Меню Рубрики

Разрешающая способность зрения зависит от элементов ок

Для того, чтобы оценить ресурс, необходимо авторизоваться.

Учебное пособие подготовлено на основе курса лекций, читаемых авторами на протяжении ряда лет студентам направления «Приборостроение» и специальности «Акустические приборы и системы». В содержание пособия вошли общие вопросы неразрушающего контроля, понятие о дефектах и их видах, рассмотрены визуально-оптический, капиллярный, магнитный, токовихревой и радиационный методы контроля. Пособие предназначено для самостоятельной работы студентов. В конце каждого раздела приведены вопросы для самопроверки. В приложения вынесены краткие сведения о физических явлениях, лежащих в основе рассматриваемых неразрушающих методов контроля, словарь терминов и перечень основных единиц измерения.

Разрешающей способностью называют наименьшее расстояние между двумя точками или линиями, видимыми раздельно. Оценивать его можно в угловой или в линейной мере. Обычно разрешающую способность, или разрешение, характеризуют числом линий, видимых раздельно в интервале 1 мм. В последние годы установлено, что разрешающая способность глаза зависит не столько от анатомических размеров рецепторов, сколько от их функциональной связи и от множества других факторов. Эти факторы можно разделить на «нервные», к которым относятся способы’ переработки сигнала в сетчатке и лежащих выше отделах зрительного анализатора, и на «оптические». Последние зависят от оптической системы глаза. Это в первую очередь дифракция на радужке, собственные аберрации глаза, рассеяние света на поверхностях глазных сред, влияние неровностей роговицы, децентрированности оптической системы глаза, неправильной фокусировки и пр. На разрешение влияет также контрастность объектов. При разных условиях зрительной работы эти факторы влияют различно. Так, при дневном зрении вследствие малого размера зрачка увеличивается влияние дифракции, аберрации же сказываются меньше, и совсем не влияет на сетчаточное изображение отклонение периферической зоны роговицы от правильной формы. При ночном зрении, когда зрачок расширен и работает не только центральная, но и периферическая зона роговицы, основное снижение качества изображения и разрешающей способности обусловлено неправильной формой роговицы и рассеянием света на глазных средах.

Постараемся объяснить рассматриваемые явления, не прибегая к деятельности высших мозговых центров. Для этого рассмотрим влияние каждого из оптических факторов отдельно. Сначала определим разрешение с точки зрения волновой оптики, а затем оценим влияние на него аберраций глаза при помощи геометрической оптики.

Образование изображения на сетчатке с точки зрения волновой природы света. Любая оптическая система, даже полностью безаберрационная, вследствие волновой природы света не может изобразить точку объекта точкой. Это объясняется тем, что всякая система имеет ограниченное отверстие, которое огибается сферической волной, исходящей из объекта, вызывая дифракцию. В результате дифракции и сопутствующей ей интерференции света в плоскости изображения вместо точки возникает дифракционная фигура. В различных точках дифракционной фигуры освещенность неодинакова. Центральный максимум отделен абсолютным минимумом от других, менее интенсивных, максимумов. Эти максимумы более высоких порядков не оказывают существенного влияния на дифракционную картину — практическое значение имеет только средний максимум. Качество изображения оптической системы зависит от ширины этого максимума, т. е. от расстояния, на котором находится первый абсолютный минимум от центра дифракционной фигуры. Чем меньше площадь максимума, тем лучше качество изображения. Ширина центрального максимума является функцией апертурного угла со стороны изображения и длины волны света. Чем меньше апертурный угол и чем больше длина волны, тем максимум шире. Если бы можно было получить волну, выходящую из оптической системы в виде полной сферы, то ширина максимума была бы равна нулю и изображение точки было бы также точкой.

В глазу, так же как в большинстве других оптических систем, падающая от объекта сферическая волна ограничивается круглой апертурной диафрагмой — зрачком глаза, от диаметра которой и зависит ширина центрального максимума. Дифракционная фигура от круглого отверстия представляет собой дифракционный кружок. Центральный максимум, который воспринимается как «изображение» точки, имеет в этом случае радиус:

Так как этот радиус зависит от длины волны, то величина центрального максимума и радиус бокового максимума неодинаковы для различных цветов. Поэтому изображение точки в белом свете бывает окрашенным. Наличие в оптической системе глаза довольно больших аберраций приводит к перераспределению освещенности в дифракционной фигуре — освещенность в центральном максимуме уменьшается, а в дифракционных кольцах возрастает. Диаметр центрального максимума при этом остается прежним, а в боковых в большей или меньшей степени изменяется.

Аберрации глаза. Рассмотрим влияние аберраций глаза на качество изображения внешних объектов на сетчатке и оценим их влияние на разрешающую способность глаза.

Вопросы сферической и хроматической аберрации глаза человека изучали Юнг, Гельмгольц и др. В 1947 г. появилась фундаментальная работа А. Иванова об измерении сферической и хроматической аберраций, глаза. В 1961 г. М. С. Смирнов измерил волновую аберрацию глаза. Следует подчеркнуть, что измерения аберраций проводились только субъективным методом — по ответам испытуемого о восприятии предъявляемого объекта. Вследствие этого полученные данные относятся только к аберрациям центральной, макулярной области. Аберрации внеосевых точек, изображающихся на периферических участках сетчатки, испытуемый не в состоянии определить вследствие грубого строения этих зон сетчатки и ряда других физиологических факторов. На основе экспериментальных данных были построены кривые аберраций глаза.

Разброс параметров глаз у разных людей велик, меняется даже знак аберраций. Минимальными аберрации становятся при аккомодации на близкие предметы (1—2 м). В большинстве глаз имеется аберрация «по правилу», т. е. недоисправленная. Такие аберрации характерны для тех случаев, когда рефракция роговицы высокая, а хрусталика низкая. Если аберрация роговицы ниже обычной, а хрусталика выше, то чаще наблюдается аберрация «против правила», т. е. переисправленная.

Общая рефракция глаза суммируется из рефракц роговицы, имеющей «недоисправленную» сферическую» аберрацию, и хрусталика, обладающего обычно «переисправленной» аберрацией. Преобладающее значение при’ этом имеет, конечно, форма передней поверхности роговицы, граничащей с воздухом.

Нецентрированность оптической системы глаза. Рассматривая глаз как оптическую систему, принимают за ее оптическую ось прямую, проходящую через центр» кривизны поверхности хрусталика и роговицы. Под зрительной осью имеют в виду прямую, соединяющую узловую точку глаза с центральной ямкой (фовеолой). При этом необходимо учитывать ряд особенностей, не подлежащих практическому учету. Так, например, участок, обеспечивающий центральное зрение и поэтому наиболее важный для восприятия объекта, — центральная ямка, находится не на оптической оси, а несколько книзу от нее и ближе к височной стороне. Оптическая ось-пересекает сетчатку между центральной ямкой и диском зрительного нерва, ближе к центральной ямке. Угол а между оптической и зрительной осями считают положительным, если визуальная ось пересекает роговицу с нозальной стороны по отношению к оптической оси. Для нормального глаза взрослого человека угол а положителен и составляет от 4 до 8°. Наибольший угол (до 10°) бывает у людей с гицерметропией, наименьший, иногда даже отрицательный, — при миопии. У детей угол а особенно велик. Как правило, геометрический, центр роговицы не совпадает с ее оптическим центром. Таким образом, оптическая система глаза является не-центрированной. Все эти отклонения сказываются на ходе лучей в процессе визирования объекта и снижают разрешающую способность глаза.

Разрешающая способность и острота глаза

Разрешающей способностью глаза называют способность раздельно восприни- мать (различать) близко расположенные друг к другу точки, линии или другие фигуры. Разрешающую способность характеризуют величиной минимального угла между конту- рами раздельно воспринимаемых объектов или числом раздельно видимых линий на 1°. Способность глаза различать две точки с минимальным углом между ними в 1секунду считается нормой.

Остротой зрения называют способность глаза замечать мелкие детали или различать их форму. Остроту зрения чаще всего определяют величиной минимального углового размера объекта, воспринимаемого глазом при максимальном контрасте.

Для нормального глаза в оптимальных условиях осмотра острота зрения составляет 1 секунду. Средняя острота зрения равна 2-4 секунды. При остроте зрения 2 секунды на расстоянии наилучшего зрения (250 мм) глаз может различать детали размером не ме- нее 0,15 мм. Острота зрения и разрешающая способность характеризуют возможность глаза видеть мелкие объекты.

Острота зрения и разрешающая способность зависят от освещенности объекта, диа- метра зрачка глаза, продолжительности осмотра, спектральной характеристики объекта и других факторов. Но в первую очередь эти свойства глаза обусловлены структурой сетчатки и дифракцией света в глазных средах.

Если изображение предмета умещается в одном элементе сетчатки, глаз восприни- мает этот предмет в виде точки, не различая его формы. Две точки глаз различает раз- дельно, если изображения их на сетчатке будут находиться на разных ее элементах, разделенных не менее чем одним нераздраженным элементом.

При дневном зрении разрешающая способность максимальна в центральной ямке сетчатки, где наиболее плотно расположены колбочки. Здесь разрешающая способность достигает в оптимальных условиях 50 — 70 линий на 1º. С удалением от центральной ям- ки сетчатки разрешающая способность быстро падает, составляя 0,33 от максимальной в 5° от центра и 0,1 от максимальной в 20° от центра. Это связано с изменением струк- туры сетчатки, увеличением диаметра палочек и колбочек, а также с увеличением ре- цептивных полей: к одному нервному волокну здесь сходятся сигналы от сотен палочек и десятка колбочек. Кроме того, уменьшение разрешающей способности связано с меньшей резкостью изображения, создаваемого хрусталиком в периферийных участках сетчатки.

Каждая рассматриваемая точка вследствие дифракции и рассеяния света в глазных средах воспринимается глазом в той или иной степени не резко, в виде дифракционного кружка рассеяния.

Дифракционный кружок при средней освещенности и средней длине волны 550 нм, составляет 0,009 мм. Так как диаметр самых маленьких рецепторов зрения — колбочек в центральной ямке сетчатки составляет около 0,001 мм, то разрешающая способность глаза и острота зрения в таких условиях, как видно, ограничиваются только дифракцией света.

Наиболее высокая острота зрения наблюдается при диаметре зрачка 3-4 мм, что со- ответствует общей освещенности от 100 до 1000 лк. При диаметре зрачка больше 4 мм острота зрения снижается из-за погрешности (аберрации) оптики глаза, при диаметре 2,5 — 3 мм (что соответствует общей освещенности 2000 — 2500 лк) она падает из-за ди- фракции света. В связи с этим при осмотре деталей нет необходимости делать общую освещенность более 2000 — 2500 лк. Местная освещенность в системе комбинированно- го освещения при этом может быть больше до 4000 — 5000 лк. Но для уменьшения отри- цательного влияния дифракции света на остроту зрения в этих случаях принимают меры для снижения отражающей способности фона.

Минимальное расстояние между точками, воспринимаемыми глазом раздельно равно

R = L Sinα,

где L — расстояние от глаза до плоскости точек;a— минимальный разрешаемый угол поля зрения.

Для нормального глаза с разрешающей способностью 1(a = 1 сек; L = 250 мм) при хорошей освещенности расстояние между раздельно воспринимаемыми точками со- ставляет 0,075 мм. Приближенно эту величину принимают равной 0,1 мм.

При снижении общей адаптирующей освещенности разрешающая способность уменьшается. При сумеречном (палочковом) зрении она в 15 — 20 раз ниже, чем при дневном. Минимальный интервал между раздельно воспринимаемыми точками, нахо- дящимися на расстоянии наилучшего зрения (250 мм), в этом случае составляет 0,9 — 1,15 мм. Этим явлением объясняется снижение разрешающей способности зрения при люминесцентном и магнитно-люминесцентном контроле при отсутствии дополнительной подсветки контролируемой поверхности видимым излучением, хотя чувствительность к обнаруживаемым дефектам при этом остается высокой.

На разрешающую способность и остроту зрения оказывает влияние также иррадиа- ция, которая заключается в кажущемся увеличении размеров светлых предметов на темном фоне. Чем светлее предмет, тем он кажется крупнее. Это явление при нормаль- ной освещенности повышает остроту зрения, однако снижает разрешающую способ- ность глаза. Мелкие светлые одиночные объекты, например, тонкий рисунок трещины при люминесцентном контроле, из-за иррадиации легко обнаружить. Однако две близко расположенные линии могут быть восприняты как одна. Изломы, изгибы люминесци- рующего рисунка трещин скрадываются, что затрудняет их анализ, определение харак- тера дефекта и различение действительных дефектов среди ложных.

При осмотре деталей в условиях малой освещенности возможна отрицательная ир- радиация — кажущееся уменьшение размеров светлых объектов на темном фоне.

Вследствие этого затруднено обнаружение мелких светлых несветящихся объектов при освещенности ниже рекомендуемой.

На остроту зрения влияет также цвет объектов и фона. Высокая острота зрения при наблюдении желто-зеленых объектов на темном фоне и красных объектов на белом яв- ляется одной из причин применения именно этих цветов при люминесцентной и цветной дефектоскопии.

Цветоощущение

Цвета делят на ахроматические (черный, белый, серые) и хроматические (все прочие цвета) (рис.2.32). Хроматические цвета отличаются цветовым тоном, яркостью (свет- лотой) и насыщенностью. Под насыщенностью цвета понимают степень отличия данного цвета от одинакового по светлоте серого цвета.

Читайте также:  Урок с точки зрения фгос ооо

Рис. 2.32. Хроматические (сверху) и ахроматические (снизу) цвета

При некотором повышении освещенности объекта, находящегося, первоначально в полной темноте, он становится видимым. Наименьшее значение освещенности, созда- ваемой объектом на зрачке наблюдателя, при котором объект становится заметен, на- зывают световым порогом. При дальнейшем увеличении освещенности глаз начинает различать цвет. Наименьшее значение освещенности на зрачке наблюдателя, соответ- ствующее этому моменту, называют цветовым порогом. Каждой длине волны света со- ответствует разное значение светового порога: раньше других становятся заметными синие объекты, позже всех — красные. Цветовой порог также зависит от цвета объекта: сначала обнаруживают цвет красных объектов, позже других — сине-фиолетовых и жел- тых.

Отношение величины цветового порога к соответствующему значению светового по- рога называют ахроматическим интервалом. Значения ахроматического интервала для некоторых цветов приведены в табл. 2.3.

Дата добавления: 2016-12-05 ; просмотров: 1801 | Нарушение авторских прав

Большая Энциклопедия Нефти и Газа

Разрешающая способность — зрение

Разрешающая способность зрения ( как и разрешающая способность любой оптической системы) является числовой оценкой, которая не позволяет оценить восприятие ( и искажение) различных сочетаний мелких и крупных деталей, а также крутых переходов яркости на изображении. С некоторым приближением ( считая свойства ЗА пространственно инвариантными) выражение (1.17) можно применить и для ЗА, но непосредственно измерить импульсную характеристику g3p ( jt, у) не удается. Однако ее можно рассчитать, используя выражения (1.21), (1.22), экспериментально измерив ЧКХ зрения. [2]

Разрешающая способность зрения е, т.е. способность различать мелкие детали изображения, зависит от яркости, контраста, цветности и времени наблюдения ОК. [3]

Разрешающая способность зрения не зависит от цветности освещения при условии одинаковой яркости испытательной таблицы. [4]

Разрешающая способность зрения е, т.е. способность различать мелкие детали изображения, зависит от яркости, контраста, цветности и времени наблюдения ОК. [5]

Разрешающая способность зрения иллюстрируется табл. 6.7, а рекомендуемый размер знаков устройств индикации — табл. 6.8. Аккомодация — это способность глаза приспосабливаться к ясному видению предметов, находящихся от него на различном расстоянии. С возрастом аккомодация глаз понижается. [7]

Ограниченная разрешающая способность зрения по перемещениям. Это свойство является следствием ограниченной разрешающей способности по угловому расстоянию. Различие в двух последовательно наблюдаемых картинках не обнаруживается, если перемещения предметов на них невелики. Это свойство зрения лежит в основе передачи и воспроизведения движущихся предметов. [8]

Ограниченная разрешающая способность зрения по угловому расстоянию. Это свойство позволяет разбивать изображение на ограниченное количество элементов. Так как мы не можем различать близко расположенные друг к другу элементы изображения, то можно все изображение разбить, например, на ограниченное число строк. [9]

Одинаковая разрешающая способность зрения по угловому расстоянию во всех направлениях. Это свойство, определяемое сферичностью глазного хрусталика, означает независимость остроты зрения от направления. Практически это означает, что требования к размерам элементов изображения и расстоянию между ними по вертикали и горизонтали могут быть одинаковыми. Такое свойство зрения позволяет правильно выбрать полосу пропускания приемного канала, исходя из количества строк в изображении. [10]

Чувствительность и разрешающая способность зрения тесно связаны со структурой сетчатки, чувствительными элементами которой являются колбочки и несколько более чувствительные палочки. Центральная область сетчатки, ямка ( желтое пятно), занимающая в фокальной плоскости хрусталика дугу 1 — 2, заполнена почти целиком плотно упакованными колбочками, а периферийные области — и колбочками, и палочками. Внутри ямки расстояние между колбочками довольно мало ( — 10 мкм), что позволяет достичь пространственного разрешения ( измеренного по решетке) до 60 линий / градус. Чувствительность на более низких пространственных частотах при двух значениях яркости экрана ( см. табл. 7.1) показано на рис. 7.1. Важно отметить подъем чувствительности примерно на 1 и 3 линиях / градус и существенное падение на низких частотах. [12]

При нормальных условиях разрешающая способность зрения составляет величину порядка одной угловой минуты. [13]

Опытами установлено, что цветовая разрешающая способность зрения в несколько раз ниже яркостной и зависит от цвета наблюдаемых предметов. [15]

IV. Угол зрения. Разрешающая способность глаза.

Угол зрения — угол между лучами, идущими от крайних точек предмета через узловую точку (оптический центр глаза).

Узловая точка N — аналогична оптическому центру тонкой линзы .

Размер изображения на сетчатке «b» зависит только от угла β, под которым виден предмет «В». Этот угол называют углом зрения.

Из рисунка следует, что tgβ = B/L = b/l. Учитывая эти соотношения, можно записать следующую формулу для размера изображения на сетчатке:

Где l ≈ 17 мм – это расстояние от узловой точки до сетчатки.

Для малых углов зрения ( ) справедлива приближенная формула:

Разрешающая способностьглаза – это свойство глаза видеть раздельно два предельно близко расположенных малых объекта или их детали.

В медицинской практике РС называют остротой зрения.

В клинической медицинской практике различают 2 вида РС:

1. Абсолютная РС ( γ ) – характеризуется величиной, обратной предельному углу разрешения:

γ [град -1 ] — абсолютная острота зрения

φ [гр] — предельный угол разрешения

Предельный угол (φ) – это угол, под которым глаз видит раздельно на расстоянии r, равном 25см, две близко расположенных точки.

(угловые мин.)

х – линейный размер объекта (м)

у – расстояние до объекта (м)

k — коэффициент пропорциональности ≈ 3,438 угловых минут.

2.Относительная РС (V) – характеризуется отношением стандартного

предельного разрешающего угла к фактически разрешенному для

данного расстояния углу.

V = φо / φ факт (безразмерна)

φо — стандартный предельный угол, под которым с определенного расстояния, при остроте зрения, равной 1, испытуемый должен различать тестовый табличный знак с угловым размером в 1 минуту.

φ факт — фактический угол, под которым испытуемый различает этот же тестовый знак.

«V» зависит от :

размера объекта, расстояния до него, формы объекта, его цвета, контраста объекта с фоном, освещенности таблицы, особенности глаза.

На практике РС (остроту зрения) определяют при помощи специальных таблиц и знаков (буквы, кольца, различные фигуры), принятых за Международный стандарт.

РС (остроту зрения) определяют с расстояния 25-30 см или с расстояния 5 м.

Дата добавления: 2017-12-05 ; просмотров: 112 ;

Разрешающая способность зрения

Острота зрения.Остротой зрения называется способность глаза различать мельчайшие детали. Максимально возможная острота зрения зависит от толщины колбочек в центральной ямке желтого пятна. Высчитано, что угол, под которым падают на сетчатку лучи от двух точек, максимально сближенных, но видимых раздельно, равен ‘/«о 0 , т. е. одной угловой минуте. Этот угол и принято считать за норму остроты зрения. Острота зрения несколько меняется в зависимости от силы освещения. Однако при одной и той же освещенности она может значительно меняться. Она увеличивается под влиянием тренировки и понижается при утомлении зрения.

Острота зрения проверяется по специальным тест-объектам. К ним могут быть отнесены: решетки, двойные параллельные полосы или прямоугольники, отдельные тонкие линии, различные фигуры (разорванные окружности или кольца Ландольта) и специальные таблицы, составленные из 10—12 рядов букв или специальных знаков. Все эти и другие тест-объекты направлены на определение пространственной разрешающей способности глаза.

У детей остроту зрения проверяют по таблицам, на которых изображены различные предметы. Соотношение знаков каждого последующего ряда по сравнению с предыдущим соответствует

разнице остроте зрения на 0,1. Величина знака каждого ряда соответствует расстоянию, с которого весь знак виден под углом зрения в 5′, а отдельные его элементы (штрих и разрыв) в 1′. Острота зрения, встречающаяся у большинства людей и характеризующаяся способностью видеть детали предмета под углом зрения в 1′, рассматривается как нормальная. Она равна 1,0. При остроте зрения, равной 1,0, исследуемый определяет знаки десятой строки таблицы на расстоянии 5 м. Если исследуемый определяет на этом расстоянии знаки пятой строки — острота зрения его равна 0,5, первой строки — 0,1. Острота зрения определяется как величина, обратная минимально эффективному углу зрения в единицах дуговых минут. Эти единицы используются для того, чтобы большие числовые величины отражали высокую степень зрения, а не наоборот.

Существует упрощенный способ оценки остроты зрения. Так, для проверки остроты зрения ниже 0,1 пользуются счетом пальцев. Если исследуемый может сосчитать раздвинутые пальцы руки на расстоянии 5 м, его острота зрения равна 0,09. Острота зрения, равная 0,04, приблизительно соответствует счету пальцев на расстоянии-2 м, острота зрения 0,01—счету пальцев на расстоянии 0,5 м, а острота зрения 0,005 — счету пальцев на расстоянии 30 см. Если исследуемый не различает пальцев, а определяет только свет, его острота зрения равна цветоощущению. При таком зрении важно установить, способен ли исследуемый определять, с какой стороны падает на глаз свет. Если он правильно указывает направление света, его острота зрения равна светоощущению с правильной проекцией света. Когда исследуемый не отличает света от темноты, его острота зрения равна нулю. Степень понижения остроты зрения — один из основных признаков, по которым дети направляются в дошкольные учреждения и школы для слабовидящих или слепых.

Острота зрения, определяемая различными способами и неодинаковыми тест-объектами, может оказаться неоднозначной. Измерения остроты зрения зависят от интенсивности освещенности, состояния адаптации, длительности раздражения и качества раздражителя, а также от состояния палочкового и колбочкового аппарата и состояния здоровья обследуемого. При высоких уровнях освещенности кольца Ландольта различаются лучше, чем решетка,

. Исследование с помощью параллельных полос выявило влияние других факторов на остроту зрения, например качества фона. Включение светлого фона для темных полос увеличивает остроту зрения. Однако повышение интенсивности светлых полос на темном фоне вначале повышает остроту зрения до определенного максимума, затем она резко снижается. Объяснение данного эффекта возможно с позиции учения И. П. Павлова об иррадиации нервного процесса в коре головного мозга.

При изучении отношений между остротой зрения и освещенностью различными участками цветового спектра при одинако-

вой величине зрачка не выявлено существенного отличия в функциональном уровне активности между палочковым и кол—бочковым системами при воздействии красного цвета (670 нм). При использовании синего цвета (длиной волны 450 нм) выявляется существенное различие между остротой зрения и освещенностью палочек и колбочек.

Разрешающая способность зрительного анализатора зависит от остроты зрения. В то же время разрешающая способность обеспечивает различение и опознавание светлых объектов на темном или светлом поле и темных объектов на светлом при различных перепадах яркости. Различают пространственную и временную разрешающую способность зрительного анализатора (Л. П. Григорьева).

Пространственная разрешающая способность. Острота зрения характеризует уровень пространственной разрешающей способности зрительного анализа, на которую оказывают влияние физические и анатомо-физиологические факторы. В условиях световой адаптации острота зрения растет при увеличении освещенности фона. Увеличение общей освещенности повышает остроту зрения к черным объектам. При адаптации к высоким освещенностям острота зрения максимальна в фовеа, а к низким — в экстрафовеа. Очень высокая освещенность фона вызывает падение остроты зрения в связи с ослеплением. При переходе от световой к темновой адаптации острота зрения колбочкового аппарата снижается. В ‘ темноте для ярких стимулов острота зрения низкая, а для раздражителей слабой яркости’— высокая.

Пространственная разрешающая способность зависит от интенсивности, углового размера и контраста стимулов. Острота зрения повышается при увеличении контраста у нормальнозрячих до 20%, а у слабовидящих — до 60—80%.

Острота зрения снижается при уменьшении длительности экспозиции и увеличении угловой скорости движения объектов. В литературе имеются указания на зависимость остроты зрения от длины волны стимулов. При монохроматической освещенности достигается более высокая острота зрения, чем при смешанном свете. Наиболее высокая острота зрения обнаружена в желтой части спектра (С. В. Кравков). Найдены значительные различия остроты зрения в зависимости от комбинаций в изображениях, уравненных по яркости красного, зеленого, синего, желтого, белого и черного цветов.

Разрешающая способность в пространстве связана со свойствами оптической системы глаза: особенностями строения и состоянием прозрачных сред, с рефракцией, аккомодацией, величиной зрачка, аберрацией, дифракцией. Эти свойства оптической системы определяют степень четкости изображения на сетчатке и таким путем влияют на остроту зрения.

Острота зрения зависит от освещенности фона, яркости и контраста тест-объекта, длительности его экспозиции, частоты предъявления, цветности, углового размера и скорости перемещения

объекта, структурно-функциональных особенностей сетчатой по пространственному градиенту.

Разрешающая способность органа зрения наиболее полно может быть охарактеризована с учетом фактора времени. Поэтому ниже излагаются данные, касающиеся временного различения световых сигналов.

Читайте также:  Определение семьи с точки зрения социологии

Временная разрешающая способность.Из данных Л. П. Григорьевой следует, что у слабовидящих школьников с аномалиями рефракции (гиперметропия, миопия без патологических изменений глазного дна и поля зрения) временная разрешающая способность центрального, парацентрального и периферического зрения, определяемая по критическому интервалу дискретности и критической частоте слияния мельканий, соответствует норме. Степень повышения временного различения при ритмической стимуляции (ДЛ) также соответствует норме. Высокая миопия, осложненная патологическими изменениями глазного дна и поля зрения, характеризуется нарушением временной разрешающей способности. При этом временная дискретность периферического зрения имеет нормальные показатели. В ходе ритмической стимуляции временная разрешающая способность центрального и парацентрального зрения увеличивается в меньшей степени, чем в норме.

В случаях осложненного гиперметропического астигматизма с изменениями глазного дна и поля зрения наблюдается нарушение временной разрешающей способности для центрального, парацентрального и периферического зрения. При ритмической стимуляции временное различие улучшается намного меньше, чем в норме.

При катаракте и афакии временная разрешающая способность парацентрального и периферического зрения соответствует норме.

Дистрофия области сетчатки характеризуется снижением временной разрешающей способности центрального зрения и несколько меньшим нарушением этой функции в парацентральной области. В отличие от нормы временное различение в центре поля зрения хуже, чем в парацентральной области.

При частичной атрофии зрительных нервов временная разрешающая способность зрения резко снижена.

Оптическая коррекция аномалий рефракции не способствует повышению временной разрешающей способности, тогда как увеличение яркости стимулов приводит к существенному снижению порогов временного различения при всех исследованных заболеваниях.

Обнаружено существенное снижение временной разрешающей способности центрального зрения при осложненных аномалиях рефракции, заболеваниях сетчатки и зрительного нерва. Формы нарушения и соотношение уровней функций ахроматического зрения связаны с локализацией и распространенностью патологического процесса, определяющего изменения нейрофизиологических механизмов (Л. П. Григорьева).

Бинокулярное зрение.У большинства животных каждый глаз

имеет свое отдельное поле зрения. Человек видит одновременно и правым и левым глазом, что значительно улучшает зрительную оценку расстояний и позволяет видеть объемную форму предметов.

При бинокулярном зрении оба глаза должны быть всегда точно установлены на один и тот же предмет. Необходимо, чтобы изображение каждой части видимого предмета занимало в обеих сетчатках совершенно одинаковое положение, иными словами, чтобы оно’ попадало на их идентичные, т. е. тождественные, точки (рис. 8). Клетки зрительной области коры больших полушарий, к которым приходят

импульсы от идентичных точек

Рис. 8. Схема объемного видения

обеих сетчаток, тесно связаны при бинокулярном зрении.

между собой. Их одновременное

возбуждение позволяет четко видеть предмет, но стоит несколько сместить его, как изображение раздваивается, становится неясным. Это происходит потому, что изображение попадает на неидентичные точки обеих сетчаток.

У новорожденного движения обоих глаз часто бывают недостаточно согласованы. Иногда движение одного глаза отстает от движения другого, и ребенок косит глазами; мало того, один глаз может остаться неподвижным. Наблюдая за ребенком, можно обнаружить, что его как бы безучастный взгляд по временам оживляется. Это происходит в тот момент, когда оба глаза согласованно фиксируют какой-то предмет и ребенок ясно его видит. Если предмет медленно передвигается, ребенок пытается следить за ним глазами, а при неудаче начинает вращать глаза во все стороны, проявляя беспокойство, которое проходит, как только взор снова упадет на предмет.

Развитие пространственного зрения. В первые месяцы жизни ребенка информация, получаемая одновременно с рецепторов различных анализаторов — зрительного, кожного, двигательного, слухового, становится источником образования в коре больших полушарий многочисленных условных связей, позволяющих ориентироваться в пространстве. Двигая руками, ребенок сначала случайно прикасается к висящей перед ним игрушке. В этот момент в кору больших полушарий поступает сигнализация с мышц руки о ее положении в пространстве, с мышц шеи — о положении головы, с мышц глазного яблока — о направлении зрительной оси, с рецепторов сетчатки — о видимой игрушке, с кожных рецепто-

ров — о прикосновении к предмету. После неоднократного получения такой информации в коре больших полушарий образуются соответствующие условные связи, в результате которых ребенок может произвести движение руки, необходимое для того, чтобы прикоснуться к игрушке. Другая игрушка может стать источником информации о положении руки, а потому измененным окажется и движение руки, необходимое для прикосновения к игрушке. С возрастом зрительная информация становится все более сложной и дифференцированной. Ребенок ощупывает предмет, вертит его в руке, сжимает. Начав ходить, ребенок идет к предмету, бросает его, снова находит. Так его знакомство с пространством постепенно расширяется. В результате образования множества новых связей ребенок получает возможность при помощи зрения познавать окружающий мир.

Одновременно развивается способность определять степень удаленности предмета и ощущать его объемность, или рельефность, т. е. неодинаковую удаленность его частей от глаза. О расстоянии до предмета информируют глазные мышцы. Когда человек смотрит двумя глазами на ближайший предмет, дальний двоится, а при переводе зрения на дальний двоится ближний предмет. Это происходит потому, что изображение нефиксируемой точки попадает не на идентичные точки сетчатки, как это показано на схеме (рис. 8). При фиксации ближней точки изображение дальней оказывается в правом глазу левее центральной ямки, а в левом — правее ее. В этом нетрудно убедиться, если прикрывать рукой то один, то другой глаз: исчезает точка на стороне закрытого глаза. При фиксации дальней точки получается обратная картина. .Двоение точек, находящихся ближе или дальше той, на которую направлен взор, не только не мешает видению, но в некоторой мере облегчает определение расстояния от точек до глаза, а главное — дает возможность различать рельеф предмета, видеть его объемно. Как известно, расстояние между зрачками глаз около 60 мм. Следовательно, при бинокулярном зрении, особенно когда предмет не плоский и находится недалеко, человек видит его с двух разных позиций, а следовательно, неодинаково. Если, например, держать перед собой закрытую книгу так, чтобы один глаз видел только корешок, то другой будет видеть помимо корешка сильно скошенную поверхность обложки (см. рис. 8). При таком частичном несоответствии полей зрения должно было бы легко возникать двоение из-за непопадания на идентичные точки сетчатки тех лучей, которые исходят от более близких или более далеких, участков видимого предмета. Однако вместо резкого двоения, изображенного на рисунке 8,- двоение менее выражено, так как лучи попадают на точки сетчатки, мало удаленные от идентичных точек. Подобное двоение воспринимается как небольшое изменение

Развитие пространственного зрения у детей позволяет им ви-. деть форму предметов объемно и легко отличать на расстоянии круг от шара, квадрат от куба, треугольник от пирамиды или конуса, оценивать сложные предметные ситуации.

Цветовое зрение. Все многообразие цветовых оттенков может быть получено смещением трех цветов спектра — красного, зеленого и фиолетового (или синего). Если быстро вращать диск, составленный из этих цветов, он будет казаться белым. Доказано, что цветоощущающий аппарат состоит из трех видов колбочек: одни преимущественно чувствительны к красным лучам, другие— к зеленым, третьи — к синим. От соотношения силы возбуждения каждого вида колбочек и зависит цветовое зрение. Наблюдения за электрическими реакциями коры больших полушарий позволили установить, что мозг новорожденного реагирует не только на свет, но и на цвет. Способность различать цвета была обнаружена у грудного ребенка методом условных рефлексов. Различение цветов становится все более совершенным по мере образования новых условных связей, приобретаемых в процессе игры.

В конце XVIII в. известный английский естествоиспытатель Джон Дальтон подробно описал расстройство цветового зрения, которым он сам страдал. Он не отличал красный цвет от зеленого, а темно-красный казался ему серым или черным. Такое нарушение, получившее название дальтонизма, встречается чаще у мужчин и очень редко у женщин. Оно передается по наследству через поколение по женской линии, иными словами, от деда к внуку через мать. Бывают и другие расстройства цветового зрения, но они встречаются очень редко. Страдающие дальтонизмом могут долгие годы не замечать своего дефекта. Иногда человек впервые узнает об этом после обследования у глазного врача. Способов лечения врожденного нарушения цветоощущения нет, но у людей, страдающих дальтонизмом, постепенно развивается способность различать цвета по степени их яркости. Например, ребенок, страдающий дальтонизмом, может запомнить при предъявлении, что один шарик красный, а другой, побольше— зеленый. Но если дать ему два одинаковых шарика, отличающихся только по цвету (красный и зеленый), то он не сумеет их различить. Такой ребенок путает цвета при сборе ягод, на занятиях по рисованию, при подборе цветных кубиков по цветным картинкам. Видя это, окружающие, в том числе и воспитатели, нередко обвиняют ребенка в невнимании или обдуманной шалости, делают, ему замечания, наказывают, снижают оценку за выполненную работу. Незаслуженное наказание может отразиться на нервной системе ребенка, повлиять на его дальнейшее развитие и поведение. Поэтому в тех случаях, когда ребенок путает или долго не может усвоить те или иные цвета, его следует показать врачу-специалисту, чтобы выяснить, не результат ли это врожденного дефекта зрения.

Не нашли то, что искали? Воспользуйтесь поиском:

Разрешающие способности зрения

Обзор основных функций зрения. Понятие зрительной адаптации — приспособления к функционированию в сильно меняющихся условиях освещения, которое обеспечивает сохранение высокой контрастной чувствительности глаза. Цветовоспринимающие элементы и аккомодация.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 21.04.2011
Размер файла 19,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Функция зрения

2. Зрительная адаптация

3. Цветовоспринимающие элементы

4. Разрешающая способность зрения

Функция зрения осуществляется благодаря сложной системе различных взаимосвязанных структур — зрительного анализатора, состоящего из периферического отдела (сетчатка, зрительный нерв, зрительный тракт) и центрального отдела, объединяющего подкорковые и стволовые центры (латеральное коленчатое тело, подушка таламуса, верхние холмики крыши среднего мозга), а также зрительную область коры полушарий большого мозга.

Человеческий глаз воспринимает световые волны лишь определенной длины — приблизительно от 380 до 770 нм. Световые лучи от рассматриваемых предметов проходят через оптическую систему глаза (роговицу, хрусталик и стекловидное тело) и попадают на сетчатку. В сетчатке сосредоточены светочувствительные клетки — фоторецепторы (колбочки и палочки).

Свет, попадая на фоторецепторы, вызывает перестройку содержащихся в них зрительных пигментов (в частности, наиболее изученного из них родопсина), а это, в свою очередь, — возникновение нервных импульсов, которые передаются в следующие нейроны сетчатки и далее в зрительный нерв. По зрительным нервам, затем по зрительным трактам нервные импульсы поступают в латеральные коленчатые тела — подкорковый центр зрения, а оттуда в корковый центр зрения, расположенный в затылочных долях головного мозга, где происходит формирование зрительного образа.

Острота зрения — способность глаза различать детали изображения — зависит от оптических свойств глаза и от плотности фоторецепторов и нервных клеток в сетчатке. Острота зрения измеряется наименьшим угловым расстоянием между точками, на котором эти точки все еще воспринимаются раздельно. Для человека с нормальным зрением это расстояние составляет 1/60 градуса или одну минуту.

Важное свойство зрения — адаптация физиологическая — приспособление к функционированию в сильно меняющихся условиях освещения, что обеспечивает сохранение высокой контрастной чувствительности глаза, т. е. его способности улавливать небольшие различия в яркости (у человека — на 1%) в широком диапазоне освещённостей. Известен ряд механизмов адаптации: изменение диаметра зрачка (диафрагмирование), ретиномоторный эффект (экранирование рецепторов зёрнами светонепроницаемого пигмента), распад и восстановление зрительного пигмента в палочках, перестройка в нервных структурах сетчатки. В сумерках функционирует лишь более чувствительная палочковая система (поэтому отсутствует цветовое З. и снижена острота З.), при дневном освещении — колбочковая и палочковая. У ночных животных в сетчатке преобладают палочки, у дневных — сетчатка либо смешанная, либо в ней преобладают колбочки.

Из опытов известно, что чувствительность глаза к яркости света изменяется по логарифмическому закону. Пределы чувствительности к яркости чрезвычайно широки, порядка 1010, однако глаз не в состоянии одновременно воспринять весь этот диапазон. Глаз реагирует на гораздо меньший диапазон значений относительно яркости, распределенный вокруг уровня адаптации к освещенности. Скорость адаптации к яркости неодинакова для различных частей сетчатки, но, тем не менее, очень высока. Экстремумы диапазона относительной яркости воспринимаются соответственно как черный и белый.

Читайте также:  Как повысить остроту зрения на час

Глаз приспосабливается к «средней» яркости обозреваемой сцены; поэтому область с постоянной яркостью (интенсивностью) на темном фоне кажется ярче или светлее, чем на светлом фоне. Это явление называется одновременным контрастом. То же самое происходит при наблюдении уличного фонаря днем и ночью: если смотреть на фонарь днем, то средняя освещенность сцены выше, чем ночью. Поэтому уровень контраста ниже, и кажется, что интенсивность (яркость) фонаря меньше. Похожее на одновременный контраст явление существует и для цветов.

3. Цветовоспринимающие элементы

Значение именно этой области спектра электромагнитных волн связано с тем, что внутри нее в узком интервале длин волн от 400-760 нм лежит участок видимого света, непосредственно воспринимаемого человеческим глазом. Он ограничен с одной стороны рентгеновскими лучами, а с другой — микроволновым диапазоном радиоизлучения. С точки зрения физики происходящих процессов выделение столь узкого спектра электромагнитных волн (видимого света) не имеет особого смысла, поэтому в понятие «оптический диапазон» включает обычно ещё и инфракрасное и ультрафиолетовое излучение.

Глаз человека различает большое количество цветовых оттенков благодаря наличию в сетчатке глаза трех видов колбочек, каждый из которых возбуждается преимущественно одним из основных цветов — красным, зеленым или синим. Ощущение цвета зависит от сочетания возбуждения этих рецепторов.

В XIX в. немецкий физик Фердинанд фон Гельмгольц и английский ученый Томас Янг высказали предположение, что способность человеческого глаза различать спектр цветов можно объяснить в том случае, если удастся доказать наличие в глазу рецепторов (колбочек) с пигментами, чувствительными к различной длине световых волн. Теория цветового зрения Гельмгольца — Янга утверждала, что в сетчатке имеется три вида цветовоспринимающих элементов — для красного, зеленого и фиолетового цветов, — а восприятие других цветов зависит от комбинированной стимуляции этих элементов. Первые опыты по цветовому зрению были выполнены Г. в 1937 г. с использованием ЭРГ для подтверждения степени спектральной дифференциации.

4. Разрешающая способность зрения

Разрешающая способность зрения, т.е. способность глаза воспринимать раздельно две точки при минимальном расстоянии между ними, называется остротой зрения. Мерой остроты З. служит угол, образованный лучами, идущими от этих точек. Чем он меньше, тем выше острота зрения. За единицу (1,0) принимают такую остроту зрения, при которой наименьший угол различения равен 1 мин.

Важным условием нормального З. является взаимодействие двух глаз. Оно позволяет получать объемное изображение предметов и определять их относительное расстояние от наблюдателя. Бинокулярное З. осуществляется благодаря одновременному направлению зрительной линии (воображаемый линии, соединяющей точку фиксации рассматриваемого объекта с центральной ямкой сетчатки) обоих глаз на рассматриваемый объект; при этом происходит слияние двух изображений объекта в единый образ. Этот процесс носит название фузии. Идеальное функционирование мышц глаз, обеспечивающих отклонение глазных яблок, необходимое для бинокулярного З. (ортофория), наблюдается крайне редко. Обычно у здоровых людей в результате нарушения равновесия мышц глаза (например, при переутомлении) глазные яблоки отклоняются от правильного положения, однако благодаря фузионной способности зрительного анализатора бинокулярное З. сохраняется Все точки пространства, которые находятся на том же удалении от глаз, что и фиксируемый объект (эта область носит название гороптер), ложатся на корреспондирующие точки, находящиеся на одном расстоянии и с одной стороны от центральной ямки сетчаток обоих глаз. Объекты, расположенные ближе или дальше рассматриваемого объекта, попадают на корреспондирующие точки сетчаток. Это явление лежит в основе стереоскопического зрения, при котором одни предметы воспринимаются как более близкие, другие как далекие. Для нормального бинокулярного З. необходимо, чтоб движения глазных яблок были хорошо согласованы и зрительные линии всегда были направлены в одну точку. Это обеспечивается двумя видами движений глазных яблок — ассоциированными, при которых оба глазных яблока поворачиваются на одинаковый угол, и дивергентными, когда глазные яблоки совершают встречные движения в горизонтальной плоскости. Последние необходимы для того, чтобы наблюдать за предметами, находящимися на разном удалении. При переводе взора с дальнего предмета на ближний глазные яблоки поворачиваются навстречу друг другу, и их зрительные линии одновременно направляются на рассматриваемый предмет (конвергенция), при переводе взора с ближнего предмета на дальний глазные яблоки расходятся в стороны (дивергенция).

Аккомодация — способность глаза фокусировать на сетчатке световые лучи, отраженные от рассматриваемых предметов, расположенных на различном расстоянии от глаза, т.е. видеть хорошо и вдаль, и вблизи. Точку зрительной оси на минимальном расстоянии, с которого глаз еще может отчетливо различать какой-либо предмет при максимальном напряжении аккомодации, принято называть ближайшей точкой ясного зрения. Следовательно, аккомодация — это способность глаза четко различать предметы, располагающиеся между дальнейшей и ближайшей точками ясного зрения.

Механизм аккомодации до настоящего времени является объектом научных исследований и многочисленных гипотез. Характер приспособления глаза к видению на различных расстояниях изменялся в процессе эволюционного развития животного мира. В природе существует по крайней мере три типа аккомодации глаз:

путем передвижения хрусталика вдоль оси глаза (рыбы, земноводные);

путем активного изменения формы хрусталика (птицы);

путем пассивного изменения его формы (человек).

Аккомодация, определяемая для одного глаза, называется абсолютной. Если зрение осуществляется двумя глазами, бинокулярно, то процесс аккомодации обязательно сопровождается конвергенцией — сведением зрительных осей глаз на фиксируемом предмете. Такая аккомодация характеризуется как относительная. Аккомодация и конвергенция у человека, имеющего эмметропию, обычно совершаются параллельно и согласованно. С возрастом аккомодационная способность глаза ослабевает.

При бинокулярном З. можно выделить так называемый ведущий, или превалирующий, глаз. Феномен ведущего глаза — проявление функциональной асимметрии, присущей в той или иной мере всем парным анализаторам, Зрительная линия ведущего глаза первой направляется на объект фиксации, в нем раньше включается механизм аккомодации, при разделении полей зрения он обеспечивает более отчетливое видение предмета.

Постепенное уменьшение аккомодационных возможностей глаза может быть обусловлено изменением физико-химического состава хрусталика, обеднением его водой, уплотнением в связи с формированием ядра, потерей эластичности. Вследствие этого ближайшая точка ясного зрения постепенно отдаляется от глаза. После 40 лет эта точка уже на довольно большом расстоянии. Возникает пресбиопия т.е. старческая дальнозоркость.

Механизмы аккомодации: в момент переводя взора с дальних предметов на ближние происходит сокращение цилиарной мышцы, вследствие чего уменьшается ее диаметр, расслабляются цинновыe связки, и хрусталик становится более выпуклым, что увеличиваются его преломляющие способности.

Рефракцию глаза в состоянии работы аккомодационного аппарата называют динамической клинической рефракцией.

При разности отстояния от глаза дальнейшей точки ясного зрения и ближайшей точки ясного зрения можно определить в линейных мерах область, или длину аккомодации для каждого глаза. Объем аккомодации (ширина, сила) характеризуется разницей в преломляющей силе оптической системы глаза, которая возникает при переводе взгляда от ДТЯЗ к БТЯЗ. Положение ближайшей точки ясного зрения соответствует максимальному напряжению аккомодации. Определить расстояние этой точки от глаза можно, если до того момента, когда станет заметной его нечеткость.

Объем аккомодации в диоптриях определяется по формуле А= t/P — t/p = P-R, где р и r — величины рефракции в дптр, соответствующие ближайшей и дальнейшей точкам ясного зрения. Объем аккомодации равен той прибавке к рефракции глаза, которая получается в результате максимального напряжения аккомодационного аппарата глаза, то есть разности между максимальной динамической (Р) и статической R рефракции.

Аккомодация и конвергенция у человека, имеющего эмметропию, обычно совершаются параллельно и согласованно.

Для того, чтобы человек мог свободно и долго работать на близком расстоянии, необходимо, чтобы, кроме затрачиваемого напряжения аккомодации (отрицательная часть относительной аккомодации), оставалась в запасе (положительная часть) не меньше чем половина затраченного. Если запас аккомодации мал, то во время работы быстро возникает зрительное утомление. С возрастом аккомодационная способность глаза ослабевает.

Так, в 20-30 лет ближайшая точка зрения находится на расстоянии примерно 10 см. D= 1/F = 100 cm /10 cm = 10 дптр.

Таким образом, рассматривая предметы с 10 см мы усиливаем свою рефракцию на 10 см. Обычно человек читает с расстояния в 25 см: D = 1/F = 100 см/ 25 см = 4 дптр.

зрение адаптация аккомодация глаз

1. Аветисов Э.С. Оптическая коррекция, М., 1987г — 48с.

2. Большая советская энциклопедия, М., Издание 1980г — 643с.

3. Механизмы работы клеточных элементов сетчатки, под ред. М.М. Каримова, М., 2000г — 61с.

4. Хазен А. М. Первые принципы работы мозга, гарантирующие познаваемость природы. — М., 2001- 37с.

5. Ярбус А. Л. Роль движений глаз в процессе зрения, М., 1985г — 134с.

Аккомодация — (от лат. accomodatio — приспособление), в медицине термин, близкий адаптации, — приспособление глаза к ясному видению предметов, находящихся на различных расстояниях, что осуществляется изменением преломляющей силы его оптической системы, ведущим к фокусировке изображения на сетчатке.

Бинокулярное зрение — одновременное восприятие объектов двумя глазами

Дивергенция — (фр. Divergence) (науч.) — Расхождение в признаках

Диоптрия, ж. (греч. dioptreia — наблюдение, измерение). Единица измерения преломляющей силы оптических стекол.

1. Сходство, совпадение каких-н. признаков, свойств независимых друг от друга явлений. 2. Совпадение каких-н. свойств у различных организмов не в результате родства, а в силу каких-н. других причин (биол.). 3. Схождение зрительных осей глаз на каком-н. рассматриваемом близком предмете (опт.).

Пресбиопия — (от греч. prйsbys — старый и ops, род. падеж opуs — глаз), возрастное ослабление аккомодации глаза. Происходит в результате склерозирования хрусталика, который при максимальном напряжении аккомодации не в состоянии предельно увеличить свою кривизну, вследствие

Рефракция — света в атмосфере (позднелат. refractio — преломление, от лат. refractus — преломленный (refringo — ломаю, преломляю)], атмосферно-оптическое явление, вызываемое преломлением световых лучей в атмосфере и проявляющееся в кажущемся смещении удалённых объектов, а иногда и в кажущемся изменении их формы.

Фоторецепторы — (от фото. и рецепторы), световоспринимающие. светочувствительные образования, способные в ответ на поглощение квантов света молекулами содержащихся в них пигментов генерировать физиологический (нервный, рецепторный) сигнал.

Размещено на Allbest.ru

Подобные документы

Строение и функции оптического аппарата глаза. Аккомодация, рефракция, её аномалии. Структура и функции сетчатки. Нервные пути и связи в зрительной системе. Врождённая и приобретенная патология органов зрения. Обучение и воспитание слабовидящих детей.

контрольная работа [886,0 K], добавлен 20.11.2011

Строение глаза, методики сохранения зрения. Влияние работы на компьютере на глаза. Специальные процедуры для улучшения зрения. Комплекс упражнений из йоги. Показания к применению ЛФК при миопии. Физкультура при слабой и высокой степени близорукости.

реферат [69,9 K], добавлен 08.03.2011

Основные принципы физической оптики. Возрастные аспекты зрительной сенсорной системы. Оценка остроты зрения. Теория оппонентных цветов. Аномалии трихроматического зрения. Функциональная классификация нейронов зрительной системы. Полная цветовая слепота.

лекция [8,5 M], добавлен 12.01.2014

Снижение зрения, затуманивание, периодическое покалывание в глазу. Определение остроты зрения. Разность утреннего и вечернего давления. Обширная глаукомная экскавация. Сдвиг сосудистого пучка. Сужение полей зрения. Начальное помутнение хрусталика.

история болезни [21,7 K], добавлен 06.07.2011

Структура зрительной сенсорной системы: сетчатка; зрительные нервы, тракты; перекрест; лучистость; верхнее двухолмие, латеральные коленчатые тела, таламус; зрительная зона коры. Орган зрения. Теории цветового зрения. Коррекция аномалий рефракции глаза.

реферат [368,6 K], добавлен 18.06.2014

Оптическая система глаза, статическая и динамическая рефракция. Виды и особенности астигматизма. Механизм аккомодации глаза. Упражнения при слабости аккомодации. Клиника ложной миопии, коррекция аметропии. Методы диагностики и лечения гиперметропии.

презентация [6,8 M], добавлен 27.12.2015

Физиология и строение глаза. Структура сетчатки глаза. Схема фоторецепции при поглощении глазами света. Зрительные функции(филогенез). Световая чувствительность глаза. Дневное, сумеречное и ночное зрение. Виды адаптации, динамика остроты зрения.

презентация [22,4 M], добавлен 25.05.2015

Принцип строения зрительного анализатора. Центры головного мозга, анализирующие восприятие. Молекулярные механизмы зрения. Са и зрительный каскад. Некоторые нарушения зрения. Близорукость. Дальнозоркость. Астигматизм. Косоглазие. Дальтонизм.

реферат [18,6 K], добавлен 17.05.2004

Строение органа зрения. Вспомогательные органы, сосуды и нервы глаза. Показатели остроты зрения, ее определение с использованием таблицы Головина-Сивцева. Исследование состояния зрительного анализатора школьников. Факторы, влияющие на ухудшение зрения.

курсовая работа [411,4 K], добавлен 25.01.2013

Ознакомление с историей открытия и свойствами лазеров; примеры использования в медицине. Рассмотрение строения глаза и его функций. Заболевания органов зрения и методы их диагностики. Изучение современных методов коррекции зрения с помощью лазеров.

курсовая работа [4,3 M], добавлен 18.07.2014

Источники:
  • http://zreni.ru/articles/aboutvision/1653-razreshayuschaya-sposobnost-glaza.html
  • http://lektsii.org/12-35873.html
  • http://www.ngpedia.ru/id470158p1.html
  • http://znatock.org/s2474t1.html
  • http://studopedia.ru/13_139283_razreshayushchaya-sposobnost-zreniya.html
  • http://allbest.ru/otherreferats/medicine/00126954_0.html