Меню Рубрики

Преломление с точки зрения волновой теории

Волновая природа света и принцип Гюйгенса.

    Определения:
  • Волновой фронт — поверхность, соединяющая все точки волны, находящиеся в одной фазе (т.е. все точки волны, которые в одно и то же время находятся в одинаковом состоянии колебаний);
  • Луч — линия, в каждой точке перпендикулярная волновому фронту и указывающая на направление распространения волны;
  • Плоская волна — такая волна, волновой фронт которой представляет собой плоскость, перемещающуюся в пространстве со скоростью волны;
  • У сферической волны волновой фронт представляет собой сферу, радиус которой R = vt , где v — скорость волны.

Принцип Гюйгенса. Каждая точка волнового фронта может рассматриваться как источник вторичных сферических волн, распространяющихся со скоростью света в данной среде; огибающая поверхность всех вторичных сферических волн (т.е. поверхность, касательная к фронтам всех вторичных волн) в любой момент времени представляет собой новое положение волнового фронта исходной волны .

Исходя из этого принципа, легко доказать, что световые лучи в однородной среде распространяются прямолинейно.

Отражение света на основе волновой теории. Пусть плоская волна падает под некоторым углом a на отражающую поверхность. По соглашению угол падения (как и углы отражения и преломления) отсчитывается от нормали к поверхности в точке падения.

1. Падающий луч, отраженный луч и нормаль к поверхности в точке падения лежат в одной плоскости;

2. Угол падения a равен углу отражения g .

Скорость света в вакууме и в среде. Скорость света в среде меньше скорости света в вакууме. Можно показать, что в вакууме

где e 0 и m 0 — диэлектрическая и магнитная постоянные. Если же свет распространяется в однородной среде с диэлектрической проницаемостью e и магнитной проницаемостью m , то скорость света в такой среде

(2.1)

где n > 1 — абсолютный показатель преломления среды . В общем случае скорость света зависит от свойств среды, от ее температуры и от длины волны света. Обычно чем больше длина волны света, тем быстрее он распространяется в данной среде, т.е. скорость распространения красного света больше, чем фиолетового.

Относительным показателем преломления одной среды 1 относительно другой среды 2 называется отношение скоростей распространения света в двух средах:

Среда с большим показателем преломления называется оптически более плотной средой , с меньшим показателем преломления — оптически менее плотной средой .

Преломление света на основе волновой теории . Закон преломления света при переходе из одной среды в другую с иным показателем преломления был открыт Снеллиусом в 1620 г. и впервые упомянут в трудах Р. Декарта. Этот закон можно вывести с помощью принципа Гюйгенса.

Пусть плоская световая волна падает под углом a на границу раздела двух сред с разной скоростью распространения света в них. Тогда для углов падающего и преломлённого лучей верна формула:

(2.2)

Полное внутреннее отражение. Если свет проходит из оптически более плотной среды в оптически менее плотную (например, из стеклянного волокна в воздух), то угол преломления становится больше угла падения. Так как угол преломления не может быть больше p /2 , чему отвечает угол падения

(предельный угол полного отражения),

то все лучи света, падающие на поверхность раздела сред под углами, большими a 0, отражаются назад. Это явление называется полным внутренним отражением .

Дисперсия света. Показатель преломления любой среды определяется свойствами этой среды и зависит от частоты (или длины волны) света, т.е. n = n( w ). Явление зависимости показателя преломления среды от частоты проходящего света называется дисперсией .

Познакомить учащихся с закономерностями распространения света на границе раздела двух сред, дать объяснение этого явления с точки зрения волновой теории света.

1 Организационный момент 2
2 Проверка знаний 10 Работа на компьютере с тестом. Тест № 2
3 Объяснение нового материала по теме «Преломление света» 15 Лекция
4 Закрепление изученного материала 15 Работа на компьютере с рабочими листами. Модель «Отражение и преломление света»
5 Подведение итогов 2 Фронтальная беседа
6 Объяснение домашнего задания 1

Домашнее задание: § 61, задача № 1035, 1036.

Наблюдение преломления света.

На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, то есть происходит отражение света. Если вторая среда прозрачна, то свет частично может пройти через границу сред, также меняя при этом, как правило, направление распространения. Это явление называется преломлением света .

Вследствие преломления наблюдается кажущееся изменение формы предметов, их расположения и размеров. В этом нас могут убедить простые наблюдения. Положим на дно пустого непрозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Установим наклонно карандаш в сосуде с водой. Если посмотреть на сосуд сбоку, то можно заметить, что часть карандаша, находящаяся в воде, кажется сдвинутой в сторону.

Эти явления объясняются изменением направления лучей на границе двух сред – преломлением света.

Закон преломления света определяет взаимное расположение падающего луча (см. рис.), преломленного и перпендикуляра к поверхности раздела сред, восставленного в точке падения. Угол называется углом падения , а угол – углом преломления .

Падающий, отраженный и преломленный лучи нетрудно наблюдать, сделав узкий световой пучок видимым. Ход такого пучка в воздухе можно проследить, если пустить в воздух немного дыма или же поставить экран под небольшим углом к лучу. Преломленный пучок также виден в подкрашенной флюоресцином воде аквариума.

Вывод закона преломления света.
Закон преломления света был известен в Древней Греции, затем установлен опытным путем в XVII веке. Мы его выведем с помощью принципа Гюйгенса.

Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Обозначим скорость волны в первой среде через , а во второй – через .

Пусть на плоскую границу раздела двух сред (например, из воздуха в воду) падает плоская световая волна (см. рис.). Волновая поверхность перпендикулярна лучам и . Поверхности сначала достигнет луч . Луч достигнет поверхности спустя время . Поэтому в момент, когда вторичная волна в точке только начнет возбуждаться, волна от точки уже имеет вид полусферы радиусом

Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае это плоскость . Она является огибающей вторичных волн. Угол падения луча равен в треугольнике (стороны одного из этих углов перпендикулярны сторонам другого). Следовательно,

Угол преломления равен углу треугольника . Поэтому

Разделив почленно полученные уравнения, получим:

где – постоянная величина, не зависящая от угла падения.

Из построения (см. рис.) видно, что падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости. Данное утверждение вместе с уравнением, согласно которому отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред , представляет собой закон преломления света .

Убедиться в справедливости закона преломления можно экспериментально, измеряя углы падения и преломления и вычисляя отношение их синусов при различных углах падения. Это отношение остается неизменным.

Показатель преломления.
Постоянная величина, входящая в закон преломления света, называется относительным показателем преломления или показателем преломления второй среды относительно первой .

Из принципа Гюйгенса не только следует закон преломления. С помощью этого принципа раскрывается физический смысл показателя преломления. Он равен отношению скоростей света в средах, на границе между которыми происходит преломление:

Если угол преломления меньше угла падения , то, согласно (*), скорость света во второй среде меньше, чем в первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды . Он равен отношению синуса угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду.

Пользуясь формулой (**), можно выразить относительный показатель преломления через абсолютные показатели преломления и первой и второй сред.

Действительно, так как

и

где – скорость света в вакууме, то

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой .

Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, то есть от температуры вещества, его плотности, наличия в нем упругих напряжений. Показатель преломления зависит также и от характеристик самого света. Как правило, для красного света он меньше, чем для зеленого, а для зеленого меньше, чем для фиолетового.

Поэтому в таблицах значений показателей преломления для разных веществ обычно указывается, для какого света приведено данное значение и в каком состоянии находится среда. Если таких указаний нет, то это означает, что зависимостью от указанных факторов можно пренебречь.

В большинстве случаев приходится рассматривать переход света через границу воздух – твердое тело или воздух – жидкость, а не через границу вакуум – среда. Однако абсолютный показатель преломления твердого или жидкого вещества отличается от показателя преломления того же вещества относительно воздуха незначительно. Так, абсолютный показатель преломления воздуха при нормальных условиях для желтого света равен приблизительно 1,000292. Следовательно,

Ф. И. ___________________________________________

    Выставьте показатель преломления 1,5.

Определите, при каком угле падения при переходе из одной среды в другую луч не отклоняется от первоначального направления распространения.

Расположите осветитель на отметке . Чему равен угол падения?

Чему равен угол преломления?

На какой угол отклонился луч света от первоначального направления?

Увеличьте угол падения до . Чему равен угол преломления?

Сравните угол падения и угол преломления при переходе из оптически менее плотной среды в оптически более плотную.

Ответ: угол падения при переходе из оптически менее плотной среды в оптически более плотную больше, чем угол преломления .

Поставьте осветитель на отметку . Чему равен угол падения?

Чему равен угол преломления?

Уменьшите угол падения на . Чему равен угол падения?

Чему равен угол преломления?

Сравните угол падения и угол преломления при переходе из оптически более плотной среды в оптически менее плотную.

Ответ: угол падения меньше угла преломления при переходе луча из оптически более плотной среды в оптически менее плотную .

Установите осветитель на отметку . Выставьте показатель преломления 1,4. Чему равен угол преломления?

Соответствует ли это закону преломления света?

Ответ: да, если считать 1,4 округлением получаемого по закону преломления значения для данных углов:

Как изменится величина угла преломления, если увеличить показатель преломления (угол падения оставить прежним)?

Ответ: с увеличением показателя преломления величина угла преломления уменьшается .

При каком показателе преломления не будет наблюдаться явление преломления?

Что можно сказать об оптической плотности этих сред?

Корпускулярная теория очень просто объясняла явления геометрической оптики, описываемые в терминах распространения световых лучей. С точки зрения волновой теории, лучи — это нормали к фронту волны. Принцип Гюйгенса также позволяет объяснить законы геометрической оптики на основе волновых представлений о природе света.

Закон отражения

Когда световые волны достигают границы раздела двух сред, направление их распространения изменяется. Если они остаются в той же среде, то происходит отражение света.

Отражение света — это изменение направления световой волны при падении на границу раздела двух сред, в результате чего волна продолжает распространяться в первой среде.

Закон отражения света хорошо известен:

Падающий луч, перпендикуляр к границе раздела двух сред в точке падения и отраженный луч лежат в одной плоскости, причем угол падения равен углу отражения.

Направления распространения падающей и отраженной волн показаны на рис. 3.2.

Рис. 3.2. Отражение света от плоской поверхности

Закон отражения может быть выведен из принципа Гюйгенса. Действительно, допустим, что плоская волна, распространяющаяся в изотропной среде, падает на границу раздела двух сред АС (рис. 3.3).

Рис. 3.3. Применение принципа Гюйгенса к выводу закона отражения

Достаточно рассмотреть два параллельных луча I и в падающем пучке. Углом падения называют угол между нормалью п к поверхности раздела и падающим лучом I. Плоский фронт AD падающей волны сначала достигнет границы раздела двух сред в точке А, которая станет источником вторичных волн. Согласно принципу Гюйгенса, из нее, как из центра, будет распространяться сферическая волна. Через время

,

то есть с запаздыванием во времени на , луч из падающего пучка придет в точку С, которая в этот момент времени также станет источником вторичной волны. Но, к этому моменту вторичная сферическая волна, распространяющаяся из точки А, уже будет иметь радиус (как и должно быть: ). Мы знаем теперь положение двух точек фронта отраженной волны — С и В. Чтобы не загромождать рисунок, мы не показываем вторичных волн, испущенных точками между А и С, но линия CD будет касательной (огибающей) ко всем из них. Стало быть, действительно является фронтом отраженной волны. Направление ее распространения (лучи II и ) ортогонально фронту CD. Из равенства треугольников ABC и ADC вытекает равенство углов

что, в свою очередь, приводит к закону отражения

На рис. 3.4 представлена интерактивная модель отражения света.

Рис. 3.4. Изучение закона отражения света

Закон преломления

Если световые волны достигают границы раздела двух сред и проникают в другую среду, то направление их распространения также изменяется — происходит преломление света.

Преломление света — это изменение направления распространения световой волны при переходе из одной прозрачной среды в другую.

Направление распространения падающей и преломленной волны показано на рис. 3.5.

Рис. 3.5. Преломление света на плоской границе раздела двух прозрачных сред

Закон преломления гласит:

Падающий луч, перпендикуляр к границе раздела сред в точке падения и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления постоянно для данной пары сред и равно показателю преломления второй среды относительно первой

Здесь показатель преломления среды, в которой распространяется преломленная волна, показатель преломления среды, в которой распространяется падающая волна.

Закон отражения также вытекает из принципа Гюйгенса. Рассмотрим (рис. 3.6) плоскую волну (фронт АВ), которая распространяется в среде с показателем преломления , вдоль направления I со скоростью

Эта волна падает на границу раздела со средой, в которой показатель преломления равен , а скорость распространения

Рис. 3.6. К выводу закона преломления света с помощью принципа Гюйгенса

Время, затрачиваемое падающей волной для прохождения пути ВС, равно

За это же время фронт вторичной волны, возбуждаемой в точке А во второй среде, достигнет точек полусферы с радиусом

В соответствии с принципом Гюйгенса положение фронта преломленной волны в этот момент времени задается плоскостью DC, а направление ее распространения — лучом III, перпендикулярным к DC. Из треугольников и следует

Таким образом, закон преломления света записывается так:

На рис. 3.7 представлена интерактивная модель преломления света на границе раздела двух сред.

Рис. 3.7. Изучение закона преломления

Для еще одной иллюстрации применения принципа Гюйгенса рассмотрим пример.

Пример. На плоскую границу раздела двух сред падает нормально луч света. Показатель преломления среды непрерывно увеличивается от ее левого края к правому (рис. 3.8). Определим, как будет идти луч света в этой неоднородной среде.

Рис. 3.8. Искривление луча света в неоднородной среде

Пусть фронт волны АА подошел к границе раздела сред. Точки раздела сред можно рассматривать как центры вторичных волн. Через время испущенные вторичные сферические волны достигают точек на расстоянии от фронта АА. Поскольку показатель преломления среды растет слева направо, эти расстояния убывают слева направо. Огибающая к вторичным волнам — новый фронт ВВ — повернется. Если теперь взять точки фронта ВВ за источники вторичных волн, то за время они породят волны, образующие фронт СС. Он еще более повернут. Его точки порождают фронт DD и т. д. Проводя нормаль к волновым фронтам в разные моменты времени, получаем путь светового луча в среде с переменным показателем преломления (зеленая линия). Видно, что луч искривляется в сторону увеличения показателя преломления. Аналогия: если притормозить левые колеса автомобиля, его повернет налево. Для света степень «торможения» растет с ростом показателя преломления среды: .

Эта задача имеет отношение к явлению, наблюдающемуся на море. Когда ветер дует с берега, иногда возникает так называемая «зона молчания»: звук колокола с судна не достигает берега. Обычно говорят, что звук относится ветром. Но даже при сильном урагане скорость ветра примерно в 10 раз меньше скорости звука, так что «отнести» звук ветер никак не может. Объяснение заключается в том, что скорость встречного ветра у поверхности моря вследствие трения меньше, чем на высоте. Поэтому скорость звука у поверхности больше, и линия распространения звука загибается кверху, не попадая на берег.

http://www.nvtc.ee/e-oppe/Sidorova/objects/index.html – Законы преломления, отражения света. Зеркала. Теория и примеры задач. В «Итоговых заданиях» — кроссворд.

http://publ.lib.ru/ARCHIVES/B/. – Тарасов Л.В., Тарасова А.Н., «Беседы о преломлении света».

Принцип Ферма.

Итак, волновая оптика способна объяснить явления отражения и преломления света столь же успешно, как и геометрическая оптика. В основу последней, трактующей явления на основе законов распространения лучей, положен принцип Ферма:

Свет распространяется по такому пути, для прохождения которого требуется минимальное время.

Для прохождения участка пути свету требуется время

где v=с/п — скорость света в среде. Таким образом, время t, затрачиваемое светом на путь от точки 1 до точки 2, равно

Введем величину с размерностью длины, которая называется оптической длиной пути:

Пропорциональность t и L позволяет сформулировать принцип Ферма следующим образом:

Свет распространяется по такому пути, оптическая длина которого минимальна.

Рассмотрим путь света из точки S в точку С после отражения от плоскости АВ (рис. 3.9).

Рис. 3.9. Применение принципа Ферма к отражению света

Непосредственное попадание света из S в С невозможно из-за экрана. Нам надо найти точку О, отразившись в которой луч попадет в точку С. Среда, в которой проходит луч, однородна. Поэтому минимальность оптической длины пути сводится к минимальности его геометрической длины. Рассмотрим зеркальное изображение S’ точки S. Геометрические длины путей SOC и S’OC равны. Поэтому минимальность длины SOC эквивалентна минимальности длины S’OC. А минимальная геометрическая длина пути из S’ в С будет соответствовать прямой, соединяющей точки S’ и С. Пересечение этой прямой с плоскостью раздела сред дает положение точки О. Отсюда следует равенство углов:

то есть закон отражения света.

Рассмотрим теперь явление преломления света (рис. 3.10).

Рис. 3.10. Применение принципа Ферма к преломлению света

Определим положение точки О, в которой должен преломиться луч, распространяясь от S к С, чтобы оптическая длина пути L была минимальна. Выражение для L имеет вид

Найдем величину х, соответствующую экстремуму оптической длины пути:

Преломление с точки зрения волновой теории

Ясно теперь для тебя, что с поверхности тел непрерывно

Тонкие ткани вещей и фигуры их тонкие льются. Значит, подобным путем непременно и призраки могут

Неизмеримую даль пробегать во мгновение ока. Призраки эти вещей, о каких говорю я, несутся Всюду, и мчатся они, разлетаясь по всем направленьям. Но оттого, что смотреть мы одними глазами способны, И происходит, что там лишь, куда обращаем мы взоры, Может по ним ударять и окраска и форма предметов.

— Вот что мы читаем в поэме Лукреция Кара «О природе вещей» (книга IV) — поэтическом назидании философам-эпикурейцам, написанном в I в. до н. э. Приведенные здесь строки содержат наметки корпускулярной теории света, порожденные мощным воображением поэта и в то же время изложенные в истинно научном духе. Но эти стихи можно назвать научным постулатом все-таки не в большей мере, чем другие древние предположения о природе света. Здесь нет и тени попытки определить явление количественно — главной черты объективного подхода. В самом деле, здесь чрезвычайно трудно отделить субъективное ощущение света от физического явления и усмотреть возможность измерения последнего.

Возникновение учения об оптике можно отнести к временам Декарта. Его книга «Диоптрики» (1638 г.) содержит фундаментальные законы распространения света, законы отражения и преломления. Первый из них был известен еще древним, а второй был установлен экспериментально Снеллом незадолго до появления книги Декарта (примерно в 1618 г.). Декарт выдвинул идею эфира как переносчика света; эта идея стала предшественницей волновой теории. Первые догадки о ней принадлежат Роберту Гуку (1667 г.), а первая отчетливая формулировка — Христиану Гюйгенсу (1678 г.). Их великий современник, Ньютон, который был несколько моложе их, считается автором противоположной доктрины — корпускулярной теории. Прежде чем описать борьбу между этими конкурирующими теориями, мы грубо очертим суть каждой из них.

Корпускулярная теория утверждает, что светящиеся тела излучают мельчайшие частицы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. Волновая теория, с другой стороны, устанавливает аналогию между распространением света и движением волн на поверхности воды или звуковых волн в воздухе. Для этого в ней предполагается существование упругой среды, которая заполняет все прозрачные тела; эта среда и есть световой эфир. Отдельные частицы этого вещества просто колеблются относительно своего равновесного положения. То, что движется в виде световой волны,

Представляет собой состояние движения частиц, а не движение частиц самих по себе. На фиг. 47 изображен этот процесс для ряда точек, которые колеблются вверх — вниз относительно среднего положения. Каждая горизонтальная линия на этой диаграмме соответствует некоторому моменту времени, скажем, . Каждая отдельная точка колеблется в вертикальном направлении. Все вместе точки создают картину волны, которая перемещается вправо от одного момента времени к другому.

Фиг. 47. Волна, движущаяся вправо.

Против такой волновой теории существует одно важное возражение. Как известно, волны обтекают препятствия. Легко видеть, как это происходит с волнами на поверхности воды или со звуковыми волнами, когда они «поворачивают за угол». Однако луч света распространяется по прямой. Если на пути света поместить непрозрачное тело с резкой гранью, то его тень будет иметь резкую границу.

Именно этот факт склонил Ньютона к отказу от волновой теории. Он не отдал предпочтения какой-нибудь определенной гипотезе, но лишь просто указал, что свет представляет собой нечто, что распространяется от светящегося тела «подобно излучаемым частицам». Однако его последователи истолковали это мнение так, как будто Ньютон отдал предпочтение корпускулярной теории, а авторитет его имени завоевал признание для этой теории на целое столетие. Однако в это время Гримальди уже открыл (его результат был опубликован посмертно в 1665 г.), что свет может также и «огибать углы». На границах резких теней можно видеть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов; это явление было названо дифракцией света. Именно это открытие сделало Гюйгенса ревностным сторонником волновой теории. Первым и самым главным аргументом в пользу этой теории он считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде, тогда как между пучками излученных частиц с необходимостью возникали бы столкновения или по крайней мере какого-либо рода возмущения. На базе волновой теории Гюйгенс успешно объяснил отражение и преломление света.

Он опирался на принцип, носящий теперь его имя и состоящий в том, что каждую точку, достигаемую световой волной, следует рассматривать как источник новой сферической световой волны. Отсюда вытекает фундаментальное различие между корпускулярной и волновой теориями — различие, которое в дальнейшем привело к окончательному экспериментальному решению в пользу последней.

Известно, что распространяющийся в воздухе луч света, падая на граничную поверхность более плотного тела, например стекла или воды, искривляется или преломляется так, что его направление приобретает более крутой наклон к граничной поверхности (фиг. 48).

Фиг. 48. Изменение направления луча света при переходе из воздуха в стекло.

Фиг. 49. Преломление луча света при переходе из воздуха в стекло с точки зрения волновой теории.

Корпускулярная теория объясняет этот факт на основе предположения, что частицы света испытывают притяжение со стороны более плотной среды в тот момент, когда достигают ее границы. Таким путем они ускоряются, приобретая импульс в направлении, перпендикулярном к граничной поверхности, и, следовательно, оказываются отклоненными ближе к нормали. Отсюда вытекает, что в более плотной среде они должны двигаться быстрее, чем в менее плотной.

Рассуждения Гюйгенса на базе волновой теории строятся на совершенно противоположном предположении (фиг. 49). Когда световая волна падает на граничную поверхность, она возбуждает элементарные волны в каждой точке границы. Если в более плотной среде эти элементарные волны распространяются медленнее, то плоскость, касательная ко всем таким сферическим волнам и представляющая, согласно Гюйгенсу, преломленную волну, оказывается отклоненной в правильном направлении.

Гюйгенс также объяснил двойное преломление в исландском шпате, открытое Эразмом Бартолинусом в 1669 г. Он исходил

из волновой теории и предположения, что свет может распространяться в кристалле с двумя различными скоростями таким образом, что одна элементарная волна представляет собой сферу, а другая — эллипсоид вращения.

Фиг. 50. Цепочка материальных точек. В состоянии равновесия расстояние между точками равно

Фиг. 51. Продольное волнообразное движение цепочки, изображенной на фиг. 50. Каждая точка совершает периодическое движение вокруг своего положения равновесия с периодом Между колебаниями различных точек существует временной сдвиг. Состояние цепочки, например максимум (сплошная наклонная прямая) и минимум (пунктирная наклонная прямая) плотности, распространяется вправо со скоростью

Двойное преломление означает, что луч света, падающий, например, на пластинку прозрачного шпата, расщепляется на два луча. Гюйгенс обнаружил, что эти два луча отличаются друг от друга и от естественного света. Это можно продемонстрировать с помощью другой пластинки из шпата. Если один луч выходит из первой пластинки и падает на вторую перпендикулярно, то из второй выходят

два луча. Интенсивность этих последних меняется по мере того, как кристалл поворачивают вокруг оси, совпадающей с направлением падающего луча. В определенном положении интенсивность одного луча может стать даже нулевой (отсутствие двойного преломления). Итак, лучи, расщепленные при двойном преломлении, обнаруживают ориентационные свойства, не наблюдаемые у естественного света. Ньютон отмечал (1717 г.), что не все направления вокруг луча света эквивалентны. Он истолковывал это как аргумент против волновой теории, так как в его время были известны лишь волны сжатия и разрежения (подобные звуковым волнам), в которых частицы колеблются «продольно» — в направлении распространения волны (фиг. 50 и 51). В этом случае, очевидно, ни одна ориентация, перпендикулярная к направлению распространения, не может быть предпочтительной.

Преломление с точки зрения волновой теории

Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части:

  • геометрическая или лучевая оптика , в основе которой лежит представление о световых лучах;
  • волновая оптика , изучающая явления, в которых проявляются волновые свойства света;
  • квантовая оптика , изучающая взаимодействие света с веществом, при котором проявляются корпускулярные свойства света.

В настоящей главе рассматриваются две первые части оптики. Корпускулярные свойства света будут рассматриваться в гл. V.

Геометрическая оптика

3.1. Основные законы геометрической оптики

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при . Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости ( плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом в 1621 г.

Постоянную величину называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света в вакууме к скорости света υ в среде:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Рисунок 3.1.1.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол αпр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения ; значение .

Если второй средой является воздух (), то формулу удобно переписать в виде
где – абсолютный показатель преломления первой среды.

Для границы раздела стекло–воздух () критический угол равен , для границы вода–воздух () .

Рисунок 3.1.2.

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

Как волновая теория объясняет законы отражения и преломления света?

С помощью принципа Гюйгенса можно объяснить и преломление света на границе раздела двух прозрачных сред, если скорость света в этих средах различна.

Рассмотрим случай, когда плоская волна падает под углом на границу раздела двух сред.

Согласно принципу Гюйгенса, каждая точка этой границы сама становится источником сферических волн, причем эти волны распространяются в обе стороны от границы раздела (рис. 22.7).

Волны, идущие во вторую среду, формируют преломленную плоскую волну, а волны, возвращающиеся в первую среду, формируют отраженную плоскую волну.

Таким образом, принцип Гюйгенса убедительно объясняет, почему наряду с преломлением света всегда присутствует и отражение света.

Используя несложные геометрические построения, можно доказать, что фронт отраженной волны образует такой же угол с плоскостью раздела двух сред, что и фронт падающей волны.

Отсюда следует уже знакомый вам закон отражения: угол отражения равен углу падения.

Рассмотрим теперь преломленную волну.

Предположим, что скорость света во второй среде меньше, чем в первой (на рис. 22.8 изображен как раз такой случай). Мы видим, что при этом фронт падающей волны составляет больший угол с поверхностью раздела сред, чем фронт преломленной волны. Поскольку фронт волны перпендикулярен направлению распространения света, углы между фронтом каждой волны и поверхностью раздела сред равны соответственно углам падения и преломления. Значит, в данном случае угол преломления меньше угла падения.

Расчеты показывают, что отношение синусов этих углов равно отношению скорости света в первой среде к скорости света во второй среде. А так как для двух данных сред это отношение постоянно, отсюда следует уже знакомый вам закон преломления: отношение синусов углов падения и преломления постоянно.

Итак, волновая теория света не только объясняет законы отражения и преломления света, но и раскрывает физический смысл показателя преломления: он равен отношению скорости света в вакууме к скорости света в данной среде:

Таким образом, законы геометрической оптики являются следствиями волновой теории света, когда длина световой волны намного меньше размеров препятствий.

Тема 7. ГЕОМЕТРИЧЕСКАЯ ОПТИКА. ТЕОРИЯ СВЕТА

7.1 Оптика и ее виды

7.2 Геометрическая оптика

7.3 Развитие взглядов на природу света

7.1 Оптика и ее виды

Оптика – (от греч. optike – наука о зрительных восприятиях) –

раздел физики , в котором изучаются оптическое излучение (свет), его распространение и явления , наблюдаемые при взаимодействии

света и вещества.

Используя представление о световых лучах как о линиях, вдоль которых распространяется энергия света, на основе электромагнитной теории света (уравнений Максвелла) удается получить простые правила поведения лучей, справедливые в предельном случае исчезающей малой длины волны.

Оптическое излучение представляет собой электромагнитные волны, и поэтому оптика – часть общего учения об электромагнитном поле.

Оптический диапазон длин волн λ ограничен, с одной стороны, рентгеновскими лучами, а с другой – микроволновым диапазоном радиоизлучения. Такое ограничение условно и в значительной степени определяется общностью технических средств и методов исследования явлений в указанном диапазоне.

По традиции оптику принято подразделять на геометрическую , физическую и физиологическую.

Геометрическая оптика , не рассматривая вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах, отражающихся и преломляющихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде.

Наибольшее значение геометрическая оптика имеет для расчета и конструирования оптических приборов – от очковых линз до сложных объективов и огромных астрономических инструментов.

Физическая оптика рассматривает проблемы, связанные с процессами испускания света, природой света и световых явлений.

Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики. Для понимания более сложных явлений нужна физическая оптика . Физическая оптика позволяет установить границы применимости законов геометрической оптики. Без знания этих границ формальное применение законов геометрической оптики может привести к результатам, противоречащим опыту.

Физиологическая оптика изучает строение и функционирование всего аппарата зрения – от глаза до коры мозга; разрабатывается теория зрения, восприятия света и цвета.

Результаты физиологической оптики используются в медицине, физиологии, технике при разработке разнообразных устройств – от осветительных приборов и очков до цветного кино и телевидения.

7.2 Геометрическая оптика

Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птолемей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось.

Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю.

Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики.

В основу формального построения геометрической оптики положено четыре закона , установленных опытным путем:

• закон прямолинейного распространения света;

• закон независимости световых лучей;

• закон преломления света.

Для анализа этих законов Х. Гюйгенс предложил простой и наглядный метод, названный впоследствии принципом Гюйгенса .

Каждая точка, до которой доходит световое возбуждение, является , в свою очередь, центром вторичных волн ; поверхность, огибающая в некоторый момент времени эти вторичные волны, указыва-

ет положение к этому моменту фронта действительно распространяющейся волны.

Гюйгенс Христиан нидерландский ученый. Вгг. работал в Париже. Изобрел (1657) маятниковые часы со спусковым механизмом, дал их теорию, установил законы колебаний физического маятника. Опубликовал в 1690 г. созданную им в 1678 г. волновую теорию света, объяснил двойное лучепреломление. Усовершенствовал телескоп; сконструировал окуляр, названный его именем. Открыл кольцо у Сатурна и его спутник Титан. Автор одного из первых трудов по теории вероятностей (1657 г.).

Основываясь на своем методе, Гюйгенс объяснил прямолиней-

ность распространения света и вывел законы отражения и преломления .

Закон прямолинейного распространения света :

• свет в оптически однородной среде распространяется прямолинейно .

Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров.

Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах.

Рис 7.1 Астрономической иллюстрацией прямолинейного распростране-

ния света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны , когда Луна попадает в тень Земли (рис. 7.1). Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько частных фаз (рис. 7.2).

Закон независимости световых пучков :

• эффект, производимый отдельным пучком, не зависит от того , действуют ли одновременно остальные пучки или они устранены.

Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.

Закон отражения (рис. 7.3):

• отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром , проведенным к границе раздела двух сред в точке падения ;

• угол падения α равен углу отражения γ: α = γ

Для вывода закона отражения воспользуемся принципом Гюйгенса. Предположим, что плоская волна (фронт волны АВ ), распространяющаяся в вакууме вдоль направления I со скоростью с , падает на границу раздела двух сред (рис. 7.4). Когда фронт волны АВ достигнет отражающей поверхности в точке А , эта точка начнет излучать вторич-

• Для прохождения волной расстояния ВС требуется время t = BC/υ. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υ t = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает за-

кон отражения : угол падения α равен углу отражения γ .

Закон преломления ( закон Снелиуса ) (рис. 7.5):

• луч падающий, луч преломленный и перпендикуляр, проведенный

к границе раздела в точке падения, лежат в одной плоскости;

• отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.

Вывод закона преломления. Предположим,

что плоская волна

(фронт волны АВ ), распространяющаяся в вакууме вдоль направления I со скоростью с , падает на границу раздела со средой, в которой скорость ее распространения равна υ (рис. 7.6).

Пусть время, затрачиваемое волной для прохождения пути ВС , равно t . Тогда ВС = с t. За это же время фронт волны, возбуждаемой точкой А в среде со скоростью υ , достигнет точек полусферы, радиус которой AD = υ t. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения – лучом III . Из рис. 7.6 видно, что

АС = ВС / sinα = AD / sin β, т.е. c t / sin α = υ t / sin β.

Отсюда следует закон Снелиуса :

sin sin β α = c υ = n .

Несколько иная формулировка закона распространения света была дана французским математиком и физиком П. Ферма.

Ферма Пьер – французский математик и физик. Родился вПолучил юридическое образование. С 1631 г. был советником парламента в Тулузе.

Физические исследования относятся большей частью к оптике, где он установил в 1662 г. основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов.

Согласно принципу Ферма , свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время .

Покажем применение этого принципа к решению той же задачи о преломлении света.

Луч от источника света S , расположенного в вакууме идет до точки В , расположенной в некоторой среде за границей раздела (рис. 7.7).

В каждой среде кратчайшим путем будут прямые SA и AB . Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB :

Для нахождения минимума найдем первую производную от τ по х и

приравняем ее к нулю:

2υ h 2 + ( l − x ) 2

отсюда приходим к тому же выражению, что получено исходя из прин- sin sin β α = c υ .

Принцип Ферма сохранил свое значение до наших дней и послужил основой для общей формулировки законов механики (в том числе теории относительности и квантовой механики).

Из принципа Ферма вытекает несколько следствий.

Обратимость световых лучей : если обратить луч III (рис. 7.7),

заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I .

Другой пример – мираж , который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, но ко-

гда приходят туда, кругом оказывается песок. Сущность в том, что мы видим в этом случае свет, прошедший над песком. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. Поэтому свет проходит не по прямой, а по траектории с наименьшим временем, заворачивая в теплые слои воздуха.

Если свет распространяется из среды с большим показателем преломления n 1 (оптически более плотной) в среду с меньшим пока-

зателем преломления n 2 (оптически менее плотной) ( n 1 > n 2 ) , напри-

мер из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α (рис. 7.8 а ) .

С увеличением угла падения увеличивается угол преломления (рис. 7.8 б , в ), до тех пор, пока при некотором угле падения ( α = α пр )

угол преломления не окажется равным π/2.

Угол α пр называется предельным углом . При углах падения α > α пр весь падающий свет полностью отражается (рис. 7.8 г ) .

• По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.

• Если α = α пр , то интенсивность преломленного луча обращается

в нуль, а интенсивность отраженного равна интенсивности падающего

• Таким образом , при углах падения в пределах от α пр до π/2 , луч

не преломляется , а полностью отражается в первую среду , причем интенсивности отраженного и падающего лучей одинаковы. Это яв-

ление называется полным отражением.

Предельный угол α пр определим из формулы: n 1 sin α = n 2 sin π/ 2 ;

α пр = arcsin n 2 . n 1

Явление полного отражения используется в призмах полного отражения (Рис. 7.9).

Показатель преломления стекла равен n ≈ 1,5, поэтому предельный угол для границы стекло – воздух α пр = arcsin (1/1,5) = 42°.

При падении света на границу стекло – воздух при α > 42° всегда будет иметь место полное отражение.

На рис. 7.9 показаны призмы полного отражения, позволяющие: а) повернуть луч на 90°; б) повернуть изображение; в) обернуть лучи.

Призмы полного отражения применяются в оптических при-

борах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя α пр , определяем относительный показатель прелом-

ления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).

Явление полного отражения используется также в световодах , представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.

В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом – оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углам больше предельного , претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.

Световоды используются при создании кабелей большой емкости . Кабель состоит из сотен и тысяч оптических волокон тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров.

Кроме того, световоды используются в оптоволоконных элек- трубках, вмашинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики.

7.3. Развитие взглядов на природу света

Первые представления о природе света , возникшие у древних греков и египтян, в дальнейшем, по мере изобретения и усовершенствования различных оптических приборов, развивались и трансформировались.

В средние века стали известны эмпирические правила построения изображений, даваемых линзами. В 1590 г. З. Янсен построил первый микроскоп, в 1609 г. Г. Галилей изобрел телескоп. Количественный закон преломления света при прохождении границы раздела двух сред установил в 1620 г. В. Снеллиус. Математическая запись этого закона в виде sin α/ sin β = const , принадлежит Р. Декарту (1637 г.) Он же попы-

тался объяснить этот закон исходя из корпускулярной теории . Впоследствии формулировкой принципа Ферма (1660 г.) был завершен фундамент построения геометрической оптики.

Дальнейшее развитие оптики связано с открытиями дифракции и интерференции света (Ф. Гримальди, 1665 г.), двойного лучепреломле-

ния (Э. Бартолин, 1669 г.) и с работами И. Ньютона, Р. Гука, Х. Гюйгенса.

В конце XVII века на основе многовекового опыта и развития представлений о свете возникли две мощные теории света – корпускулярная (Ньютон – Декарт) и волновая (Гук – Гюйгенс).

Корпускулярные воззрения на природу света И. Ньютон развил в стройную теорию истечения. Свет – корпускулы , испускаемые телами и летящие с огромной скоростью. К анализу движения световых корпускул Ньютон, естественно, применил сформулированные им законы механики. Из этих представлений он легко вывел законы отражения и преломления света (рис. 7.11):

Однако из рассуждений Ньютона следовало,

что скорость света в

веществе больше скорости света в вакууме :

Кроме того, в 1666 г. Ньютон показал, что белый свет является составным и содержит «чистые цвета», каждый из которых характеризуется своей преломляемостью (рис. 7.12), т.е. дал понятие дисперсии света. Эта особенность была объяснена различием масс корпускул.

В то же время в XVII в. (наряду с концепцией Декарта – Ньютона) развивалась противоположная, волновая теория Гука – Гюйгенса о том, что свет есть процесс распространения продольных деформаций

в некоторой среде , пронизывающей все тело , – в мировом эфире .

К концу XVII в. в оптике сложилось весьма своеобразное положение. И та и другая теории объясняли основные оптические закономерности: прямолинейность распространения, законы отражения и преломления. Дальнейшие попытки более полного объяснения наблюдаемых фактов приводили к затруднению в обеих теориях.

Гюйгенс не смог объяснить физической причины наличия различных цветов и механизм изменения скорости распространения света в эфире, пронизывающем различные среды.

Ньютону трудно было объяснить, почему при падении на границу двух сред происходит частичное и отражение, и преломление, а также интерференцию и дисперсию света. Однако огромный авторитет Ньютона и незавершенность волновой теории привели к тому, что весь XVIII в. прошел под знаком корпускулярной теории.

Начало XIX в. характеризуется интенсивным развитием математической теории колебаний и волн и ее приложением к объяснению ряда

оптических явлений. В связи с работами Т. Юнга и О. Френеля победа временно перешла к волновой оптике .

• 1801 г. Т. Юнг формулирует принцип интерференции и объяснет цвета тонких пленок.

• 1818 г. О. Френель объясняет явление дифракции.

• 1840 г. О. Френель и Д. Арго исследуют интерференцию поляризованного света и доказывают поперечность световых колебаний.

• 1841 г. О. Френель строит теорию кристаллооптических колеба-

• 1849 г. А. Физо измерил скорость света и рассчитал по волновой теории коэффициент преломления воды n = 1,33 , что совпало с экспе-

• 1848 г. М. Фарадей открыл вращение плоскости поляризации света в магнитном поле (эффект Фарадея).

• 1860 г. Дж. Максвелл, основываясь на открытии Фарадея, пришел к выводу, что свет есть электромагнитные волны, а не упругие.

• 1888 г. Г. Герц экспериментально подтвердил, что электромагнитное поле распространяется со скоростью света с .

• 1899 г. П.Н. Лебедев измерил давление света.

Казалось, что спор полностью решен в пользу волновой теории света, так как в середине XIX в. были обнаружены факты, указывающие на связь и аналогию оптических и электрических явлений. Фарадеем, Максвеллом и другими учеными было показано, что свет – частный случай электромагнитной волны с λ = 400 ÷ 760 нм. Только этот интервал длин волн оказывает воздействие на наш глаз и является собственно светом. Но и более длинные и более короткие волны имеют одну и ту же природу, что и свет.

Однако, несмотря на огромные успехи в электромагнитной теории света, к концу XIX в. начали накапливаться новые факты, противоречащие волновой теории света. Волновая теория не смогла объяснить распределение энергии в спектре излучения абсолютно черного тела и явление фотоэффекта, которое в 1890 г. исследовал А.Г. Столетов.

В 1900 г. Макс Планк показал, что излучение абсолютно черного тела можно объяснить, если предложить, что свет излучается не непрерывно, а порциями, квантами с энергией E 0 = h ν, где ν – частота, h –

Макс Планк С 1874 г. он изучал физику у Густава Кирхгофа и Германа Гельмгольца в Мюнхенском университете. В 1930 г. Макс Планк возглавил Институт физики Кайзера Вильгельма (теперь Институт Макса Планка) и занимал этот пост до конца жизни. В 1900 г. в работе, посвященной равновесному тепловому излучению, Планк впервые ввел предположение о том, что энергия осциллятора принимает дискретные значения, пропорциональные частоте колебаний, чем положил начало квантовой физики. Также Макс Планк

внес большой вклад в развитие термодинамики.

В 1905 г. Альберт Эйнштейн объяснил закономерности фотоэффекта на основе представления о световых частицах – « квантах » света, « фотонах », масса которых

m ф = E c 2 0 = h c ν 2 = λ h c .

Это соотношение связывает корпускулярные характеристики излу-

чения , массу и энергию кванта , с волновыми – частотой и длиной волны .

Работы Планка и Эйнштейна явились началом развития квантовой физики .

Итак, обе теории – и волновая, и квантовая – одновременно развивались, имея свои несомненные достоинства и недостатки, и как бы дополняли друг друга. Ученые уже начали приходить к мнению, что свет является одновременно и волнами, и корпускулами. И вот в 1922 г. А. Комптон окончательно доказал, что рентгеновские электромагнитные волны – одновременно и корпускулы (фотоны, кванты), и волны.

Таким образом, длительный путь исследований привел к современ-

ным представлениям о двойственнойприроде

Интерес к оптическим явлениям понятен. Около 80 % информации об окружающем мире человек получает через зрение. Оптические явления всегда наглядны и поддаются количественному анализу. Очень многие основополагающие понятия, такие как интерференция, дифракция, поляризация и др., в настоящее время широко используются в областях, далеких от оптики, благодаря их предметной наглядности и точности теоретических представлений.

Примерно до середины XX столетия казалось, что оптика, как наука, закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях.

Наиболее важное событие в современной оптике – экспериментальное обнаружение методов генерации вынужденного излучения атомов и молекул – создание оптического квантового генератора (лазера) (А.М. Прохоров, Н.Г. Басов и Ч. Таунс, 1954 г.).

В современной физической оптике квантовые представления не противоречат волновым, а сочетаются на основе квантовой механики и квантовой электродинамики.

Источники:

Популярные записи