гипотеза не давала возможности интерпретировать эти явления. В то же время и волновая гипотеза не справлялась с целым рядом фактов (прямолинейность распространения, поляризация), приходилось прибегать к корпускулярным представлениям.

Читайте также:  Существует точка зрения что в конце 15 начале 16 века

Принимая ту и другую гипотезу, Ньютон одновременно подчеркивал недостаточность гипотез вообще, их подчиненное положение по отношению к опытным фактам.

2.2 Теория Х. Гюйгенса. Волновая теория света

Фундаментальные работы Ньютона, вошедшие потом в «Оптику» оказали большое влияние на современников. Мышление Гюйгенса находится под воздействием этих работ.

Действительно, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришел к выводу, что «явление окрашивания остается еще весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счел наиболее целесообразным вообще не рассматривать вопроса о цветах в своем трактате.

С точки зрения волновой теории света, основоположником которой и является Х.Гюйгенс, световое излучение представляет собой волновое движение. Световые волны Гюйгенс рассматривал как упругие волны высокой частоты, распространяющиеся в особой упругой и плотной среде — эфире, заполняющем все материальные тела, промежутки между ними и межпланетные пространства.

1) Свет — это распространение упругих периодичных импульсов в эфире. Эти импульсы продольны и похожи на импульсы звука в воздухе.

2) Эфир — гипотетическая среда, заполняющая небесное пространство и промежутки между частицами тел. Она невесома, не подчиняется закону всемирного тяготения, обладает большой упругостью.

3) Принцип распространения колебаний эфира таков, что каждая его точка, до которой доходит возбуждение, является центром вторичных волн. Эти волны слабы, и эффект наблюдается только там, где проходит их огибающая поверхность — фронт волны (принцип Гюйгенса).

Чем дальше волновой фронт от источника, тем более плоским он становится.

Световые волны, приходящие непосредственно от источника, вызывают ощущение видения. Принцип Гюйгенса легко доказывает, что световые лучи в однородной среде распространяются прямолинейно.

«Скорость света должна зависеть обратно пропорционально от абсолютного показателя среды» доказывал Гюйгенс. Этот вывод был противоположен выводу, вытекающему из теории Ньютона. Невысокий уровень экспериментальной техники XVII века исключал возможность установить, какая из теорий верна. Многие сомневались в волновой теории Гюйгенса, но среди малочисленных сторонников волновых взглядов на природу света были М. Ломоносов и Л. Эйлер. С исследований этих ученых теория Гюйгенса начала оформляться как теория волн, а не просто апериодических колебаний, распространяющихся в эфире.

3. XVIII — XIX век

3.1 Дальнейшее развитие волновой оптики

В области оптики после Ньютона не происходит больших событий вплоть до конца XVIII в. Исследователи заняты в основном освоением наследства, оставленного Ньютоном и совершенствованием инструментальной оптики. Следует отметить лишь, что в середине века трудами П. Бугера и И.Г. Ламберта создается фотометрия.

В оптических воззрениях XVIII в. господствует корпускулярная гипотеза. Однако имеется и сильная оппозиция ньютоновским тенденциям. М. В. Ломоносов и Л. Эйлер подвергают резкой критике корпускулярную гипотезу.

Развивая воззрения Гюйгенса и Гука, Эйлер последовательно проводит аналогию между светом и звуком: звук распространяется в воздухе, свет — в эфире продольными волнами. Однако в отличие от Гюйгенса, Эйлер вводит в волновую оптику ее важнейший элемент — представление о периодичности света.

Цветность светового луча, по Эйлеру, определяется длиной его волны. Цвета тел являются результатом вибрации частиц тела под действием падающего света. Опираясь на эти представления, Эйлер развивает качественную теорию оптических явлений.

Наряду с теоретическими конструкциями к концу XVIII в. появляются экспериментальные факты, тесно связанные с решением вопроса о природе света. В 1791 г. аббат Прево устанавливает общность свойств тепловых и световых лучей, Вильям Гершель (1738—1822) в 1800 г. открывает инфракрасные лучи по их тепловым действиям, а Иоганн Риттер — ультрафиолетовые лучи по их химическим действиям. Далее выясняется, что невидимые излучения по своим свойствам тождественны свету.

К этому времени уже известны тепловые и световые действия электричества. Обнажаются, таким образом, поразительные связи явлений. Они заставляют естествоиспытателей размышлять об общности тепла, света и электричества.

В конце XVIII в. А. Лавуазье высказал гипотезу, что в «природе существует особое вещество, производящее то явление, которое мы называем светом», и приписал это вещество к числу химических элементов.

Однако корпускулярная гипотеза не давала пищи для таких размышлений. В то же время гипотеза эфира давала простор для теоретических построений, способных учесть связи между физическими явлениями. Не случайно физики снова обращаются к идее связи света и электричества.

3.2 Опыты Томаса Юнга и последующие открытия

В 1801 г. Томас Юнг (1773—1829) формулирует гипотезу о том, что светящееся тело возбуждает колебательные движения в эфире; ощущение цветов зависит от частоты колебаний, возбужденных светом на сетчатке.

Юнг вводит понятия частоты колебаний и длины волны, устанавливает соотношение между ними и скоростью распространения волны.

Юнг ставит серию экспериментов для утверждения принципа интерференции. Трудно было изменить привычным корпускулярным представлениям. «Вот бесспорно самая странная из гипотез! — писал Араго.— Неожиданностью было видеть ночь среди ясного дня в точках, которых свободно достигали солнечные лучи, но кто бы мог подумать, что свет, слагаясь со светом, может вызвать мрак».

Юнг убедительно продемонстрировал эффективность принципа интерференции в объяснении оптических явлений.

Введение представления о поперечности световых волн. В 1818 г. французский физик Огюстен Френель (1788—1827) представил во Французскую академию «Мемуар о дифракции света», в котором высказал плодотворную идею соединить принцип интерференции Юнга с принципом Гюйгенса. Эта идея позволила построить первую количественную теорию дифракционных явлений. Однако начиная еще с 1808 г. развиваются события, которые заставляют усомниться в преимуществе волновой теории по сравнению с корпускулярной.

В конце 1808 г. Малюс открывает новый оптический факт — поляризацию света при отражении. Араго в 1811 г, устанавливает возможность вращения плоскости поляризации, а Био в 1813 г. описывает явление хроматической поляризации. Наконец, Френель в 1816 г. ставит ряд экспериментов, обнаруживающих, в частности, что интерференция поляризованных лучей происходит только при параллельном расположении плоскостей поляризации. Эти факты никак не укладывались в рамки волновой теории, в которой волны в эфире предполагались аналогичными звуковым, т. е. продольными. Особенно явно противоречил этому представлению последний факт, установленный Френелем. Действительно, для осуществления интерференции поляризованных лучей нужно, чтобы колебания эфира совершались в одном и тем же направлении, но это противоречит самому существу интерференции,

Поляризационные явления вели к гипотезе о поперечности световых волн. К концу XIX в. кристаллизовалось представление о свете, как поперечных электромагнитных волнах.

3.3 Электромагнитная теория света

Электромагнитная теория света была создана в середине XIX века Максвеллом (1831-1879). Согласно этой теории световые волны имеют электромагнитную природу, а световое излучение можно рассматривать как частный случай электромагнитных явлений. Исследования Герца и в дальнейшем П.Н.Лебедева также подтвердили, что все основные свойства электромагнитных волн совпадают со свойствами световых волн.

Лоренц (1896) установил взаимосвязь между излучением и структурой вещества и развил электронную теорию света, согласно которой входящие в состав атомов электроны могут совершать колебания с известным периодом и при определенных условиях поглощать или испускать свет.

Электромагнитная теория Максвелла в сочетании с электронной теорией Лоренса объясняла все известные тогда оптические явления и, казалась полностью раскрывала проблему природы света.

Световые излучения рассматривались как периодические колебания электрической и магнитной силы, распространяющейся в пространстве со скоростью 300000 километров в секунду. Лоренс полагал, что носитель этих колебаний — электромагнитный эфир, обладает свойствами абсолютной неподвижности. Однако созданная электромагнитная теория вскоре оказалась несостоятельной. Прежде всего эта теория не учитывала свойства реальной среды в которой распространяются электромагнитные колебания. Кроме того, с помощью этой теории нельзя было объяснить ряд оптических явлений, с которыми столкнулась физика на рубеже XIX и XX веков. К таким явления относятся процессы излучения и поглощения света, излучение абсолютно черного тела, фотоэлектрический эффект и другие.

4. Природа света XX века

Квантовая теория света возникла в начале XX века. Она была сформулирована в 1900 году, а обоснована в 1905 году. Основоположниками квантовой теории света являются Планк и Эйнштейн. Было доказано, что вещество излучает или поглощает энергию конечными порциями (квантами), пропорциональными излучаемой или поглощаемой частоте. Энергия одного кванта E=h v, где v — частота излучения, a h — универсальная константа, названная постоянной М. Планка. Квантовая теория как бы в новой форме возродила корпускулярную теорию света, по существу же она явилась развитием единства волновых и корпускулярных явлений.

Теория квантов М. Планка совершила подлинную революцию в физике. Она стала основой для атомной теории, поскольку в 1913 г. Н. Бор применил ее к строению атома, а также объяснила движение электронов в твердых телах и дала начало квантовой физике. За открытие кванта М. Планк стал лауреатом Нобелевской премии по физике в 1918 г.

Квантовая теория вновь обострила противоречия, связанные с природой света. В 1923 г. Л. де Бройль выдвинул и обосновал гипотезу об универсальности дуализма в микромире. Он распространил идею А. Эйнштейна, высказанную в 1905 г., о двойственности природы света и вещества, т.е. каждой частице материи, в частности, электрону, должна соответствовать волна. Воспользовавшись теорий относительности, де Бройль вывел формулу, связывающую длину волны движущейся частицы с ее импульсом: Х= h/P, где h — постоянная М. Планка. За открытие волновой природы электронов де Бройль был удостоен Нобелевской премии по физике, а его теория легла в основу волновой механики. Открытие дифракционных (волновых) свойств микрочастиц привели к разработке новых методов исследования структуры веществ, в частности электронно-оптических методов.

В результате исторического развития современная оптика располагает обоснованной теорией световых явлений, которая может объяснить различные свойства излучений и позволяет ответить на вопрос о том, в каких условиях те или иные свойства световых излучений могут проявляться.

С физической точки зрения свет представляет собой сочетание электромагнитных волн с разными значениями длины и частоты. Глаз человека воспринимает не любой свет, а только лишь тот, длина волн которого колеблется от 380 до 760 нм. Остальные разновидности остаются для нас невидимыми. К ним, например, относятся инфракрасное и ультрафиолетовое излучения.

Исаак Ньютон представлял свет как направленный поток самых мелких частиц. И лишь позже было доказано, что он по своей природе является волной. Однако Ньютон все же был отчасти прав. Дело в том, что свет обладает не только волновыми, но и корпускулярными свойствами. Это подтверждается всем известным явлением фотоэффекта. Выходит, что световой поток имеет двоякую природу.

Современная теория света подтверждает его двойственную природу: волновую и корпускулярную. Результаты исследований, полученные в том или ином случае, не исключают, а дополняют друг друга. То есть световые волны имеют характерные особенности и частиц и волн одновременно.

Проводятся опыты, подтверждающие обе теории. Пока нет ответа на вопрос, что же такое свет.

Источники:
  • http://online.mephi.ru/courses/physics/optics/data/course/3/3.2.html
  • http://dic.academic.ru/dic.nsf/ruwiki/1453954
  • http://otvet.mail.ru/question/181875903
  • http://revolution.allbest.ru/physics/00626151_0.html