Меню Рубрики

С точки зрения теории относительности пространство и время

Еще в начале 20-го века была сформулирована теория относительности. Что это такое и кто ее создатель, знает сегодня каждый школьник. Она настолько увлекательна, что ею интересуются даже люди, далекие от науки. В этой статье доступным языком описывается теория относительности: что это такое, каковы ее постулаты и применение.

Говорят, что к Альберту Эйнштейну, ее создателю, прозрение пришло в один миг. Ученый будто бы ехал на трамвае по швейцарскому Берну. Он посмотрел на уличные часы и вдруг осознал, что эти часы остановятся, если трамвай разгонится до скорости света. В этом случае времени бы не стало. Время в теории относительности играет очень важную роль. Один из постулатов, сформулированных Эйнштейном, – разные наблюдатели воспринимают действительность по-разному. Это относится в частности ко времени и расстоянию.

В тот день Альберт понял, что, выражаясь языком науки, описание любого физического явления или события зависит от того, в какой системе отсчета находится наблюдатель. К примеру, если какая-нибудь пассажирка трамвая уронит очки, они упадут по отношению к ней вертикально вниз. Если же посмотреть с позиции стоящего на улице пешехода, то траектория их падения будет соответствовать параболе, так как трамвай движется и одновременно падают очки. Таким образом, система отсчета у каждого своя. Предлагаем подробнее рассмотреть основные постулаты теории относительности.

Закон распределенного движения и принцип относительности

Несмотря на то что при смене систем отсчета описания событий меняются, существуют и универсальные вещи, которые остаются неизменными. Для того чтобы понять это, нужно задаться вопросом не падения очков, а закона природы, который вызывает это падение. Для любого наблюдателя, независимо от того, в движущейся или неподвижной системе координат он находится, ответ на него остается неизменным. Этот закон называется законом распределенного движения. Он одинаково действует как в трамвае, так и на улице. Иными словами, если описание событий всегда зависит от того, кто их наблюдает, то это не относится к законам природы. Они являются, как принято выражаться на научном языке, инвариантными. Вот в этом и состоит принцип относительности.

Две теории Эйнштейна

Данный принцип, как и любую другую гипотезу, необходимо было сначала проверить, соотнеся его с природными явлениями, действующими в нашей реальности. Эйнштейн вывел 2 теории из принципа относительности. Хотя они и родственные, но считаются отдельными.

Частная, или специальная, теория относительности (СТО) основывается на положении о том, что для всевозможных систем отсчета, скорость движения которых постоянна, законы природы остаются одними и теми же. Общая теория относительности (ОТО) данный принцип распространяет на любые системы отсчета, в том числе и те, которые движутся с ускорением. В 1905 году А. Эйнштейн опубликовал первую теорию. Вторую, более сложную в плане математического аппарата, завершил к 1916 году. Создание теории относительности, как СТО, так и ОТО, стало важным этапом в развитии физики. Остановимся подробнее на каждой из них.

Специальная теория относительности

Что это такое, в чем ее суть? Давайте ответим на этот вопрос. Именно этой теорией предсказывается множество парадоксальных эффектов, противоречащих нашим интуитивным представлениям о том, как устроен мир. Речь идет о тех эффектах, которые наблюдаются тогда, когда скорость движения приближается к скорости света. Наиболее известным среди них является эффект замедления времени (хода часов). Часы, которые движутся относительно наблюдателя, для него идут медленнее, нежели те, которые находятся у него в руках.

В системе координат при движении со скоростью, приближенной к скорости света, время растягивается относительно наблюдателя, а длина объектов (пространственная протяженность), напротив, сжимается вдоль оси направления этого движения. Данный эффект ученые называют сокращением Лоренца-Фицджеральда. Еще в 1889 году его описал Джордж Фицджеральд, итальянский физик. А в 1892 году Хендрик Лоренц, нидерландец, дополнил его. Этот эффект объясняет отрицательный результат, который дает опыт Майкельсона-Морли, в котором скорость движения нашей планеты в космическом пространстве определяется замером «эфирного ветра». Таковы основные постулаты теории относительности (специальной). Эйнштейн дополнил эти уравнения формулой преобразования массы, сделанной по аналогии. Согласно ей, по мере того, как скорость тела приближается к скорости света, масса тела увеличивается. Например, если скорость составит 260 тыс. км/с, то есть 87% от скорости света, с точки зрения наблюдателя, который находится в покоящейся системе отсчета, масса объекта удвоится.

Подтверждения СТО

Все эти положения, как бы они ни противоречили здравому смыслу, со времени Эйнштейна находят прямое и полное подтверждение во множестве экспериментов. Один из них провели ученые Мичиганского университета. Этим любопытным опытом подтверждается теория относительности в физике. Исследователи поместили на борт авиалайнера, который регулярно совершал трансатлантические рейсы, сверхточные атомные часы. Каждый раз после возвращения его в аэропорт показания этих часов сверялись с контрольными. Оказалось, что часы на самолете каждый раз все больше отставали от контрольных. Конечно, речь шла лишь о незначительных цифрах, долях секунды, но сам факт весьма показателен.

Последние полвека исследователи изучают элементарные частицы на ускорителях – огромных аппаратных комплексах. В них пучки электронов или протонов, то есть заряженных субатомных частиц, разгоняются до тех пор, пока их скорости не приближаются к скорости света. После этого ими обстреливаются ядерные мишени. В данных опытах нужно учитывать то, что масса частиц увеличивается, в противном случае результаты эксперимента не поддаются интерпретации. В этом отношении СТО уже давно не просто гипотетическая теория. Она стала одним из инструментов, которые используются в прикладной инженерии, наравне с ньютоновскими законами механики. Принципы теории относительности нашли большое практическое применение в наши дни.

СТО и законы Ньютона

Кстати, говоря о законах Ньютона (портрет этого ученого представлен выше), следует сказать, что специальная теория относительности, которая, казалось бы, им противоречит, в действительности воспроизводит уравнения законов Ньютона практически в точности, если ее использовать для описания тел, скорость движения которых намного меньше скорости света. Другими словами, если применяется специальная теория относительности, физика Ньютона вовсе не отменяется. Эта теория, напротив, дополняет и расширяет ее.

Скорость света — универсальная константа

Используя принцип относительности, можно понять, почему в данной модели строения мира очень важную роль играет именно скорость света, а не что-то еще. Этим вопросом задаются те, кто только начинает знакомство с физикой. Скорость света является универсальной константой благодаря тому, что она определена в качестве таковой естественнонаучным законом (подробнее об этом можно узнать, изучив уравнения Максвелла). Скорость света в вакууме, в силу действия принципа относительности, в любой системе отсчета является одинаковой. Можно подумать, что это противоречит здравому смыслу. Выходит, что до наблюдателя одновременно доходит свет как от неподвижного источника, так и от движущегося (независимо от того, с какой скоростью он движется). Однако это не так. Скорости света, благодаря особой ее роли, отводится центральное место не только в специальной, но и в ОТО. Расскажем и о ней.

Общая теория относительности

Она используется, как мы уже говорили, для всех систем отсчета, не обязательно тех, скорость движения которых относительно друг друга является постоянной. Математически эта теория выглядит намного сложнее, нежели специальная. Этим и объясняется то, что между их публикациями прошло 11 лет. ОТО включает в себя специальную в качестве частного случая. Следовательно, законы Ньютона также входят в нее. Однако ОТО идет намного дальше ее предшественниц. К примеру, в ней по-новому объясняется гравитация.

Четвертое измерение

Благодаря ОТО мир становится четырехмерным: время добавляется к трем пространственным измерениям. Все они неразрывны, следовательно, нужно говорить уже не о пространственном расстоянии, существующем в трехмерном мире между двумя объектами. Речь теперь идет о простанственно-временных интервалах между различными событиями, объединяющими как пространственную, так и временную удаленность их друг от друга. Другими словами, время и пространство в теории относительности рассматриваются как некий четырехмерный континуум. Его можно определить как пространство-время. В данном континууме те наблюдатели, которые движутся относительно друг друга, будут иметь разные мнения даже о том, одновременно ли произошли два каких-либо события, или же одно из них предшествовало другому. Однако причинно-следственные связи при этом не нарушаются. Другими словами, существования такой системы координат, где два события происходят в разной последовательности и не одновременно, не допускает даже ОТО.

ОТО и закон всемирного тяготения

Согласно закону всемирного тяготения, открытому Ньютоном, сила взаимного притяжения существует во Вселенной между любыми двумя телами. Земля с этой позиции вращается вокруг Солнца, так как между ними имеются силы взаимного притяжения. Тем не менее, ОТО заставляет взглянуть с другой стороны на это явление. Гравитация, согласно данной теории, – следствие «искривления» (деформации) пространства-времени, которое наблюдается под воздействием массы. Чем тело тяжелее (в нашем примере, Солнце), тем больше «прогибается» под ним пространство-время. Соответственно, его гравитационное поле тем сильнее.

Для того чтобы лучше понять суть теории относительности, обратимся к сравнению. Земля, согласно ОТО, вращается вокруг Солнца, как маленький шарик, который катится вокруг конуса воронки, созданной в результате «продавливания» Солнцем пространства-времени. А то, что мы привыкли считать силой тяжести, является на самом деле внешним проявлением данного искривления, а не силой, в понимании Ньютона. Лучшего объяснения феномена гравитации, чем предложенное в ОТО, на сегодняшний день не найдено.

Способы проверки ОТО

Отметим, что ОТО проверить непросто, так как ее результаты в лабораторных условиях почти соответствуют закону всемирного тяготения. Однако ученые все-таки провели ряд важных экспериментов. Их результаты позволяют сделать вывод о том, что теория Эйнштейна является подтвержденной. ОТО, кроме того, помогает объяснить различные явления, наблюдаемые в космосе. Это, например, небольшие отклонения Меркурия от своей стационарной орбиты. С точки зрения ньютоновской классической механики их нельзя объяснить. Это также то, почему электромагнитное излучение, исходящее от далеких звезд, искривляется при прохождении его вблизи от Солнца.

Результаты, предсказанные ОТО, на самом деле существенно отличаются от тех, которые дают законы Ньютона (портрет его представлен выше), лишь тогда, когда присутствуют сверхсильные гравитационные поля. Следовательно, для полноценной проверки ОТО необходимы либо очень точные измерения объектов огромной массы, либо черные дыры, поскольку наши привычные представления по отношению к ним неприменимы. Поэтому разработка экспериментальных способов проверки этой теории является одной из главных задач современной экспериментальной физики.

Умы многих ученых, да и далеких от науки людей занимает созданная Эйнштейном теория относительности. Что это такое, мы вкратце рассказали. Эта теория переворачивает наши привычные представления о мире, поэтому интерес к ней до сих пор не угасает.

Пространство и время в свете теории относительности Л. Эйнштейна

Читайте также:

  1. I. ТЕОРИИ РЕАЛИЗАЦИИ К. МАРКСА И Р. ЛЮКСЕМБУРГ
  2. II . Вопросы пациентов. Принятие решений во время курса лечения
  3. II. ТЕОРИИ О НАЦИОНАЛЬНОМ ДОХОДЕ
  4. III-11.Современные теории мотивации: общая характеристика.
  5. V3: Психологическое тестирование и теории измерений
  6. VII. СТОРОННИКИ И ПРОТИВНИКИ ТЕОРИИ НАКОПЛЕНИЯ Р. ЛЮКСЕМБУРГ
  7. Аксиомы теории принятия решений
  8. Анализ теории раннего сексуального соблазнения. Раннее соблазнение и психопатология.
  9. Брунгильда, я часто думаю: есть ли на свете иные миры, кроме нашего?
  10. В настоящее время выделяют английскую, американскую, япон­скую и российскую философию управления персоналом.
  11. В настоящее время известны трансурановые элементы с номерами 113
  12. В настоящее время наиболее распространенная группа майонезов,

На основеобобщения и синтеза классической механики Галилея – Ньютона и электродинамики Максвелла – Лоренца А. Эйнштейнсоздалв 1905 г. специальную теорию относительности. Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения.

А. Эйнштейн сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света: никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения.

Эйнштейн показал, что для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии. В измерениях, которые проводились над электронами, выяснилось, что кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света.

Скорость света является предельной скоростью распространения материальных воздействий. Она не может складываться ни с какой скоростью и для всех инерциальных систем оказывается постоянной.

Из двух принципов: а) постоянства скорости света и б) расширенного принципа относительности Галилея – математически следуют все положения специальной теории относительности (СТО).

Физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Так, длина тела в движущейся системе будет наименьшей по отношению к покоящейся. По формуле:

где — длина тела в движущейся системе со скоростью V по отношению к неподвижной системе;

l — длина тела в покоящейся системе.

Время же будет как бы растягиваться, течь медленнее в движущейся системе по отношению к неподвижной, в которой этот процесс будет более быстрым. По формуле:

,

где t — промежуток времени в покоящейся системе,

— промежуток времени в движущейся системе.

Эффекты специальной теории относительности обнаруживаются при скоростях, близких к световым. При скоростях, значительно меньших скорости света, формулы СТО переходят в формулы классической механики.

Читайте также:  Сердца и ума ищу тебя лишенный зрения

Эйнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света (см. рис. 1).

Рис. 1. К определению эффектов СТО.

В точке А1на платформе находится наблюдатель N1.На полу вагона в точке Аразмещен фонарик. Когда происходит совмещение точки А в вагоне с точкой А1на платформе, фонарик включается, появляется луч света. Так как скорость его конечная, хотя и большая, то для того чтобы достигнуть потолка вагона, где расположено зеркало, и отразиться обратно, необходимо время, за которое поезд уйдет вперед.

Для наблюдателя в вагоне луч света пройдет путь 2АБ, а для наблюдателя на платформе — 2АС. Как видно из рисунка, чем больше скорость поезда, тем длиннее линия АС. Очевидно, что 2АС > 2АВ. Этокак раз и говорит о замедлении течения времени внутри движущейся системы по отношению к неподвижной.

Релятивистское замедление времени является экспериментальным фактом. В космических лучах в верхних слоях атмосферы образуются частицы, называемые пи-мезонами, их собственное время жизни — 10 -8 с. За это время, двигаясь даже со скоростью, почти равной скорости света, они могут пройти не больше чем 300 см. Но приборы их регистрируют. Они проходят путь, равный 30 км, или в 10 000 раз больше, чем для них возможно. Теория относительности так объясняет этот факт: 10 -8 с является естественным временем жизни мезона, измеренным по часам, движущимся вместе с мезоном, т.е. покоящимся по отношению к нему. Но в системе отсчета Земли время жизни мезона намного больше, и за это время пионы в состоянии пройти земную атмосферу.

В общей теория относительности (ОТО), или теории тяготения, Эйнштейн расширяет принцип относительности, распространяя его на неинерциальные системы. В ней он также исходит из экспериментального факта эквивалентности масс инерционных и гравитационных, или эквивалентности инерционных и гравитационных полей.

Правда, принцип эквивалентности справедлив только при строго локальных наблюдениях. Так, представим себе лифт, стоящий на Земле. Наблюдатель в лифте бросает два шара. Они будут двигаться по направлению к центру Земли и, следовательно, друг к другу. Если же мы будем тянуть лифт с ускорением g в пустоте, то те же шары будут двигаться параллельно друг другу (см. рис. 2).

Рис.2. К эквивалентности инерционных и гравитационных масс.

Но, несмотря на это ограничение, принцип эквивалентности играет важную роль в науке. Мы всегда можем вычислить непосредственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлекаясь от его неоднородности, которая часто очень незначительна.

Эйнштейн предлагает провести мысленный эксперимент с лифтом, подвешенным над Землей. Представим себе, что в какой-то момент времени канат, на котором подвешен лифт, обрывается, и наблюдатели в нем оказываются в состоянии свободного падения. В этом случае они не смогут определить, какое из двух противоположных утверждений будет истинным: 1) лифт движется в поле тяготения Земли; 2) лифт покоится в отсутствие поля тяготения.

Если же в отсутствие поля тяготения Земли лифт будут тянуть вверх с ускорением g, то наблюдатели также не смогут выбрать истинное утверждение из двух противоположных: 1) лифт покоится в поле тяготения Земли; 2) лифт движется с ускорением в отсутствие поля тяготения.

Какие же следствия для пространства и времени вытекают из общей теории относительности?

Уже в древности появилась аксиоматическая геометрия Евклида, с которой связывался тот взгляд, что пространство везде одно и то же. Многих математиков не удовлетворял пятый постулат, который гласил, что из одной точки на плоскости можно провести только одну прямую, которая не будет пересекаться с данной, сколько бы ее ни продолжали.

Н. И. Лобачевский (1792-1856) в России, Б. Риман (1826-66) в Германии и Я. Больяй (1802-1860) в Венгрии построили новые геометрии, отбросив пятый постулат и заменив его на другие. Б. Риман заменил его на аксиому, что через точку, лежащую вне данной прямой на плоскости, нельзя провести ни одной параллельной, все они будут пересекаться с данной. Н.И. Лобачевский и Я. Больяй допустили, что существует множество прямых, которые не пересекутся с данной.

Поскольку постулат параллельности эквивалентен положению о сумме углов треугольника, то различие этих геометрий наглядно изображается на рисунке. В геометрии Евклида сумма углов треугольника равна 180°, у Римана — она больше, у Лобачевского — меньше (рис. 3, а, б, в соответственно).

Рис.3. К постулату параллельности прямых

Создатели геометрий Лобачевский и Риман считали, что только физические эксперименты могут показать нам, какова геометрия нашего мира. Эйнштейн в общей теории относительности подтвердил характер пространства Римана.

Представим себе, что лифт покоится в отсутствие гравитационного поля (см. рис. 4, а). В стене лифта сделано отверстие А, через которое луч света падает на его противоположную сторону. Линия АВ — прямая. Пусть теперь лифт начинает движение вверх с ускорением g, т.е. 9,8 м/с 2 . За время, пока свет проходит расстояние между стенками, лифт смещается вверх, и луч света попадает уже не в точку В, а в точку С (см. рис. 4,6).

Линия АС сохраняет свойство быть кратчайшим расстоянием между двумя точками, но это будет уже не прямая, а прямейшая, или геодезическая. Общая теория относительности заменяет закон тяготения Ньютона новым уравнением тяготения. Закон Ньютона получается как предельный случай эйнштейновских уравнений. Рассчитанное теоретически Эйнштейном отклонение луча света было впоследствии экспериментально подтверждено наблюдениями во время солнечного затмения, когда луч света от звезды проходит вблизи поля тяготения Солнца.

В общей теории относительности Эйнштейн доказал, что структура пространства-времени определяется распределением масс материи. Когда корреспондент американской газеты «Нью-Йорк Таймс» спросил Эйнштейна в апреле 1921 г., в чем суть его теории относительности, он ответил: «Суть такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы и пространство, и время».

Рис.4. К кратчайшему расстоянию между точками

Свойства пространства и времени.Пространство и время объективны и реальны,т.е. существуют независимо от сознания людей и познания ими этой объективной реальности.

Пространство и время являются также универсальными, всеобщими формами бытия материи.Нет явлений, событий, предметов, которые существовали бы вне пространства или вне времени.

Важным свойством пространства является его трехмерность.Положение любого предмета может быть точно определено только с помощью трех независимых величин — координат. В последнее время была выдвинута гипотеза о реальных 11 измерениях в области микромира в первые моменты рождения нашей Вселенной: 10 — пространственных и 1 — временное. Затем из них возникает 4-мерный континуум (лат. continuum — непрерывное, сплошное) макромира, остальные измерения оказываются «свернутыми» в микромире.

В отличие от пространства, в каждую точку которого можно возвращаться (и в этом отношении оно как бы обратимо), время — необратимо и одномерно. Оно течет из прошлого через настоящее к будущему. Нельзя возвратиться назад в какую-либо точку времени, но нельзя и перескочить через какой-либо временной промежуток в будущее.

Необратимость времени в макроскопических процессах находит воплощение в законе возрастания энтропии.В обратимых процессах энтропия (мера внутренней неупорядоченности системы) остается постоянной, в необратимых — возрастает. Реальные же процессы всегда необратимы.

Пространство обладает свойством однородности и изотропности,а время — однородности.Однородность пространства заключается в равноправии всех его точек, а изотропность — в равноправии всех направлений. Во времени все точки равноправны, не существует преимущественной точки отсчета, любую можно принимать за начальную.

Указанные свойства пространства и времени связаны с главными законами физики — законами сохранения. Если свойства системы не меняются от преобразования переменных, то ей соответствует определенный закон сохранения. Это — одно из существенных выражений симметриив мире. Симметрии относительно сдвига времени (однородности времени) соответствует закон сохранения энергии; симметрии относительно пространственного сдвига (однородности пространства) — закон сохранения импульса; симметрии по отношению поворота координатных осей (изотропности пространства) — закон сохранения момента импульса, или углового момента. Из этих свойств вытекает и независимость пространственно-временного интервала, его инвариантность и абсолютность по отношению ко всем системам отсчета.

В современной науке используются понятия биологического, психологического и социальногопространства и времени. Эти понятия введены в связи с особенностями проявления пространственно-временных свойств нефизических объектов. Метрические (количественные) и топологические (качественные) свойства пространства и времени в таких объектах могут быть существенно отличны. Более подробно об этих разновидностях пространства и времени можно прочитать в рекомендованной литературе[10].

Литература

1. Рузавин Г.И. Концепции современного естествознания. Курс лекций. — М.: Гардарики, 2006. Гл. 5.

2. Концепции современного естествознания: Учебник для вузов / Под ред. В.Н. Лавриненко, В.П. Ратникова. – 2-е изд., доп. и перераб. – М.: ЮНИТИ-ДАНА, 2003. Гл. 4.

3. Ландау Л.Д., Румер Ю.Б. Что такое теория относительности. – Новосибирск: Изд-во СО РАН, 2003.

1. Гарднер М.Теория относительности для миллионов. – М.: Атомиздат, 1979.

2. Карпенков С.Х. Основные концепции естествознания: Уч. пособие. – 2-е изд., перераб. и доп. – М.: Академический Проект, 2002. Гл. 2.

3. Эддингтон А. Пространство, время и тяготение. – М.: Едиториал УРСС, 2003.

4. Эйнштейн А. Эволюция физики. Изд. 2-е, испр. – М.: Тайдекс Ко, 2003.

5.Энциклопедия для детей. Том 16. Физика. Ч.1. Биография физики. Путешествие вглубь материи. Механическая картина мира / Глав. ред. В.А. Володин. – М.: Аванта+, 2000.

6.Энциклопедия для детей. Том 16. Физика. Ч.2. Электричество и магнетизм. Термодинамика и квантовая механика. Физика ядра и элементарных частиц / Глав. ред. В.А. Володин. – М.: Аванта+, 2000.

Вопросы для самоконтроля

1. Какие представления о пространстве и времени существовали в доньютоновский период?

2. Как изменились представления о пространстве и времени с созданием гелиоцентрической картины мира?

3. Как трактовал И. Ньютон время и пространство?

4. Какие представления о пространстве и времени стали определяющими в теории относительности А. Эйнштейна?

5.Что такое пространственно-временной континуум?

6.Раскройте современные метрические и топологические свойства пространства и времени.

ТЕМА 9. ЭВОЛЮЦИОННО-СИНЕРГЕТИЧЕСКАЯ ПАРАДИГМА: СИНЕРГЕТИЧЕСКАЯ КАРТИНА МИРА

Прогресс в познании сложных систем способствовал преодолению противопоставления категорий простого и сложного, пониманию их относительности, а самое главное — раскрытию роли сложноорганизованных процессов в ходе эволюции и развития биологического и социального мира. И. Пригожин и Г. Николис обращают особое внимание на две дисциплины, в корне изменившие наши представления о сложных процессах. Первая из них — это физика неравновесных состояний, вторая — современная теория динамических систем [11] .

В предлагаемой лекции мы рассмотрим, как изменились традиционные и классические научные представления о сложноорганизованных процессах в связи с возникновением этих новых научных дисциплин.

Дата добавления: 2015-06-04 ; Просмотров: 2137 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Пространство и время в общей теории относительности

Переход от классической механики к специальной теории относительности можно представить так:

на теоретическом уровне — это переход от абсолютных и субстанциальных пространства и времени к абсолютному и субстанциальному единому пространству — времени,

на эмпирическом уровне — переход от относительных и экстенсионных пространства и времени Ньютона к реляционному пространству и времени Эйнштейна.

Однако, когда Эйнштейн пытался расширить концепцию относительности на класс явлений, происходящих в неинерциальных системах отсчёта, это привело к созданию новой теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект. Новая теория — общая теория относительности – строилась путём построения обобщённого пространства и перехода от теоретической структуры исходной теории — специальной теории относительности — к теоретической структуре новой, обобщённой теории с последующей её эмпирической интерпретацией.

Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея — Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым. Речь идет о следующем положении специальной теории относительности: «. двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определённой длины, независимо как от положения и ориентации тела, так и от времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определённой величины, независимо от места и времени». Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.

Эйнштейн исходил из известного факта о равенстве инертной и тяжёлой масс. Он усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить загадку гравитации. Проанализировав опыт Этвеша, Эйнштейн обобщил его результат в принцип эквивалентности: «физически невозможно отличить действие однородного гравитационного поля и поля, порождённого равноускоренным движением». Принцип эквивалентности носит локальный характер и, вообще говоря, не входит в структуру общей теории относительности. Он помог сформулировать основные принципы, на которых базируется новая теория: гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Кроме них, Эйнштейн выдвинул ряд математических гипотез, без которых невозможно было бы вывести гравитационные уравнения: пространство четырёхмерно, его структура определяется симметричным метрическим тензором, уравнения должны быть инвариантными относительно группы преобразований координат.

Читайте также:  Резко темнеет в глазах и пропадает зрение

В работе «Относительность и проблема пространства» Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное «тому, что заполняет пространство» и что зависит от координат. «Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля».

Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам. Теория предсказала и объяснила три общерелятивистских эффекта: были предсказаны и вычислены конкретные значения смещения перигелия Меркурия, было предсказано и обнаружено отклонение световых лучей звёзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий.

Рассмотрим далее два направления, вытекающих из общей теории относительности: геометризацию гравитации и релятивистскую космологию, т.к. с ними связано дальнейшее развитие пространственно-временных представлений современной физики.

Доэйнштейновские представления о Вселенной можно охарактеризовать следующим образом: Вселенная бесконечна и однородна в пространстве и стационарна во времени. Они были заимствованы из механики Ньютона — это абсолютные пространство и время, последнее по своему характеру Евклидово. Такая модель казалась очень гармоничной и единственной. Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений, чтобы преодолеть противоречия. Таких положений в классической космологии четыре: стационарность Вселенной, её однородность и изотропность, евклидовость пространства. Однако в рамках классической космологии преодолеть противоречия не удалось. Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства — времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологои: общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной. Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна Вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной — это соответствует пространству положительной кривизны. Вселенная Эйнштейна представляет собой трёхмерную сферу — замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. Вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, Вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться. Чтобы устранить это противоречие Эйнштейн ввёл в уравнения теории новый член с помощью которого во Вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра. Оказалось, что скорость разбегания галактик линейно возрастает с расстоянием (закон Хаббла). Этот процесс продолжается и в настоящее время. В связи с этим встают две важные проблемы: проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние «разбегание галактик» — наглядное обозначение раскрытой космологией нестационарности пространственной метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство. Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к так называемому «моменту времени 0», исходной временной точке отсчета существования Вселенной, когда произошёл так называемый Большой взрыв. В.Л. Гинзбург считает, что «. Вселенная в прошлом находилась в особом состоянии, которое отвечает началу времени, понятие времени до этого начала лишено физического, да и любого другого смысла».

Таким образом, в релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчёта.

Пространство и время в теории относительности

Специальная теория относительности (СТО), созданная в 1905 году Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея – Ньютона и электродинамики Максвелла – Лоренца. Она основывается на двух принципах: постоянства скорости света в пустоте и относительности. Согласно первому принципу или постулату, скорость света в пустоте является предельной скоростью физических взаимодействий, она постоянна и составляет 300000 км/с. Постулат относительности утверждает, что законы электромагнитных явлений инвариантны, независимы от равномерного и прямолинейного движения систем. На основе этих принципов Эйнштейн разработал теорию физического пространства и времени, в которой последние оказываются зависимыми от движения физических тел: по мере приближения скорости движения тел к скорости света протяженность тел сокращается, а время течет медленнее. Используя формулы Лоренца, эту зависимость можно представить следующим образом:

,

где l – длина тела в движущейся системе со скоростью ; l длина тела в покоящейся системе.

,

где t – время движущегося тела; t – время покоящегося тела; с – скорость света.

Эффекты специальной теории относительности обнаруживаются при скоростях, близких к световым. Если, например, длина космического корабля в полете уменьшается в два раза с точки зрения наблюдения на Земле, то при возвращении на Землю корабль сбавляет скорость и его длина становится такой, как была при отлете. Время же — необратимо. Отсюда известный парадокс близнецов. После путешествия одного из близнецов на ракете, летевшей близко к скорости света, он с удивлением увидит, что его брат стал старше его. Можно даже рассчитать такой полет. Представим себе, что с Земли стартовал космический корабль со скоростью 0,98 скорости света и вернулся обратно через 50 лет. Но согласно формулам СТО по часам корабля этот полет продолжался бы всего лишь год. Если космонавт, отправившись в полет, оставил на Земле только что родившегося сына, то при встрече 50 – летний сын будет приветствовать 26 – летнего отца.

Релятивистское замедление является экспериментальным фактом. В космических лучах в верхних слоях атмосферы образуются частицы, называемые p–мезонами или пионами. Собственное время жизни пионов – 10 -8 с. За это время, двигаясь даже со скоростью почти равной скорости света, они могут пройти не больше, чем 300 см. Но приборы их регистрируют на поверхности Земли, то есть они проходят путь, равный 30 км или в 10000 раз больше, чем это возможно. Теория относительности так объясняет этот факт: 10 -8 сек. является естественным временем жизни мезона, измеренным по часам, движущимся вместе с мезоном, то есть покоящемся по отношению к нему. Но в системе отсчета Земли время жизни пиона намного больше и за это время частицы в состоянии пройти земную атмосферу.

Представления СТО оказались в противоречии с представлениями классической механики. Из основных положений этой теории вытекало, что одновременность различных событий носят не абсолютный, а относительный характер. В классической физике абсолютный характер одновременности был связан с представлением о возможности мгновенной передачи физических взаимодействий в любую точку пространства. Эйнштейновское определение одновременности базируется на представлении о конечной скорости распространения любых материальных сигналов. Отсюда следует, что события, одновременные в одной движущейся материальной системе, могут оказаться неодновременными в другой системе, может даже изменится сам порядок их следования. Таким образом, можно говорить о собственном времени каждой системы отсчета. Универсальное абсолютное ньютоновское время должно уступить место бесконечным собственным временам различных инерциальных систем.

Специальная теория относительности связала воедино пространство и время, но она рассматривает их еще до некоторой степени самостоятельно по отношению к материи. Общая теория относительности (ОТО) или теория тяготения, созданная Эйнштейном через 10 лет после специальной, окончательно преодолевает эту ограниченность. Она рассматривает пространственно – временные характеристики в зависимости от распределения вещества и поля во Вселенной: чем выше плотность вещества и поля, тем более искривлено пространство и тем сильнее эффект «замедления времени» под действием полей тяготения. Величина кривизны пространства и замедления ритма времени определяется величиной, движением и распределением материальных масс, напряженностью поля тяготения.

В ОТО Эйнштейн расширяет принцип относительности, распространяя его на неинерциальные системы. В ней он также исходит из экспериментального факта эквивалентности масс инерциальных и гравитационных, или эквивалентности инерционных и гравитационных полей. Общая теория относительности заменяет закон тяготения Ньютона новым уравнением тяготения. Закон Ньютона получается как предельный случай эйнштейновских уравнений. Рассчитанное теоретически Эйнштейном отклонение луча света было впоследствии экспериментально подтверждено во время солнечного затмения, когда луч света от звезды проходит вблизи поля тяготения Солнца.

Таким образом, теория относительности исключила из науки понятие абсолютного пространства и абсолютного времени, обнаружив тем самым несостоятельность субстанциальной трактовки пространства и времени как самостоятельных, независимых от материи форм бытия. Она показала зависимость пространственно – временных свойств от характера материальных систем, подтвердилась правильность трактовки пространства и времени как основных форм существования материи. Сам Эйнштейн, отвечая на вопрос о сущности теории относительности сказал: «Суть такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы и пространство и время».

Общая теория относительности показала зависимость геометрии от физики, зависимость геометрических свойств пространства и времени от физических свойств материи. На основании ОТО возникла релятивистская космология в которой выдвинут ряд современных моделей Вселенной.

Не нашли то, что искали? Воспользуйтесь поиском:

Контрольная работа: Пространство и время в свете теорий относительности А. Эйнштейна

Тема: Пространство и время в свете теорий относительности А. Эйнштейна

Тип: Контрольная работа | Размер: 27.63K | Скачано: 64 | Добавлен 21.12.11 в 19:07 | Рейтинг: 0 | Еще Контрольные работы

Год и город: Ярославль 2010

Содержание

1.Понимание пространства и времени в специальной теории относительности.

2. Понимание пространства и времени в общей теории относительности.

3. Физический смысл идей Альберта Эйнштейна.

Введение.

Вопрос о познавательном статусе категорий пространства и времени решался по-разному. Одни философы считали пространство и время объективными характеристиками бытия, другие — чисто субъективными понятиями, характеризующими наш способ восприятия мира. Были и философы, которые, признавая объективность пространства, приписывали чисто субъективный статус категории времени, и наоборот.

В истории философии существовали две точки зрения об отношении пространства и времени к материи. Первую из них можно условно назвать субстанциальной концепцией. В ней пространство и время трактовали как самостоятельные сущности, существующие наряду с материей и независимо от нее. Соответственно отношение между пространством, временем и материей представлялось как отношение между двумя видами самостоятельных субстанций. Это вело к выводу о независимости свойств пространства и времени от характера протекающих в них материальных процессов.

Вторую концепцию можно именовать реляционной (от слова relatio — отношение). Ее сторонники понимали пространство и время не как самостоятельные сущности, а как системы отношений, образуемых взаимодействующими материальными объектами. Вне этой системы взаимодействий пространство и время считались несуществующими. В этой концепции пространство и время выступали как общие формы координации материальных объектов и их состояний. Соответственно допускалась и зависимость свойств пространства и времени от характера взаимодействия материальных систем.

В работе рассмотрим понятия «время» и «пространство» в знаменитой теории относительности Альберта Эйнштейна.

В сознании людей, знакомство которых с теорией относительности ограничивается сведениями из школьных учебников, она ассоциируется прежде всего с принципом относительности Эйнштейна. Недаром даже В.Высоцкий, рассуждая об относительности человеческих суждений, сразу вспомнил и эту теорию: «… даже Эйнштейн, физический гений, весьма относительно все понимал…». Между тем для физики основное значение теории относительности состояло в том, что она привела к переосмыслению физиками содержания важнейших для их концепций понятий – понятий пространства и времени. Важность их не вызывает никаких сомнений: если мы внимательно проанализируем методы, используемые как при экспериментальном исследовании физических явлений, так и при их теоретическом описании, мы заметим, что в их основе лежат представления именно о пространстве и времени. Мы вообще не можем построить в своем сознании образ реальных событий, не используя характеристик «где» и «когда».

Читайте также:  Ботанической точки зрения банан является ягодой

1. Понимание пространства и времени в специальной теории относительности.

Специальная теория относительности (СТО) (частная теория относительности; релятивистская механика) — теория, описывающая движение, законы механики и пространственно-временные отношения при скоростях движения, близких к скорости света.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от системы отсчёта. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.

При движении с околосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является безусловно верной теорией в своей области применимости. По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности — нужно лишь уметь слушать».

Пространство обычно представляется нам непрерывным – мы можем вообразить предметы сколь угодно малого размера и прийти к понятию точки как элемента пространства с нулевым размером. На основе представлений о направлениях формулируются понятия «прямой» и «угла», а далее мы устанавливаем трехмерность пространства – через заданную точку можно провести не более трех взаимно перпендикулярных прямых. Если подходить к восприятию мира более практично, можно заметить, что для получения полного представления о размерах произвольного предмета нам необходимо определить три расстояния – длину, ширину и высоту. Кроме того, мы обычно считаем, что разные точки пространства различаются не сами по себе, а лишь по наличию или отсутствию рядом с ними каких-либо тел. Говоря точнее, мы считаем, что поведение системы тел не изменится, если мы перенесем их в другое место в пространстве, в точности воссоздав внешние воздействия на эту систему. Это свойство пространства называют однородностью. Аналогично мы считаем, что все направления в пространстве одинаковы по свойствам, то есть что оно изотропно. Большие споры с древних времен вызывал вопрос о безграничности и бесконечности пространства. Обратим внимание: это два разных понятия. Безграничность представляется достаточно естественным свойством пространства (как говорили в Древней Греции, «где бы не встал воин, он может протянуть свое копье еще дальше»), в то время как его бесконечность вовсе не очевидна. Можно привести в качестве примера одномерное пространство точек окружности конечного радиуса – оно явно конечно, но никаких границ перемещающаяся по нему точка не встретит. Тем не менее большинству мыслителей древнего мира более логичной казалась картина бесконечного пространства: «…и по природе своей столь бесконечно пространство, что даже молнии луч обежать его был бы не в силах, в долгом течении веков бесконечно свой путь продолжая». Итак, наш опыт и логика приводят нас к заключению: наше пространство – непрерывное, трехмерное, однородное, изотропное, безграничное и бесконечное. Более детальное изучение свойств точек, прямых и углов позволило Евклиду зафиксировать эти свойства в виде системы утверждений – аксиом, на основе которых строится математическое описание геометрии пространства. Ее обычно называют евклидовой геометрией, и именно ее изучают в школе.

Аналогичный анализ свойств времени (внимательный читатель без особого труда может убедиться в этом сам) приведет нас к выводу, что время мы обычно представляем себе непрерывным, одномерным, однородным, бесконечным и анизотропным. Последнее свойство отражает явное различие направлений в прошлое и будущее с нашей точки зрения: в будущее мы все движемся, хотя и не по своей воле, а в прошлое мы двигаться не можем.

Реляционная концепция пространства и времени замечательно согласуется с ролью эталонов в пространственно-временных измерениях. Более того: после некоторых размышлений можно заметить, что «свое» пространство и время существуют у каждой системы: физической, химической, биологической, социальной – каждая из них характеризуется своим набором типичных размеров («пространственной шкалой») и набором периодов ритмических процессов («спектром частот»). Поэтому любая формализованная теория, описывающая некоторую систему, содержит описание пространства и времени, соответствующих именно этой системе. Ясно, например, что время, измеряемое пружинными часами, может не совпадать со временем, воспринимаемым человеком в субъективных ощущениях. Отличительной чертой подхода, практикуемого в физике, является именно попытка построить описание «пространства и времени вообще». И стремление к обобщению поначалу препятствовало внедрению идеи реляционности в физике.

2. Понимание пространства и времени в общей теории относительности.

Общая теория относительности (ОТО; нем. allgemeine Relativitätstheorie)— геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), опубликованная Альбертом Эйнштейном в 1915—1916 годах. В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей.

ОТО в настоящее время — самая успешная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919 году, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что качественно и количественно подтвердило предсказания общей теории относительности. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационном поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр.

Согласно общей теории относительности, тела всегда перемещаются по прямым в четырехмерном пространстве-времени, но мы видим, что в нашем трехмерном пространстве они движутся по искривленным траекториям.

Масса Солнца так искривляет пространство-время, что, хотя Земля движется по прямой в четырехмерном пространстве, мы видим, что в нашем трехмерном пространстве она движется по круговой орбите. Орбиты планет, предсказываемые общей теорией относительности, почти совпадают с предсказаниями ньютоновской теории тяготения. Однако в случае Меркурия, который, будучи ближайшей к Солнцу планетой, испытывает самое сильное действие гравитации и имеет довольно вытянутую орбиту, общая теория относительности предсказывает, что большая ось эллипса должна поворачиваться вокруг Солнца примерно на один градус в десять тысяч лет. Несмотря на его малость, этот эффект был замечен еще до 1915 г. и рассматривался как одно из подтверждений теории Эйнштейна. В последние годы радиолокационным методом были измерены еще меньшие отклонения орбит других планет от предсказаний Ньютона, и они согласуются с предсказаниями общей теории относительности.

Рис.1

Лучи света тоже должны следовать геодезическим в пространстве-времени. Искривленность пространства означает, что свет уже не распространяется прямолинейно. Таким образом, согласно обшей теории относительности, луч света должен изгибаться в гравитационных полях, и, например, световые конусы точек, находящихся вблизи Солнца, должны быть немного деформированы под действием массы Солнца. Это значит, что луч света от далекой звезды, проходящий рядом с Солнцем, должен отклониться на небольшой угол, и наблюдатель, находящийся на Земле, увидит эту звезду в другой точке (рис. 1). Конечно, если бы свет от данной звезды всегда проходил рядом с Солнцем, мы не могли бы сказать, отклоняется ли луч света или же звезда действительно находится там, где мы ее видим. Но вследствие обращения Земли все новые звезды заходят за солнечный диск, и их свет отклоняется. В результате их видимое положение относительно остальных звезд меняется.

3. Физический смысл идей Альберта Эйнштейна.

Революция в физике XXI в. ознаменовалась разработкой таких неклассических теорий (и соответствующих физических исследовательских программ), как частная (специальная) и общая теории относительности, квантовая механика, квантовая теория поля, релятивистская космология и другие, для которых характерно существенное развитие представлений о пространстве и времени.

Была выяснена необоснованность двух фундаментальных положений о пространстве и времени в классической механике: промежуток времени между двумя событиями и расстояние между двумя точками твёрдого тела не зависят от состояния движения системы отсчёта. Поскольку скорость света одинакова во всех системах отсчёта, то от этих положений приходится отказаться и сформировать новые представления о пространстве и времени.

Общая теория относительности получила блестящее эмпирическое подтверждение и послужила основой последующего развития физики и космологии на базе дальнейшего обобщения представлений о пространстве и времени, выяснения их сложной структуры. Во-первых, сама операция геометризации тяготения породила целое направление в физике, связанное с геометризованными едиными теориями поля. Основная идея: если искривление пространства-времени описывает гравитацию, то введение более обобщённого риманова пространства с повышенной размерностью, с кручением, с многосвязностью и т. д. даст возможность для описания иных полей. В 20-30-е гг. обобщения пространства Римана затрагивали в основном метрические свойства пространства-времени, однако в дальнейшем речь пошла уже о пересмотре топологии, а в 70-80-е гг. физики пришли к выводу, что калибровочные поля глубоко связаны с геометрической концепцией связности на расслоённых пространствах на этом пути достигнуты впечатляющие успехи, направленные в единой теории электромагнитного и слабого взаимодействий — теории электрослабых взаимодействий Вайнберга — Глэшоу — Салама, которая построена в русле обобщения квантовой теории поля.

Общая теория относительности является основой современной релятивистской космологии. Непосредственное применение общей теории относительности ко Вселенной даёт неимоверно сложную картину космического пространства-времени: материя во Вселенной сосредоточена в основном в звёздах и их скоплениях, которые распределены неравномерно и соответствующим образом искривляют пространство-время, оказывающееся неоднородным и неизотропным. Это исключает возможность практического и математического рассмотрения Вселенной как целого.

В настоящее время разрабатывается теория, объединяющая все фундаментальные физические взаимодействия, включая гравитационные. Однако выяснилось, что в этом случае речь идёт о пространствах 10, 26 и даже 605 размерностей. Исследователи надеются, что чрезмерный избыток размерностей в процессе компактификации удастся «замкнуть» в области планковских масштабов и в теорию макромира войдёт лишь привычное четырёхмерное пространство-время. Что же касается вопросов о структуре пространства-времени глубокого микромира или о первых мгновениях Большого взрыва, то ответы на них будут найдены лишь в физике 3-го тысячелетия.

Заключение.

В первой четверти XX в. произошла вторая в истории естествознания универсальная научная революция, приведшая к полной ломке классической гравитационной физико-космологической картины мира. Эта революция готовилась многими, но своим свершением она обязана одному из величайших физиков современности Альберту Эйнштейну (1879—1955). Фундаментом для создания этой новой научной картины мира стали две его физические теории — специальная и общая теория относительности. Ньютоновская физическая (гравитационно-механическая) картина мира, дополненная к концу XIX в. идеями электродинамики Максвелла и Лоренца, опиралась на представления о полностью независимом, или абсолютном существовании и качествах таких фундаментальных сущностей как пространство, время, материя. В частности, пространство представлялось «прямолинейным» (плоским) евклидовым, бесконечным, материя же — состоящей из нейтральных атомов, которые в свою очередь составлялись из электрически заряженных частей (электрон и некая заряженная положительно «основа» атома).

В отношении микромира благодаря Эйнштейну совершился, прежде всего, переход определенных представлений из области научных экстраполяции — картины мира — в область достоверного знания — науку. Его теория броуновского движения (беспорядочного движения микрочастиц вещества, взвешенных в жидкости) открыла путь к доказательству атомной структуры вещества, остававшейся гипотезой в течение тысячелетий.

Эйнштейн создал квантовую теорию фотоэффекта и тем самым физически обосновал другую древнюю гипотезу — дискретной природы света. Но при этом вскрывался истинный новый смысл самой дискретности света — «кванты излучения» вместо «твердых частиц». Таким образом, и в области микромира теории Эйнштейна вызвали революцию — коренное изменение научной картины микромира. На основе идей Планка и Эйнштейна в середине 20-х годов XX в. была создана (Гейзенбергом и Шрёдингером) квантовая механика, заменившая собою классическую механику при описании явлений микромира.

Таким образом создание теории относительности является основным трудом Альберта Эйнштейна. Она перевернула взгляды на пространство и время. В то же время в теории относительности нашли много противоречий и называли ее «фарсом», но не смотря на это теория относительности является большим открытием в науке. А ее создатель, Альберт Эйнштейн, является Нобелевским лауреатом в области физики, а так же он был удостоен многих других наград, в том числе медали Копли Лондонского королевского общества (1925) и медали Франклина Франклиновского института (1935).

Список литературы.

1. Горелов А.А. Концепции современного естествознания – М, 1997 г.

2.Грюнбаум А. Философские проблемы пространства и времени. – М.; 1969 г.

3. Сиама Д. Физические принципы общей теории относительности. – М.; 1971 г.

4. Эйнштейн А. Теория относительности. –М. 2000 г.

Источники:
  • http://studopedia.su/18_42698_prostranstvo-i-vremya-v-svete-teorii-otnositelnosti-l-eynshteyna.html
  • http://studfiles.net/preview/4523485/page:5/
  • http://studopedia.ru/18_27793_prostranstvo-i-vremya-v-teorii-otnositelnosti.html
  • http://studrb.ru/works/entry11050