Меню Рубрики

Предел членения системы с точки зрения решения конкретной задачи называется

Основными понятиями являются: система; сложная система; структура; элемент и др.

Система — структурно-организованный комплекс объектов, находящихся во взаимосвязи и взаимодействии, объединенных единством отношений и связи, обусловливающих выполнение определенной сложной функции, являются продуктами этой структуры.

Элемент — простейшая неделимая часть системы; это предел членения системы с точки зрения решения конкретной задачи и достижения поставленной цели. Понятие элемент является относительным даже применительно к одной системе и зависит от задач и целей исследования.

Подсистема: система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы, которые являются компонентами более крупными, чем элементы, но более детальными чем сама система; т.е. это совокупность взаимосвязанных элементов, способных выполнять относительно независимые функции, направленные на достижение общей цели системы. Н-р: система городского транспорта состоит из отдельных подсистем (троллейбусные, автобусные сообщения и т.д.)

Важным качеством систем является наличие в них интегративных свойств, т.е. свойств, не выводимых из известных свойств ее элементов. Это свойство называется эмерджентностью, т.е. система начинает обладать свойствами, которыми не обладают ее элементы.

В силу эмерджентности системы нельзя ограничиваться изучением ее элементов и связей между ними, необходим целостный анализ этой системы.

Структура – строение, расположение, порядок, это совокупность элементов и связи между ними, их группами (подсистемы). Она отражает наиболее существенные взаимоотношения между элементами, которые мало меняются при изменениях в системе и обеспечивают существование системы и ее основных свойств.

Структура представляется в виде теоретико-множественных описаний, матриц, графов и других языков моделирования. Структуру часто представляют в виде иерархии, т.е. упорядоченности компонентов по степени важности. Между уровнями иерархической структуры могут существовать взаимоотношения строгого подчинения компонентов нижележащего уровня к компонентам вышележащего уровня или одновременного подчинения части элементов к компонентам вышележащего уровня.

Связь обеспечивает возникновение и сохранение структуры и целостных свойств системы. Характеризует одновременно строение (статику) и функционирование (динамику) системы. Связь характеризуется направлением, силой и характером. По этим признакам связи делятся на направленные, сильные и слабые, а по характеру связи на связи подчинения, генетические, равноправные, связи управления и т.д.

Сложной или большой системой называется иерархически организованная и целенаправленно функционирующая совокупность большого числа информационно связанных и взаимодействующих элементов, построенная для выполнения многоцелевой задачи.

Часть ученых, подчеркивая материальность систем, относили к ней только совокупность объектов и предметов. Другие ученые трактовали систему как отображение материального мира в сознании исследователя, т.е. подчеркивали нематериальность системы.

Обобщенным является понятие (Большая Советская Энциклопедия): «Система это объективное единство закономерно связанных друг с другом предметов, явлений, а так же знаний о природе и обществе», т.е. понятие система можно применять как к материально реализованным предметам, так и к знаниям об этих предметах; т.е. объективное и диалектическое единство понятия системы.

1.4 Классификация систем

Системы по различным признакам, сферам применения и целям исследования делятся на различные классы:

— по обусловленности действия существуют детерминированные и стохастические системы. В детерминированной системе элементы взаимодействуют точно предвиденным образом (ЭВМ). Поведение стохастической системы можно предсказать лишь с некоторой вероятностью (мозг);

— по происхождению различают системы естественные (в ходе естественной эволюции) и в целом неподверженные влиянию человека (клетка) и искусственные (созданные под действием человека, обусловленные его интересами и целями) это машины, ЭВМ;

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Читайте также:

  1. I. СУЩНОСТЬ И СТРУКТУРА ПС
  2. I.СУЩНОСТЬ И СТРУКТУРА ПС
  3. II. Структура та характеристики ринку інформаційних послуг США
  4. III. Господарський комплекс національної економіки І його структура_ 1 85
  5. III. Многомерная организационная структура
  6. III. ПОРЯДОК ФОРМИРОВАНИЯ И СТРУКТУРА СТУДЕНЧЕСКОГО СОВЕТА
  7. III.1. Последовательная структура управления
  8. III.2. Условная структура управления
  9. IV. ЯЗЫК КАК СИСТЕМА И СТРУКТУРА
  10. VI. Простейшее «определение», его назначение и структура
  11. Административная структура
  12. Алгебраическая структура

Цель

Связи

Элемент. Подсистема

Элемент – простейшая, неделимая часть системы; предел расчленения системы с точки зрения решения конкретной задачи по исследованию системы или с точки зрения достижения поставленной цели.

Систему можно разбить на элементы различными способами в зависимости от формулировки задачи, цели и от их уточнения в процессе проведения системного исследования. Сложные системы принято делить на подсистемы или на компоненты.

Подсистема – относительно независимая часть системы, обладающая свойствами системы, имеющая подцель, на достижение которой ориентирована подсистема, а также другими свойствами, определяемыми закономерностями систем. Если часть системы не обладает такими свойствами, а представляет собой просто совокупность однородных элементов, то такую часть называют компонентом. Разделение системы на подсистемы также зависит от задачи и цели исследования.

Связи – ограничения степени свободы элементов.

Элементы, вступая во взаимодействие между собой, утрачивают часть своих свойств, которыми они обладали в свободном состоянии. Иногда используется термин «отношение» в качестве синонима связи. Связи характеризуются следующими признаками:

1) направленность: направленные и ненаправленные связи

2) сила: сильные и слабые связи (иногда используют шкалу для определения силы связей)

3) характер или вид: связи подчинения, порождения (генетические), управления, равноправные (безразличные).

Связи в конкретных системах могут иметь сразу несколько признаков.

Схема обратной связи:

Здесь – управляющее воздействие; – требуемое значение выходного сигнала; – отклонение сигнала от требуемого; – изменение величины управляющего воздействия; – фактический результат.

Понятие обратной связи трудно проиллюстрировать на примере организационных систем. Обратная связь может быть положительной и отрицательной. Положительная сохраняет тенденции измерения того или иного выходного параметра, в то время как отрицательная направлена на противодействие таким изменениям, то есть на сохранение, стабилизацию требуемого значения выходного параметра. Обратная связь является основой саморегулирования, развития систем, приспособления их к изменяющимся условиям существования.

Понятие цели, а также связанные с ним понятия целесообразности, целенаправленности лежат в основе развития систем. В зависимости от степени познания конкретного объекта, системы в понятие «цель» вкладывают разный смысл: от идеальных устремлений (возможно, принципиально недостижимых, но являющихся ориентиром) до конкретных целей – конечных результатов, достижимых в пределах некоторого интервала времени. Иногда такие цели формулируются в терминах конечного продукта деятельности.

Модель «черный ящик»:

Система может быть представлена простым перечислением её элементов или моделью «чёрного ящика» (входы/выходы), но зачастую такого представления системы недостаточно; тогда вводят понятие структуры. Структура отражает определённые взаимосвязи, взаимные расположения составных частей системы, её устройство (строение). В сложных системах структура может включать не все элементы и связи между ними, а только наиболее существенные из них, то есть те, которые мало меняются в процессе функционирования системы и обеспечивают существование системы и её основных свойств.

Таким образом, структура характеризует организованность системы, устойчивую порядочность её элементов связи. Структурные связи обладают относительной независимостью от элементов и могут выступать как инвариант при переходе одной системы к другой, перенося закономерности, выявленные и отражённые в структуре одной из систем на другие. При этом системы могут иметь различную физическую природу. Одна и та же система может быть представлена различными структурами в зависимости от стадии познания объектов или процессов, от цели исследования. При этом по мере развития исследований или в ходе проектирования системы её структура может изменяться (детализироваться либо принимать принципиально новую форму). Структуры, особенно иерархические, могут помочь в раскрытии неопределённости сложных систем.

Читайте также:  Когда может восстановится зрение после потери

Дата добавления: 2014-12-07 ; Просмотров: 507 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Понятия, характеризующие строение, функционирование и развитие систем

Обыденная трактовка рассмотренных ниже понятий (элемент, связь и др.) не всегда совпадает с их значением как специальных терминов системного описания и анализа объектов. Поэтому кратко рассмотрим основные понятия, помогающие уточнять представление о системе.

Обычно принято делить понятия на две группы (рис. 1.3): 1) понятия, входящие в определения системы и характеризующие ее строение; 2) понятия, характеризующие функционирование и развитие системы.

Рис. 1.3

Понятия, характеризующие строение системы

Понятия, входящие в определение системы, тесно связаны между собой и, по мнению Л. фон Берталанфи, не могут быть определены независимо, а определяются, как правило, одно через другое, уточняя друг друга, и поэтому принятую здесь последовательность их изложения следует считать условной.

Элемент. Под элементом принято понимать простейшую, неделимую часть системы. Однако ответ на вопрос, что является такой частью, может быть неоднозначным.

Пример

В качестве элементов стола можно назвать «ножки, ящики, крышку и т.д.», а можно – «атомы, молекулы», в зависимости от того, какая задача стоит перед исследователем.

Аналогично в системе управления предприятием элементами можно считать подразделения аппарата управления, а можно – каждого сотрудника или каждую операцию, которую он выполняет. С непониманием этой проблемы была связана типичная ошибка при обследовании существующей системы управления как первой стадии разработки АСУ: инженеры в соответствии со своим подходом обеспечения полноты подвергали анализу все документы, вплоть до реквизитов, что существенно затягивало работу, в то время как для разработки технического задания на создание АСУП такой детализации не требовалось.

Поэтому примем следующее определение: элементэто предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели.

Для помощи в выделении элементов при анализе конкретных проблемных ситуаций можно, как показано в гл. 3, использовать информационный подход, и в частности, меру информации восприятия J = А/ΔА, где ДА – минимальное количество материального свойства А (квант), с точностью до которого исследователя интересует информация об этом свойстве при формировании модели. Примеры использования этого способа определения элементной базы будут приведены в гл. 6–8 (в частности, при моделировании рыночной ситуации).

Систему можно расчленять на элементы различными способами в зависимости от формулировки задачи, цели и ее уточнения в процессе проведения системного исследования. При необходимости можно изменять принцип расчленения, выделять другие элементы и получать с помощью нового расчленения более адекватное представление об анализируемом объекте или проблемной ситуации.

Определяя элемент, пришлось употребить понятие цель, которое будет охарактеризовано ниже (понятия, входящие в определение системы, как было отмечено выше, не могут быть определены независимо друг от друга), поэтому была сделана попытка не использовать понятие цели, а поставить рядом с ним понятия аспекта рассмотрения, задачи, хотя точнее использовать понятие цель.

Компоненты и подсистемы. Иногда термин «элемент» используют в более широком смысле, даже в тех случаях, когда система не может быть сразу разделена на составляющие, являющиеся пределом ее членения. Однако при многоуровневом расчленении системы лучше использовать другие термины, предусмотренные в теории систем: сложные системы принято вначале делить на подсистемы, или на компоненты.

Понятие «подсистема» подразумевает, что выделяется относительно независимая часть системы, обладающая свойствами системы, и в частности, имеющая подцель, на достижение которой ориентирована подсистема, а также другие свойства – целостности, коммуникативности и т.п., определяемые закономерностями систем, рассматриваемыми в параграфе 1.6.

Если же части системы не обладают такими свойствами, а представляют собой просто совокупности однородных элементов, то такие части принято называть компонентами.

Расчленяя систему на подсистемы, следует иметь в виду, что так же, как и при расчленении на элементы, выделение подсистем зависит от цели и может меняться по мере ее уточнения и развития представлений исследователя об анализируемом объекте или проблемной ситуации.

Связь. Понятие «связь» входит в любое определение системы и обеспечивает возникновение и сохранение ее целостных свойств. Это понятие одновременно характеризует и строение (статику), и функционирование (динамику) системы.

Связь определяют как ограничение степени свободы элементов. Действительно, элементы, вступая во взаимодействие (связь) друг с другом, утрачивают часть своих свойств, которыми они потенциально обладали в свободном состоянии.

В определениях системы термины «связь» и «отношение» обычно используются как синонимы. Однако существуют разные точки зрения: одни исследователи считают связь частным случаем отношения; другие – напротив, отношение рассматривают как частный случай связи; третьи – предлагают понятие «связь» применять для описания статики системы, ее структуры, а понятием отношение характеризовать некоторые действия в процессе функционирования (динамики) системы. Не решен (и, видимо, вряд ли может быть решен в общем виде) вопрос о достаточности и полноте сети связей для того, чтобы систему можно было считать системой. Один из подходов к решению этой проблемы предлагается, например, В. И. Николаевым и В. М. Бруком [51], которые считают, что для того, чтобы система не распалась на части, необходимо обеспечить превышение суммарной силы (мощности) связей между элементами системы, т.е. внутренних связей, над суммарной мощностью связей между элементами системы и элементами среды, т.е. внешних связей:

(1.6)

К сожалению, на практике подобные измерения (особенно в организационных системах) трудно реализовать, однако можно оценивать тенденции изменения этого соотношения с помощью косвенных факторов.

Связи можно охарактеризовать направлением, силой, характером (или видом). По первому признаку связи делят на направленные и ненаправленные. По второму – на сильные и слабые (иногда пытаются ввести «шкалу» силы связей для конкретной задачи). По характеру (виду) различают связи подчинения, порождения (или генетические), равноправные (или безразличные), управления.

Связи в конкретных системах могут быть одновременно охарактеризованы несколькими из названных признаков.

Важную роль в моделировании систем играет понятие обратной связи, модели которой приведены в параграфе 2.6. Обратная связь является основой саморегулирования, развития систем, приспособления их к изменяющимся условиям существования.

Многоконтурные модели управления экономическими системами предлагались, например, в словаре-справочнике по математике и кибернетике в экономике [53]. При разработке моделей функционирования сложных саморегулирующихся, самоорганизующихся систем в них, как правило, одновременно присутствуют и отрицательные, и положительные обратные связи. На использовании этих понятий базируется, в частности, имитационное динамическое моделирование [88].

Цель. Понятие «цель» и связанные с ним понятия «целесообразность» и «целенаправленность» лежат в основе развития системы.

Изучению этих понятий большое внимание уделяется в философии, психологии, кибернетике.

Процесс целеобразования и соответствующий ему процесс обоснования целей в организационных системах весьма сложен. На протяжении всего периода развития философии и теории познания происходило развитие представлений о цели (с историей развития понятия «цель» можно познакомиться в книге М. Г. Макарова [52]).

Анализ определений цели и связанных с ней понятий показывает, что в зависимости от стадии познания объекта, этапа системного анализа, в понятие «цель» вкладывают различные оттенки (рис. 1.4) – от идеальных устремлений (цель – «выражение активности сознания» [52]; «человек и социальные системы вправе формулировать цели, достижение которых, как им заведомо известно, невозможно, но к которым можно непрерывно приближаться» [13]), до конкретных целей – конечных результатов, достижимых в пределах некоторого интервала времени, формулируемых иногда даже в терминах конечного продукта деятельности [66, 67].

В некоторых определениях цель как бы трансформируется, принимая различные оттенки в пределах условной «шкалы» – от иде-

альных устремлений к материальному воплощению, конечному результату деятельности.

Например, М. Г. Макаров [52], наряду с приведенным выше определением, целью называет «то, к чему стремится, чему поклоняется и за что борется человек» («борется» подразумевает достижимость в определенном интервале времени); Л. А. Растригин и П. С. Граве [30, 70], под целью понимают «модель желаемого будущего» (при этом в понятие «модель» можно вкладывать различные оттенки реализуемости) и, кроме того, вводится понятие, характеризующее разновидность цели, и кроме того, вводят понятие «мечта» – это цель, не обеспеченная средствами ее достижения» [30]. Противоречие, заключенное в понятии «цель» – необходимость быть побуждением к действию «опережающим отражением» (термин введен П. К. Анохиным), или «опережающей идеей», и одновременно материальным воплощением этой идеи, т.е. быть достижимой, – проявлялось с момента возникновения этого понятия: так, древнеиндийское понятие «артха» включало в себя одновременно значения терминов «мотив», «причина», «желание», «цель» и даже – «способ».

В русском языке вообще не было термина «цель». Этот термин заимствован из немецкого и имеет значение, близкое к понятиям «мишень», «финиш», «точка попадания». В английском языке есть несколько терминов, отражающих различные оттенки понятия цели, в пределах рассматриваемой «шкалы».

Пример

Purpose (цель – намерение, целеустремленность, воля), object и objective (цель – направление действия, направление движения), aim (цель – стремление, прицел, указание), goal (цель – место назначения, задача), target (цель – мишень для стрельбы, задание, план), end (цель – финиш, конец, окончание, предел).

Сущность диалектической трактовки понятия цели раскрывается в теории познания, в которой показывается взаимосвязь понятий цели, оценки, средства, целостности (и ее «самодвижения»).

Изучение взаимосвязи этих понятий показывает, что, в принципе, поведение одной и той же системы может быть описано и в терминах цели или целевых функционалов, связывающих цели со средствами их достижения (такое представление называют аксиологическим (53]), и без упоминания понятия цели, в терминах непосредственного влияния одних элементов или описывающих их параметров на другие, в терминах «пространства состояний» (или каузально [53]). Поэтому одна и та же ситуация в зависимости от склонности и предшествующего опыта исследователя может быть представлена тем или иным способом. В большинстве практических ситуаций лучше понять и описать состояние системы и ее будущее позволяет сочетание этих представлений.

Читайте также:  Испорченное зрение из за плохого освещения

Для того чтобы отразить диалектическое противоречие, заключенное в понятии «цель», в БСЭ дается следующее определение: цель – «заранее мыслимый результат сознательной деятельности человека, группы людей» [1] .

«Заранее мыслимый», но все же «результат», воплощение замысла; подчеркивается также, что понятие цели связано с человеком, его «сознательной деятельностью», т.е. с наличием сознания, а для характеристики целеустремленных, негэнтропийных тенденций на более низких ступенях развития материи принято использовать другие термины.

Рассмотренное понимание цели очень важно при организации процессов коллективного принятия решений в системах управления.

В реальных ситуациях необходимо оговаривать, в каком смысле на данном этапе рассмотрения системы используется понятие «цель», что в большей степени должно быть отражено в ее формулировке – идеальные устремления, которые помогут коллективу лиц, принимающих решение, увидеть перспективы, или реальные возможности, обеспечивающие своевременность завершения очередного этапа на пути к желаемому будущему.

Проведенный анализ определений понятия «цель» и графическая интерпретация «размытости» философских трактовок цели (см. рис. 1.4), стали важным шагом на пути к практической реализации процессов целеобразования.

В более поздних работах В. А. Чабровского, Г. М. Вапнэ, А. М. Гендина было выработано весьма полезное для практического применения представление о двух различных понятиях цели: «цель деятельности» (актуальная, конкретная цель) и бесконечная по содержанию «цель – стремление» (цель – идеал, потенциальная цель) [20]; предложена концепция анализа процесса формулирования и структуризации целей с позиций диалектической логики и высказана идея о единстве цели, средства (варианта) ее достижения и критерия оценки.

Структура. Система может быть представлена, как уже отмечалось, простым перечислением элементов или черным ящиком (моделью «вход – выход»). Однако чаще всего при исследовании объекта такого представления недостаточно, так как требуется выяснить, что собой представляет объект, что в нем обеспечивает выполнение поставленной цели, получение требуемых результатов. В этих случаях систему отображают путем расчленения на подсистемы, компоненты, элементы с взаимосвязями, которые могут носить различный характер, и вводят понятие «структура».

Структура (от лат. «structure», означающего строение, расположение, порядок) отражает «определенные взаимосвязи, взаиморасположение составных частей системы, ее устройство, строение» [2] .

При этом в сложных системах структура включает не все элементы и связи между ними (в предельном случае, когда пытаются применить понятие структуры к простым, полностью детерминированным объектам, понятия структуры и системы совпадают), а лишь наиболее существенные компоненты и связи, которые мало меняются при текущем функционировании системы и обеспечивают существование системы и ее основных свойств. Иными словами, структура характеризует организованность системы, устойчивую упорядоченность элементов и связей.

Структурные связи обладают относительной независимостью от элементов и могут выступать как инвариант при переходе от одной системы к другой, перенося закономерности, выявленные и отраженные в структуре одной из них, на другие. При этом системы могут иметь различную физическую природу.

Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания. При этом по мере развития исследований или в ходе проектирования структура системы может изменяться.

Структуры, особенно иерархические, как показано ниже, могут помочь в раскрытии неопределенности сложных систем. Иными словами, структурные представления систем являются средством их исследования.

В связи с этим полезно выделить определенные виды (классы) структур и исследовать их, что подробнее рассмотрено в параграфе 1.3.

Элементы, компоненты, подсистемы

Под элементом принято понимать простейшую, неделимую часть системы. Однако ответ на вопрос, что является такой частью, может быть неоднозначным.

Например, в качестве элементов стола можно назвать «ножки, ящики, крышку и т. д.», а можно – «атомы, молекулы», в зависимости от того, какая задача стоит перед исследователем: изучить конструкцию или химический состав стола.

Аналогично в системе управления предприятием (СУП) элементами можно считать подразделения аппарата управления, цеха, участки, а можно – каждого сотрудника, рабочего или каждую операцию, которую он выполняет.

Обратим внимание на то, что элементы могут быть неоднородными.

Иными словами, систему можно расчленять на элементы различными способами, и это зависит от решаемой задачи, т. е.:

Элемент – это предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели.

При необходимости можно изменять принцип расчленения, выделять другие элементы и получать с помощью нового расчленения более адекватное представление об анализируемом объекте или проблемной ситуации.

Иногда система не может быть сразу разделена на составляющие, являющиеся пределом ее членения, т. е. на элементы.

В таких случаях используют другие термины, предусмотренные в теории систем: подсистемы, компоненты.

Понятие подсистема подразумевает, что выделяется относительно независимая часть системы, обладающая свойствами системы, и, в частности, имеющая подцель, на достижение которой ориентирована подсистема, а также другие свойства – свойство целостности, коммуникативности и т. п., определяемые закономерностями систем, рассматриваемыми ниже.

Если же части системы не обладают такими свойствами, а представляют собой просто совокупности однородных элементов, то такие части принято называть компонентами.

Расчленяя систему на подсистемы, следует иметь ввиду, что так же, как и при расчленении на элементы, выделение подсистем зависит от цели и может меняться по мере ее уточнения и развития представлений исследователя об анализируемом объекте или проблемной ситуации.

Связь.

Понятие «связь» входит в любое определение системы и обеспечивает возникновение и сохранение ее целостных свойств. Это понятие одновременно характеризует и строение (статику) и функционирование (динамику) систем. Связь определяют как ограничение степени свободы элементов. Действительно, элементы, вступая во взаимодействие (связь) друг с другом, утрачивают часть своих свойств, которыми они потенциально обладали в свободном состоянии.

Сколько должно быть связей и какие они должны быть для того, чтобы систему можно было считать системой ?

Один из подходов к решению этой проблемы предлагается, например, Николаевым (см. В. И. Николаев, В. М. Брук. Системотехника: методы и приложения. Л., Машиностроение, 1985), который считает, что для того, чтобы система не распалась на части, необходимо обеспечить превышение суммарной силы (мощности) связей между элементами системы, т. е. внутренних связей, над суммарной мощностью связей между элементами системы и элементами среды, т. е. внешних связей.

Связи можно охарактеризовать направлением, силой, характером (видом). По первому признаку связи делят на направленные и ненаправленные. По второму – на сильные и слабые (иногда пытаются ввести «шкалу» силы связей для конкретной задачи). По характеру (виду) различают связи подчинения, связи порождения (или генетические), равноправные (или безразличные) и связи управления.

Связи в конкретных системах могут быть одновременно охарактеризованы несколькими из названных признаков.

Важную роль в моделировании систем играет понятие обратной связи (ОС), которая является основой кибернетических моделей управления, саморегулирования, развития систем, приспособления их к изменяющимся условиям существования.

ОС может быть положительной, сохраняющей тенденции происходящих в системе изменений того или иного выходного параметра, и отрицательной – противодействующей тенденциям изменения выходного параметра, т. е. направленной на сохранение, стабилизацию требуемого значения параметра (например, стабилизацию выходного напряжения или, в системах организационного управления, — количества выпускаемой продукции и т. п.).

Блок системы, реализующий ОС, на основе рассогласования между требуемым и фактическим значениями регулируемого параметра, вырабатывает соответствующее управляющее воздействие, корректирующее закон (программу) управления работой системы.

Цель.

Понятие цель и связанные с ним понятия целесообразности, целенаправленности лежат в основе развития системы.

Процесс целеобразования и соответствующий ему процесс обоснования целей в организационных системах весьма сложен. На протяжении всего периода развития философии и теории познания происходило развитие представлений о цели.

Анализ определений цели и связанных с ней понятий показывает, что в зависимости от стадий познания объекта, этапа системного анализа, в понятие «цель» вкладывают различные оттенки – от идеальных устремлений (Макаров: цель – «выражение активности сознания»; Акофф, Эмери: «человек и социальные системы вправе формулировать цели, достижение которых, как им заведомо известно, невозможно, но к которым можно непрерывно приближаться») до конкретных целей – конкретных результатов, достижимых в пределах некоторого интервала времени, формулируемых иногда даже в терминах конечного продукта деятельности.

В некоторых определениях цель как бы трансформируется, принимая различные оттенки в пределах условной «шкалы» — от идеальных устремлений к материальному воплощению, конечному результату деятельности: цель – «то, к чему стремится, чему поклоняется и за что борется человек» («борется» подразумевает достижимость) – см. Макаров. Категория цель в философии. М., Наука, 1974.

Рижские ученые кибернетик Растригин и врач – психиатр Граве под целью понимают «модель желаемого будущего» (при этом в понятие «модель» можно вкладывать различные оттенки – от идеальных устремлений до конечного результата), и вводят понятие мечты как разновидности цели:

«мечта – это цель, не обеспеченная средствами ее достижения». Противоречие, заключенное в понятии «цель», — необходимость быть побуждением к действию, «опережающим отражением» (термин введен Анохиным) или «опережающей идеей», и одновременно материальным воплощением этой идеи, т. е. быть достижимой, проявляясь с момента возникновения этого понятия: так, древнеиндийское «артха» означало одновременно «мотив», «причину», «желание», «цель» и даже «способ».

Для того чтобы отразить диалектическое противоречие, заключенное в понятии «цель», в большой Советской Энциклопедии дается следующее определение:

цель – «заранее мыслимый результат сознательной деятельности человека, группы людей».

Не нашли то, что искали? Воспользуйтесь поиском:

Общая теория систем и другие науки о системах

Сам фон Берталанфи считал, что следующие научные дисциплины имеют (отчасти) общие цели или методы с теорией систем:

Читайте также:  С точки зрения аристотеля к хрематистике относилась функция денег

Кибернетика, — наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество.

Теория информации — раздел прикладной математики, аксиоматически определяющий понятие информации, её свойства и устанавливающий предельные соотношения для систем передачи данных.

Теория игр, анализирующая в рамках особого математического аппарата рациональную конкуренцию двух или более противодействующих сил с целью достижения максимального выигрыша и минимального проигрыша.

Теория принятия решений, анализирующая рациональные выборы внутри человеческих организаций.

Топология, включающая неметрические области, такие, как теория сетей и теория графов.

Факторный анализ, то есть процедуры выделения факторов в многопеременных явлениях в социологии и других научных областях.

Рисунок 1.1 — Структура системологии

Общая теория систем в узком смысле, пытающаяся вывести из общих определений понятия «система», ряд понятий, характерных для организованных целых, таких как взаимодействие, сумма, механизация, централизация, конкуренция, финальность и т. д., и применяющая их к конкретным явлениям.

Прикладные науки о системах

Принято выделять коррелят теории систем в различных прикладных науках, именующимися иногда науками о системах, или системной наукой (англ. Systems Science). В прикладных науках о системах выделяются следующие области:

Системотехника (англ. Systems Engineering), то есть научное планирование, проектирование, оценку и конструирование систем «человек — машина».

Исследование операций (англ. Operations research), то есть научное управление существующими системами людей, машин, материалов, денег и т. д.

Инженерная психология (англ. Human Engineering).

Теория полевого поведения Курта Левина.

СМД-методология, разрабатывавшаяся в Московском Методологическом Кружке Г. П. Щедровицким, его учениками и сотрудниками.

Теория интегральной индивидуальности Вольфа Мерлина, основанная на теории Берталанфи.

Отраслевые теории систем (специфические знания о различных видах системах) (примеры: теория механизмов и машин, теория надёжности

Систе́ма (от др.-греч. σύστημα — целое, составленное из частей; соединение) — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

По Бертрану Расселлу: «Множество есть совокупность различных элементов, мыслимая как единое целое»

Система — совокупность элементов, находящихся во взаимосвязи

и взаимоотношениях между собой, и образующих определенное един-

Свойство системы определяется не только и не сколько элемен-

тов ее составляющих сколько характером взаимосвязи между ними.

Для систем характерна взаимосвязь с окружающей средой, по отноше-

нию к которой система проявляет свою целостность. Для обеспече-

ния целостности необходимо чтобы система имела четкие границы.

Для систем характерна иерархическая структура, т.е. каждый

элемент системы является в свою очередь системой, также как и лю-

бая система является элементом системы более высокого уровня.

Категории определяющие строение системы

Элемент – предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели.[3]

Связь – ограничение степени свободы элементов. Характеризуются направлением (направленные, ненаправленные), силой (сильные, слабые), характером (подчинения, порождения, равноправные, управления).

Структура отражает определенные взаимосвязи, взаимное расположение составных частей системы, ее устройство (строение).

Понятия характеризующие функционирование и развитие системы:

Состояние – мгновенная фотография, «срез» системы, остановка ее в развитии.

Поведение – способ переходить из одного состояния в другое.(стр.30)

Равновесие – способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях ) сохранять свое состояние сколь угодно долго.

Устойчивость – способность системы возвращаться в состояние равновесия после того как она была выведена внешними (внутренними при наличии в системе активных элементов) возмущающими воздействиями.

Развитие — процесс, направленный на изменение материальных и духовных объектов с целью их усовершенствования.

Под развитием обычно понимают:

увеличение сложности системы;

улучшение приспособленности к внешним условиям (например, развитие организма);

увеличение масштабов явления (например, развитие вредной привычки, стихийного бедствия);

количественный рост экономики и качественное улучшение её структуры;

MT1400: Общая теория систем

Понятия, входящие в определение системы, тесно связаны между собой и, по мнению Л. фон Берталанфи, не могут быть определены независимо, а определяются, как правило, одно через другое, уточняя друг друга, и поэтому принятую здесь последовательность их изложения следует считать условной.

Элемент. Под элементом принято понимать простейшую, неделимую часть системы. Однако ответ на вопрос, что является такой частью, может быть неоднозначным.

В качестве элементов стола можно назвать «ножки, ящики, крышку и т.д.», а можно — «атомы, молекулы», в зависимости от того, какая задача стоит перед исследователем.

Аналогично в системе управления предприятием элементами можно считать подразделения аппарата управления, а можно — каждого сотрудника или каждую операцию, которую он выполняет.

Поэтому примем следующее определение: элемент —это предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели.

Для помощи в выделении элементов при анализе конкретных проблемных ситуаций можно, как показано в гл. 3, использовать информационный подход, и в частности, меру информации восприятия %%J = A/A>%%, где %%A>%% — минимальное количество материального свойства %%A%% (квант), с точностью до которого исследователя интересует информация об этом свойстве при формировании модели.

Систему можно расчленять на элементы различными способами в зависимости от формулировки задачи, цели и ее уточнения в процессе проведения системного исследования. При необходимости можно изменять принцип расчленения, выделять другие элементы и получать с помощью нового расчленения более адекватное представление об анализируемом объекте или проблемной ситуации.

Компоненты и подсистемы. Иногда термин «элемент» используют в более широком смысле, даже в тех случаях, когда система не может быть сразу разделена на составляющие, являющиеся пределом ее членения. Однако при многоуровневом расчленении системы лучше использовать другие термины, предусмотренные в теории систем: сложные системы принято вначале делить на подсистемы, или на компоненты.

Понятие «подсистема» подразумевает, что выделяется относительно независимая часть системы, обладающая свойствами системы, и в частности, имеющая подцель, на достижение которой ориентирована подсистема, а также другие свойства — целостности, коммуникативности и т.п., определяемые закономерностями систем, рассматриваемыми в параграфе 1.6.

Если же части системы не обладают такими свойствами, а представляют собой просто совокупности однородных элементов, то такие части принято называть компонентами.

Связь. Понятие «связь» входит в любое определение системы и обеспечивает возникновение и сохранение ее целостных свойств. Это понятие одновременно характеризует и строение (статику), и функционирование (динамику) системы.

Связь определяют как ограничение степени свободы элементов. Действительно, элементы, вступая во взаимодействие (связь) друг с другом, утрачивают часть своих свойств, которыми они потенциально обладали в свободном состоянии.

Связи можно охарактеризовать направлением, силой, характером (или видом). По первому признаку связи делят на направленные и ненаправленные. По второму — на сильные и слабые (иногда пытаются ввести «шкалу» силы связей для конкретной задачи). По характеру (виду) различают связи подчинения, порождения (или генетические), равноправные (или безразличные), управления.

Связи в конкретных системах могут быть одновременно охарактеризованы несколькими из названных признаков.

Важную роль в моделировании систем играет понятие обратной связи, модели которой приведены в параграфе 2.6. Обратная связь является основой саморегулирования, развития систем, утствуют и отрицательные, и положительные обратные связи. На использовании этих понятий базируется, в частности, имитационное динамическое моделирование.

Цель. Понятие «цель» и связанные с ним понятия «целесообразность» и «целенаправленность» лежат в основе развития системы. Изучению этих понятий большое внимание уделяется в философии, психологии, кибернетике.

Анализ определений цели и связанных с ней понятий показывает, что в зависимости от стадии познания объекта, этапа системного анализа, в понятие «цель» вкладывают различные оттенки (рис. 1.3) — от идеальных устремлений (цель — «выражение активности сознания»; «человек и социальные системы вправе формулировать цели, достижение которых, как им заведомо известно, невозможно, но к которым можно непрерывно приближаться»), до конкретных целей — конечных результатов, достижимых в пределах некоторого интервала времени, формулируемых иногда даже в терминах конечного продукта деятельности.

В некоторых определениях цель как бы трансформируется, принимая различные оттенки в пределах условной «шкалы» — от идеальных устремлений к материальному воплощению, конечному результату деятельности.

В русском языке вообще не было термина «цель». Этот термин заимствован из немецкого и имеет значение, близкое к понятиям «мишень», «финиш», «точка попадания». В английском языке есть несколько терминов, отражающих различные оттенки понятия цели, в пределах рассматриваемой «шкалы».

Сущность диалектической трактовки понятия цели раскрывается в теории познания, в которой показывается взаимосвязь понятий цели, оценки, средства, целостности.

Чтобы отразить диалектическое противоречие, заключенное в понятии «цель», в БСЭ дается следующее определение: цель — _«заранее мыслимый результат тропийных тенденций на более низких ступенях развития материи принято использовать другие термины.

Рассмотренное понимание цели очень важно при организации процессов коллективного принятия решений в системах управления.

Структура. Система может быть представлена, как уже отмечалось, простым перечислением элементов или черным ящиком (моделью «вход — выход»). Однако чаще всего при исследовании объекта такого представления недостаточно, так как требуется выяснить, что собой представляет объект, что в нем обеспечивает выполнение поставленной цели, получение требуемых результатов. В этих случаях систему отображают путем расчленения на подсистемы, компоненты, элементы с взаимосвязями, которые могут носить различный характер, и вводят понятие «структура».

Структура (от лат. «structure», означающего строение, расположение, порядок) отражает «определенные взаимосвязи, взаиморасположение составных частей системы, ее устройство, строение».

Структурные связи обладают относительной независимостью от элементов и могут выступать как инвариант при переходе от одной системы к другой, перенося закономерности, выявленные и отраженные в структуре одной из них, на другие. При этом системы могут иметь различную физическую природу.

Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания. При этом по мере развития исследований или в ходе проектирования структура системы может изменяться.

Источники:
  • http://studopedia.su/13_82671_struktura.html
  • http://studme.org/98087/informatika/ponyatiya_harakterizuyuschie_stroenie_funktsionirovanie_razvitie_sistem
  • http://studopedia.ru/9_83496_elementi-komponenti-podsistemi.html
  • http://studfiles.net/preview/5352709/
  • http://it.rfei.ru/course/~HJ8b/~1./~ZVaHJG3a