Меню Рубрики

Под углом зрения 60 она кажется оранжевой

Пользователи

2 сообщений
Откуда: Нижний Новгород
Кто: Студент
Возраст: 26

Помогите,пожалуйста с задачей.

На тонкую пленку скипидара падает белый свет. Под углом зрения 600 она кажется оранжевой в отраженном свете. Каким будет казаться цвет пленки в отраженном свете при вдвое меньшем угле зрения?

Модераторы

1729 сообщений
Откуда: Тайга

Если рассуждать логически, то длина волны увеличится, а так как после оранжевого цвета в видимом спектре только красный цвет, то

он и будет. Но я думаю, что если точно посчитать, то попадём в инфракрасную волну.

Если ни то, ни другое, ни третье не помогает, прочтите, наконец инструкцию.

Контрольная «1»,
Физика

Эта работа успешно выполнена на онлайн-сервисе помощи студентам «Всё сдал!».

  • Задание
  • Обсуждение

Напряженность магнитного поля в центре витка радиусом r=8 cv равна Н= 30 А/м. Определить напреженность поля а) на оси витка в точке расположенной на расстояние d=6см от его центра б) в центре витка если ему придать форму квадрата не изменяя тока в нем. 2)Колебательный контур состоит из конденсатора ёмкостью С=2.22*10 в (минус9 степени) Ф и однослойной катушки намотаной из медной проволоки и диаметром =5см. Найдите логарифмический декремент затухания колебаний. 3)На тонкую пленку скипидара(n=1.48) падает белый свет. Под углом зрения 60 градусов она кажется оранжевой (лямда=0.625 мкм) в отраженном свете .Каким будет казаться цвет пленки в отраженом свете при вдвое меньшем угле зрения? 4)Длина волны, на которую приходится максимум энергии излучения абсолютно черного тела лямдаmax=0.6мкм. Определить температуру тела. 5)Определить кинетическую потенциальную и полную энергии электрона на орбите радиусом 5.28*10(в минус 11) 6)Вычислите удельную энергию связи нуклонов в ядре атома гелия 2He(4сверху) 7)Материальная точка движется по окружности радиуса R=2м согласно уравнению S=7+3t+?0.06t?^3(длина в метрах, время в секундах). Найти скорость, тангенциальное , нормальное и полное ускорение в момент времени t=3c 8)Груз массой 100кг перемещают равноускоренно по горизонтальной плоскости прилагая силу 200Н направленную под углом 30 градусов к горизонту. С каким ускорением движется тело , если коэфицент трения 0.1? Начальная скорость =0 9)Платформа имеющая форму диска может вращаться около вертикальной оси. На краю платформы стоит человек. На каой угол ? повернется платформа если человек пойдет вдоль края платформы и обойдя ее вернется в исходную точку? Масса платформы m1=240кг, масса человека m2=60кг(в момент инерции человека рассчитать как для материальной точки). 10)Определить кинетическую энергию протона при скорости 0.8 световой единицы по классическим и релятивистким законом. Масса покоя протона 1.67*10(-27степени)кг. 11)Написать уравнение гармонического колебания если амплитуда колебания равна 10 см, а период полного колебания 10с. Начальная фаза?_0=?/2 12)Определить массу mi одной молекулы воды. 13)Найти среднию кинетическую энергию вращательного движения одной молекулы водорода, а также суммарную кинетическую энергию U всех молекул в одном киломоле водорода при температуре 17 градусов. 14)При изотермическом расширении водорода массой 1г обьем газа увеличился в два раза. Определить работу расширения совершенную газом если температура газа t=15 град. Определить теплоту Q переданную при этом газу. 15)Найти постоянные уравнения Ван-дер-Ваальса для азота, если tкр азота равна – 146, Ркр =33 атм.

Это место для переписки тет-а-тет между заказчиком и исполнителем.
Войдите в личный кабинет (авторизуйтесь на сайте) или зарегистрируйтесь, чтобы
получить доступ ко всем возможностям сайта.

КОНТРОЛЬНАЯ РАБОТА № 5

1. Найти длину волны света, освещающего установку в опыте Юнга, если при помещении на пути одного из интерферирующих лучей стеклянной пластинки (n = 1,52) толщиной 3 мкм картина интерференции на экране смещается на три светлые полосы.

2. Найти положение пятой светлой полосы в опыте Юнга (т. е. её расстояние от центра интерференционной картины), если угловое расстояние между соседними светлыми полосами 3×10 -4 рад, и экран удалён от мнимых источников на 1,5 м.

3. Два когерентных источника, расстояние между которыми 0,2 мм, расположены от экрана на 1,5 м. Найти длину световой волны если третий минимум интерференции расположен на экране на расстоянии 12,6 мм от центра картины.

4. Найти угловое расстояние второго минимума на экране в опыте Юнга, если экран удалён от когерентных источников на 1 м, а пятый максимум расположен на расстоянии 2 мм от центра интерференционной картины.

5. Расстояние двух когерентных источников до экрана 1,5 м, расстояние между ними 0,18 мм. Сколько светлых полос поместится на отрезке длиной 1 см, считая от центра картины, если длина волны света λ = 0,6 мкм?

6. Найти расстояние между третьим и пятым минимумами на экране, если расстояние двух когерентных источников (λ = 0,6 мкм) от экрана 2 м, расстояние между источниками 0,2 мм.

7. На тонкую плёнку скипидара (n = 1,48) падает белый свет. Под углом зрения 60° она кажется оранжевой (λ = 0,625 мкм) в отражённом свете. Каким будет казаться цвет плёнки в отражённом свете при вдвое меньшем угле зрения?

8. Найти наименьший угол падения монохроматического света (λ = 0,5 мкм) на мыльную плёнку (n = 1,3) толщиной 0,1 мкм, находящуюся в воздухе, при котором плёнка в проходящем свете кажется тёмной.

9. На тонкую мыльную плёнку (n = 1,3) толщиной 1,25 мкм падает нормально монохроматический свет. В отражённом свете плёнка кажется светлой. Какой минимальной толщины надо взять тонкую плёнку скипидара (n = 1,48), чтобы она в этих же условиях казалась тёмной?

10. На тонкий стеклянный клин (n = 1,52) с углом 5′ падает нормально пучок монохроматического света длиной волны λ= 0,591 мкм. Сколько тёмных полос приходится на 1 см клина?

11. Найти наименьший радиус круглого отверстия на экране, если при освещении его плоской монохроматической волной в центре дифракционной картины наблюдается тёмное пятно, а радиус третьей зоны Френеля 2 мм?

12. Определить отношение площадей зон и разность радиусов пятой и шестой зон Френеля для плоского волнового фронта с длиной волны 0,5 мкм, если экран расположен на расстоянии 1 м от фронта волны.

13. На круглое отверстие радиусом 2 мм падает плоская монохроматическая волна. Найти длину волны света, освещающего отверстие, если в нём укладывается пять зон Френеля и из точки наблюдения оно видно под углом 5′.

14. На непрозрачную пластинку с щелью падает нормально плоская волна (λ = 0,585 мкм). Найти ширину щели, если угол отклонения лучей, соответствующих второму максимуму, 17°.

15. На щель шириной 0,1 мм падает нормально параллельный пучок белого света (0,4 ¸ 0,8 мкм). Найти ширину третьего максимума на экране, отстоящем от щели на 2 м.

16. На дифракционную решётку, содержащую 600 штрихов на 1 мм, падает нормально монохроматический свет с длиной волны λ = 0,546 мкм. Определить изменение угла отклонения лучей второго дифракционного максимума, если взять решётку со 100 штрихами на 1 мм.

17. Найти период дифракционной решётки, если в направлении α = 35° совпадают две линии неона: ярко-красная и зеленая (λ = 0,640 и 0,533 мкм).

18. Какую разность длин волн может разрешить дифракционная решётка с периодом 2,7 мкм шириной 1,5 см в спектре третьего порядка для зеленых лучей ( λ = 0,5 мкм)?

19. Монохроматический свет с длиной волны λ = 0,5750 мкм падает нормально на дифракционную решётку с периодом 2,4 мкм. Определить наибольший порядок спектра и общее число главных максимумов в дифракционной картине.

20. Постоянная дифракционной решётки равна 2,8 мкм. Определить наибольший порядок спектра для красной линии с длиной волны 7×10 -7 м, общее число главных максимумов и угол отклонения последнего максимума для полученной дифракционной картины.

21. Свет, падая из стекла в жидкость, частично отражается, частично преломляется. Отражённый луч полностью поляризован при угле преломления 45°46′. Чему равны показатель преломления жидкости и скорость распространения света в ней? Показатель преломления стекла n = 1,52.

22. Естественный свет падает на диэлектрик под углом полной поляризации. Найти показатель преломления диэлектрика, если интенсивность преломленного луча составляет 91,7% интенсивности естественного света.

23. Найти степень поляризации преломленного луча, если интенсивность отражённого луча составляет 9,6% интенсивности естественного света, падающего на диэлектрик под углом полной поляризации.

24. Определить показатель преломления алмаза, погруженного в воду (n = 1,33), если степень поляризации отражённого луча 100%, интенсивность преломленного луча составляет 85,6% интенсивности естественного света. Найти степень поляризации преломленного луча.

25. Интенсивность естественного света, прошедшего через поляроид, уменьшилась в 4,5 раза. Во сколько раз она уменьшится, если второй такой же поляриод поставить за первым так, чтобы угол между плоскостями поляризации их был 50°? Коэффициент поглощения света в обоих поляризациях одинаковый.

26. Найти угол между плоскостями поляризации двух поляроидов, если интенсивность света, прошедшего оба поляриода, уменьшилась в 6,5 раз. Коэффициент поглощения света в поляроидах 0,3.

27. Угол между плоскостями поляризации двух поляроидов 35°. Как изменится интенсивность прошедшего через них света, если этот угол увеличить вдвое?

28. Пластинка из исландского шпата, вырезанная параллельно оптической оси, помещена между параллельными николями так, что её оптическая ось составляет угол 45° с главными направлениями николей. Найти толщину пластинки, если одна линия натрия (λ = 0,589 мкм) сильно ослаблена, а другая (λ = 0,498 мкм) максимально усилена. Двупреломление для этих линий Δn1 = 0,172 и Δn2 = 0,176.

29. Пластинка из кварца, вырезанная параллельно оптической оси, расположена между скрещенными николями так, что её оптическая ось составляет угол 45° с главными направлениями николей. Сколько тёмных полос будет наблюдаться в спектре между длинами волн 0,527 и 0,431 мкм, если толщина пластинки 2 мм? Система освещается белым светом. Двупреломление для этих длин волн Δn1= 0,09 и Δn2 = 0,01.

30. Между скрещенными николями установлена кристаллическая пластинка толщиной 0,01 мм с двупреломлением 0,06. В какой цвет будет окрашено поле зрения? В какой цвет оно окрасится, если николи поставить параллельно?

31. α-частица движется в среде с показателем преломления n = 1,4, имея кинетическую энергию 1800 МэВ. Наблюдается ли в этих условиях черенковское свечение?

32. Дейтрон движется в среде с показателем преломления n = 1,33 с постоянной скоростью. При каком значении кинетической энергии будет наблюдаться черенковское свечение?

33. Какую ускоряющую разность потенциалов должен пройти электрон в сероуглероде (n = 1,64), чтобы наблюдалось черенковское свечение?

34. Электрон движется с постоянной скоростью в среде с показателем преломления n = 1,5. При какой кинетической энергии электрона возникает черенковское излучение?

35. Для каких частиц черенковское излучение при движении их в среде с показателем преломления n = 1,6 возникает тогда, когда их кинетическая энергия превышает 263 МэВ?

36. Отдалённая туманность имеет скорость 0,4×с (отдалённые космические объекты движутся от нас) Какая длина волны света будет наблюдаться в спектре излучения от этой туманности, если в лабораторной системе эта длина волны равна λ= 0,41 мкм?

37. Какова средняя скорость пучка водородных каналовых лучей, если при наблюдении вдоль пучка линии водорода (λ = 0,434 мкм) она оказалась смещенной на Δλ = 3 нм?

38. Найти максимальное доплеровское смещение для линии водорода (λ = 0,434 мкм), излучаемой движущимися атомами водорода с кинетической энергии 6 МэВ.

39. При наблюдении линии водорода (λ = 0,434 мкм) в спектре излучения туманности установили, что она сдвинута и имеет длину волны λ = 0,4460 мкм. В каком направлении и с какой скоростью относительно Земли движется эта туманность? Чему равно “красное смещение” для этой линии водорода?

40. Самолёт приближается к антенне радиолокатора, работающего на частоте 10 10 Гц, со скоростью 3600 км/ч. Определить разность частот, принимаемого на борту самолёта и излучаемого локатором сигнала.

41. Коэффициент линейного поглощения вещества 0,3 м -1 . Определить толщину слоя этого вещества, ослабляющего интенсивность монохроматического света в четыре раза.

42. Найти коэффициент линейного поглощения вещества, для которого толщина половинного слоя ослабления интенсивности света 3,46 м.

43. Необходимо установить толщину слоя вещества, ослабляющего интенсивность монохроматического света в два раза. Коэффициент линейного поглощения данного вещества 0,69 м -1 .

44. Перед пучком лучей установлена преграда, уменьшающая интенсивность света. Коэффициент линейного поглощения вещества равен 0,25 м -1 . Во сколько раз уменьшится интенсивность света при прохождении слоя вещества толщиной 2,77 м?

45. Два защитных слоя одинаковой толщины ослабляют интенсивность монохроматического пучка лучей. Первый слой ослабляет интенсивность лучей в два раза при коэффициенте поглощения 0,05 см -1 . Второй слой ослабляет интенсивность в пять раз. Каков коэффициент линейного поглощения этого слоя?

46. Определить установившуюся температуру абсолютно чёрной пластины, находящейся в вакууме перпендикулярно потоку лучистой энергии, равному 1,4×10 3 Вт/м 2 . Определить, на какую длину волны приходится максимум спектральной плотности энергетической светимости при данной температуре.

47. Какая энергия излучается за 1 мин с 1 см 2 абсолютно чёрного тела, если максимум спектральной плотности энергетической светимости приходится на длину волны λ = 0,6 мкм?

48. При какой температуре максимум спектральной плотности энергетической светимости абсолютно чёрного тела приходится на длину волны λ = 0,642 мкм. Найти энергетическую светимость абсолютно чёрного тела при данной температуре.

49. Найти энергетическую яркость абсолютно чёрного тела, если максимум спектральной плотности энергетической светимости приходится на длину волны λ = 0,5 мкм.

50. При нагревании тела длина волны, на которую приходится максимум излучательной способности, изменилась от λ1 = 1,45 до λ2 = 1,16 мкм. На сколько изменилась максимальная спектральная плотность энергетической светимости тела?

51. Температура в центре Солнца порядка 1,3×10 7 К. Найти равновесное давление теплового излучения, считая его изотропным.

52. Найти относительное изменение давления равновесного теплового излучения при увеличении его температуры вдвое.

53. Найти первоначальную температуру равновесного теплового излучения, если при повышении температуры вдвое давление изменилось на 7,3 МПа.

54. На зеркальную поверхность площадью 0,8 м 2 нормально падает 14×10 18 квантов в секунду. Найти длину волны падающего света, если давление его равно 10 -8 Па.

55. Поток света (λ = 0,56 мкм) падает нормально на чёрную поверхность, производя давление 4 мкПа. Определить концентрацию фотонов вблизи поверхности.

56. Определить силу светового давления на чёрную поверхность площадью 100 см 2 если интенсивность светового потока, падающего нормально на эту поверхность равна 0,3 Вт/см 2 .

57. Определить световое давление на плоскую поверхность с коэффициентом отражения 0,8 при падении на неё под углом 60° световой волны интенсивностью 0,5 Вт/см 2 .

58. Определить давление солнечных лучей, падающих перпендикулярно на зеркальную пластинку, находящуюся за пределами земной атмосферы. Температуру поверхности Солнца принять равной 5800 К.

59. Накалённая нить проходит по оси цилиндра длиной 10 см и радиусом 5 см. Нить излучает световой поток мощностью 600 Вт. Считая световой поток симметричным относительно нити канала, определить давление света на поверхность цилиндра. Коэффициент отражения цилиндра 10 %.

60. Поток монохроматических лучей с длиной волны λ = 600 нм падает нормально на пластинку с коэффициентом отражения 0,2. Сколько фотонов каждую секунду падает на пластинку, если давление лучей на пластинку составляет 10 -7 Па.

61. Красная граница для некоторого металла λкр = 0,6 мкм. Металл освещается светом, длина волны которого λ = 0,4 мкм. Определить максимальную скорость электронов, выбиваемых светом из металла.

62. Выбиваемые светом при фотоэффекте электроны полностью задерживаются обратным потенциалом 4 В. Красная граница фотоэффекта λкр = 0,6 мкм. Определить частоту падающего света.

63. Поверхность цинкового фотокатода освещается монохроматическим светом длиной волны λ = 0,28 мкм. Определить суммарный импульс, сообщаемый фотокатоду, если известно, что фотоэлектрон вылетает навстречу падающему кванту. Работа выхода электрона для цинка 3,74 эВ.

64. При освещении металла монохроматическим светом длиной волны λ = 0,48 мкм из него вылетают электроны со скоростью 6,5×10 5 м/с. Определить работу выхода электронов из этого металла.

65. Плоская вольфрамовая пластинка освещается светом длиной волны λ = 0,2 мкм. Найти напряженность однородного задерживающего поля вне пластинки, если фотоэлектрон может удалиться от неё на расстояние 4 см. Работа выхода электронов из вольфрама 4,5 эВ.

66. Фотон с энергией 1,2 МэВ был рассеян в результате эффекта Комптона на угол 90°. Найти энергию, импульс электрона отдачи и длину волны рассеянного фотона.

67. В результате рассеяния фотона с длиной волны λ = 2 нм на свободном электроне комптоновское смещение оказалось равным Δλ = 1,2 пм, Найти угол рассеяния. Какая часть энергии фотона передана при этом электрону?

68. Определить изменение длины волны и угол рассеяния фотона при эффекте Комптона, если скорость электрона отдачи 0,4×с. Энергия первичного фотона 0,42 МэВ.

69. Найти отношение максимального комптоновского изменения длины волны при рассеянии фотонов на свободных электронах и протонах,

70. На каких частицах произошло рассеяние фотона с энергией 2,044 МэВ, если энергия рассеянного фотона уменьшилась втрое при угле рассеяния 60°?

На тонкую пленку скипидара (n=1,48) падает белый свет.

Продаж: 18 последняя 19.12.18
Возвратов: 0

Загружен: 13.08.2016
Содержимое: 40882.PNG 13,82 Кбайт

5 $ скидка 30%
1 $ скидка 10%

Описание товара

На тонкую пленку скипидара (n=1,48) падает белый свет. Под углом зрения 60° она кажется оранжевой (лямбда=0,625 м) в отраженном свете. Каким будет казаться цвет пленки в отраженном свете при вдвое меньшем угле зрения?

Дополнительная информация

Задача 40882. Подробное решение с краткой записью условия, формул и законов, используемых в решении, выводом расчетной формулы и ответом.
Если возникнут вопросы по решению, пишите. Постараюсь помочь.

За последние
1 мес 3 мес 12 мес

С этим товаром также смотрят

В целях противодействия нарушению авторских прав и права собственности, а также исключения необоснованных обвинений в адрес администрации сайта о пособничестве такому нарушению, администрация торговой площадки Plati (http://www.plati.market) обращается к Вам с просьбой — в случае обнаружения нарушений на торговой площадке Plati, незамедлительно информировать нас по адресу [email protected] о факте такого нарушения и предоставить нам достоверную информацию, подтверждающую Ваши авторские права или права собственности. В письме обязательно укажите ваши контактные реквизиты (Ф.И.О., телефон).

Читайте также:  Настройка контрастности монитора для уменьшения воздействия на зрение

В целях исключения необоснованных и заведомо ложных сообщений о фактах нарушения указанных прав, администрация будет отказывать в предоставлении услуг на торговой площадке Plati, только после получения от Вас письменных заявлений о нарушении с приложением копий документов, подтверждающих ваши авторские права или права собственности, по адресу: 123007, г. Москва, Малый Калужский пер. д.4, стр.3, Адвокатский кабинет «АКАР №380».

В целях оперативного реагирования на нарушения Ваших прав и необходимости блокировки действий недобросовестных продавцов, Plati просит Вас направить заверенную телеграмму, которая будет являться основанием для блокировки действий продавца, указанная телеграмма должна содержать указание: вида нарушенных прав, подтверждения ваших прав и ваши контактные данные (организиционно-правовую форму лица, Ф.И.О.). Блокировка будет снята по истечение 15 дней, в случае непредставления Вами в Адвокатский кабинет письменных документов подтверждающих ваши авторские права или права собственности.

Под углом зрения 60 она кажется оранжевой

Варианты задач ЕГЭ
разных лет
(с ответами).

1. На поверхности воды плавает надувной плот шириной 4 м и длиной б м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. На какой максимальной глубине под плотом должна находиться маленькая рыбка, чтобы ее не увидели плавающие вокруг плота хищники? Глубиной погружения плота, рассеиванием света водой и его отражением от дна водоема пренебречь. Показатель преломления воды относительно воздуха принять равным 4/3. Ответ: 2 /3√7 ≈ 1.76м.

2. Под медленно движущимся кораблем с вертикальными бортами плывет разведчик в легком водолазном костюме. Ширина корабля 4 м. глубина погружения его днища 1,5 м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. На каком максимальном расстоянии от днища корабля должен держаться разведчик, чтобы его не могли увидеть находящиеся вокруг другие водолазы? Рассеиванием света водой и размерами разведчика пренебречь. Показатель преломления воды относительно воздуха принять равным 4/3. Ответ: 2 /3√7 ≈ 1.76м.

3. На поверхности воды плавает надувной плот длиной 6 м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. Под центром плота на глубине 2,3 м плавает маленькая рыбка. При какой минимальной ширине плота рыбку не видят плавающие вокруг хищники? Глубиной погружения плота и рассеиванием света водой пренебречь. Показатель преломления воды относительно воздуха принять равным 4/3. Ответ: 2·2,3·3/√7 ≈ 5,2 м.

4. Между краями двух хорошо отшлифованных тонких плоских стеклянных пластинок помешена тонкая проволочка диаметром 0,05 мм; противоположные концы пластинок плотно прижаты друг к другу (см. рисунок). Расстояние от проволочки до линии соприкосновения пластинок равно 20 см. На верхнюю пластинку нормально к ее поверхности падает монохроматический пучок света. Определите длину волны света, если на 1 см длины клина наблюдается 10 интерференционных полос. Ответ: 500 нм.

5. Между краями двух хорошо отшлифованных тонких плоских стеклянных пластинок помешена тонкая проволочка, противоположные концы пластинок плотно прижаты друг к другу (см. рисунок). На верхнюю пластинку нормально к ее поверхности падает монохроматический пучок света длиной волны 600 нм. Определите угол α, который образуют пластинки, если расстояние между наблюдаемыми интерференционными полосами равно 0,6 мм. Считать tgα ≈ α. Ответ: 5·10 -4 рад.

6. Между краями двух хорошо отшлифованных тонких плоских стеклянных пластинок помещена тонкая проволочка диаметром 0,06 мм; противоположные концы пластинок плотно прижаты друг к другу (см. рисунок). На верхнюю пластинку нормально к ее поверхности падает монохроматический пучок света длиной волны 600 нм. Определите расстояние между двумя соседними интерференционными полосами, если длина пластинки 10 см. Ответ: 0,5 мм.

7. Дифракционная решетка имеет расстояние между штрихами 1 мкм. Она находится в прямоугольной кювете, заполненной водой, и располагается параллельно боковой стенке кюветы. Луч света, длина волны которого 0,5 мкм, падает перпендикулярно стенке кюветы, проходит через решетку и выходит из кюветы. Под каким углом α выходит луч, образующий первый дифракционный максимум? Ответ: 30°.

8. На экране с помощью тонкой линзы получено изображение предмета с пятикратным увеличением. Предмет находится на главной оптической оси, а плоскость экрана перпендикулярна этой оси. Экран передвинули на 30 см вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получено изображение с трехкратным увеличением. Определите фокусное расстояние линзы. Ответ: 15 см.

9. На экране с помощью тонкой линзы получено изображение предмета с пятикратным увеличением. Предмет передвинули вдоль главной оптической оси линзы. Затем экран при неизменном положении линзы передвинули на 30 см, чтобы изображение снова стало резким. В этом случае получено изображение с трехкратным увеличением. На сколько передвинули предмет? Ответ: 2 см.

10. Линза, фокусное расстояние которой 15 см, дает на экране изображение предмета с пятикратным увеличением. Экран передвинули вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получено изображение с трехкратным увеличением. На сколько пришлось сдвинуть предмет относительно его первоначального положения? Ответ: 2 см.

11. Равнобедренный прямоугольный треугольник АВС площадью 50 см 2 расположен перед тонкой собирающей линзой так, что его катет АС лежит на главной оптической оси линзы. Фокусное расстояние линзы 50 см. Вершина прямого угла С лежит дальше от центра линзы, чем вершина острого угла А. Расстояние от центра линзы до точки С равно удвоенному фокусному расстоянию линзы (см. рисунок). Постройте изображение треугольника АВС и найдите площадь получившейся фигуры. Ответ: 62,5 см 2 . (Система оценивания).

12.Для «просветления» оптики на поверхность линзы наносят тонкую пленку с показателем преломления 1,25. Какой должна быть минимальная толщина пленки, чтобы свет длиной волны 600 нм из воздуха полностью проходил через пленку? (Показатель преломления пленки меньше показателя преломления стекла линзы.) (Решение)

13. На рисунке представлена схема получения интерференции света с помощью плоского зеркала. Центральный интерференционный максимум наблюдается в точке О экрана. Расстояние от источника S до зеркала равно А, длина волны источника λ = 600 нм. Луч 1 идет параллельно зеркалу и попадает в точку А экрана, где наблюдается второй интерференционный минимум. Чему равно расстояние А в этом опыте? (Решение)

21. На экране с помощью тонкой линзы получено изображение предмета с пятикратным увеличением. Экран передвинули на 30 см вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получилось изображение с трехкратным увеличением. На сколько пришлось передвинуть предмет относительно его первоначального положения? (Решение)

22. Линза, фокусное расстояние которой 15 см, дает на экране изображение предмета с пятикратным увеличением. Экран передвинули вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получено изображение с трехкратным увеличением. На сколько пришлось сдвинуть предмет относительно его первоначального положения? (Решение)

23. На оси ОХ в точке x1 = 0 находится оптический центр тонкой рассеивающей линзы с фокусным расстоянием F1 = — 20 см, а в точке х2 = 20 см — тонкой собирающей линзы. Главные оптические оси обеих линз лежат на оси ОХ. На рассеивающую линзу вдоль оси ОХ падает параллельный пучок света из области x -27 кг·м/с. Под каким углом φ к направлению падения пучка наблюдается дифракционный максимум второго порядка? (Решение)

31. Точечный источник света S находится в передней фокальной плоскости собирающей линзы на расстоянии l = 2 см от ее главной оптической оси. За линзой в ее задней фокальной плоскости находится плоское зеркало (см. рис.). Построить действительное изображение S’ источника в данной оптической системе и найти расстояние между точками S и S’. (Решение)

32. Школьник на уроке физики получил вогнутое полусферическое зеркало радиусом R и лазерную указку, дающую узкий параллельный пучок света с длиной волны λ = 660 нм. Он пустил луч света от указки параллельно главной оптической оси зеркала ОО’ на расстоянии х от неё (см. рисунок). Затем школьник так подобрал расстояние х, что луч, отразившись от зеркала один раз, отклонился от оси ОО’ на максимальный угол φ и вышел за пределы зеркала. Чему при таком отражении равен модуль изменения импульса каждого фотона лазерного луча? (Решение)

33. Пассажир автобуса едет в нём по шоссе и смотрит вбок, на поле, огороженное двумя одинаковыми заборами – рядами тёмного штакетника, параллельными дороге. Зазор между вертикальными штакетинами в каждом из заборов равен их ширине d/2 = 5 см, расстояние от наблюдателя до первого забора равно l = 50 м, а до второго — на Δl = 10 м больше. Поле, наблюдаемое пассажиром через первый забор, видно через мелькающий штакетник достаточно хорошо, а то, что пассажир видит сквозь оба забора, пересечено периодическими темными вертикальными полосами. Найдите период D (по горизонтали) этих полос на уровне первого забора, считая, что наблюдение ведётся почти перпендикулярно к заборам. (Решение)

34. Пассажир автобуса едет в нём по шоссе и смотрит вбок, на поле, огороженное двумя одинаковыми заборами — рядами тёмного штакетника, параллельными дороге. Зазор между вертикальными штакетинами в каждом из заборов равен их ширине d/2 = 6 см, расстояние от наблюдателя до первого забора равно l = 60 м, а до второго — на Δl = 15 м больше. Поле, наблюдаемое пассажиром через первый забор, видно через мелькающий штакетник достаточно хорошо, а то, что пассажир видит сквозь оба забора, пересечено периодическими темными вертикальными полосами. Найдите период D (по горизонтали) этих полос на уровне первого забора, считая, что наблюдение ведётся почти перпендикулярно к заборам. (Решение)

35. Расстояние между двумя точечными монохроматическими когерентными источниками света S1 и S2 равно 2d = 1 мм. Мысленно соединим источники отрезком S1S2 и восстановим срединный перпендикуляр к этому отрезку (он пересечет S1S2 в точке A). Расположим плоский экран так, чтобы его середина O лежала на указанном срединном перпендикуляре, а сам экран был перпендикулярен отрезку AO (на рисунке экран показан линией со штриховкой). Каков будет период интерференционных полос вблизи точки O, если |AO| = a = 1 м, а длина волны света источников равна λ = 600 нм. Угол падения интерферирующих лучей на экран можно считать малым, так что Sinφ ≈ φ. (Решение)

36. На экране наблюдается спектр с помощью дифракционной решетки, имеющей 500 штрихов на миллиметр. Расстояние от решетки до экрана l = 40 см. Спектральная линия в спектре первого порядка отклоняется на расстоянии а = 9 см от центра экрана. Определите длину волны наблюдаемой спектральной линии. (Решение)

37. Масляная пленка на воде при наблюдении вертикально к поверхности кажется оранжевой. Каково минимальное возможное значение толщины пленки? Показатель преломления воды 1,33, масла — 1,47. Длина световой волны 588·10 -9 м. Учтите, что отражение света от оптически более плотной среды происходит с потерей полуволны, а от оптически менее плотной среды без потери полуволны. (Решение)

38. Для наблюдения явления интерференции света используется точечный источник света и небольшой экран с двумя малыми отверстиями у глаза наблюдателя. Оцените максимальное расстояние d между малыми отверстиями в экране, при котором может наблюдаться явление интерференции света. Разрешающая способность глаза равна 1′, длина световой волны 5,8·10 -7 м. (Решение)

39. Человек читает книгу, держа ее на расстоянии 50 см от глаз. Если это для него расстояние наилучшего видения, то какой оптической силы очки позволят ему читать книгу на расстоянии 25 см? (Решение)

40. Бассейн глубиной 4 м заполнен водой, относительный показатель преломления на границе воздух-вода 1,33. Какой кажется глубина бассейна наблюдателю, смотрящему в воду вертикально вниз? (Решение)

41. Бассейн глубиной 3 м заполнен водой, относительный показатель преломления на границе воздух-вода 1,33. Каков радиус светового круга на поверхности воды от электрической лампы на дне бассейна? (Решение)

42. Телескоп имеет объектив с фокусным расстояние 1 м и окуляр с фокусным расстоянием 5 см. Какого диаметра изображение Солнца можно получить с помощью этого телескопа, если есть возможность удалять экран от окуляра до расстояния 1,5 м? Угловой диаметр Солнца 30’. (Решение)

43. Небольшой груз, подвешенный на нити длиной 2,5 м, совершает гармонические колебания, при которых его максимальная скорость достигает 0,1 м/с. При помощи собирающей линзы с фокусным расстоянием 0,2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0,6 м от линзы. Главная оптическая ось линзы перпендикулярна плоскости колебаний маятника и плоскости экрана. Определите амплитуду колебаний смещения груза на экране. (Решение)

44. Небольшой груз, подвешенный на длинной нити, совершает гармонические колебания, при которых его максимальная скорость достигает 0,1 м/с. При помощи собирающей линзы с фокусным расстоянием 0,2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0,5 м от линзы. Главная оптическая ось линзы перпендикулярна плоскости колебаний маятника и плоскости экрана. Максимальное смещение изображения груза на экране от положения равновесия равно А1 = 0,1 м. Чему равна длина нити l? (Решение)

45. В горизонтальное дно водоема глубиной 3 м вертикально вбита свая, полностью скрытая под водой. При угле падения солнечных лучей на поверхность воды, равном 30°, свая отбрасывает на дно водоема тень длиной 0,8 м. Определите высоту сваи. Коэффициент преломления воды n = ¾ . (Решение)

46.В горизонтальное дно водоема глубиной 3 м вертикально вбита свая, полностью скрытая под водой. Высота сваи 2 м. При угле падения солнечных лучей на поверхность воды, равном 30°, определите длину тени сваи на дне водоёма. Коэффициент преломления воды n = ¾ . (Решение)

47. Условимся считать изображение на пленке фотоаппарата резким, если вместо идеального изображения в виде точки на пленке получается изображение пятна диаметром не более некоторого предельного значения. Поэтому, если объектив находится на фокусном расстоянии от пленки, то резкими считаются не только бесконечно удаленные предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оцените предельный размер пятна, если при фокусном расстоянии объектива 50 мм и диаметре входного отверстия 5 мм резкими оказались все предметы, находившиеся на расстояниях более 5 м от объектива. Сделайте рисунок, поясняющий образование пятна. (Решение)

48. Равнобедренный прямоугольный треугольник ABC площадью S = 50 см 2 расположен перед тонкой собирающей линзой так, что его катет AC лежит на главной оптической оси линзы. Фокусное расстояние линзы 50 см. Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки C равно удвоенному фокусному расстоянию линзы (см. рисунок). Постройте изображение треугольника и найдите площадь получившейся фигуры. (Решение)

49. Два плоских зеркала образуют прямой двугранный угол, перпендикулярно биссектрисе которого расположена небольшая собирающая линза Л, а её фокус F находится в вершине угла (см. рисунок). В плоскости линзы рядом с ней находится небольшой предмет П. Постройте изображение предмета, которое получится в результате двух отражений от зеркал и последующего преломления света линзой. На каком расстоянии от предмета будет находиться его изображение? (Решение)

50. Свет с длиной волны λ = 5461 ангстрем падает нормально на дифракционную решётку. Одному из главных дифракционных максимумов соответствует угол дифракции 30°, а наибольший порядок наблюдаемого спектра равен 5. Найдите период данной решётки. 1 ангстрем = 10 -10 м. (Решение)

51. Свет с неизвестной волны падает нормально на дифракционную решётку с периодом d = 4 мкм и одному из главных дифракционных максимумов соответствует угол дифракции 30°. При этом наибольший порядок наблюдаемого спектра равен 5. Найдите длину волны λ света, падающего на решетку, и выразите его в ангстремах. 1 ангстрем = 10 -10 м. (Решение)

52. Определите фокусное расстояние тонкой линзы, если линейные размеры изображения тонкого карандаша, помещённого на расстоянии а = 60 см от линзы и расположенного перпендикулярно главной оптической оси, меньше размеров карандаша в n = 3 раза. (Решение)

53. Определите фокусное расстояние тонкой линзы, если линейные размеры изображения тонкого карандаша, помещённого на расстоянии a = 48 см от линзы и расположенного перпендикулярно главной оптической оси, меньше размеров карандаша в n = 2 раза. (Решение)

54. Объективы современных фотоаппаратов имеют переменное фокусное расстояние. При изменении фокусного расстояния «наводка на резкость» не сбивается. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения в виде точки на плёнке получается изображение пятна диаметром не более 0,05 мм. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оказалось, что это расстояние равно 5 м, если фокусное расстояние объектива 50 мм. Как изменится это расстояние, если, не меняя «относительного отверстия» изменить фокусное расстояние объектива до 25 мм? («Относительное отверстие» — это отношение фокусного расстояния к диаметру входного отверстия объектива.) При расчётах считать объектив тонкой линзой. Сделайте рисунок, поясняющий образование пятна. (Решение)

55. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения в виде точки на плёнке получается изображение пятна диаметром не более 0,05 мм. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Найдите фокусное расстояние объектива, если при «относительном отверстии» a = 4 резкими оказались все предметы далее 12,5 м. («Относительное отверстие» — это отношение фокусного расстояния к диаметру входного отверстия объектива.) Сделайте рисунок, поясняющий образование пятна. (Решение)

Читайте также:  Зрение у детей 1 года жизни

56. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения в виде точки на плёнке получается изображение пятна диаметром не более некоторого предельного значения. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оцените предельный размер пятна, если при «относительном отверстии» a = 4 резкими оказались все предметы, находившиеся на расстояниях более 12,5 м от объектива. («Относительное отверстие» — это отношение фокусного расстояния к диаметру входного отверстия объектива.) Фокусное расстояние объектива 50 мм. Сделайте рисунок, поясняющий образование пятна. (Решение)

57. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения точки на плёнке получается изображение пятна диаметром не более 0,05 мм. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Объектив имеет переменное фокусное расстояние. При этом расстояние, на которое он настроен (в данном случае ), не изменяется. При «относительном отверстии» a = 4 минимальное расстояние, на котором предметы получаются резкими, меняется (при изменении фокусного расстояния объектива) от 12,5 до 50 м. («Относительное отверстие» — это отношение фокусного расстояния к диаметру входного отверстия объектива.) В каком диапазоне изменяется фокусное расстояние объектива? При расчётах считать объектив тонкой линзой. Сделайте рисунок, поясняющий образование пятна. (Решение)

58. Равнобедренный прямоугольный треугольник ABC площадью 50 см 2 расположен перед тонкой собирающей линзой так, что его катет АС лежит на главной оптической оси линзы. Фокусное расстояние линзы 50 см. Вершина прямого угла С лежит дальше от центра линзы, чем вершина острого угла А. Расстояние от центра линзы до точки А равно удвоенному фокусному расстоянию линзы (см. рисунок). Постройте изображение треугольника и найдите площадь получившейся фигуры. (Решение)

59. Равнобедренный прямоугольный треугольник ABC площадью 50 см 2 расположен перед тонкой собирающей линзой так, что его катет АС лежит на главной оптической оси линзы. Фокусное расстояние линзы равно 50 см. Вершина прямого угла С лежит ближе к центру линзы, чем вершина острого угла А. Расстояние от центра линзы до точки А равно удвоенному фокусному расстоянию линзы (см. рисунок). Постройте изображение треугольника и найдите площадь получившейся фигуры. (Решение)

60. Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет АС лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла С лежит дальше от центра линзы, чем вершина острого угла А. Расстояние от центра линзы до точки А равно удвоенному фокусному расстоянию линзы, АС = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры. (Решение)

61. Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет АС лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла С лежит ближе к центру линзы, чем вершина острого угла А. Расстояние от центра линзы до точки А равно удвоенному фокусному расстоянию линзы, АС = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры. (Решение)

62. На экране, перпендикулярном главной оптической оси некоторой тонкой линзы, получили действительное изображение небольшого предмета, находящегося на расстоянии a = 25 см от этой линзы, с линейным увеличением Г = 2. После замены этой линзы на другую, находящуюся в том же месте и на том же расстоянии до предмета, увеличение изображения предмета при новом положении экрана, соответствующем резкому изображению, стало больше в n = 2,5 раза. Чему равна оптическая сила D2 второй линзы? (Решение)

63. На экране, перпендикулярном главной оптической оси некоторой тонкой линзы, получили действительное изображение небольшого предмета, находящегося на расстоянии a = 50 см от этой линзы, с линейным увеличением Г = 1. После замены этой линзы на другую, находящуюся в том же месте и на том же расстоянии до предмета, увеличение изображения предмета при новом положении экрана, соответствующем резкому изображению, стало меньше в n = 0,5 раза. Чему равна оптическая сила D2 второй линзы? (Решение)

64. Из собирающей линзы с фокусным расстоянием f = 20 см вырезали центральную часть шириной 2h = 1 см (см. рис.), а затем симметрично сдвинули оставшиеся части до соприкосновения, изготовив так называемую билинзу. Точечный источник света поместили на расстоянии a = 40 см от билинзы на её оси симметрии. На каком расстоянии 2d друг от друга находятся изображения, даваемые билинзой? (Решение)

Под углом зрения 60 она кажется оранжевой

ОГЛАВЛЕHИЕ >>>

Зрительные ощущения

Роль зрительных ощущений в познании мира особенно велика. Они доставляют человеку исключительно богатые и тонко дифференцированные данные, притом огромного диапазона. Зрение дает нам наиболее совершенное, подлинное восприятие предметов. Зрительные ощущения наиболее дифференцированы от аффективности, в них особенно силен момент чувственного созерцания. Зрительные восприятия – наиболее «опредмеченные», объективированные восприятия человека. Именно поэтому они имеют очень большое значение для познания и для практического действия.

Зрительные ощущения вызываются воздействием на глаз света, т.е., по воззрениям современной физики, электромагнитных волн длиною от 390 до 780 нм.

Световые волны различаются, во-первых, длиною или числом колебаний в секунду. Чем число колебаний больше, тем длина волны меньше, и, наоборот, чем меньше число колебаний, тем больше длина волны.

Длина световой волны обусловливает цветовой тон. Световые волны различаются, во-вторых, амплитудой их колебаний, т.е. их энергией. Она определяет яркость цвета.

Световые волны отличаются, в-третьих, формою световой волны, получающейся в результате смешения между собой световых волн различных длин. Форма световой волны обусловливает насыщенность цвета.

Предметы, не испускающие собственного света, отражают некоторую часть падающего на них света и поглощают остальную его часть. Если все световые лучи поглощаются в тех же отношениях, в каких они даны в спектре, то такое поглощение называется неизбирательным. Если световые лучи поглощаются в иных отношениях, чем они представлены в спектре, то такое поглощение называется избирательным.

Число, выражающее отношение количества поглощенных поверхностью световых лучей к количеству падающих на нее лучей, называется коэффициентом поглощения. Число, выражающее отношение количества отраженных поверхностью световых лучей к количеству падающих на нее лучей, называется коэффициентом отражения. Поверхность, почти не отражающая падающего на нее света, имеет черный цвет. Поверхность, почти целиком отражающая падающий на нее свет, имеет цвет белый. Цветная поверхность отражает волны различной длины. Поэтому каждая цветная поверхность имеет свой спектр отражения.

Зрительное ощущение, возникающее в результате воздействия на глаз света, всегда обладает тем или иным цветовым качеством. Но обычно нами воспринимается не цвет «вообще», а цвет определенных предметов. Предметы эти находятся от нас на определенном расстоянии, имеют ту или иную форму, величину и т.д. Зрение дает нам отражение всех этих многообразных свойств объективной действительности. Но отражение предметов в их пространственных и иных свойствах относится уже к области восприятия (см. дальше), в основе которого частично лежат также специфические зрительные ощущения.

Ощущение цвета

Все воспринимаемые глазом цвета могут быть подразделены на две группы: ахроматические и хроматические. Ахроматическими цветами называется белый, черный и все располагающиеся между ними оттенки серого цвета; они отличаются друг от друга только светлотой. Все остальные цвета – хроматические; они отличаются друг от друга цветовым тоном, светлотой и насыщенностью.

Цветовой тон – это то специфическое качество, которым один цвет, например красный, отличается от любого другого – синего, зеленого и т.д. при равной светлоте и насыщенности. Цветовой тон зависит от длины воздействующей на глаз световой волны.

Светлота – это степень отличия данного цвета от черного. Наименьшей светлотой обладает черный, наибольшей – белый цвет. Светлота зависит от коэффициента отражения. Коэффициент отражения равен единице минус коэффициент поглощения. (Например, поверхность черного бархата поглощает 0,98 световых лучей и отражает 0,02 световых лучей). Чем больше коэффициент поглощения световых лучей какой-нибудь поверхностью и чем соответственно меньше свойственный ей коэффициент отражения, тем ближе ее цвет к черному; чем меньше коэффициент поглощения какой-нибудь поверхности и соответственно больше свойственный ей коэффициент отражения, тем ближе ее цвет к белому.

От светлоты предметов следует отличать их яркость, которая зависит от энергии световой волны, или амплитуды ее колебаний. Яркость характеризуется произведением освещенности на коэффициент отражения. Освещенность же предметов характеризуется количеством лучистой энергии, падающей в течение одной секунды на единицу поверхности. Светлота – цветовое свойство поверхности, яркость же характеризуется количеством лучистой энергии, отражаемой от данной поверхности. Это количество лучистой энергии зависит от двух причин: с одной стороны, от коэффициента отражения от данной поверхности, а с другой – от количества лучистой энергии, падающей на данную поверхность. Поэтому яркость сильно освещенного черного бархата может быть больше яркости белой бумаги, находящейся в тени.

Насыщенность – это степень отличия данного цвета от серого цвета, одинакового с ним по светлоте, или, как говорят, степень его выраженности. Насыщенность цвета зависит от отношения, в котором находится количество световых лучей, характеризующих цвет данной поверхности, к общему световому потоку, ею отражаемому. Насыщенность цвета зависит от формы световой волны.

Глаз чувствителен к ничтожным количествам лучистой энергии. Так, например, при достаточной темновой адаптации глаз видит (аппаратом палочек) на расстоянии 1 км свет, сила которого может быть выражена тысячными долями свечи 82 при полной прозрачности атмосферы (нижний порог). Чувствительность аппарата колбочек меньше.

Верхним порогом цветоощущения является та яркость света, которая «ослепляет» глаз. Эта величина в значительной мере зависит от степени адаптации глаза, от размера слепящего пятна и т.д. Слепящая яркость при размере слепящего поля в 4° равна 225 4 кд/м 2 .

Побочные раздражители в некоторых случаях изменяют характер зрительной чувствительности. Согласно экспериментальным данным С.В.Кравкова, звук повышает чувствительность глаза к зеленым и синим лучам и понижает чувствительность глаза к оранжевым и красным лучам.

Чувствительность глаза к световым волнам различной длины неодинакова. Наиболее яркими кажутся человеческому глазу лучи, длины волн которых соответствуют желто-зеленой части спектра (556 мм). В сумерки наиболее ярким кажется не желто-зеленый цвет, а зеленый цвет, имеющий длину волны 510 нм. С наступлением темноты красно-фиолетовые цвета темнеют, а зелено-голубые цвета светлеют. Это явление носит название явления Пуркинье.

Общее количество различаемых глазом цветных тонов максимальной насыщенности доходит до 150.

Смешение цветов

Воспринимаемые нами в природе цвета получаются обычно в результате воздействия на наш глаз волн различной, а не одной какой-нибудь длины. Эти различные волны, совместно воздействуя на глаз, и порождают тот или иной видимый нами цвет. Видимые нами в естественных условиях цвета являются, таким образом, результатом смешения цветов.

На основе работ И. Ньютона Г.Грассманом были выведены следующие основные законы смешения цветов.

Первый закон. Для каждого хроматического цвета имеется другой цвет, от смешения с которым получается ахроматический цвет. Такие пары цветов называются дополнительными. Дополнительными цветами являются: красный и голубо-зеленый; оранжевый и голубой; желтый и индиго-синий; желто-зеленый и фиолетовый; зеленый и пурпурный.

Второй закон. Смешивая два цвета, лежащие ближе друг к другу, чем дополнительные, можно получить любой цвет, находящийся в спектре между данными двумя цветами.

Третий закон. Две пары одинаково выглядящих цветов дают при смешении одинаково выглядящий цвет независимо от различий в физическом составе смешиваемых цветов. Так, серый цвет, полученный от смешения одной пары дополнительных цветов, ничем не отличается от серого цвета, полученного от любой другой пары.

Говоря о смешении цветов, разумеют прежде всего оптическое смешение, возникающее в результате того, что различные цветовые раздражители одновременно или в очень быстрой последовательности раздражают один и тот же участок сетчатки.

Помимо этого смешения цветов надо учесть еще пространственное смешение цветов, которое получается при восприятии различных цветов не во временной, а в пространственной смежности.

Если посмотреть на определенном расстоянии на небольшие, соприкасающиеся друг с другом цветные пятна, то эти пятна сольются в одно пятно, которое будет иметь цвет, получившийся от смешения этих малых цветовых пятен. Причиною слияния цветов является светорассеяние и другие явления, возникающие вследствие несовершенства оптической системы человеческого глаза. Вследствие этого несовершенства границы цветных пятен размываются, и два или более цветных пятна раздражают одно и то же нервное окончание сетчатой оболочки. В силу этого, когда мы смотрим, например, на какую-нибудь ткань в мелких цветных полосках или крапинках, она нам кажется одноцветной, окрашенной в цвет, получающийся в результате смешения различных представленных в ней цветов. На этом пространственном смешении цветов основывается впечатление, которое производят ткани, сплетенные из разноцветных нитей. На этом же пространственном смешении цветов основывается и эффект, которым пользуются художники-пуантилисты (от слова pointe – точка) и импрессионисты, когда они дают цвет поверхностей посредством цветных точек или пятен.

Эксперименты Б.М.Теплова показали, что законы этого пространственного смешения цветов, имеющего большое применение в живописи и в ткацком деле, те же, что и законы оптического смешения цветов.

Существенный интерес представляет и так называемое бинокулярное смешение цветов.

Бинокулярным смешением цветов называется получение некоторого третьего цвета в результате раздражения каждого из глаз различными цветами. Если смотреть одним глазом на один цвет, а другим глазом на другой цвет, то мы увидим некоторый третий цвет, получившийся от бинокулярного смешения обоих цветов. Однако если оба цвета весьма несходны друг с другом (в особенности по светлоте), то бинокулярного смешения цветов не возникает, а получается своеобразная игра, в которой оба цвета воспринимаются поочередно. Это последнее явление называется борьбой полей зрения.

Если поверхность не является абсолютно гладкой, то ее микрорельеф можно рассматривать как большое число плоскостей, повернутых к наблюдателю под разными углами. Так как для правого и левого глаза углы различны и так как под разными углами зрения цвет поверхности изменяется, то возникает бинокулярное смешение цветов или же борьба полей зрения, создающая специфическое ощущение мерцания, блеска и колебания цвета в зависимости от микрорельефа поверхности. Восприятие фактуры обусловлено в значительной степени именно описанными явлениями. Фактура тканей – бархата, шелка, полотна, шерсти – воспринимается в специфическом качестве, представляющем комплекс ощущений, возникающих вследствие бинокулярного смешения цветов и борьбы полей зрения в каждой отдельной точке воспринимаемой поверхности. Восприятие природы насыщено этими ощущениями, которые придают особую динамичность, игру и живость нашим зрительным образам.

Психофизиологические закономерности

В зрительных ощущениях отчетливо проявляются все основные психофизиологические закономерности рецепторной деятельности – адаптация, контрастность, последействие, так же как и взаимодействие.

Адаптация глаза заключается в приспособлении глаза к воздействию световых раздражителей. Различают темновую адаптацию (адаптацию к темноте), световую (адаптацию к свету) и цветовую (адаптацию к цвету).

Темновая адаптация возникает вследствие того, что в темноте возрастает концентрация зрительного пурпура. Это влечет за собой повышение чувствительности глаза к световым раздражениям. Чувствительность глаза может быть увеличена благодаря темновой адаптации более чем в 200 000 раз (после одного часа пребывания в темноте). Увеличение чувствительности глаза продолжается в течение 24 часов пребывания в темноте, однако темновую адаптацию можно считать установившейся уже после 60-80 минут пребывания в ней. После длительного пребывания в темноте при переходе на свет опять-таки яркий свет сначала слепит глаз и мы плохо видим окружающее. Затем, в результате адаптации глаза к свету, мы начинаем видеть нормально. Световая адаптация заключается в понижении чувствительности глаза под влиянием света.

Цветовая адаптация, или цветовое приспособление, выражается в понижении чувствительности глаза к определенному цветному раздражителю вследствие продолжительности его действия. Она не бывает столь значительна, как световая, но зато увеличивается скорее. Согласно данным С.В.Кравкова, наиболее адаптирующим глаз является сине-фиолетовый, средним – красный и наименее адаптирующим глаз – зеленый цвет.

Как возникновение ощущения, так и его исчезновение не происходит внезапно и одновременно с окончанием действия раздражителя. Необходимо некоторое время на соответствующий фотохимический процесс. Поэтому после прекращения действия раздражителя в глазу остается «след», или последействие, раздражения, которое дает «последовательный образ». Когда этот след соответствует по светлоте и цветовому тону первоначальному ощущению, он называется положительным последовательным образом, когда же он изменяется в обратных отношениях, он называется отрицательным последовательным образом.

Вследствие различного характера адаптации отдельных участков сетчатой оболочки глаза возникает явление последовательного контраста.

Под последовательным контрастом разумеются временные изменения в цветовом ощущении, которые возникают вследствие предварительного действия на определенные участки глаза световых раздражителей. Последовательный контраст представляет собой по существу отрицательный последовательный образ. Последовательный контраст может быть световым.

Контрастные цвета близки к дополнительным цветам, однако от них отличаются.

Весьма существенное отличие контрастных цветов от дополнительных проявляется в том, что дополнительные цвета взаимны. Это значит, что если цвет «а» есть дополнительный к цвету «б», то и цвет «б» есть дополнительный к цвету «а». Контрастные цвета не взаимны: например, к желтому цвету контрастным цветом является фиолетовый, а к фиолетовому контрастным цветом является не желтый, а зеленовато-желтый цвет. Причины отличия контрастных цветов от дополнительных окончательно не выявлены.

Контрастные цвета возникают не только на белом фоне, но и на всяком другом. Если контрастные цвета проецируются на цветную поверхность, то возникает сложение данного контрастного цвета с цветом поверхности, на которую контрастный цвет проецируется. Под одновременным контрастом разумеется изменение в цвете, вызванное его соседством с другим цветом. Этот соседний цвет индуцирует на данном поле контрастный цвет. В условиях одновременного контраста одно из полей является индуцирующим, а другое индуцируемым.

Читайте также:  Лазерная коррекция зрения ласик категории сложности

Так как цвета влияют друг на друга взаимно, то каждое поле одновременно влияет на другое и подвергается само влиянию этого соседнего поля.

Подобно последовательному контрасту, одновременный контраст может быть световым и цветовым. Серые квадраты на белом фоне кажутся темнее, чем те же серые квадраты на черном фоне. На красном фоне серый квадрат кажется зелено-голубым, тот же серый квадрат на синем фоне кажется оранжевым.

Исследования показали, что одновременный контраст объясняется явлением автоконтраста или автоиндукции. 83 Это явление заключается в том, что при возбуждении сетчатки глаза светом, одновременно с прямым процессом, стимулирующим ощущение данного цвета, возникает «обратный» процесс, стимулирующий ощущение цвета, контрастного данному: на каждый цвет накладывается контрастный к нему цвет. При этом автоконтраст от цвета освещения значительно сильнее, чем от «собственного цвета» поверхности. Явление одновременного контраста объясняется распространением (иррадиацией) «обратного процесса» на смежные участки сетчатки, не раздраженные данным световым потоком. В том случае, когда одновременный контраст возникает к цвету фона, он объясняется явлением автоконтраста к цвету фона. В том случае, когда цветная поверхность освещена одним и тем же цветным светом, один и тот же контрастный цвет может быть назван каким угодно воспринимаемым цветом поверхности. С другой стороны, одинаково выглядящие цвета при освещении различными источниками света вызывают различные контрастные цвета, обусловленные цветным светом, освещающим экран. Следовательно, одинаково выглядящие цвета могут вызвать контрастный цвет, имеющий любой тон спектра.

Таким образом, одинаково выглядящие цвета, освещенные различными источниками света, вызывают неодинаково выглядящие контрастные цвета, обусловленные в основном не воспринимаемым цветом поверхности, а цветным светом, освещающим данную поверхность.

Из этого положения следует, что глаз является анализатором, дифференцирующим свет, падающий на данную поверхность, и свет, отраженный данной поверхностью. Таким образом, одновременный контраст возникает на основе индукции от света.

Аналогичные явления возникают при восприятии природы в естественных условиях. Отражения цветного света от зеленой листвы, от цветной поверхности и т.д. вызывают резко выраженные контрастные цвета, которые несравнимо сильнее, чем контрасты от самих окрашенных поверхностей.

Для объяснения явлений одновременного контраста существовали две теории – Г.Гельмгольца и Э.Геринга.

Гельмгольц считал, что явления одновременного контраста могут быть частично сведены к процессу адаптации, возникающему вследствие нестрогой фиксации глаз. В тех же случаях, когда условия фиксации глаз строго соблюдались, Гельмгольц объясняет явления одновременного контраста ошибочными суждениями.

С точки зрения, которую защищал Геринг, одновременный контраст является результатом взаимодействия раздраженных мест сетчатой оболочки глаза.

Против теории Гельмгольца говорят следующие эксперименты Геринга: если смотреть через красное стекло одним глазом, а через синее стекло другим глазом на серую полосу, изображенную на белом фоне, и фиксировать взгляд на точке, лежащей несколько ближе к наблюдателю, чтобы увидеть серую полосу раздвоенной, то наблюдатель увидит на фиолетовом фоне голубо-зеленую и оранжевую полосы. В данном случае воспринимается фон одного цвета, но вследствие влияния красного и синего цвета одна и та же серая полоса правым и левым глазом воспринимается по-разному – контрастно к цвету стекла.

Против теории Гельмгольца говорят и эксперименты, в которых цвета одновременного контраста смешивались со смежными цветами, как и объективно существующие цвета, подчиняясь в этом случае законам смешения цветов. Изменения в контрастном цвете в этих экспериментах возникали не к воспринимаемому цвету, а к цветному свету, о присутствии которого испытуемые даже не подозревали. Следовательно, ни о каком влиянии «суждений» в данных экспериментах не могло быть и речи. Объяснение цветного контраста, по данным этих исследований, заключается в том, что на каждый цвет накладывается контрастный к нему цвет. Однако в некоторых случаях явления одновременного контраста усиливаются и ослабляются вследствие влияния центральных факторов. Так, одновременный контраст зависит в определенной мере от разделения формы на части; одновременный контраст распространяется на всю воспринимаемую фигуру, как бы «разливаясь» по ней, если она не расчленена. Но достаточно разбить эту фигуру на какие-либо две части, чтобы линия, разделяющая фигуру на две, явилась преградой для распространения контраста. Целый ряд опытов подтверждает это положение.

Когда индуцируемое поле является частью какой-либо цельной фигуры, контраст возрастает. Напротив, обособленность полей уменьшает действие контраста.

Чем ближе расположены друг от друга две поверхности, имеющие различные цвета, тем сильнее их влияние друг на друга. Особенно сильное влияние одновременного контраста возникает на границе сопротивляющихся полей (так называемый краевой контраст).

Изменение цвета вызывается не только контрастным воздействием другого цвета, но и рядом других факторов. В частности, цвета изменяют свой цветной тон, светлоту и яркость на расстоянии в зависимости от величины угла, под которым воспринимается данная цветовая поверхность. Это изменение зависит от фона, на котором цвета воспринимаются, причем изменение цветов возникает не только на цветных фонах, но также на черном и белом. Эксперименты показали, что для каждого фона имеется своя кривая изменения цвета, воспринимаемого под малым углом зрения.

Так, на белом фоне под малым углом зрения все цвета имеют тенденцию сдвигаться по направлению к двум «положительным критическим точкам», одна из которых находится в крайней видимой красной части спектра, а другая – между зеленым и голубым цветами спектра. Вследствие этого на белом фоне желтые, оранжевые, пурпуровые и фиолетовые цвета краснеют, а желто-зеленые, зеленые и синие – голубеют. Вместе с тем синие, а также фиолетовые и голубые цвета заметно темнеют на белом фоне. 84

Еще тысячу лет назад великие мастера живописи, создавая произведения искусства, интуитивно учитывали изменения цвета на расстоянии и добивались замечательных эффектов. Например, основной желто-зеленый тон некоторых византийских мозаик, выполненных более тысячи лет назад, при рассмотрении вблизи кажется условным, а мозаики неприятно схематичными, но при восприятии на расстоянии они превращаются в образцы реалистического искусства. Мастера Средней Азии создали в IV в. н.э. цветные орнаменты, которые вовсе не меняют на расстоянии свой цвет. Из более близких нам мастеров X.Рембрандт пользовался в своих картинах аналогичными эффектами.

Раскрытие закономерностей изменения цветовых систем на расстоянии приобретает особенно большое значение для монументальной живописи, которая при архитектурных сооружениях крупных масштабов должна быть рассчитана на восприятие на больших расстояниях.

Теория цветоощущения

Для объяснения цветового зрения, истинная природа которого экспериментально изучена плохо, имеется несколько теорий. Основными из них являются теория Юнга-Гельмгольца 85 и теория Э.Геринга.

Согласно теории Юнга-Гельмгольца, зрительное ощущение возникает вследствие некоторого фотохимического процесса, выражающегося в распаде трех гипотетических светочувствительных веществ, каждое из которых обладает своим спектром поглощения. Распад молекул освобождает ионы, которые при известных условиях стимулируют нервное возбуждение.

Гельмгольц допускает существование в зрительном аппарате трех типов нервных волокон. Отдельные возбуждения этих волокон дают ощущения максимально насыщенных красного, зеленого и фиолетового цветов. Обычно свет действует не на одно, а на все три нервных волокна. Различию нервных волокон соответствует различие в мозговых центрах и различие в воспринимающих аппаратах. В случае палочкового зрения возникает фотохимический процесс выцветания зрительного пурпура. В случае колбочкового зрения предполагается, что возникает аналогичный процесс, хотя экспериментально существование трех светочувствительных веществ еще не установлено. Каждый монохроматический цвет возбуждает два или большей частью три цветочувствительных вещества.

Ощущение красного цвета вызывается возбуждением красного и отчасти зеленого вещества и т.д.

Чем сильнее возбуждение одного из цветочувствительных веществ по отношению к возбуждению двух других цветочувствительных веществ, тем сильнее насыщенность цвета. Чем слабее различие по интенсивности между всеми тремя возбуждениями, тем менее насыщенным является цвет. При уменьшении интенсивности всех трех возбуждений уменьшается светлота цвета. При каждом изменении в соотношениях интенсивности возбуждения цветочувствительных веществ возникает новое качество ощущения. Благодаря этому при наличии всего трех основных возбуждений человеческий глаз различает несколько сот тысяч цветов, отличающихся по цветному тону, светлоте и насыщенности. Ощущение черного цвета возникает, когда ни одно из цветоощущающих веществ не возбуждается вовсе.

Дополнительными являются цвета, которые при своем смешении вызывают равное возбуждение всех трех веществ, т.е. вызывают ощущение белого цвета.

При утомлении глаза каким-либо цветом изменяются соответствия в силе каждого из трех процессов, вызывающих ощущение цвета. Благодаря этому изменяется чувствительность глаза к световым волнам различной длины. Этим, по теории Юнга-Гельмгольца, объясняется явление адаптации и последовательного контраста.

Э.Геринг предложил другую теорию цветоощущения. Он считает, что в глазу имеются три цветочувствительных вещества – бело-черное, красно-зеленое и желто-синее. Диссоциация веществ вызывает ощущения белого, красного и желтого, а ассимиляция вызывает ощущения черного, зеленого и синего.

Помимо теорий Юнга-Гельмгольца и Геринга существуют еще и другие многоступенные теории зрения, построенные на учете не только периферических, но и центральных процессов. По Г.Э.Мюллеру, существуют первичные процессы Р 1 , Р 2 и Р 3 . Первичные процессы соответствуют трем основным возбуждениям теории Гельмгольца. Вторичные хроматические процессы имеют промежуточный характер и протекают также в сетчатой оболочке глаза, причем эти вторичные процессы, в соответствии с теорией Геринга, попарно связаны между собой. Центральных возбуждений, по Мюллеру, шесть: красное, желтое, зеленое, синее, белое и черное. Аналогичную схему предлагает также и Т.Шьелдерупп-Эббе.

Согласно теории X.Лэдд-Франклин, на первой стадии филогенетического развития зрение было ахроматическим, затем произошла дифференциация и зрение стало дихроматическим, т.е. наш глаз стал различать синие и желтые цвета. На последней, третьей, стадии развития дихроматическое зрение сделалось трихроматическим, т.е. глаз стал различать вместо желтого два цвета – красный и зеленый. С этой точки зрения, явление цветослепоты есть возврат ко второй стадии развития глаза, когда орган зрения был дихроматическим.

Как показали опыты Л.А.Шварц, предварительное слабое раздражение глаза тем или иным цветом может повлечь за собой повышение чувствительности к другому цвету в 2-3 раза на срок до получаса. Ею было установлено, что подобная сенсибилизация имеет место только для дополнительных цветов: красный – зеленый и желтый – синий, причем красный и желтый цвета оказывают значительно более сильное сенсибилизирующее действие, чем зеленый и синий. Сенсибилизация имеет место и при воздействии красным и желтым цветом на другой глаз и при мысленном воспроизведении этих цветов, в то время как зеленый и синий такого эффекта не дают. Это, по-видимому, связано с различной локализацией цветов и филогенетическим возрастом соответствующих участков мозга.

Психофизическое действие цветов

Каждый цвет определенным образом воздействует на человека. Действие цветов обусловлено, с одной стороны, непосредственным физиологическим влиянием их на организм, а с другой – ассоциациями, которые цвета вызывают на основе предшествовавшего опыта. Некоторые цвета возбуждают, другие, напротив, успокаивают нервную систему.

Еще И.-В.Гёте отмечал действие цветов на настроение и делил с этой точки зрения цвета на: а) возбуждающие, оживляющие, бодрящие и б) порождающие печально-беспокойное настроение. К первым он относил красно-желтые, ко вторым – сине-фиолетовые. Промежуточное место он отводил зеленому цвету, который способствует, по мнению Гете, состоянию спокойной умиротворенности. Известную роль в этом эмоциональном воздействии цветов играют, по-видимому, и ассоциации: голубой цвет ассоциируется с цветом голубого неба, зеленый – с зеленью, голубо-зеленый – с водою, оранжевый – с пламенем и т.д. Цвета производят определенное физиологическое воздействие на человеческий организм. Французский невропатолог Ч.Фере отметил, что показания динамометра, определяющего сжатием руки мускульную силу, изменяются при различных условиях освещения. При кратковременной работе производительность труда увеличивается при красном цвете и уменьшается при синем; при длительной работе производительность труда увеличивается при зеленом цвете и снижается при синем и фиолетовом. Экспериментальные исследования В.М.Бехтерева, И.Н.Спиртова и других установили возбуждающее и угнетающее действие различных цветов, в связи с чем Бехтеревым была поставлена задача использования терапевтического эмоционального воздействия цветов на психическое состояние душевнобольных.

Ф.Стефанеску-Гоанга установил, что при действии пурпурного, красного, оранжевого, желтого цветов учащаются и углубляются дыхание и пульс, а при действии зеленого, голубого, синего и фиолетового цветов возникает обратное действие. Следовательно, первая группа цветов является возбуждающей, а вторая – успокаивающей.

По замечаниям художников и искусствоведов, красный цвет – возбуждающий, согревающий, оживляющий, активный, энергичный, очень богат ассоциациями; оранжевый – веселый, жизнерадостный, пламенный, соединяющий радостность желтого с возбуждением красного; желтый – теплый, бодрящий, веселый, привлекательный, несколько кокетливый; зеленый – спокойный, создает приятное (уютное) настроение, очень богат ассоциациями; синий – спокойный, серьезный, нежный, печальный, тоскливый, мирный, сентиментальный; фиолетовый цвет соединяет эмоциональный эффект красного и синего цветов – одновременно притягивающий и отталкивающий, полный жизни и возбуждающий тоску и грусть.

Цветам свойственна определенная выразительность. Выразительность цвета не есть результат ассоциации и не перенос символики цвета, а качество, принадлежащее самому цвету. Выразительность в значительной степени зависит от установки испытуемых.

Восприятие цвета

Ощущение цвета нельзя оторвать от восприятия цвета. Обычно нами воспринимается не цвет «вообще», но цвет определенных предметов. Предметы эти находятся от нас на определенном расстоянии, в определенной воздушной среде и бывают освещены прямыми или непрямыми лучами белого или цветного света. Кроме цветов поверхности предметов мы воспринимаем среду, через которую видим эти предметы, например туман, дым, окутывающие видимые нами предметы. Наконец, сами предметы могут быть полупрозрачными или «мутными». В этом случае они могут освещаться светом, не только падающим на их поверхность, но и проходящим через них (молочное стекло, полупрозрачные камни). Если цвет не локализуется вовсе, то он воспринимается как цвет пространства. Цвет прозрачных предметов называется цветом поверхности в отличие от цвета пространства.

Цвет, видимый нами как цвет определенного предмета, обладает специфическими свойствами. Основным из этих свойств является относительная его константность при изменяющихся условиях освещения. Хотя, будучи освещенной различным по яркости и цвету светом, цветная поверхность предмета отражает различный цветовой поток, воспринимаемый цвет поверхности, так же как и объективная окраска самого предмета, при этом не изменяется. Мы как бы «снимаем» освещение, воспринимаем цвет в его нормальном освещении. Это «снятие» освещения и как бы перевод его в условия нормального освещения обозначается обычно как трансформация цвета. Не существуй у нас подобной трансформации, белый цветок, находящийся под зеленой листвой, должен был бы казаться того же цвета, что сама листва под открытым небом; клубок белых ниток при свете лампы должен был бы иметь для нас цвет апельсина. Однако в естественных условиях наших восприятии этого нет: лист белой бумаги остается белым при желтоватом освещении электрической лампы и под зеленой листвой, хотя физически состав отражаемого им света в обоих случаях различен. Писчая бумага воспринимается нами как белая и в сумерки, а шрифт печатного текста как черный и при ярком солнечном освещении, хотя свет, отражаемый белой бумагой, слабее света, отражаемого шрифтом при солнечном освещении. Еще Э.Геринг отмечал, что кусок угля в полдень отражает в несколько раз больше света, чем кусок мела на рассвете; между тем и в полдень уголь воспринимается нами как черный, а мел на рассвете как белый. Это постоянство цвета в некоторых отношениях особенно примечательно: при постоянстве величины и формы изменяется лишь изображение на сетчатке: в данном случае изменяется и объективный раздражитель – физический состав световых лучей, отражаемых поверхностью воспринимаемого цвета, в соответствии с цветом самого предмета, хотя этот последний является лишь одним из условий, определяющих действующий на глаз раздражитель.

Явление константности и трансформации цвета – по-видимому, сложный процесс, обусловленный как центральными, так и периферическими факторами. Для того чтобы правильно и достаточно дифференцированно определить их роль в константности, нужно прежде всего различать кроме хроматической и ахроматической константности цвета поверхностей еще и константность освещенности. 86

Константность освещенности объясняется тем, что к цвету освещения прибавляется контрастный цвет. Вследствие этого как хроматическое, так и ахроматическое освещение нивелируется по своей силе, приближаясь к среднему дневному, а хроматическое освещение, сверх того, становится менее хроматическим.

Явление хроматической константности цвета выражается в тенденции воспринимать цвет поверхности как освещенной средним дневным светом и объясняется явлением константности освещенности.

Проблема ахроматической константности – это проблема восприятия светлоты поверхности.

При одинаковом освещении изменения в светлоте поверхности совпадают с изменениями в яркости света. Однако явление константности освещения вызывает только тенденцию к нивелировке освещенности. Но так как, несмотря на константность освещения, различие в восприятии освещенности все же существует, то проблема восприятия светлот не может быть объяснена только константностью освещенности. Светлота поверхности определяется отношением между отраженным и полным световыми потоками. Поэтому восприятие светлоты поверхности определяется осознанием соотношений между цветовыми свойствами предметов и цветовыми свойствами освещающего их света.

Это осознание соотношений между освещенностью и собственным цветом поверхности возникает на основе опыта – предшествующих восприятии. Существенную роль при осознании этих соотношений играет осознание качества фактуры поверхности (микрорельеф и микроцвет), а также осознание качества материала поверхности. Поэтому светлота воспринимается не независимо от условий освещения, а обратно – вследствие осознания условий освещения.

Хроматическая константность определяется автоиндукцией от света. Светлотная константность определяется главным образом влиянием центральных факторов и лишь отчасти влиянием периферических факторов.

ОГЛАВЛЕHИЕ >>> Библиотека Фонда содействия развитию психической культуры (Киев)

Источники:
  • http://vsesdal.com/order/1095617/kontrolnaya-1
  • http://megaobuchalka.ru/8/842.html
  • http://plati.ru/itm/in-a-thin-film-of-turpentine-n-1-48-white-light/2179558?lang=ru-RU
  • http://sverh-zadacha.ucoz.ru/ege/RaznoeC/optik/optik.html
  • http://psylib.org.ua/books/rubin01/txt13.htm