Меню Рубрики

Различие между диэлектриками и полупроводниками с точки зрения

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Напоследок рекомендуем просмотреть полезное видео по теме:

каково отличие металлов, полупроводников и диэлектриков с точки зрения зонной теории?

Различают 3 диапазона значений энергии:
— валентная зона,
— зона проводимости,
— запрещённая зона.

Электроны в валентой зоне связывают атомы в молекулы или в решётку и являются как бы связанными — не могут двигаться по кристаллу.

Электроны с бОльшей энергией не связаны с атомом и могут перемещаться под действием электрического поля.

Запрещённая зона — диапазон энегрии которую электрон не может иметь, этот диапазон между зоной проводимости и валентной зоной.

У металлов нет запрещённой зоны, все электроны могут двигаться свободно, поэтому металлы — проводники.

У полупроводников при низкой температуре нет свободных носителей заряда, все электроны связаны, они в валентой зоне. Но если полупроводник нагреть, то часть электронов из валентной зоны перейдёт в зону проводимости. То есть электрону добавляется энергия больше ширины запрещённой зоны которая в пределе составляет 4 эВ.

Чем отличаются диэлектрики от проводников?

Все вещества состоят из молекул, молекулы из атомов, атомы из положительно заряженных ядер вокруг которых располагаются отрицательные электроны. При определенных условиях электроны способны покидать свое ядро и передвигаться к соседним. Сам атом при этом становится положительно заряженным, а соседний получает отрицательный заряд. Передвижение отрицательных и положительных зарядов под действием электрического поля получило название электрического тока.

В зависимости от свойства материалов проводить электрический ток их делят на:

Свойства проводников

Проводники отличаются хорошей электропроводностью. Это связано с наличием у них большого количества свободных электронов не принадлежащих конкретно ни одному из атомов, которые под действием электрического поля могут свободно перемещаться.

Большинство проводников имеют малое удельное сопротивление и проводят электрический ток с очень небольшими потерями. В связи с тем, что идеально чистых по химическому составу элементов в природе не существует, любой материал в своем составе содержит примеси. Примеси в проводниках занимают места в кристаллической решетке и, как правило, препятствуют прохождению свободных электронов под действием приложенного напряжения.

Примеси ухудшают свойства проводника. Чем больше примесей, тем сильнее они влияю на параметры проводимости.

Хорошими проводниками с малым удельным сопротивлением являются такие материалы:

Золото и серебро – хорошие проводники, но из-за высокой стоимости применяются там, где необходимо получить хорошие качественные проводники с малым объемом. Это в основном электронные схемы, микросхемы, проводники высокочастотных устройств у которых сам проводник изготовлен из дешевого материала (медь), который сверху покрыт тонким слоем серебра или золота. Это дает возможности при минимальном расходе драгоценного металла хорошие частотные характеристики проводника.

Медь и алюминий — более дешевые металлы. При незначительном снижении характеристик этих материалов, их цена на порядки ниже, что дает возможность для их массового применения. Применяют в электронике, в электротехнике. В электронике – это дорожки печатных плат, ножки радиоэлементов, радиаторы и др. В электротехнике очень широко применяется в обмотках двигателей, для прокладки электрических сетей высокого и низкого напряжения, разводку электричества в квартирах, домах, в транспорте.

Свойства диэлектриков

Диэлектрики в своей кристаллической решетке содержат очень мало свободных электронов, способных переносить заряде под действием электрического поля. В связи с этим при создании разности потенциалов на диэлектрике, ток, проходящий через него такой незначительный, что считается равным нулю — диэлектрик не проводит электрический ток. Наряду с этим, примеси, содержащиеся в любом диэлектрике, как правило, ухудшают его диэлектрические свойства. Ток, проходящий через диэлектрик под действием приложенного напряжения в основном определяется количеством примесей.

Наибольшее распространение диэлектрики получили в электротехнике там, где необходимо защитить обслуживающий персонал от вредного воздействия электрического тока. Это изолирующие ручки разных приборов, устройств измерительной техники. В электронике – прокладки конденсаторов, изоляция проводов, диэлектрические прокладки необходимые для теплоотвода активных элементов, корпуса приборов.

Полупроводники – материалы, которые проводят электричество при определенных условиях, в другом случае ведут себя как диэлектрики.

Особенности зонной структуры диэлектриков, полупроводников и металлов

В отношении зонной теории различие электрических свойств проводников, диэлектриков и полупроводников определено двумя причинами:

  1. Характером расположения энергетических зон, вернее шириной запрещенной зоны.
  2. Разницей в заполнении электронами разрешенных энергетических зон.

Необходимым условием того, что твердое тело может проводить электрический ток является то, что у вещества существуют свободные энергетические уровни, на которые поле может перевести электроны. Под воздействием обычных источников тока электроны могут совершать переходы только внутри зоны.

Зонная структура диэлектриков

Валентная зона, которая объединяет внешние электроны атомов или ионов заполнена полностью, высокие зоны не имеют электронов (рис.1), перекрытия зон нет. Подобное вещество является диэлектриком, который ток не проводит.

Например, кристаллическая поваренная соль (NaCl). Ее молекулы имеют ионную химическую связь. В молекуле соли внешний электрон атома натрия переходит на внешнюю оболочку атома хлора. Возникают ионы: $^+\ и\ ^-$. Внешние оболочки полностью заполнены электронами. При образовании соли появляется валентная зона иона хлора. Она полностью заполнена электронами. Выше нее на 6эВ находится зона энергетических состояний иона натрия, которая не имеет электронов (рис.2). Электрическое поле источника не может перевести электроны из полностью заполненной зоны иона хлора в свободную зону проводимости иона натрия. Так, кристалл поваренной соли является диэлектриком.

Читайте также:  Что такое дом с точки зрения литературы

Попробуй обратиться за помощью к преподавателям

Зонная структура полупроводников

В том случае, если полностью занятая электронами зона разделена с ближайшей разрешенной зоной узкой запрещенной зоной, то такое вещество является диэлектриком только при температурах вблизи абсолютного нуля. При повышении температуры электроны, которые локализованы около верхней границы занятой зоны, могут перейти в верхнюю вакантную зону. Это требует затраты энергии, которая не меньше, чем ширина запрещенной зоны ($\triangle E_0$). (В данном случае между полупроводниками и диэлектриками разница только в ширине запрещенной зоны.) На рис. 3 изображено расположение энергетических зон полупроводника и диэлектрика. $\triangle E_0$ — энергия равная энергии активации собственной проводимости. Переход электронов в верхнюю зону ведет к возникновению собственной проводимости полупроводников. С ростом температуры у чистых полупроводников увеличивается количество электронов, которые перешли в свободную зону, соответственно, уменьшается сопротивление полупроводника.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Переход электронов в свободную зону образует в заполненной зоне вакантные места. В так образуются дырки. При воздействии поля или нагревании на места дырок могут переходить другие электроны.

Зонная структура металлов

Определим условия проводимости металлов. Целиком заполненные электронами зоны нас не интересуют, так как в них не могут совершаться внутризонные переходы под воздействием внешнего электрического поля. Валентные электроны атомов, объединяясь, образуют валентную зону, которая заполняется электронами наполовину. Эта зона — зона проводимости. При воздействии внешнего поля электроны, базирующиеся в зоне проводимости, получат энергию и перейдут на верхние свободные энергоуровни и будут упорядоченно двигаться. Значит, если валентная зона занята не целиком, то мы имеем дело с проводником. Так заполняются валентные зоны в металлах первой группы системы Менделеева (Li, Na, K, Rb, Cs) (рис.4).

Вещество может являться проводником, если зона проводимости перекрывается с зоной, которая появляется за счет расщепления уровня валентных электронов. (Вторая группа периодической системы: Be, Cd, Mg, . ). Здесь возникает широкая «гибридная» зона. Эту зону электроны заполняют частично.

Задание: Опишите, процесс электропроводности в металлическом натрии.

Порядковый номер натрия (Na) в периодической системе Д.И. Менделеева Z=11. Следовательно, общее число электронов в атоме равно 11. Распределение электронов в атоме по энергетическим уровням должно происходить, удовлетворяя принцип минимума потенциальной энергии. То есть каждый следующий электрон занимает место с возможной наименьшей энергией. Заполнение энергетических уровней происходит по принципу Паули.

Так у натрия полностью заполнены: K- слой, содержащий 2 электрона, L- слой, имеющий 8 электронов, одиннадцатый электрон натрия расположен в M — слое, при этом занимает низшее состояние (3s). В соответствии с принципом Паули одиннадцатый электрон атома натрия наполовину заполняет верхний энергетический уровень атома. В кристалле натрия первым двум оболочкам соответствуют полностью заполненные зоны. В этих зонах переходы электронов невозможны под воздействием внешнего электрического поля. Валентные электроны натрия при образовании кристалла порождают валентную зону. Она заполняется на половину и, соответственно является зоной проводимости. Электроны данной зоны могут принимать участие в проводимости. У натрия мы имеем не полностью заполненную валентную зону — это проводник.

Задание: Объясните с точки зрения зонной теории, почему электропроводность металлов не растет при увеличении их валентности?

Электропроводность металла зависит не от количества валентных электронов на один атом, а числа электронов, для которых в валентной зоне существует достаточно свободных энергетических состояний. Так, например, для двухвалентных щелочноземельных металлов валентные электроны атомов находятся на энергоуровнях гибридной зоны так, что некоторое количество верхних уровней этой зоны свободно и может быть заполнено. Но количество электронов, которые могут перейти благодаря энергии внешнего источника в свободные состояния, меньше, чем у одновалентных металлов. Следовательно, электропроводность двухвалентных металлов меньше, чем одновалентных.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Металлы, проводники и диэлектрики в зонной теории

Читайте также:

  1. Актуальные аспекты синергийной теории и практики
  2. Альтернативные теории международной торговли
  3. Базовые теории и концепции международного менеджмента
  4. В психологической теории и практике.
  5. В теории и практике обучения
  6. В теории права выделяют также следующие основные типы правового
  7. Важным компонентом взаимодействия являются его материальные носители (проводники), без которых невозможно значимое (социальное) взаимодействие.
  8. ВВЕДЕНИЕ. Вопросы теории культуры.
  9. ВВЕДЕНИЕ. Вопросы теории культуры.
  10. Вопрос 2. Основы электронной теории дисперсии света. Формула дисперсии
  11. Вопрос. Западные теории денег.
  12. Деятельностный подход в теории личности

Более детальное представление о свойствах твердых тел и в частности об электропроводности металлов дает зонная тео­рия, — часть квантовой механики. Важное место в зонной те­ории принадлежит принципу запрета Паули, который не до­пускает возможности существования в пределах одного крис­талла более двух электронов с одинаковой энергией. Такие элек­троны находятся в одинаковых состояниях, и им соответствует одинаковый набор квантовых чисел кроме спинового. (Спино­вые квантовые числа имеют противоположные знаки.) Рассмот­рим качественное содержание теории. Главным выводом зон­ной теории является утверждение о том, что электроны в от­дельном атоме могут иметь лишь некоторые определенные значения энергии — разрешенные дискретные уровни энер­гии. Все остальные значения энергии оказываются запрещен­ными. А соответствующие им интервалы энергий — запрещен­ными зонами.

При рассмотрении отдельных изолированных атомов зап­рет Паули относится к электронам одного атома — в каждом из атомов могут быть только два электрона, находящихся в одинаковых состояниях. При объединении N атомов в крис­талл происходит их взаимодействие друг с другом и запрет Паули распространя­ется на все разрешенные значения энер­гии. В результате это­го каждый энергети­ческий уровень атома расщепляется на N новых, близко распо­ложенных энергети­ческих уровней 1,3и5,изображенных на рисунке.

При этом на каждом энергетическом уровне может находиться максимум два электрона с противоположными спинами, ми­нимум — ноль. Таким образом, в кристалле образуются поло­сы 1, 3 и 5 близко расположенных энергетических уровней. Они называются зонами разрешенных значений энергий. Со­седние уровни в зоне разделяет энергия по­рядка 10 22 эВ.

Разрешенные энер­гетические зоны разде­лены полосами 2 и 4 ,соответ­ствующими таким зна­чениям энергии, кото­рые электроны не мо­гут иметь.

Эти полосы ,названные зонами запрещенных значений энергии, изображены на рисунке

Ширина запрещенных зон соизмерима с шириной разрешенных зон энергии. С уве­личением энергии ширина разрешенных зон возрастает, а ширина запрещенных энергетических зон убывает и может стать даже равной нулю. Разрешенные энергетические зоны в твердом теле могут быть по-разному заполнены электронами. Возможны случаи, когда они полностью свобод­ны или заполнены. Возможны также переходы электронов внутри зоны и из одной зоны в другую. Для перехода электро­на из нижней зоны в соседнюю верхнюю необходимо сообщить электрону энергию, не меньшую, чем ширина запрещенной зоны. Для внутризонных переходов электрона достаточно, например, энергии электрического поля 10 -4 —10 -8 эВ. При подводе теплоты электронам может быть сообщена раз­личная энергия, достаточная для внутри- или меж­зонных переходов. Понятия про­водника, диэлектрика и полупровод­ника в зонной тео­рии объясняется различным запол­нением электрона­ми разрешенных зон и шириной запрещенных зон.

Верхнюю из полностью за­нятых электронами зон разрешенных значений энергии называют валентной . Следующую за ней разрешенную зону называют зоной проводимости. Она может быть полно­стью свободной от электронов (рис. а, в) или частично занятой ими (рис. б).

Случай, когда зона проводимости полностью свободна от электронов, отвечает представлению о полупроводниках и ди­электриках. Конкретный тип твердого тела определяется ши­риной запрещенной зоны W между валентной зоной и зоной проводимости.

Если ширина запрещенной зоны кристалла составляет не­сколько электрон-вольт, то энергии теплового движения ва­лентных электронов недостаточно для их перевода из валент­ной зоны в зону проводимости. Твердое тело является диэлек­триком.

Если же запрещенная зона узка и составляет W ≤ 1 эВ, то для перевода валентных электронов в зону проводимости дос­таточно их теплового возбуждения за счет внешнего источни­ка. Твердое тело является полупроводником.

Второй случай характерен для проводников электрическо­го тока и теплоты. Однако твердое тело — проводник и в дру­гом случае, когда валентная зона перекрывается зоной прово­димости (Be, Cd, Mg, Zn). Это приводит к частичному заполнению валентными электронами области перекрытия зон. По существу такая гибридная зона является зоной проводимости.

Итак, металлы отличаются от диэлектриков с точки зре­ния зонной теории тем, что уже при О К в зоне проводимости у металлов есть электроны, а у диэлектриков они отсутствуют. Диэлектрики же отличаются от полупроводников шириной запрещенных зон. Для диэлектриков она широка. Например, для NaCсоставляет W = 6 эВ. Для полупроводников — узка. Например, для германия W = 0,72 эВ. При 0 К полупроводники не содержат свободных электронов и ведут себя, как диэлектри­ки. Однако в отличие от диэлектриков у полупроводников с повышением температуры возникает проводимость, зависящая от ширины запрещенной зоны.

Проводникам соответствует удельное электрическое сопро­тивление порядка 10 -5 , диэлектрикам — 10 8 Ом-м. Большое число веществ, удельное сопротивление которых изменяется в интервале 10 -5 —10 8 Ом-м, называют полупроводниками.Важ­нейшими полупроводниками являются германий, кремний, теллур, селен и др.

1. Полупроводники. Собственная и примесная проводимость

Различают собственные и примесные полупроводники. Хи­мически чистые полупроводники называют собственными, а их электропроводность — собственной проводимостью. Собствен­ными полупроводниками являются Ge, Se, химические соеди­нения JnSb, GaAs, CdS и др. На внешней оболочке атомов гер­мания и кремния находятся четыре валентных электрона, ко­торые ковалентно связаны с валентными электронами соседних атомов (рис.a).

Читайте также:  Что пишут на правах если плохое зрение

Очевидно, что в химически чистых крис­таллах таких полупроводников отсутствуют свободные валент­ные электроны. При подводе к германию энергии в количестве не меньше, чем ширина W запрещенной зоны, происходят нарушение ковалентной связи в атомах кристалла и переход электронов из валентной зоны в зону проводимости (рис б и следующий рисунок).

Величину W называют энергией активации собственной проводимости. Проводимость собственных по­лупроводников, обусловленную электронами, на­зывают электрон­ной проводимосью или проводимостью п-типа (от лат. negative — отрицательный).

Нарушение ковалентной связи в атомах кристалла полу­проводника при переходе электрона из валентной зоны в зону проводимости означает, что в оставленном им месте воз­никает избыток положи­тельного заряда, получив­ший название дырки. По­ложительная дырка, явля­ясь положительным зарядом, по величине рав­на заряду электрона. С по­зиций зонной теории это означает, что в валентной зоне крис­талла появился вакантный энергетический уровень.

Во внешнем энергетическом поле на вакансию — освободившееся от электрона место, дырку — перемещается элект­рон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон и т.д. Движение электронов прово­димости и дырок в полупроводнике при отсутствии электри­ческого поля является хаотическим. При наличии внешнего электрического поля электроны проводимости движутся про­тив поля, а дырки по направлению поля. Электропроводность собственных полупроводников, обусловленная перемещением квазичастиц — дырок, называют дырочной проводимостью или проводимостью р-типа (от лат. positive — положительный).

Таким образом, в собственных полупроводниках имеет место двойной механизм проводимости — электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне. А следовательно, равны и концентрации электро­нов проводимости пе и дырок пр. Последние быстро возрастают с повышением температуры по закону

пе =п р с ехр(-W/(2kT)), м -3 ,

где с — постоянная, зависящая от температуры и динамической (эффективной) массы квазичастицы (электрона прово­димости и дырки), участвующей в электропроводности. Удельная электропроводность полупроводников также растет с повышением температуры γ = γоехр(- W/(2kT)), (Ом-м) -1 , а удельное сопротивление полупроводников резко уменьшается = о ехр(W/(2kT)), Омм, где γо и о — индивидуальные постоян­ные полупроводника. Подобной зависимостью у и р от темпе­ратуры полупроводники существенно отличаются от металлов. В полупроводниках наряду с процессом генерации электро­нов проводимости и дырок идет одновременно и обратный про­цесс рекомбинации. Потерявшие часть своей энергии электро­ны проводимости захватываются дырками. Скорость рекомби­нации и скорость образования, электронов проводимости и дырок одинаковы.

В германии при комнатной температуре одна пара носите­лей заряда приходится примерно на 10 9 атомов.

Полупроводники имеют высокое удельное сопротивление и
его резко выраженную зависимость от температуры. Это по­
зволило использовать полупроводники в термометрах, назы­ваемых термисторами. Они имеют малые размеры и чрезвы­чайно высокую чувствительность — термистор реагирует даже на изменение освещенности. Может быть использован для из­мерения температуры очень малых объектов. Создан (1997 г.)стабильный высокотемпературный термистор до 1000 °С для
измерения температуры продуктов сгорания. Это полупровод­никовая керамика, нелинейно меняющая электросопротивле­ние с температурой. Термистор может быть использован в си­ловых установках самолетов. . —

Идеально чистых полупроводников в природе нет. Нали­чие даже небольшой примеси в полупроводнике оказывает значительное влияние на его проводимость. Например, введе­ние в кремний примерно 0,001% бора увеличивает его элект­ропроводность в 1000 раз. Электропроводность полупроводни­ков, обусловленную примесями, называют примесной прово­димостью, а полупроводник — примесным. Примесями явля­ются атомы или ионы посторонних элементов, различные дефекты и искажения кристаллической решетки. Некоторые примеси обогащают полупроводник свободными электронами, обеспечивая ему в электрическом поле электронную проводи­мость. Примеси, являющиеся источником электронов, назы­вают донорами, а полупроводники — электронными или полу­проводниками п-типа. Таким образом, электронная примесная проводимость возникает в полупроводниках с примесью, валентность которой на единицу больше валентности основ­ных атомов. Например, при замещении в решетке германияодного четырехвалентного атома Ge пятивалентным атомом мышьяка один электрон атома примеси не может образовать ковалентную связь с атомами германия и ока­зывается лишним (см.рисунок).

При тепловых колебаниях решетки он способен оторваться от атома и стать свободным. Образование сво­бодного электрона не нарушает ковалентной связи атомов. Избыточ­ный положительный заряд, возни­кающий вблизи атома примеси, связан с атомом примеси и поэтому перемещаться по решетке не может.

Введение примеси искажает энергетическое поле кристалла и приводит к возникновению в запрещенной зоне энергетичес­кого уровня Д свободных электронов мышьяка (рис. ).

Такой уровень называют донорным или примесным уровнем. Этот уровень в рассматривае­мом случае располагает­ся от дна зоны проводимо­сти на расстоянии WД = = 0,015 эВ. Поскольку WД « W, то уже при обычных температурах энергия теплового движения достаточ­на для перевода свободных электронов с уровня доноров в зону проводимости.

Есть и другой тип примеси, который обогащает полупро­водник дырками и обеспечивает ему в электрическом поле дырочную проводимость. Например, при замещении в решет­ке германия одного четырехвалентного атома Ge трехвалент­ным атомом бора не хватает одного электрона для образования насыщенной ковалентной связи. Недостающий четвертый элек­трон может быть заимствован у соседнего атома основного веще­ства — германия, где соответственно образуется дырка .Последовательное заполнение образующихся дырок электронами эквивалентно движению дырок и приводит к электропро­водности в полупроводнике. Дырки при этом не остаются локали­зованными, а перемещаются в решетке германия как свободные положительные заряды. Отрицательный же заряд, возникаю­щий вблизи атома бора, связан с ним и по решетке переме­щаться не может. Введение трехвалентного бора в решетку германия приводит к возникновению в запрещенной зоне энер­гетического уровня, не занятого электронами (следующий рисунок).

Та­кой уровень называют ак­цепторным, и располагает­ся он выше верхнего края валентной зоны основно­го кристалла. Поскольку А«W, то уже при обычных температурах электроны из валентной зоны переходят на акцеп­торный уровень, вступают в связь с атомами бора и теряют способность к перемещениям по решетке германия. В проводимости полупроводника они не участвуют. Носителя­ми тока являются дырки, возникающие в валентной зоне.

Таким образом, дырочная проводимость возникает в про­водниках с примесью, валентность которой на единицу мень­ше валентности основных атомов. Носители электрического или теплового тока — дырки.

Примесные полупроводники с такой проводимостью назы­ваются дырочными или полупроводниками р-типа. Примеси, захватывающие электроны из валентной зоны полупроводни­ка, называют акцепторами, а энергетические уровни приме­сей — акцепторными.уровнями.

Итак, собственная проводимость полупроводников осуществ­ляется одновременно электронами и дырками, а примесная обус­ловлена в основном носителями одного знака: Электронами — в случае донорной примеси, и дырками — в случае акцепторной.

Электронно-дырочный переход.Кристаллические диоды

В области соприкосновения двух примесных полупровод­ников, один из которых обладает п-проводимостью, а другой р-проводимостью, имеет место явление, называемое электронно-дырочным переходом или р-п-переходом. На этом явлении основана работа полупроводниковых приборов.

Каждый из полупроводников имеет определенную концен­трацию свободных электронов и дырок. Для упрощения рас­суждений будем считать концентрацию электронов и дырок одинаковой. В донорном полупроводнике с п-проводимостью — более высокая концентрация свободных электронов с работой выхода Ап и уровнем Ферми WFn, В акцепторном полупровод­нике с р-проводимостью — более высокая концентрация ды­рок с работой выхода Ар и уровнем Ферми W. Уровнем Фер­ми называют максимальную энергию электронов (дырок) при температуре Т = О К. При контакте полупроводников возникает диффузия свободных электронов из полупроводника с п-про­водимостью в полупроводник с р-проводимостью (п→р-пере-ход) и противоположная по направлению диффузия дырок (р→п-переход). Это приводит к образованию у границы в области отрезка аb (cм.рисунок) полупроводника с проводимостью п-типа и полупроводника с проводимостью

р-типа избыточных за­рядов противоположных знаков. Таким образом, в зоне кон­такта образуется двойной электрический слой. Этот слой со­здает контактное электрическое поле с напряженностью Ек и разностью потенциалов на границах слоя. Поле препятствует дальнейшему встречному движению электронов и дырок. При определенной ширине (

10 -7 м) р-п-перехода наступает состо­яние равновесия, характеризуемое выравниванием уровня Ферми для обоих полупроводников. При этом на участке ис­кривляются энергетические зоны, в результате чего возникает потенциальный барьер как для электронов, так и для дырок. Высота потенциального барьера еопределяется первоначаль­ной разностью уровней Ферми (предыдущий рисунок). Итак, состоянию равновесия соответствует сформировавшийся запирающий слой. Последний обладает повышенным сопротивлением по сравнению с сопротивлением остальных объемов полупроводников. Потенциальный барьер такого слоя способны преодолеть элек­троны и дырки с кинетической энергией, соответствующей температурам в несколько тысяч Кельвинов. Следовательно, при обычных температурах пограничный двойной электричес­кий слой является непроницаемым для перехода электронов в направлении п→р и дырок в направлении р→ п. Поэтому, по­граничный слой и называется запирающим.

Однако сопротивление запирающего слоя можно регули­ровать с помощью внешнего электрического поля. Если на­пряженность внешнего элек­трического поля совпадает по направлению с напряженно­стью контактного электричес­кого поля Ек (как на рисунке), то происходит увеличение вели­чины запирающего слоя

и, следовательно, его сопротив­ления. Такое направление внешнего поля называют за­пирающим. В этом направле­ний ток через p-n-переход не проходит. С изменением поляр­ности внешнего поля ( как на следующем рисунке) его напряженность Е проти­воположно направлена полю контактного слоя.

Встречное дви­жение электронов и дырок под действием внешнего поля происходит во всем объеме полупроводников и увеличивает число подвижных носителей на контакте. Толщина и сопротивление контактного слоя уменьшаются, и электри­ческий ток проходит че­рез p-n-переход. Таким образом, p-n-переход рабо­тает как выпрямитель, пропуская ток только из р-области в п-область.

Читайте также:  Комплекс упражнений для зрения при работе за компьютером

Описанное вентильное действие р-п-перехода ана­логично выпрямляющему действию двухэлектродной лампы — диода. Полупроводниковый (кристаллический) диод содержит один p-n-переход, кристаллический триод, называемый тран­зистором, два р-п-перехода. Транзистор представляет собой р-п-р— или п-р-п-структуру, или соединение противоположно включенных диодов. Транзисторы р-п-р-типа применяются чаще, так как они проще в изготовлении. Диод служит для выпрямления тока. Кристаллический диод обладает рядом пре­имуществ в сравнении с электронной лампой: малые габариты, высокий КПД и срок службы, отсутствие инерционности и др. Недостатки — чувствительность к температуре. Рабочий ин­тервал температур 70-120 °С. Транзистор может работать как усилитель мощности и генератор электрических колебаний. Для изготовления транзисторов используются германий и крем­ний. Их достоинство — высокая механическая прочность, хи­мическая устойчивость и значительная подвижность носите­лей тока.

| следующая лекция ==>
Современные промышленные взрывчатые вещества | Политика

Дата добавления: 2014-01-07 ; Просмотров: 2177 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Объясните различие между металлами, полупроводниками и диэлектриками с точки зрения зонной теории.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон. Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольна широка (например, для NaCl ∆Е=6 эВ), для полупроводников – достаточно узка (например, для германия ∆Е=0,72 эВ). При температурах, близких к 0 К, полупроводники ведут себя как диэлектрики, так как переброса электронов зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличивается.

10. Что такое собственная проводимость полупроводника?

Электропроводимость химически чистого полупроводника наз. Собственной проводимостью.

11. Какие примеси называются акцепторными?

Примеси, захватывающие электроны из валентной зоны.

12. Как перестраиваются энергетические зоны при внесении акцепторной примеси?

Предположим, что в решетку кремния введен примесный атом с тремя валентными электронами, например, бор. По зонной теории, введение трехвалентной примеси в решетку кремния приводит к возникновению в запрещенной зоне примесного энергетического уровня А, не занятого электронами. В случае кремния с примесью бора этот уровень располагается выше верхнего края валентной зоны на расстоянии ∆ЕА=0,08 эВ. Близость этих уровней к валентной зоне приводит к тому, что уже при сравнительтно низких температурах электроны из валентной заны переходят на примесные уровни и, связываясь с атомами бора, теряют способность перемещаться по решетке кремния, т.е. в проводимости не участвуют. Носителями тока являются лишь дырки, возникающие в валентной зоне.

13. Какие примеси называются донорными?

Примеси, являющиеся источниками электронов.

14. Как перестраиваются энергетические зоны при внесении донорной примеси?

В полупроводник вводят атомы с валентностью, отличной от валентности основных атомов на единицу. Например, замещение атома германия пятивалентным атомом мышьяка. Сточки зрения зонной теории этот процесс можно представить след. образом. Введение примеси искажает поле решетки, что приводит к возникновению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем. В случае германия с примесью мышьяка этот уровень располагается от дна зоны проводимости на расстоянии ∆ЕD=0,013 эВ. Так как ∆ЕD

Разница между диэлектриками и проводниками

Для того чтобы исследовать явления, которые происходят при введении различных веществ в электрическое поле, рассмотрим свойства этих веществ.

Определение

Проводник — тело, в объёме которого находится большое количество свободных зарядов, которые перемещаются по всему объёму этого тела. Различают проводники с электронной и ионной проводимостью. К первым относятся все металлы и сплавы. Ко вторым — электролиты, то есть водные растворы солей, щелочей, кислот и др.

Диэлектрик — тело, в объёме которого нет свободных зарядов. Диэлектрик состоит из нейтральных атомов или молекул. В нейтральном атоме все заряженные частицы тесно связаны друг с другом, в результате чего даже под воздействием электрического поля они не могут перемещаться по всему объёму тела. Поэтому диэлектрики практически не проводят электрический ток и имеют очень низкую электропроводность. К ним можно отнести стекло, смолы, лаки и т.д.

В проводниках в отличие от диэлектриков, высокая концентрация свободных электрических зарядов. В металлах таковыми являются свободные электроны, которые способны передвигаться по всему объёму вещества. Возникновение свободных электронов обусловлено тем, что валентные электроны в атомах металлов весьма плохо взаимодействуют с ядрами и легко теряют связь с ними.

У диэлектриков, напротив, электроны с атомами крепко связаны и не имеют возможности свободно перемещаться под воздействием электрического поля. И так как количество свободных заряженных носителей в диэлектриках ничтожно мало, из этого следует, что в них отсутствует электростатическая индукция, и напряжённость электрического поля внутри диэлектриков не превращается в ноль, а только уменьшается.

Напряжённость нельзя повышать безгранично, т. к. при определенной величине все заряды могут сместиться настолько, что произойдет изменение структуры материала, иными словами, произойдет пробой диэлектрика. В этом случае он потеряет свои изоляционные свойства.

2.Проводники,диэлектрики и полупроводники с точки зрения зонной теории.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также запол нена целиком. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зове проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов.

В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис. 314.

На рис. 314, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т. е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны, т. е. стать свободным и участвовать в проводимости. Внутривенный переход вполне возможен, так как, например, при 1 К энергия теплового движения kT  10 -4 эВ, т. е. гораздо больше разности энергий между соседними уровнями зоны (примерно 10 -22 эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной зоной, что в конечном счете приводит к не полностью заполненной зоне (рис. 314, б). Это имеет место для щелочно-земельных элементов, образующих II группу таблицы Менделеева (Be, Mg, Ca, Zn, . ). В данном случае образуется так называемая «гибридная» зона, которая заполняется валентными электронами лишь частично. Следовательно, в данном случае металлические свойства щелочно-земельных элементов обусловлены перекрытием валентной и свободной зон.

Помимо рассмотренного выше перекрытия зон возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов, которое может привести к тому, что вместо двух частично заполненных зон в кристалле окажутся одна полностью заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны E.

Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах (рис. 314, в). Если запрещенная зона достаточно узка (Е порядка 1 эВ), то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко либо путем теплового возбуждения, либо за счет внешнего источ ника, способного передать электронам энергию Е, и кристалл является полупроводником (рис. 314, г).

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например, для NaCl Е = 6 эВ), для полупроводников — достаточно узка (например, для германия E = 0,72 эВ). При температурах, близких к 0 К, полупроводники ведут себя как диэлектрики, так как переброса электронов в зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличивается.

Источники:
  • http://otvet.mail.ru/question/39406612
  • http://vchemraznica.ru/chem-otlichayutsya-dielektriki-ot-provodnikov/
  • http://spravochnick.ru/fizika/mehanizmy_elektroprovodnosti/osobennosti_zonnoy_struktury_dielektrikov_poluprovodnikov_i_metallov/
  • http://studopedia.su/8_23270_metalli-provodniki-i-dielektriki-v-zonnoy-teorii.html
  • http://mylektsii.ru/12-22627.html
  • http://thedifference.ru/chem-otlichayutsya-dielektriki-ot-provodnikov/
  • http://studfiles.net/preview/3865086/