Меню Рубрики

При нормальном зрении на сетчатке появляется

Виды нарушений зрения

Посредством глаз человек воспринимает почти 90% информации, поступающей извне. Поэтому полная или частичная потеря зрения значительно снижает уровень жизни и является опасным фактором в плане бытовых травм и ДТП. Однако известно, что заболеваниями глаз страдают почти три миллиарда человек по всему земному шару. И только один миллиард прибегает к лечению или коррекции различных патологий. Все множество видов нарушения зрения можно разделить на две основные группы: нарушения функционального характера и органические нарушения.

Органические нарушения характеризуются структурными изменениями в различных тканях глаза и зачастую сопровождаются нарушениями функций глаза. К таким изменениям можно отнести конъюктивит, катаракту, блефарит, атрофию зрительного нерва, опухолевые поражения глазного яблока и др. А функциональные нарушения представляют собой изменения хода световых лучей, с помощью которых формируется изображение на сетчатке глаза. Другими словами, функциональные нарушения – это, в первую очередь, патология аккомодации и рефракции (дальнозоркость, близорукость, астигматизм, амблиопия, или косоглазие).

Классификация видов нарушений зрения

1. Нарушения рефракции – это снижение способности глаза четко рассматривать объекты, удаленные от него на определенном расстоянии.

2. Расстройство аккомодации – это нарушение, которое сопровождается неспособностью четко рассматривать предметы, расположенные на различном расстоянии от глаз (дальнозоркость или пребиопсия).

3. Расстройство бокового, или периферического зрения – это изменения, при котором теряется способность четко рассматривать движущиеся предметы или предметы, расположенные по обе стороны от глазных яблок.

4. Снижение адаптации глаз. Характеризуется, например, снижением или утратой способности приспосабливаться к различному уровню освещенности.

5. Нарушения сумеречного зрения, или куриная слепота. Характеризуется неспособностью видеть в сумерках или затемненном помещении вследствие нарушения функции специальных клеток сетчатки — палочек.

Одно из самых распространенных нарушений зрения – близорукость. Заболевания появляется в том случае, если длина глазного яблока чуть больше обычной длины, поэтому световые лучи фокусируются перед сетчаткой. Данную патологию считают функциональным нарушением, так как никаких органических патологий или аномалий в глазном яблоке не наблюдается.

Причины и виды нарушений периферического зрения

В данной статье хотелось бы затронуть такую тему как нарушение периферического зрения. Проблема отнюдь не редкостная, поэтому заслуживает отдельного внимания. Давайте ближе к теме.

Периферическое или боковое зрение обеспечивает ориентацию в пространстве. За нормальное функционирование бокового зрения отвечают периферические области сетчатки глаза. Как это происходит? Свет от предмета попадает на те самые области и позволяет не только увидеть предмет, но и определить некоторые его свойства. Наиболее чувствительные в данном случае – белый цвет и мелкие объекты. Мы с легкостью можем воспринимать два объекта в поле нашего зрения, нормальный угол охвата которого – 120 градусов.

Виды нарушений периферического зрения

Проблемы могут появиться в результате возникновения нефункционирующих участков сетчатки глаза. При этом появляется участок с выпадением зрения, или в поле видимости наблюдаются пятна темного цвета.

Еще один вариант – сужение поля зрения. Может наблюдаться ситуация, при которой в центральной области глаза появится небольшой «островок». При таком нарушении человек видит все окружающее как бы через трубку, что называется тоннельным зрением.

Довольно часто встречаются частичные выпадения зрения. Это когда выпадение проходит в разном объеме. К примеру, на четверть, треть, половину и так далее.

Причины нарушений бокового зрения

Рассмотрим ряд наиболее частых и основных причин нарушения периферического (бокового) зрения. Если у вас возникли подозрения, то сразу необходимо обратиться к врачу. Нарушения могут стать причиной возникновения серьезных заболеваний глаз. Итак, переходим к причинам.

  • Повреждение сетчатки. Даже минимальные повреждения сетчатки могут вызвать нарушение функции бокового зрения.
  • Глаукома. Данное заболевание напрямую связано с повышением внутриглазного давления. При этом наблюдается повреждение зрительного нерва и как следствие – появление нарушений в поле зрения.
  • Повышение внутричерепного давления. Опять же приводит к повреждению зрительного нерва.
  • Повреждение головного мозга. Сюда относим травмы, опухоли, кровоизлияния и нарушения кровообращения.

Помните о том, что боковое зрение – важная составляющая от общего зрения. Поэтому возникновение нарушений периферического зрения, как правило, приводит к развитию серьезных заболеваний. При первых признаках незамедлительно следует обратиться к врачу. Специалист поможет предотвратить развитие глазной болезни. А вообще, периодические визиты к офтальмологу должны войти в привычку.

Нарушения бокового зрения

Татьяна Мякшина 10 февраля 2013 г. 20130210

Периферическое или боковое зрение – зрение, которое осуществляется периферическими областями сетчатки глаза. Основной задачей бокового зрения является ориентация в пространстве.

Свет от предмета, который падает на периферию сетчатки, позволяет увидеть предмет, определить некоторые его свойства. Боковое зрение наиболее чувствительно к белому цвету, к мельканиям объекта. Одновременно воспринять два предмета можно в поле зрения, охватывающем угол 120°.

Виды нарушений бокового зрения

Нарушение периферического зрения может появиться в результате возникновения небольших нефункционирующих участков сетчатки глаза. При этом человек видит пятна темного цвета, или у него появляется участок с выпадением зрения.

Также возможно сужение поля зрения. Оно может даже привести к маленькому «островку» зрения в центральной области глаза. В таком случае человек видит окружающий мир так, как будто смотрит через маленькую трубку. Такие изменения называют тоннельным зрением.

Иногда бывают частичные выпадения поля зрения в разном объеме – на четверть, половину и так далее.

Причины возникновения нарушений бокового зрения

Могут быть разные причины, при которых нарушается периферическая способность видеть. Наиболее часто встречаются следующие:

  1. Повреждения сетчатой оболочки глаза. Повреждения могут быть разными. При этом минимальное повреждение нервных клеток сетчатки способствует нарушению функции. Это влечет за собой нарушение периферического зрения. К таким повреждениям относятся сосудистые заболевания глаз, отслойка сетчатой оболочки или расслоение сетчатки глаза. Часто к разрушению нервных клеток сетчатки приводят дегенерация (ухудшение биологических признаков) и дистрофия (системные нарушения) сетчатой оболочки глаза.
  2. Глаукома. Это заболевание, которое связано с повышением внутриглазного давления. У больного происходит повреждение зрительного нерва. И одним из характерных симптомов этого заболевания являются нарушения в поле зрения.
  3. Повреждение зрительного нерва может быть следствием нарушения кровообращения в сосудах, которые питают нерв. Другой причиной может быть травма, опухоль или воспаление зрительного нерва.
  4. Повышение внутричерепного давления, при котором развивается повреждение зрительного нерва.
  5. Повреждение головного мозга. Может быть вызвано травмой, опухолью головного мозга или нарушением кровообращения в сосудах и кровоизлиянием.

Боковое зрение является необходимой составляющей частью зрения человека. Ухудшение или потеря периферического зрения – симптом очень многих тяжелых заболеваний. Необходимо периодически проверять свое зрение. При первых признаках проблем с глазами нужно обращаться за помощью к специалисту. Только так можно предупредить развитие серьезной болезни.

Виды нарушений зрения

Глаза человека принимают до 90% поступающей извне информации, поэтому полная или частичная утрата зрения очень сильно ухудшает уровень жизни человека и способствует возникновению высокого риска бытовых травм и ДТП. Известно, что от заболеваний глаз страдает несколько миллиардов людей, и только одному миллиарду приходится прибегать к серьезному лечению или хирургическому вмешательству.

Выделяют несколько видов нарушений зрения. Их можно разделить на две большие категории – органические нарушения и функциональные нарушения.

Органические и функциональные нарушения зрения

При органических нарушениях возникают структурные изменения в тканях глаза, сопровождающиеся ухудшением зрения. К болезням, вызывающим такие изменения, относят блефарит. конъюнктивит. катаракту. опухолевые заболевания глаза, атрофию зрительного нерва.

При функциональных нарушениях происходит изменение хода световых лучей, которые формируют изображение на сетчатке, поэтому такие нарушения в первую очередь представляют собой патологии рефракции и аккомодации, а именно: близорукость. дальнозоркость. астигматизм. косоглазие и т.п.

Виды функциональных нарушений

Глаза человека, у которого диагностировали нарушение рефракции, не способны четко рассматривать находящиеся в отдалении предметы. Рефракционные нарушения являются одной из самых частых патологий зрения. Некоторые специалисты утверждают, что сегодня около 30% людей имеют нарушения рефракции. К данной патологии относят близорукость, дальнозоркость, астигматизм.

Нарушение аккомодации подразумевает четко рассматривать предметы, расположенные на разном расстоянии.

У некоторых людей сегодня также диагностируют расстройства периферического, или бокового зрения. В этом случае теряется способность рассматривать предметы, которые находятся по обе стороны от глаз.

Снижение адаптации сопровождается снижением или потерей способности адаптироваться к различной степени освещенности помещения.

При куриной слепоте человек перестает нормально видеть в темноте из-за нарушения функций палочек – клеток сетчатки, чувствительных к свету.

Чаще всего у людей диагностируют близорукость. Эта патология является функциональным нарушением, поскольку никаких органических аномалий или патологий глаза при ней не выявляют.

Зачем нужно знать границы своего периферического зрения?

Основные знания мы получаем с помощью глаз. Например, при чтении, просмотре телевизора и наблюдении за окружающим миром. Некоторые картинки, попадающие в поле видимости, – это наше периферическое зрение. Попробуем разобраться, что скрывает этот термин и зачем нам нужно про него знать.

Понятие периферического зрения

Под этим термином понимается боковое зрение, осуществляемое периферийными зонами сетчатой оболочки глаза. Лучи от предметов, попадающие на них, позволяют обнаружить предмет и определить его свойства. Периферическое зрение по сравнению с центральным характеризуется меньшей остротой зрения: чем дальше предмет от центра фокусировки, тем он выглядит расплывчатей и хуже цветоразличение.

Наибольший уровень различения характерен для белого цвета, остальные различаются в меньшей степени. Еще периферийное зрительное поле необходимо для ориентировки человека в пространстве и способности видеть в темноте. С его помощью происходит различение слабого света и движения объектов в пространстве, но при этом не различаются их цвета и формы.

Для бокового обзора характерна большая чувствительность к мелькающим объектам, высокая критичность частоты слияния мельканий на периферии сетчатой оболочки по сравнению с центром. Границы периферических полей измеряются специальным прибором называемым периметром.

Широкое поле периферического обзора обеспечивает быстроту чтения и поиска информативных частей текста.

Кстати, у большинства животных и птиц боковой обзор значительно шире человеческого. Учеными было установлено, что у животных, обнаруживающих приближение опасности или добычи посредством зрительных способностей, благодаря эволюции развилось панорамное зрение. Поэтому их оптические оси глаз направляются в разные стороны и боковой обзор у них достаточно обширный. Они хорошо видят объекты, расположенные по бокам и даже позади своего тела, а зрительные поля их глаз при суммировании могут составлять угол обозрения до 360°!

Как узнать ширину своего зрительного поля?

Это достаточно просто – фиксируем взгляд на каком-нибудь предмете, например, стоящем на столе. Он будет виден отчетливо и ясно. Не отводя от него взгляда, отмечаем предметы, расположенные по правую и левую сторону от него, снизу и сверху. Они уже будут видны не так отчетливо, как основной предмет. При этом в поле нормального периферического зрения должно войти все, что располагается вокруг предмета. Угол обозрения пространства обоими глазами будет составлять примерно 180° по горизонтали.

Еще один способ проверить боковое зрение: берем в каждую руку по маленькому фонарику или белому карандашу. Разводим руки в разные стороны и, не двигая головой, фиксируем взгляд прямо перед собой. Если видны оба предмета, то это свидетельствует о развитом боковом зрении. Правда, чаще это присуще спортсменам – футболистам, баскетболистам и другим. Если же предметы не видны, то слегка сдвигаем руки вперед. В пределах нормы считается смещение не более чем на 15°. Если после смещения они не видны, то нужно обращаться к врачу.

Нарушение периферического зрения может свидетельствовать о недостатке витаминов, заболеваниях сетчатки, поражениях тканей зрительного нерва и ЦНС.

Медицинская периметрия глаз

Периферическое зрение исследуется посредством определения зрительного поля – пространства, видимого глазом в его неподвижном состоянии. Для этого обычно используется периметр. Он представляет собой черную градуированную дугу, размер которой равен половине окружности, вращающейся вокруг своей оси.

Само исследование проходит так: на один глаз человека накладывается повязка, подбородок помещается на подставку. Вторым глазом он должен зафиксировать взгляд на белом круге, расположенном в центре дуги. По ней от периферии к центральной части передвигается темная палочка с белым наконечником величиной 1-10 мм. Человек, смотря на белый круг, должен сказать, когда белый наконечник станет ему виден.

Меридиан, в котором это будет зафиксировано, означает границу зрительного поля. Далее данные наносятся на схему, где определяется расстояние от центра до положения дуги, в котором исследовалось зрение. Таким же способом определяются границы видимости других цветов. После этого определяется наличие выпадения зрительных полей, свидетельствующих о заболевании глаз.

Есть еще компьютерная диагностика, позволяющая проводить автоматическую периметрию. Человек фиксирует взгляд на неподвижных объектах, расположенных на мониторе. Их яркость и размеры меняются программой, выбранной специалистом. Данные исследования фиксируют датчики, затем полученная информация обрабатывается и выдается в виде распечатки с обозначением зрительных границ и выпадающих из них участков.

Назначить проведение вышеописанных исследований офтальмолог может на основе первичной проверки. Этот не очень точный способ, по принципу действия схожий с самостоятельной проверкой. Единственная разница – за норму будет считаться периферическое зрение врача. Он располагается напротив пациента и, поочередно закрывая глаз себе и ему, вводит в периферию зрительного поля хорошо видимый предмет. Момент, когда он будет виден врачу и пациенту сопоставляется и на основе различий судится о сужении зрительных полей у обследуемого человека.

Читайте также:  Повторная коррекция зрения через 10 лет

Фокус внимания может быть расширен с помощью упражнений — видео.

Результаты периметрии имеют огромное значение для своевременного выявления таких заболеваний глаз, как глаукома, нейропатия зрительного нерва, опухоли разной этиологии. Поэтому необходимо время от времени проверять свое боковое зрение и в случае необходимости обращаться за помощью в медицинское учреждение.

А вы провели сей несложный эксперимент? Каковы ваши результаты? Ждем ваш ответ в комментарии к статье и надеемся, что все в порядке! Если статья вам была интересна и полезна, не забудьте написать об этом!

Глаз — орган зрения животных и человека. Глаз человека состоит из глазного яблока, соединенного зрительным нервом с головным мозгом, и вспомогательного аппарата (веки, слезные органы и мышцы, двигающие глазное яблоко).

Глазное яблоко (рис. 94) защищено плотной оболочкой, называемой склерой. Передняя (прозрачная) часть склеры 1 называется роговицей. Роговица является самой чувствительной наружной частью человеческого тела (даже самое легкое ее касание вызывает мгновенное рефлекторное смыкание век).

За роговицей расположена радужная оболочка 2, которая у людей может иметь разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость. В радужной оболочке есть небольшое отверстие — зрачок 3. Диаметр зрачка может изменяться от 2 до 8 мм, уменьшаясь на свету и увеличиваясь в темноте.

За зрачком расположено прозрачное тело, напоминающее двояковыпуклую линзу, — хрусталик 4. Снаружи он мягкий и почти студенистый, внутри более твердый и упругий. Хрусталик окружен мышцами 5, прикрепляющими его к склере.

За хрусталиком расположено стекловидное тело 6, представляющее собой бесцветную студенистую массу. Задняя часть склеры — глазное дно — покрыто сетчатой оболочкой (сетчаткой) 7. Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.

Как возникают и воспринимаются глазом изображения различных предметов?

Свет, преломляясь в оптической системе глаза, которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительные, уменьшенные и обратные изображения рассматриваемых предметов (рис. 95). Попав на окончания зрительного нерва, из которых состоит сетчатка, свет раздражает эти окончания. По нервным волокнам эти раздражения передаются в мозг, и у человека появляется зрительное ощущение: он видит предметы.

Изображение предмета, возникающее на сетчатке глаза, является перевернутым. Первым, кто это доказал, построив ход лучей в оптической системе глаза, был И. Кеплер. Чтобы проверить этот вывод, французский ученый Р. Декарт (1596—1650) взял глаз быка и, соскоблив с его задней стенки непрозрачный слой, поместил в отверстии, проделанном в оконном ставне. И тут же на полупрозрачной стенке глазного дна он увидел перевернутое изображение картины, наблюдавшейся из окна.

Почему же тогда мы видим все предметы такими, как они есть, т. е. неперевернутыми? Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств. В свое время английский поэт Уильям Блейк (1757—1827) очень верно подметил:

Посредством глаза, а не глазом
Смотреть на мир умеет разум.

В 1896 г. американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказывались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У ученого появились симптомы морской болезни. В течение трех дней он ощущал тошноту. Однако на четвертые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать себя так же, как и до эксперимента. Мозг ученого освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, все опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.

Любопытно, что подобная приспосабливаемость характерна лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки надели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У нее стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается.

Однако и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии зрения — наблюдаемый предмет нам кажется не таким, каков он есть на самом деле (рис. 96).

Есть еще одна особенность зрения, о которой нельзя не сказать. Известно, что при изменении расстояния от линзы до предмета меняется и расстояние до его изображения. Каким же образом на сетчатке сохраняется четкое изображение, когда мы переводим свой взгляд с удаленного предмета на более близкий?

Оказывается, те мышцы, которые прикреплены к хрусталику, способны изменять кривизну его поверхностей и тем самым оптическую силу глаза. Когда мы смотрим на далекие предметы, эти мышцы находятся в расслабленном состоянии и кривизна хрусталика оказывается сравнительно небольшой. При переводе взгляда на близлежащие предметы глазные мышцы сжимают хрусталик, и его кривизна, а следовательно, и оптическая сила увеличиваются.

Способность глаза приспосабливаться к видению как на близком, так и на более далеком расстоянии называется аккомодацией (от лат. accomodatio — приспособление). Благодаря аккомодации человеку удается фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика — на сетчатке глаза.

Однако при очень близком расположении рассматриваемого предмета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием ясного (или наилучшего) зрения.

Какое преимущество дает зрение двумя глазами?

Во-первых, именно благодаря наличию двух глаз мы можем различать, какой из предметов находится ближе, какой дальше от нас. Дело в том, что на сетчатках правого и левого глаза получаются отличающиеся друг от друга изображения (соответствующие взгляду на предмет как бы справа и слева). Чем ближе предмет, тем заметнее это различие. Оно и создает впечатление разницы в расстояниях. Эта же способность зрения позволяет видеть предмет объемным, а не плоским.

Во-вторых, благодаря наличию двух глаз увеличивается поле зрения. Поле зрения человека изображено на рисунке 97, а. Для сравнения рядом с ним показаны поля зрения лошади (рис. 97, в) и зайца (рис. 97, б). Глядя на эти рисунки, легко понять, почему хищникам так трудно подкрасться к этим животным, не выдав себя.

Зрение позволяет людям видеть друг друга. Возможно ли самому видеть, но для других быть невидимым? Впервые на этот вопрос попытался ответить в своем романе «Человек-невидимка» английский писатель Герберт Уэллс (1866—1946). Человек окажется невидимым после того, как его вещество станет прозрачным и обладающим той же оптической плотностью, что и окружающий воздух. Тогда отражения и преломления света на границе человеческого тела с воздухом не будет, и он превратится в невидимку. Так, например, толченое стекло, имеющее на воздухе вид белого порошка, тут же исчезает из виду, когда его помещают в воду — среду, обладающую примерно той же оптической плотностью, что и стекло.

В 1911 г. немецкий ученый Шпальтегольц пропитал препарат мертвой ткани животного специально приготовленной жидкостью, после чего поместил его в сосуд с такой же жидкостью Препарат стал невидимым.

Однако человек-невидимка должен быть невидимым на воздухе, а не в специально приготовленном растворе. А этого достигнуть не удается.

Но допустим, что человеку все-таки удастся стать прозрачным. Люди перестанут его видеть. А сможет ли он сам их видеть? Нет, ведь все его части, в том числе и глаза, перестанут преломлять световые лучи, и, следовательно, никакого изображения на сетчатке глаза возникать не будет. Кроме того, для формирования в сознании человека видимого образа световые лучи должны поглощаться сетчаткой, передавая ей свою энергию. Эта энергия необходима для возникновения сигналов, поступающих по зрительному нерву в мозг человека. Если же у человека-невидимки глаза станут совершенно прозрачными, то этого происходить не будет. А раз так, то он вообще перестанет видеть. Человек-невидимка будет слепым.

Герберт Уэллс не учел этого обстоятельства и потому наделил своего героя нормальным зрением, позволяющим ему, оставаясь незамеченным, терроризировать целый город.

. 1. Как устроен глаз человека? Какие его части образуют оптическую систему? 2. Охарактеризуйте изображение, возникающее на сетчатке глаза. 3. Как передается изображение предмета в мозг? Почему мы видим предметы прямыми, а не перевернутыми? 4. Почему, переводя взгляде близкого предмета на удаленный, мы продолжаем видеть его четкий образ? 5. Чему равно расстояние наилучшего зрения? 6. Какое преимущество дает зрение двумя глазами? 7. Почему человек-невидимка должен быть слепым?

Изображение предметов на сетчатке глаза, что такое сетчатка

Глаз – тело в виде шаровидной сферы. Он достигает диаметра 25 мм и веса 8 г, является зрительным анализатором. Фиксирует увиденное и передает изображение на сетчатку, затем по нервным импульсам в мозг.

Прибор оптической зрительной системы – человеческий глаз умеет сам настраиваться, в зависимости от поступающего света. Он способен увидеть удаленные предметы и находящиеся близко.

Строение сетчатки

Глазное яблоко представляет собой три оболочки. Внешняя – непрозрачная соединительная ткань, которая поддерживает форму глаза. Вторая оболочка – сосудистая, содержит большую сеть сосудов, которая питает глазное яблоко.

По цвету она черная, поглощает свет, не давая ему рассеиваться. Третья оболочка – радужная, цветная, от ее расцветки зависит цвет глаз. В центре имеется зрачок, который регулирует поток лучей и меняется в диаметре, зависит от интенсивности освещения.

Оптическая система глаза состоит из роговицы, хрусталика, стекловидного тела. Хрусталик может принимать размеры маленького шарика и растягиваться до больших размеров, меняя фокус расстояния. Он способен менять свою кривизну.

Глазное дно покрывает сетчатка, имеющая толщину до 0,2 мм. Она состоит из слоистой нервной системы. Сетчатка имеет большую зрительную часть – фоторецепторные клетки и слепую переднюю часть.

Зрительные рецепторы сетчатки – палочки и колбочки. Эта часть состоит из десяти слоев, и поддается рассмотрению только под микроскопом.

Как формируется изображение на сетчатке

Когда лучи света проходят хрусталик, перемещаясь через стекловидное тело, они попадают на сетчатку, находящуюся на плоскости глазного дна. Напротив зрачка на сетчатке есть желтое пятно – это центральная часть, изображение на нем самое четкое.

Остальная часть – это периферическая. Центральная часть позволяет четко рассматривать предметы до мельчайших деталей. С помощью периферического зрения человек способен видеть не очень четкую картинку, но ориентироваться в пространстве.

Восприятие картинки происходит с проекцией изображения на сетчатку глаза. Фоторецепторы возбуждаются. Эта информация посылается в мозг и обрабатывается в зрительных центрах. Сетчатка каждого глаза передает через нервные импульсы свою половину изображения.

Благодаря этому и зрительной памяти возникает общий зрительный образ. На сетчатке отображается картинка в уменьшенном виде, перевернутой. А перед глазами она видится прямая и в натуральных размерах.

Снижение зрения при повреждениях сетчатки

Повреждение сетчатки ведет к снижению зрения. Если повреждена центральная ее часть, то может привести к полной потере зрения. О нарушениях периферического зрения человек долгое время может не догадываться.

Повреждение выявляется при проверке именно периферического зрения. При поражении большого участка этой части сетчатки происходит:

  1. дефект зрения в виде выпадения отдельных фрагментов;
  2. снижение ориентации при плохой освещенности;
  3. изменение восприятия цветов.

Изображение предметов на сетчатке глаза, контроль изображения мозгом

Если световой поток фокусируется перед сетчаткой, а не в центре, то это дефект зрения называется близорукостью. Близорукий человек плохо видит вдаль и хорошо видит вблизи. Когда световые лучи фокусируются за сетчаткой, то это называется дальнозоркостью.

Человек, наоборот, плохо видит близко и хорошо различает предметы вдали. Спустя некоторое время, если глаз не видит изображения предмета, оно исчезает с сетчатки. Образ, запомнившийся зрительно, хранится в сознании человека, на протяжении 0,1 сек. Это свойство называется инерцией зрения.

Как изображение контролируется мозгом

Еще ученый Иоганн Кеплер понял, что проектируемое изображение перевернутое. А другой ученый – француз Рене Декарт провел опыт и подтвердил этот вывод. Он с бычьего глаза убрал задний непрозрачный слой.

Вставил глаз в отверстие в стекле и увидел на стенке глазного дна картинку за окном в перевернутом виде. Таким образом, утверждение, что все изображения, подающие на сетчатку глаза, имеют перевернутый вид, было доказано.

А то, что мы видим изображения неперевернутыми, является заслугой мозга. Именно мозг корректирует непрерывно зрительный процесс. Это тоже доказано научным и опытным путем. Психолог Дж. Стреттон в 1896 году решил поставить эксперимент.

Читайте также:  Восстановление зрения после лазерной коррекции зрения

Он использовал очки, благодаря которым, на сетчатке глаза все предметы имели прямой вид, а не перевернутый. Тогда, как сам Стреттон видел перед собой перевернутые картинки. У него началось несогласованность явлений: видение глазами и ощущение других чувств. Появились признаки морской болезни, его тошнило, чувствовался дискомфорт и дисбаланс в организме. Продолжалось это три дня.

На четвертый день ему стало лучше. На пятый – он чувствовал себя прекрасно, как и до начала эксперимента. То есть мозг приспособился к изменениям и привел все в норму через некоторое время.

Стоило ему снять очки, как все опять встало с ног на голову. Но в этом случае мозг быстрее справился с задачей, уже через полтора часа все восстановилось, и картинка стала нормальной. Такой же опыт проводили с обезьяной, но она не выдержала эксперимента, впала как бы в коматозное состояние.

Особенности зрения

Еще одна особенность зрения – аккомодация, это способность глаз приспосабливаться видеть как на близком расстоянии, так и на далеком. На хрусталике имеются мышцы, которые могут изменять кривизну поверхности.

При взгляде на предметы, расположенные на дальнем расстоянии, кривизна поверхности небольшая и мышцы расслаблены. При рассмотрении предметов на близком расстоянии, мышцы приводят хрусталик в сжатое состояние, кривизна увеличивается, следовательно, и оптическая сила тоже.

Но на очень близком расстоянии, напряжение мышц становится наивысшим, хрусталик может деформироваться, глаза быстро утомляются. Поэтому предельное расстояние для чтения и выполнения письма составляет 25 см до предмета.

На сетчатках левого и правого глаза получаемые изображения отличаются друг от друга, потому, что каждый глаз в отдельности видит предмет со своей стороны. Чем ближе рассматриваемый предмет, тем различия ярче.

Глаза видят предметы объемно, а не в плоскости. Эта особенность называется стереоскопическим зрением. Если долго рассматривать какой-то рисунок или предмет, то переместив глаза на чистое пространство, можно увидеть очертание на мгновение этого предмета или рисунка.

Факты о зрение

Интересные факты о зрении человека и животных:

  • Зеленые глаза имеют только 2% населения земного шара.
  • Разные глаза по цвету бывают у 1% всего населения.
  • Красные глаза бывают у альбиносов.
  • Угол обзора у человека от 160 до 210°.
  • У кошек глаза поворачиваются до 185°.
  • У лошади обзор глаз составляет 350°.
  • Гриф видит мелких грызунов с высоты 5 км.
  • Стрекоза имеет уникальный зрительный орган, который состоит из 30 тыс. отдельных глазков. Каждый глазок видит отдельный фрагмент, и мозг соединяет все в большую картинку. Такое зрение называется фасеточным. Стрекоза видит в секунду 300 изображений.
  • У страуса объем глаза больше, чем объем мозга.
  • Глаз крупного кита весит 1 кг.
  • Крокодилы, когда едят мясо плачут, освобождаясь от излишней соли.
  • Есть среди скорпионов виды, имеющие до 12 глаз, у некоторых пауков насчитывается 8 глаз.
  • Красный цвет не различают собаки, кошки.
  • Пчела тоже не видит красного цвета, но различает другие, хорошо чувствует ультрафиолетовое излучение.
  • Распространенное мнение, что коровы и быки реагируют на красный цвет – ошибочное. На корридах быки обращают внимание не на красный цвет, а на движение тряпки, так как они еще близорукие.

Глазной орган сложный по структуре и функциональности. Каждая составная его часть индивидуальна и неповторима, в том числе и сетчатка. От работы каждого отдела отдельно и вместе взятых, зависит правильное и четкое восприятие изображения, острота зрения и видение мира в цветах и красках.

Про близорукость и методах ее лечения — в видеосюжете:

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Какое зрение считается нормальным

Нормальное зрение — это зрение без отклонений в зрительной системе. В первую очередь, нормальное зрение связано с нормальным преломлением светового луча в глазу. Это значит, что линзы, роговица и хрусталик фокусируют образ изображения точно на сетчатке глаза, а не перед ним и не за ним, причём в ее центре, на жёлтом пятне.

У каждого человека своя норма зрения. Определяется она тем, какую строчку видит человек по таблице Головина-Сивцева. Привычная нам единица (1,0) означает, что человек видит 10-ю строчку без средств коррекции, это его нормальное зрение. Единица (1,0) также соответствует 100%.

Какое фокусное расстояние здорового глаза?

Глаз – это сложная оптическая система, которая состоит из биологических линз. Каждая глазная линза имеет свое фокусное расстояние, при котором в глазу на сетчатке проектируется отчетливый образ зрительных объектов. Фокусное расстояние имеет свою постоянную величину и напрямую зависит от изогнутости биологической линзы.


Глаз, который воспринимает зрительную информацию без искажений, имеет фокусное расстояние равное расстоянию между двумя линзами, которые находятся между сетчаткой и роговицей. В среднем данное расстояние у взрослого человека составляет около 23-24 мм. Такое фокусное расстояние позволяет глазу нормально воспринимать зрительную информацию. При различии в этих расстояниях зрительная информация фокусируется не точно на сетчатке, возникают искажения.

Нарушение рефракции

Преломление световых лучей в глазу называется рефракцией, сила преломления световых лучей измеряется в диоптриях.

Неправильное преломление световых лучей (нарушение рефракции) приводит к развитию и появлению таких заболеваний, как дальнозоркость, близорукость, астигматизм. При их наличии человек видит изображение размытым, нечетким, двоящимся, плохо видит вдали или вблизи. Для коррекции нарушения рефракции используются медицинские очки и контактные линзы, которые заставляют световой луч фокусироваться на сетчатке глаза и делают изображение чётким.

Офтальмология_ учебник

Кампиметрия.Кампиметрия — метод исследования поля зрения на плоской поверхности с помощью специальных приборов (кампиметров). Кампиметрию применяют только для исследования участков поля зрения в пределах до 30-40? от центра в целях определения величины слепого пятна, центральных и парацентральных скотом. Для кампиметрии используют черную матовую доску или экран из черной материи размером 1×1 или 2×2 м. Расстояние от исследуемого до экрана — 1 м, освещенность экрана — 75-300 лк. Используют белые объекты диаметром 1-5 мм, наклеенные на конец плоской черной палочки длиной 50-70 см. При кампиметрии необходимы правильное положение головы (без наклона) на подставке для подбородка и точная фиксация пациентом метки в центре кампиметра; второй глаз больного закрывают. Врач постепенно передвигает объект по радиусам (начиная с горизонтального со стороны расположения слепого пятна) от наружной части кампиметра к центру. Пациент сообщает об исчезновении объекта. Более детальным исследованием соответствующего участка поля зрения определяют границы скотомы и отмечают результаты на специальной схеме. Размеры скотом, а также их расстояние от точки фиксации выражают в угловых градусах.Периметрия.Периметрия — метод исследования поля зрения на вогнутой сферической поверхности с помощью специальных приборов (периметров), имеющих вид дуги или полусферы. Различают кинетическую периметрию (с движущимся объектом) и статическую периметрию (с неподвижным объектом переменной яркости). В настоящее время для проведения статической периметрии используют автоматические периметры (рис. 3.6).

Кинетическая периметрия. Широко распространен недорогой периметр Ферстера. Это дуга 180?, покрытая с внутренней стороны черной матовой краской и имеющая на наружной поверхности деления — от 0? в центре до 90? на периферии. Для определения наружных границ поля зрения используют белые объекты диаметром 5 мм, для выявления скотом — белые объекты диаметром 1 мм. Исследуемый сидит спиной к окну (освещенность дуги периметра дневным светом должна быть не менее 160 лк), подбородок и лоб размещает на специальной подставке и фиксирует одним глазом белую метку в центре дуги. Второй глаз пациента закрывают. Объект ведут по дуге от периферии к центру со скоростью 2 см/с. Исследуемый сообщает о появлении объекта, а исследователь замечает, какому делению дуги соответствует в это время положение объекта. Это и будет наружная граница поля зрения для данного радиуса. Определение наружных границ поля зрения проводят по 8 (через 45?) или по 12 (через 30?) радиусам. Необходимо в каждом меридиане проводить тест-объект до центра, чтобы убедиться в сохранности зрительных функций на всем протяжении поля зрения.

В норме средние границы поля зрения для белого цвета по 8 радиусам следующие: кнутри — 60?, сверху кнутри — 55?, сверху — 55?, сверху кнаружи — 70?, снаружи — 90?, снизу кнаружи — 90?, снизу — 65?, снизу кнутри — 50? (рис. 3.7).

Рис. 3.7. Нормальные периферические границы поля зрения на белый и хроматические цвета

Более информативна периметрия с использованием цветных объектов, так как изменения в цветном поле зрения развиваются раньше. Границей поля зрения для данного цвета считают то положение объекта, где испытуемый правильно распознал его цвет. Обычно используют синий, красный и зеленый цвета. Ближе всего к границам поля зрения на белый цвет оказывается синий, далее следует красный, а ближе к установочной точке — зеленый (рис. 3.7).

Статическая периметрия, в отличие от кинетической, позволяет выяснить также форму и степень дефекта поля зрения.

Изменения поля зрения

Изменения полей зрения происходят при патологических процессах в различных отделах зрительного анализатора. Выявление характерных особенностей дефектов поля зрения позволяет проводить топическую диагностику.

Односторонние изменения поля зрения(только в одном глазу на стороне поражения) обусловлены повреждением сетчатки или зрительного нерва.

Двусторонние изменения поля зрениявыявляют при локализации патологического процесса в хиазме и выше.

Выделяют три вида изменений поля зрения:

— очаговые дефекты в поле зрения (скотомы);

— сужения периферических границ поля зрения;

— выпадение половин поля зрения (гемианопсии).

Скотома — очаговый дефект в поле зрения, не связанный с его периферическими границами. Скотомы классифицируют по характеру, интенсивности поражения, форме и локализации. По интенсивности поражения выделяют абсолютные и относительные скотомы. Абсолютная скотома — дефект, в пределах которого полностью выпадает зрительная функция. Относительная скотома характеризуется понижением восприятия в области дефекта.

По характеру выделяют положительные, отрицательные, а также мерцательные скотомы. Положительные скотомы больной замечает сам в виде серого или темного пятна. Такие скотомы указывают на поражение сетчатки и зрительного нерва. Отрицательные скотомы больной не ощущает, они обнаруживаются только при объективном исследовании и указывают на повреждение вышележащих структур (хиазмы и далее).

По форме и локализации различают: центральные, парацентральные, кольцевидные и периферические скотомы (рис. 3.8).

Рис. 3.8. Различные виды абсолютных скотом: а — центральная абсолютная скотома; б — парацентральные и периферические абсолютные скотомы; в — кольцевидная скотома

Центральные и парацентральные скотомы возникают при заболеваниях макулярной области сетчатки, а также при ретробульбарных поражениях зрительного нерва. Кольцевидные скотомы представляют собой дефект в виде более или менее широкого кольца, окружающего центральный участок поля зрения. Они наиболее характерны для пигментной дистрофии сетчатки. Периферические скотомы располагаются в различных местах поля зрения, кроме вышеперечисленных. Они возникают при очаговых изменениях в сетчатой и сосудистой оболочках.

По морфологическому субстрату выделяют физиологические и патологические скотомы. Патологические скотомы появляются вследствие повреждения структур зрительного анализатора (сетчатки, зрительного нерва и т.д.). Физиологические скотомы обусловлены особенностями строения внутренней оболочки глаза. К таким скотомам относят слепое пятно и ангиоскотомы. Слепое пятно соответствует месту расположения диска зрительного нерва, область которого лишена фоторецепторов. В норме слепое пятно имеет вид овала, расположенного в височной половине поля зрения между 12? и 18?. Вертикальный размер слепого пятна равен 8-9?, горизонтальный — 5-6?. Обычно 1/3 слепого пятна расположена выше горизонтальной линии, проходящей через центр кампиметра, и 2/3 — ниже этой линии.

Субъективные расстройства зрения при скотомах различны и зависят, главным образом, от локализации дефектов. Очень маленькие абсолютные центральные скотомы могут сделать невозможным восприятие мелких объектов (например, букв при чтении), в то время как даже сравнительно большие периферические скотомы мало стесняют деятельность.

Сужение периферических границ поля зрения обусловлено дефектами поля зрения, связанными с его границами (рис. 3.9). Выделяют равномерное и неравномерное сужения полей зрения.

Рис. 3.9. Виды концентрического сужения поля зрения: а) равномерное концентрическое сужение поля зрения; б) неравномерное концентрическое сужение поля зрения

Равномерное (концентрическое) сужениехарактеризуется более или менее одинаковой приближенностью границ поля зрения во всех меридианах к точке фиксации (рис. 3.9 а). В тяжелых случаях от всего поля зрения остается только центральный участок (трубочное, или тубулярное зрение). При этом становится затруднительной ориентировка в пространстве, несмотря на сохранность центрального зрения. Причины: пигментная дистрофия сетчатки, оптический неврит, атрофия и другие поражения зрительного нерва.Неравномерное сужение поля зрения возникает при неодинаковом приближении границ поля зрения к точке фиксации (рис. 3.9 б). Например, при глаукоме сужение происходит преимущественно с внутренней стороны. Секторальные сужения поля зрения наблюдаются при непроходимости ветвей центральной артерии сетчатки, юкстапапиллярном хориоретините, некоторых атрофиях зрительного нерва, отслойке сетчатки и др.

Гемианопсия — двустороннее выпадение половины поля зрения. Гемианопсии делят на одноименные (гомонимные) и разноименные (гетеронимные). Иногда гемианопсии обнаруживает сам больной, но чаще их выявляют при объективном обследовании. Изменения полей зрения обоих глаз — важнейший симптом в топической диагностике заболеваний головного мозга (рис. 3.10).

Читайте также:  Должность это с юридической точки зрения

Рис. 3.10. Изменение поля зрения в зависимости от уровня поражения зрительного пути: а) локализация уровня поражения зрительного пути (обозначены цифрами);

б) изменение поля зрения соответственно уровню поражения зрительного пути

Гомонимная гемианопсия— выпадение височной половины поля зрения в одном глазу и носовой — в другом. Она обусловлена ретрохиазмальным поражением зрительного пути на стороне, противоположной дефекту полей зрения. Характер гемианопсии изменяется в зависимости от уровня поражения: она может быть полной (при выпадении всей половины поля зрения) или частичной (квадрантной).

Полная гомонимная гемианопсия наблюдается при поражении одного из зрительных трактов: левосторонняя гемианопсия (выпадение левых половин полей зрения) — при повреждении правого зрительного тракта, правосторонняя — левого зрительного тракта.

Квадрантная гомонимная гемианопсия обусловлена повреждением головного мозга и проявляется выпадением одноименных квадрантов полей зрения. В случае поражения корковых отделов зрительного анализатора дефекты не захватывают центральный участок поля зрения, т.е. зону проекции желтого пятна. Это объясняется тем, что волокна от макулярной области сетчатки уходят в оба полушария головного мозга.

Гетеронимная гемианопсияхарактеризуется выпадением наружных или внутренних половин полей зрения и обусловлена поражением зрительного пути в области зрительного перекреста.

Битемпоральная гемианопсия — выпадение наружных половин полей зрения. Развивается при локализации патологического очага в области средней части хиазмы (часто сопровождает опухоли гипофиза).

Биназальная гемианопсия — выпадение носовых половин полей зрения. Обусловлена двусторонним поражением неперекрещенных волокон зрительного пути в области хиазмы (например, при склерозе или аневризмах обеих внутренних сонных артерий).

Светоощущение и адаптация

Светоощущение — способность глаза воспринимать свет и определять различную степень его яркости. За светоощущение отвечают главным образом палочки, так как они гораздо более чувствительны к свету, чем колбочки. Светоощущение отражает функциональное состояние зрительного анализатора и характеризует возможность ориентации в условиях пониженного освещения; нарушение его — один из ранних симптомов многих заболеваний глаза.

При исследовании светоощущения определяют способность сетчатки воспринимать минимальное световое раздражение (порог светоощущения) и способность улавливать наименьшую разницу в яркости освещения (порог различения). Порог светоощущения зависит от уровня предварительной освещенности: он меньше в темноте и увеличивается на свету.

Адаптация— изменение световой чувствительности глаза при колебаниях освещенности. Способность к адаптации позволяет глазу защищать фоторецепторы от перенапряжения и вместе с тем сохранять высокую светочувствительность. Различают световую (при повышении уровня освещенности) и темновую адаптацию (при понижении уровня освещенности). Световая адаптация, особенно при резком увеличении уровня освещенности, может сопровождаться защитной реакцией зажмуривания глаз. Наиболее интенсивно световая адаптация протекает в течение первых секунд, окончательных значений порог светоощущения достигает к концу первой минуты. Темновая адаптация происходит медленнее. Зрительные пигменты в условиях пониженного освещения расходуются мало, происходит их постепенное накопление, что повышает чувствительность сетчатки к стимулам пониженной яркости. Световая чувствительность фоторецепторов нарастает быстро в течение 20-30 мин, и только к 50-60 мин достигает максимума.

Определение состояния темновой адаптации проводят при помощи специального прибора — адаптометра. Ориентировочное определение темновой адаптации проводят с помощью таблицы Кравкова-Пуркинье. Таблица представляет собой кусок черного картона размером 20 х 20 см, на котором наклеены 4 квадрата размером 3 х 3 см из голубой, желтой, красной и зеленой бумаги. Врач выключает освещение и предъявляет больному таблицу на расстоянии 40-50 см. Темновая адаптация нормальная, если пациент начинает видеть желтый квадрат через 30-40 с, а голубой — через 40-50 с. Темновая адаптация у пациента снижена, если он увидел желтый квадрат через 30-40 с, а голубой — более чем через 60 с или не увидел его совсем.

Гемералопия — ослабление адаптации глаза к темноте. Гемералопия проявляется резким снижением сумеречного зрения, в то время как дневное зрение обычно сохранено. Выделяют симптоматическую, эссенциальную и врожденную гемералопию.

• Симптоматическая гемералопия сопровождает различные офтальмологические заболевания: пигментную абиотрофию сетчатки, сидероз, миопию высокой степени с выраженными изменениями глазного дна.

• Эссенциальная гемералопия обусловлена гиповитаминозом A. Ретинол служит субстратом для синтеза родопсина, который нарушается при экзо- и эндогенном дефиците витамина.

• Врожденная гемералопия — генетическое заболевание. Офтальмоскопических изменений при этом не выявляют.

Зрение одним глазом называют монокулярным. Об одновременном зрении говорят тогда, когда при рассматривании предмета двумя глазами не происходит фузии (слияния в коре головного мозга зрительных образов, возникающих на сетчатке каждого глаза в отдельности) и возникает диплопия (двоение).

Эта способность к слиянию отдельных изображений; получаемых в каждом глазу, в единое целое обеспечивает так называемое бинокулярное зрение. Эта способность к слиянию отдельных изображений; получаемых в каждом глазу, в единое целое обеспечивает так называемое бинокулярное зрение.

Бинокулярное зрение у человека обнаруживается уже на четвертом месяце жизни, формируется к двум годам, но его развитие и совершенствование заканчивается только в 8—10-летнем возрасте. Внешним проявлением его является стереоскопическое (объемное) зрение, без которого затруднено выполнение водительских, летных и ряда других работ, а также занятия многими видами спорта. Исследование бинокулярного зрения проводится на специальных приборах. Бинокулярное зрение у человека обнаруживается уже на четвертом месяце жизни, формируется к двум годам, но его развитие и совершенствование заканчивается только в 8—10-летнем возрасте. Внешним проявлением его является стереоскопическое (объемное) зрение, без которого затруднено выполнение водительских, летных и ряда других работ, а также занятия многими видами спорта. Исследование бинокулярного зрения проводится на специальных приборах.

Бинокулярное зрение — способность рассматривать предмет двумя глазами без возникновения диплопии. Бинокулярное зрение формируется к 7-15 годам. При бинокулярном зрении острота зрения примерно на 40% выше, чем при монокулярном зрении. Одним глазом без поворота головы человек способен охватить около 140? пространства, двумя глазами — около 180?. Но самым важное — то, что бинокулярное зрение позволяет определять относительную удаленность окружающих предметов, то есть осуществлять стереоскопическое зрение.

Механизм бинокулярного зрения. Если предмет равноудален от оптических центров обоих глаз, то его изображение проецируется на идентичные (корреспондирующие) участки сетчаток. Полученное изображение передается в один участок коры головного мозга, и изображения воспринимаются как единый образ (рис. 3.11). В случае если объект удален от одного глаза больше, чем от другого, его изображения проецируются на неидентичные (диспаратные) участки сетчаток и передаются в разные участки коры головного мозга, в результате не происходит фузии и должна возникать диплопия. Однако в процессе функционального развития зрительного анализатора такое двоение воспринимается как нормальное, потому что кроме информации от диспарантных участков к мозгу поступает и информация от корреспондирующих отделов сетчатки. При этом субъективного ощущения диплопии не возникает (в отличие от одновременного зрения, при котором нет корреспондирующих участков сетчатки), а на основании различий между полученными от двух сетчаток изображений происходит стереоскопический анализ пространства.

Условия формирования бинокулярного зрения следующие:

— острота зрения обоих глаз должна быть не ниже 0,3;

— соответствие конвергенции и аккомодации;

— скоординированные движения обоих глазных яблок;

— изейкония — одинаковая величина изображений, формирующихся на сетчатках обоих глаз (для этого рефракция обоих глаз не должна отличаться более чем на 2 дптр);

— наличие фузии (фузионного рефлекса) — способность мозга к слиянию изображений от корреспондирующих участков обоих сетчаток.

Способы определения бинокулярного зрения. Проба с промахиванием. Врач и пациент располагаются друг напротив друга на расстоянии 70-80 см, каждый удерживает спицу (карандаш) за кончик. Пациента просят дотронуться кончиком своей спицы до кончика спицы врача в вертикальном положении. Вначале он проделывает это при открытых обоих глазах, затем прикрывая поочередно один глаз. При наличии бинокулярного зрения пациент легко выполняет задачу при открытых обоих глазах и промахивается, если один глаз закрыт.

Опыт Соколова (с «дырой» в ладони). Правой рукой пациент держит перед правым глазом свернутый в трубку лист бумаги, ребро ладони левой руки располагает на боковой поверхности конца трубки. Обоими глазами обследуемый смотрит прямо на какой-либо предмет, расположенный на расстоянии 4-5 м. При бинокулярном зрении пациент видит «дыру» в ладони, сквозь которую видна та же картина, что и через трубку. При монокулярном зрении «дыра» в ладони отсутствует.

Четырехточечный тест используют для более точного определения характера зрения с помощью четырехточечного цветового прибора или проектора знаков.

Рис. 3.11. Механизм бинокулярного зрения

Существует несколько простых способов определения бинокулярного зрения без использования приборов.

Первый заключается в надавливании пальцем на глазное яблоко в области век, когда глаз открыт. При этом появляется двоение, если у пациента имеется бинокулярное зрение. Это объясняется тем, что при смещении одного глаза изображение фиксируемого предмета переместится на несимметричные точки сетчатки.

Второй способ — опыт с карандашами, или так называемая проба с промахиванием, в ходе которой наличие или отсутствие бипокулярности выявляют с помощью двух обычных карандашей. Пациент держит один карандаш вертикально в вытянутой руке, врач — другой в том же положении. Наличие бинокулярного зрения у пациента подтверждается в том случае, если при быстром движении он попадает кончиком своего карандаша в кончик карандаша врача.

Третий способ — проба с «дырой в ладони». Одним глазом пациент смотрит вдаль через свернутую из бумаги трубочку, а перед вторым глазом помещает свою ладонь на уровне конца трубочки. При наличии бинокулярного зрения происходит наложение изображений и пациент видит в ладони отверстие, а в нем предметы, видимые вторым глазом.

Четвертый способ — проба с установочным движением. Для этого пациент сначала фиксирует взгляд обоими глазами на близко расположенном предмете, а затем один глаз закрывает ладонью, как бы «выключая» его из акта зрения. В большинстве случаев глаз отклоняется к носу или кнаружи. Когда глаз открывают, он, как правило, возвращается на исходную позицию, т. е. совершает установочное движение. Это свидетельствует о наличии у пациента бинокулярного зрения.

Для более точного определения характера зрения (монокулярное, одновременное, неустойчивое и устойчивое бинокулярное) в клинической практике широко используют аппаратные методы исследования, в частности общепринятую методику Бе-лостоцкого — Фридмана с применением четырехточечного прибора «Цветотест ЦТ-1 (Россия). На его экране светятся четыре точки: белая, красная и две зеленые. Обследуемый смотрит через очки с красным стеклом перед правым глазом и зеленым перед левым. В зависимости от того, какие ответы выдает пациент, находясь на расстоянии 5 м, можно точно установить наличие или отсутствие у него бинокулярного зрения, а также определить ведущий (правый или левый) глаз.

С целью определения стереоскопического зрения часто применяют «Fly»-стереотест (с изображением мухи) фирмы «Titmus Optical» (США). Для установления величины анизейконии используют фазоразделительный гаплоскоп. В ходе исследования пациенту предлагают объединить два полукруга в полный бесступенчатый круг, меняя величину одного из полукругов. За величину имеющейся у пациента анизейконии принимают процентное отношение величины полукруга для правого глаза к величине полукруга для левого глаза.

Аппаратные методы исследования стереоскопического зрения широко используют в детской практике при диагностике и лечении косоглазия.

Аккомодация — это способность человека ясно видеть предметы, находящиеся на различных расстояниях от глаза. Реализуется она благодаря эластичности хрусталика и сократительной способности цилиарной мышцы. Аккомодация имеет свои пределы. Так, нормальным, соразмерным глазом человек не может ясно видеть мелкие детали рассматриваемых объектов ближе 6—7 см от глаза. При близорукости даже полное расслабление цилиарной мышцы не позволяет ясно видеть предметы, расположенные вдали.

Объем аккомодации (пространство между ближайшей и дальнейшей точками ясного зрения) будет самым большим при нормальной оптической установке глаза, наименьшим — при близорукости высокой степени; объем аккомодации будет уменьшен и при дальнозоркости высокой степени. Аккомодация ослабляется и с возрастом, и вследствие различных заболеваний.

Как уже указывалось, наилучшее видение обеспечивается центральной ямкой желтого пятна. Прямая линия, условно соединяющая рассматриваемый предмет с центральной ямкой, называется зрительной линией, или зрительной осью. Если удается направить обе зрительные линии на рассматриваемый предмет, глаза приобретают способность конвергировать, т. е. изменять положение глазных яблок путем сведения их внутрь. Это свойство носит название конвергенции. В норме чем ближе рассматриваемый предмет, тем больше конвергенция.

Существует прямая зависимость между аккомодацией и конвергенцией: чем больше напряжение аккомодации, тем больше конвергенция, и наоборот.

Если острота зрения одного глаза значительно выше, чем другого, в головной мозг поступает изображение рассматриваемого объекта только от лучше видящего глаза, второй же глаз может обеспечить только периферическое зрение. В связи с этим хуже видящий глаз периодически выключается из зрительного акта, что приводит к амблиопии — снижению остроты зрения.

Таким образом, зрительные функции тесно связаны друг с другом и составляют единое целое, именуемое актом зрения.

Теперь, когда вы достаточно познакомились с устройством и функциями органа зрения, необходимо рассказать и об основных заболеваниях глаз, их профилактике, т. е. предупреждении болезней.

Источники:
  • http://phscs.ru/physics9g/sight
  • http://glaza.online/anatomija/setchatka/chto-takoe-setchatka.html
  • http://klinikaglaz.ru/normalnoe_zrenie/
  • http://studfiles.net/preview/5765063/page:2/