Меню Рубрики

По радужной оболочке глаза защита информации

Современная наука не стоит на месте. Все чаще и чаще требуется качественная защита для устройств, чтобы тот, кто случайно ими завладел, не смог в полной мере воспользоваться информацией. Кроме этого, методы охраны информации от несанкционированного доступа используются не только в повседневной жизни.

Кроме ввода паролей в цифровом виде, применяются и более индивидуализированные биометрические системы защиты.

Ранее такая система применялась только в ограниченных случаях, для защиты наиболее важных стратегических объектов.

Затем, после 11 сентября 2011 года, пришли к выводу, что такой способ защиты информации и доступа может быть применен не только в этих областях, но и в других сферах.

Таким образом, приемы идентификации человека стали незаменимыми в ряду методов борьбы с мошенничеством и терроризмом, а также в таких областях, как:

— биометрические системы доступа к технологиям связи, сетевым и компьютерным базам;

— контроль доступа в хранилища информации и др.

У каждого человека есть набор характеристик, которые не меняются со временем, или такие, которые могут модифицироваться, но при этом принадлежать только конкретному лицу. В связи с этим можно выделить следующие параметры биометрических систем, которые используются в этих технологиях:

— динамические – особенности почерка, голоса и т. п.;

— статические — отпечатки пальцев, фотографирование ушных раковин, сканирование сетчатки глаза и другие.

Технологии биометрики в перспективе заменят обычные методы аутентификации человека по паспорту, так как встроенные чипы, карты и тому подобные новшества научных технологий будут внедряться не только в данный документ, но и в другие.

Небольшое отступление по поводу способов распознавания личности:

Идентификация – один ко многим; образец сравнивается со всеми имеющимися по определенным параметрам.

Аутентификация – один к одному; образец сравнивается с ранее полученным материалом. При этом лицо может быть известно, полученные данные человека сравниваются с имеющимся в базе образцом параметра этого лица;

Для того чтобы создать базу под определенного человека, необходимо считать его биологические индивидуальные параметры специальным устройством.

Система запоминает полученный образец биометрической характеристики (процесс записи). При этом, возможно, потребуется сделать несколько образцов для составления более точного контрольного значения параметра. Информация, которая получена системой, преобразовывается в математический код.

Помимо создания образца, система может запросить произвести дополнительные действия для того, чтобы объединить личный идентификатор (ПИН-код или смарт-карту) и биометрический образец. В дальнейшем, когда происходит сканирование на предмет соответствия, система сравнивает полученные данные, сравнивая математический код с уже записанными. Если они совпадают, что это значит, что аутентификация прошла успешно.

Система может выдавать ошибки, в отличии от распознавания по паролям или электронным ключам. В этом случае различают следующие виды выдачи неверной информации:

— ошибка 1 рода: коэффициент ложного доступа (FAR) — одно лицо может быть принято за другое;

— ошибка 2 рода: коэффициент ложного отказа в доступе (FRR) – человек не распознается в системе.

Для того чтобы исключить, к примеру, ошибки данного уровня, необходимо пересечение показателей FAR и FRR. Однако это невозможно, так как для этого нужно было бы проводить идентификацию человека по ДНК.

На данный момент наиболее известен метод биометрики. При получении паспорта современные граждане России в обязательном порядке проходят процедуру снятия отпечатков пальцев для внесения их в личную карточку.

Данный метод основан на неповторимости папиллярного узора пальцев и используется уже достаточно длительное время, начиная с криминалистики (дактилоскопия). Сканируя пальцы, система переводит образец в своеобразный код, который затем сравнивается с существующим идентификатором.

Как правило, алгоритмы обработки информации используют индивидуальное расположение определенных точек, которые содержат отпечатки пальцев – разветвления, окончание линии узора и т. д. Время, которое занимает перевод изображения в код и выдача результата, обычно составляет около 1 секунды.

Оборудование, в том числе и программное обеспечение для него, производятся на данный момент в комплексе и стоят относительно недорого.

Возникновение ошибок при сканировании пальцев руки (или обеих рук) возникают довольно часто в том случае, если:

— Присутствует несвойственная влажность или сухость пальцев.

— Руки обработаны химическими элементами, которые затрудняют идентификацию.

— Есть микротрещины или царапины.

— Имеется большой и непрерывный поток информации. К примеру, это возможно на предприятии, где доступ к рабочему месту осуществляется при помощи дактилоскопа. Так как поток людей значительный, система может давать сбой.

Наиболее известные компании, которые занимаются системами распознавания отпечатков пальцев: Bayometric Inc., SecuGen. В России над этим работают: «Сонда», BioLink, «СмартЛок» и др.

Рисунок оболочки формируется на 36 неделе внутриутробного развития, устанавливается к двум месяцам и не меняется на протяжении жизни. Биометрические системы идентификации по радужной оболочке являются не только наиболее точными среди других в этом ряду, но и одними из самых дорогих.

Преимущество способа состоит в том, что сканирование, то есть захват изображения, может происходить как на расстоянии 10 см, так и на 10-метровом удалении.

При фиксации изображения данные о расположении определенных точек на радужке глаза передаются в вычислитель, который затем выдает информацию о возможности допуска. Скорость обработки сведений о радужке человека составляет около 500 мс.

На данный момент данная система распознавания на биометрическом рынке занимает не более 9% от общего числа таких способов идентификации. В то же время доля рынка, которую занимают технологии по отпечаткам пальцев, составляет более 50%.

Сканеры, позволяющие захватывать и обрабатывать радужку глаза, имеют довольно сложную конструкцию и ПО, а поэтому на такие устройства установлена высокая цена. Кроме этого, монополистом в производстве систем распознавания радужки глаза человека изначально являлась компания Iridian. Затем на рынок стали заходить и другие крупные компании, которые уже занимались производством компонентов различных устройств.

Таким образом, на данный момент в России существуют следующие компании, которые формируют системы распознавания человека по радужке глаза: AOptix, SRI International. Однако данные фирмы не предоставляют показателей по количеству ошибок 1 и 2 рода, поэтому не факт, что что система не защищена от подделок.

Существуют биометрические системы безопасности, связанные с распознаванием по лицу в 2D и 3D-режимах. Вообще считается, что черты лица каждого человека уникальны и не меняются в течение жизни. Неизменными остаются такие характеристики, как расстояния между определенными точками, форма и т. д.

2D-режим является статическим способом идентификации. При фиксации изображения необходимо, что человек не двигался. Имеют также значение фон, наличие усов, бороды, яркий свет и другие факторы, которые мешают системе распознать лицо. Это означает, что при любых неточностях выданный результат будет неверным.

На данный момент этот метод не особо популярен из-за своей низкой точности и применяется только в мультимодальной (перекрестной) биометрии, представляющая собой совокупность способов распознавания человека по лицу и голосу одновременно. Биометрические системы защиты могут включать в себя и другие модули – по ДНК, отпечаткам пальцев и другие. Кроме этого, перекрестный способ не требует контакта с человеком, которого необходимо идентифицировать, что позволяет распознавать людей по фотографии и голосу, записанных на технические устройства.

3D-метод имеет совершенно другие входящие параметры, поэтому нельзя его сравнивать с 2D-технологией. При записывании образа используется лицо в динамике. Система, фиксируя каждое изображение, создает 3D-модель, с которой затем сравниваются полученные данные.

В этом случае используется специальная сетка, которая проецируется на лицо человека. Биометрические системы защиты, делая несколько кадров в секунду, обрабатывают изображение входящим в них программным обеспечением. На первом этапе создания образа ПО отбрасывает неподходящие изображения, где плохо видно лицо или присутствуют вторичные предметы.

Затем программа определяет и игнорирует лишние предметы (очки, прическа и др.). Антропометрические особенности лица выделяются и запоминаются, генерируя уникальный код, который заносится в специальное хранилище данных. Время захвата изображения составляет около 2 секунд.

Однако, несмотря на преимущество метода 3D перед 2D-способом, любые существенные помехи на лице или изменение мимики ухудшают статистическую надежность данной технологии.

На сегодняшний день биометрические технологии распознавания по лицу применяются наряду с наиболее известными вышеописанными методами, составляя приблизительно 20% всего рынка биометрических технологий.

Компании, которые занимаются разработкой и внедрением технологии идентификации по лицу: Geometrix, Inc., Bioscrypt, Cognitec Systems GmbH. В России над этим вопросом работают следующие фирмы: Artec Group, Vocord (2D-метод) и другие, менее крупные производители.

Лет 10-15 назад пришла новая технология биометрической идентификации – распознавание по венам руки. Это стало возможным благодаря тому, что гемоглобин, находящийся в крови, интенсивно поглощает инфракрасное излучение.

Специальная камера ИК фотографирует ладонь, в результате чего на снимке появляется сетка вен. Данное изображение обрабатывается ПО, и выдается результат.

Расположение вен на руке сравнимо с особенностями радужки глаза – их линии и структура не меняются со временем. Достоверность данного метода тоже можно соотнести с результатами, полученными при идентификации при помощи радужной оболочки.

Контактировать для захвата изображения считывающим устройством не нужно, однако использование этого настоящего метода требует соблюдения некоторых условий, при которых результат будет наиболее точным: невозможно получить его, если, к примеру, сфотографировать руку на улице. Также во время сканирования нельзя засвечивать камеру. Конечный результат будет неточным, если имеются возрастные заболевания.

Распространение метода на рынке составляет всего около 5%, однако к нему проявляется большой интерес со стороны крупных компаний, которые уже разрабатывали биометрические технологии: TDSi, Veid Pte. Ltd., Hitachi VeinID.

Сканирование рисунка капилляров на поверхности сетчатки считается самым достоверным методом идентификации. Он сочетает в себе наилучшие характеристики биометрических технологий распознавания человека по радужке глаз и венам руки.

Единственный момент, когда метод может дать неточные результаты – катаракта. В основном же сетчатка имеет неизменяемую структуру на протяжении всей жизни.

Минус этой системы заключается в том, что сканирование сетчатки глаза производится тогда, когда человек не двигается. Сложная по своему применению технология предусматривает длительное время обработки результатов.

Ввиду высокой стоимости биометрическая система не имеет достаточного распространения, однако дает самые точные результаты из всех предложенных на рынке методов сканирования человеческих особенностей.

Ранее популярный способ идентификации по геометрии рук становится менее применяемым, так как дает наиболее низкие результаты по сравнению с другими методиками. При сканировании фотографируются пальцы, определяются их длина, соотношение между узлами и другие индивидуальные параметры.

Специалисты говорят о том, что все существующие методы идентификации не настолько точны, как распознавание человека по форме уха. Однако есть способ определения личности по ДНК, но в этом случае происходит тесный контакт с людьми, поэтому его считают неэтичным.

Исследователь Марк Никсон из Великобритании заявляет, что методы данного уровня – биометрические системы нового поколения, они дают самые точные результаты. В отличии от сетчатки, радужки или пальцев, на которых могут с большой долей вероятности появиться посторонние параметры, затрудняющие идентификацию, на ушах такого не бывает. Сформированное в детстве, ухо только растет, не изменяясь по своим основным точкам.

Метод идентификации человека по органу слуха изобретатель назвал «лучевое преобразование изображения». Данная технология предусматривает захват изображения лучами разного цвета, что затем переводится в математический код.

Однако, по словам ученого, у его метода существуют и отрицательные стороны. К примеру, получению четкого изображения могут помешать волосы, которые закрывают уши, ошибочно выбранный ракурс и другие неточности.

Технология сканирования уха не заменит собой такой известный и привычный способ идентификации, как отпечатки пальцев, однако может использоваться наряду с ним.

Полагают, что это увеличит надежность распознавания людей. Особенно важной является совокупность различных методов (мультимодальная) в поимке преступников, считает ученый. В результате опытов и исследований надеются создать ПО, которое будет использоваться в суде для однозначной идентификации виновных лиц по изображению.

Идентификация личности может быть проведена как на месте, так и удаленным способом, при помощи технологии распознавания голоса.

При разговоре, к примеру, по телефону, система сравнивает данный параметр с имеющимися в базе и находит похожие образцы в процентном отношении. Полное совпадение означает, что личность установлена, то есть произошла идентификация по голосу.

Для того чтобы получить доступ к чему-либо традиционным способом, необходимо ответить на определенные вопросы, обеспечивающие безопасность. Это цифровой код, девичья фамилия матери и другие текстовые пароли.

Современные исследование в данной области показывают, что этой информацией довольно легко завладеть, поэтому могут применяться такие способы идентификации, как голосовая биометрия. При этом проверке подлежит не знание кодов, а личность человека.

Для этого клиенту нужно произнести какую-либо кодовую фразу или начать разговаривать. Система распознает голос звонящего и проверяет его принадлежность этому человеку – является ли он тем, за кого себя выдает.

Биометрические системы защиты информации данного типа не требуют дорогостоящего оборудования, в этом заключается их преимущество. Кроме этого, для проведения сканирования голоса системой не нужно иметь специальных знаний, так как устройство самостоятельно выдает результат по типу «истина — ложь».

Однако голос может меняться либо с возрастом, либо по причине болезни, поэтому метод надежен лишь тогда, когда с этим параметром все в порядке. На точность результатов могут влиять, кроме этого, посторонние шумы.

Читайте также:  Что делать если в глаза попал тосол

Идентификация человека по способу написания букв имеет место практически в любой сфере жизни, где необходимо ставить подпись. Это происходит, к примеру, в банке, когда специалист сличает образец, сформированный при открытии счета, с подписями, проставленными при очередном посещении.

Точность этого способа невысокая, так как идентификация происходит не с помощью математического кода, как в предыдущих, а простым сравнением. Здесь высок уровень субъективного восприятия. Кроме этого, почерк с возрастом сильно меняется, что зачастую затрудняет распознавание.

Лучше в этом случае использовать автоматические системы, которые позволят определить не только видимые совпадения, но и другие отличительные черты написания слов, такие как наклон, расстояние между точками и другие характерные особенности.

источник

Биометрический принцип является одним из самых надежных способов аутентификации пользователя. Данный принцип использует некоторые стабильные биометрические показатели человека, например, ритм нажимания клавиш клавиатуры, рисунок хрусталика глаза, отпечатки пальцев и др. Для снятия биометрических показателей необходимо использование специальных устройств, которые должны быть установлены на компьютерах высших уровней защиты. Проверка ритма работы на клавиатуре при вводе информации производится на обычной клавиатуре компьютера и по результатам проведенных в этой области экспериментов является достаточно стабильным и надежным. Даже при подглядывании за работой пользователя, набирающего ключевую фразу, не будет гарантирована идентификация злоумышленника при его попытке скопировать все действия при наборе фразы.

Сегодня для защиты от НСД к информации все чаще используют биометрические системы идентификации.

Характеристики, которые используются в биометрических системах, являются неотъемлемыми качествами каждого пользователя и поэтому не могут быть утеряны или подделаны.

Попробуй обратиться за помощью к преподавателям

Биометрические системы защиты информации построены на идентификации следующих характеристик:

  • отпечатков пальцев;
  • характеристик речи;
  • радужной оболочки глаза;
  • изображения лица;
  • рисунка ладони руки.

Оптические сканеры для считывания отпечатков пальцев устанавливают на клавиатуры, мыши, ноутбуки, флэш-диски, а также могут применяться как отдельные внешние устройства и терминалы (например, в банках или аэропортах).

Доступ к информации будет недоступным в случае не совпадения узора отпечатка пальца пользователя, который допущен к информации.

Одним из традиционных способов идентификации является распознание человека по голосу. Интерес к данному методу поддерживается внедрением голосовых интерфейсов в операционные системы.

Голосовая идентификация является бесконтактной и разработаны системы ограничения доступа к информации на основе частотного анализа речи.

Уникальной биометрической характеристикой каждого пользователя является радужная оболочка глаза. На изображение глаза, которое выделяется из изображения лица, накладывается специальная маска штрих-кодов. В результате получают матрицу, индивидуальную для каждого человека.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Специальные сканеры для распознания по радужной оболочке глаза подключаются к компьютеру.

Идентификация человека по лицу происходит на расстоянии.

При идентификации по лицу учитывается его форма, цвет и цвет волос. К важным признакам относятся также координаты точек лица в местах, которые соответствуют смене контраста (нос, глаза, брови, рот, уши и овал).

На данном этапе развития информационных технологий экспериментируют выдачу новых загранпаспортов, микросхема которых хранит цифровую фотографию владельца.

При идентификации по ладони руки используются биометрические характеристики простой геометрии руки – размеров и формы, а также контролируются некоторые информационные знаки на тыльной стороне руки (узоры расположения кровеносных сосудов, складки на сгибах между фалангами пальцев).

Сканеры идентификации по ладони руки устанавливаются в некоторых банках, аэропортах и на атомных электростанциях.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

источник

Размер рынка распознавания радужной оболочки достигнет $ 3,6 млрд к 2020 году. Совокупные темпы годового роста в период между 2015 и 2020 годом составят 23,4 %. Такие прогнозы были озвучены исследовательским агентством MarketsandMarkets. Основными драйверами названы: общее снижение стоимости и большое количество правительственных инициатив.

Frost&Sullivan опубликовала доклад «Пятилетний анализ перспектив рынка аутентификации по радужной оболочке глаза», в котором прогнозируется рост доходов от $ 142 900 000 в 2014 году до $ 167 900 000 в 2019 году.

Точность верификации по радужной оболочке глаза и её неизменное состояние на протяжении всей жизни человека — являются достаточно убедительными аргументами для развертывания технологии.

«Глобальные угрозы безопасности и активность мошенников усиливают необходимость в системах распознавания радужной оболочки глаза, — считает Рам Рави, промышленный аналитик Frost&Sullivan. — В результате, технология может найти применение в национальных системах идентификации, службе пограничного контроля и правоохранительных органах.»

Также аналитики ожидают рост популярности этих бесконтактных биометрических систем в гостиничной и финансовой индустрии, государственных ИТ-системах, мобильном банкинге и, особенно, в сфере здравоохранения. Кроме того, пока камеры смартфонов в состоянии захватить отдельные образцы радужной оболочки, перспективы развития — очевидны.

Что касается более долгосрочных прогнозов:

Tractica опубликовала новый доклад под названием «Iris Recognition», предсказывающий, что к 2024 году поставки устройств распознавания радужной оболочки глаза составят $262 млн..

В докладе отмечается, что поставки устройств — в том числе как автономных систем распознавания радужной оболочки, так и биометрических компонентов для мобильных устройств — вырастет с 7,9 млн ($ 587 млн) в 2015 году до 55,6 млн ($ 1920000000) в год к 2024 году. В течение этого 10-летнего периода, совокупные поставки на мировой рынок достигнут 262,8 млн ($ 11,7 млрд) при среднегодовом темпе роста в 24%.

«Аутентификация по радужной оболочке глаза признана одним из самых эффективных биометрических методов последнего десятилетия, — говорит Боб Локхарт, главный аналитик Tractica. — Такие системы дают очень низкий процент ложных срабатываний. Скорость обработки приближается к 200 миллионов шаблонов в секунду. Тем не менее, технология распознавания радужной оболочки уступает конкурирующей технологии распознавания отпечатков пальцев, за счет более низкой цены последней».

«Несмотря на потенциал метода среди различных биометрических систем, тормозящим фактором остается его высокая стоимость, — соглашается Рам Рави. — Однако, постоянные исследования и разработки позволят снизить затраты, а расширение сферы использования за счет госзаказов — позволит технологии аутентификации по радужной оболочке глаза занять заметный сегмент на рынке биометрических СКУД».

К 2020 году мировой рынок аутентификации по радужной оболочке глаза вырастет более чем на 21% до $5 млрд, согласно отчету TechNavio. Рост связан с увеличением интеграции систем распознавания по радужной оболочки глаза в мультимодальные биометрические системы крупных государственных проектов, такие как пограничный контроль, электронные паспорта, регистрация избирателей данных и т.п

Аутентификация по радужной оболочке глаза становится все более доступной.

«С точки зрения продукта, многие сканирующие радужку устройства теперь совершенствуют баланс легкости использования, точности, цены и производительности», — говорит Джоуи Притайкин, вице-президент по маркетингу и управлению продуктами для биометрии фирмы Tascent.

Ссылаясь на надежность технологии, при общем снижении стоимости приложений и оборудования, многие эксперты предсказывают, что сканирование глаза людей, станет распространенным методом идентификации.

«Радужная оболочка глаза — золотой биометрический идентификатор. Отпечатки пальцев имеют пределы, радужка — нет. Идентификация пользователя по радужной оболочке глаза выделяется во многих отношениях по сравнению с другими коммерчески жизнеспособными биометрическими технологиями. Каждый хочет ее использовать. В прошлом это было слишком дорого и слишком сложно, но это меняется», — говорит Марк Клифтон, президент продуктов и решений Princeton Identity (ранее SRI International).

В первую очередь, повышение доступности технологии связано с завершением срока действия многих ключевых патентов на биометрию радужной оболочки глаза.

Современные высокотехнологичные камеры обеспечивают простой захват биометрического идентификатора без дополнительного позиционирования положения глаз пользователя.

Основная технология также становится дешевле. Если раньше распознавание пользователя по глазам требовало специализированных, достаточно дорогих, аппаратных средств, выпускаемых по спец заказу, то сейчас оборудование, необходимое для захвата и обработки радужной оболочки, встраивается в большинство смартфонов. С миниатюризацией и промышленным выпуском основных компонентов, сканеры радужной оболочки вскоре могут стать сравнимы по цене с высококачественными считывателями отпечатков пальцев.

Чтобы стать мейнстримом, биометрическая технология должна быть принята потребителем. В течение многих десятилетий биометрия отпечатка пальцев изо всех сил старается преодолеть стереотип ассоциативной связи с преступностью. Прорыв произошел, когда сканеры отпечатков пальцев появились на iPhone.

В биометрии радужной оболочки глаза так же есть несколько мифов о сканировании, вроде небезопасности для зрения, которые должны постепенно развеяться.

«Производители уже встраивают сканеры радужной оболочки в свои мобильные телефоны и планшеты. На следующем этапе технология внедряться в дверные замки, замки, ноутбуки или даже такие вещи как холодильники. Простота и удобство использования будут стимулировать принятие людей. Поскольку технология становится менее дорогой, потенциал будет расти. Принятие займет некоторое время, но очевидно большое будущее для биометрии радужной оболочки глаза», — говорит Марк Клифтон, президент продуктов и решений Princeton Identity (ранее SRI International).

В августе 2016 компания EyeLock объявила, что разработала технологию распознавания радужной оболочки, позволяющую идентифицировать человека на расстоянии до 60 см и способную работать даже если пользователь носит очки или контактные линзы. Разработчики прогнозируют активное применение технологии в мобильных устройствах.

Появление технологии произошло почти сразу после выхода смартфона Samsung с аутентификацией по радужной оболочке глаза. Таким образом, если учитывать опыт Apple по популяризации биометрии, и у этого метода самые радужные перспективы.

Одна из уникальных биометрических характеристик, используемых для идентификации, — радужная оболочка глаза. При верификации используется около 260 ключевых точек (для сравнения, верификация отпечатка пальца использует около 16 ключевых точек). При этом сам шаблон занимает небольшой объем памяти, что позволяет быстро производить аутентификацию пользователя, а так же использовать большие базы данных при сравнительно небольших вычислительных ресурсах.

Системы контроля и учета доступа с идентификацией по радужной оболочке глаза имеют коэффициенты FAR – 0,00001% и FRR – 0,016%. При реализации СКУД со строгой аутентификацией по двум глазам коэффициент ложного пропуска уменьшается в геометрической прогрессии: FAR – 10-10% при FRR – 0,016%.

Считается, что подделать идентификационные данные при использовании этого метода – невозможно. По крайней мере, об успешных попытках ничего не известно. Дело в том, что кроме индивидуального рисунка радужной оболочки, человеческий глаз обладаете уникальными отражающими характеристиками (за счет состояния тканей и естественного увлажнения), которые учитываются в процессе считывания информации. А для дополнительного повышения уровня безопасности, некоторые СКУД также фиксируют непроизвольные движения глазного яблока, присущие живому человеку. Кстати аутентификация по радужной оболочке мертвого человека также считается невозможной: после смерти зрачок расширяется, делая область радужки слишком узкой и, следовательно, непригодной для сканирования.

Кроме того, эта биометрическая характеристика имеет малую вероятность изменения с течением времени: единственными причинами могут быть оперативное медицинское вмешательство или серьезная травма.

Метод распознавания по радужной оболочке глаза позволяет создавать бесконтактные системы контроля доступа, действующие на довольно большом расстоянии и способные к быстрой аутентификации в потоковом режиме. Это дополнительное достоинство позволяет использовать их для организации систем безопасности крупных объектов.

Ограничивающим фактором для распространения систем идентификации по радужной оболочке глаза является их высокая стоимость, а для российского рынка – и низкая доступность ввиду отсутствия отечественных производителей. .

При сканировании глаза выделяется область зрачка и область самой радужной оболочки. Получаемое кольцо программно очищается от шумов, и преобразуется в прямоугольный формат — Iris Code, содержащий информацию об уникальных характеристиках объекта в черно-белом виде (наподобие штрих-кода или QR-кода). Далее Iris Code сравнивается с базой зарегистрированных шаблонов. Скорость обработки при этом крайне высока, что позволяет использовать систему для работы с большими базами данных, в т.ч. выполняя задачи правоохранительных органов и других государственных организаций.

Основные тонкости, при создании СКУД на основе метода аутентификации по радужной оболочке глаза, связаны с организацией освещения. В первую очередь, стоит учитывать, что вся поверхность глаза имеет прекрасную отражающую способность и появление на ней световых бликов и отражения посторонних объектов – затрудняет считывание данных. Поэтому, как правило, системы, использующие этот биометрический метод, комплектуются собственным источником освещения, создающим преобладающий световой фон на объекте (иногда работающем в режиме «вспышки»).

Кроме того, собственное освещение решает еще несколько задач. Первая – поиск объекта идентификации. Найти глаз в видеопотоке движущихся людей – задача не простая. Поэтому биометрические системы распознавания радужной оболочки глаза, в первую очередь, ищут специфический световой блик, отражаемый зрачком. И уже в окрестности блика детектируется глаз.

Вторая задача, решаемая при помощи освещения – достаточная ширина радужной оболочки, для считывания индивидуальных биометрических данных. В условиях недостаточной освещенности зрачок имеет свойство расширяться, что не позволяет считать рисунок радужной оболочки глаза. При этом, человеческий глаз реагирует только на видимую часть светового потока, поэтому решить проблему при помощи ИК-подсветки не представляется возможным.

Кстати, ИК-подсветка является одним из стандартных элементов СКУД с распознаванием радужной оболочки, поскольку структура рисунка темных глаз в видимом свете практически неразличима. Однако, рисунок светлых глаз, напротив, в почти неразличим в ИК-диапазоне, а регистрируется в видимом свете. Стандартно, в системах идентификации радужной оболочки глаза рекомендуется использование света 700-900 нм. Но в таком широком диапазоне возможны сильные изменения регистрируемой картины. Дополнительный источник дневного света позволяет создать дополнительные условия для регистрации рисунка светлых глаз, оставив ИК-диапазон для более темных.

Читайте также:  Чем убрать большой синяк под глазом

Распознавание по сетчатке глаза часто путают с методом распознавания радужной оболочки, что неверно. Идентификация объекта в данном случае осуществляется по уникальному рисунку сосудов и капилляров на сетчатке глаза. Метод является прекрасно защищенным от подделки биометрических данных, поскольку их невозможно сфотографировать или осуществить несанкционированный захват другим простым способом. При этом, системы аутентификации по сетчатке глаза обладают очень высоким уровнем надежности: FAR – 0,0001% при FRR – 0,4%.

На этом достоинства заканчиваются и начинаются недостатки. Процедура идентификации довольно длительна и, можно считать, контактна: пользователю необходимо наблюдать сквозь окуляр удаленную световую точку. При этом малейшее движение, неверный наклон головы или неправильная фокусировка на источнике света — ведут к отказу распознавания.

Сетчатка, в отличие от радужной оболочки глаза, более подвержена изменениям в результате травм и заболеваний (например, кровоизлияние на сетчатку глаза или катаракта). Также сетчатка содержит элементы зрительного нерва и слепое пятно, геометрия которых тоже может изменяться со временем.

Стоимость подобной системы крайне высока.

В целом, биометрические системы аутентификации по сетчатке глаза получили довольно узкое распространение: для организации систем безопасности на объектах повышенной секретности. На сегодняшний день на рынке подобные СКУД практически отсутствуют.

Материал спецпроекта «Без ключа»

Спецпроект «Без ключа» представляет собой аккумулятор информации о СКУД, конвергентном доступе и персонализации карт

источник

Дактилоскопия — наиболее известный и распространенный метод установления личности по биометрическому параметру, отлично зарекомендовала себя в криминалистике XX века и помогла раскрыть ни одну сотню преступлений. Однако технологии не стоят на месте, и отпечатки пальцев перестали быть единственным «ключом» к идентификации.

Современная техника научились узнавать пользователей по сетчатке и радужной оболочке глаза, форме лица и рук и ряду динамических характеристик — голосу, биологической активности сердца, рукописному и клавиатурному почерку.

Подобно отпечатку пальца, рисунок радужной оболочки глаза является уникальной характеристикой человека, а метод установления личности по этому биометрическому параметру, по мнению экспертов, превосходит в надежности привычную дактилоскопию. Для того, чтобы зафиксировать узор на радужке, нужна фотокамера с высоким разрешением. Полученное изображение увеличивается и преобразуется в уникальный код, присваиваемый человеку.

Рисунок радужки, который окончательно формируется на втором году жизни ребенка, практически не изменяется в течение жизни, если человек не получает травм и не страдает от серьезных офтальмологических патологий. В то же время, папиллярный узор отпечатка пальца подвержен изменению даже в результате мелких бытовых повреждений — ожогов или порезов, что делает этот метод идентификации менее эффективным, чем анализ радужной оболочки.

Достоинством метода является и простота в сканировании. Человеку не обязательно сосредоточенно смотреть в одну точку, ведь пятна на сетчатке находятся прямо на поверхности глазного яблока и легко считываются на расстоянии, не превышающем 1 метр. Использовать данный метод удобно в банковских организациях или общественном транспорте. Заинтересовались технологией и производители смартфонов — в 2015 году в Японии в продажу поступила первая модель со сканером радужной оболочки — Fujitsu Arrows NX F-04G. По мнению разработчиков, внедрение технологии идентификации по радужке глаза поможет защитить личные данные владельцев смартфонов.

Просканировать сетчатку — внутреннюю оболочку глазного яблока, реагирующую на свет, сложнее: для этого к кровеносным сосудам задней стенки глаза через зрачок посылают низкоинтенсивные инфракрасные световые лучи. Подобный метод установления личности считается высокоэффективным и активно используется на правительственных и военных объектах.

Капилярный рисунок сетчатки различается даже у близнецов, что снижает вероятность ошибки идентификации. Однако, в 2012 году ученые из Университета Нотр-Дам в США обнаружили погрешности в определении личностей людей, чьи данные были внесены в базу ранее 2008 года, и доказали, что, в отличие от рисунка на радужной оболочке, рисунок сетчатки подвержен ряду возрастных изменений.

И снова производители мобильных гаджетов не остались в стороне. Ряд компаний (например, китайская ZTE CORPORATION) работает на созданием комбинированных технологий идентификации по сетчатке и радужке.

Метод установления личности по чертам кажется экспертам одним из наиболее перспективных, во многом благодаря своей «привычности»: люди с легкостью идентифицируют друг друга по лицам, так почему бы не научить этому компьютер? В основе технологии — создание двухмерных или трехмерных «карт» человеческих черт — система запоминает и опознает контуры носа и губ, форму бровей, расстояние между отдельными чертами.

Разработчики систем биометрического анализа отечественной компании BioLink называют распознавание по лицу второй по распространенности и популярности биометрической технологией. Однако, «опознание» по геометрии лица — задача трудоемкая, ведь на восприятие машины влияет освещение, угол наклона головы, наличие макияжа.

Наиболее эффективно техника распознает статичные изображения — фотографии. Так, система искусственного интеллекта FaceNet, созданная Google, “опознала” 99,63% фото пользователей интернета.

Одна из новейших технологий динамической биометрической идентификации — установление личности на основе данных о работе сердечно-сосудистой системы.

В 2014 году Канадская компания Bionym представила миру устройство, позволяющее использовать ЭКГ человека в качестве персонального идентификатора. «В научном сообществе существует устоявшаяся идея о том, что уникальность и постоянство человеческого сердечного ритма позволяет использовать его в качестве биометрического идентификатора», — заметил генеральный директор Bionym Карл Мартин. — «В сущности, нужно сделать следующее: взять форму ЭКГ и подвергнуть ее машинному анализу, чтобы выявить уникальные и постоянные особенности».

Высокую эффективность технологии отметили отечественные специалисты по безопасности. «Кардиограмма, как оказывается, тоже может быть вполне перспективным средством биометрической аутентификации,» — отмечали эксперты «Лаборатории Касперского».

Подобные разработки уже сейчас ведутся в России. Например, представители отечественной компании CardioQVARK (о них уже были статьи на Хабре и Гиктаймс), производящей чехлы-кардиомониторы для iPhone, в работе «Исследование искусственных нейронных сетей в задаче идентификации личности по электрокардиосигналу» показали, что их продукт может помочь в установлении личности пользователей.

Основное назначение устройства — удаленный контроль за состоянием здоровья пациентов-сердечников, однако возможность сделать экспресс-анализ состояния сердечно-сосудистой системы позволит идентифицировать человека без временных затрат. Процедура снятия ЭКГ при помощи чехла от CardioQVARK предельно проста и занимает всего лишь несколько секунд: достаточно приложить пальцы к датчикам и результат ЭКГ появится на экране гаджета и в приложении для врача.

Биометрический метод идентификации по голосу прост в применении — достаточно оснастить аналитическое устройство микрофоном и записать «звучание» конкретного человека. Широкое распространение данного метода обусловлено наличием микрофона и возможности записи звука на большинстве современных мобильных гаджетов и компьютеров. Однако, технология имеет ряд существенных недостатков: голос одного и того же человека может звучать по-разному в зависимости от его психологического и физического состояния, уровня шума, качества микрофона.

Редакторы Хабра врываются в велосезон, каждый по-своему

источник

уЙУФЕНБ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ рбрймпо «гЙТЛПО» ОБ ВБЪЕ ВМПЛБ ДПУФХРБ гйтлпо-4

пФУЛБОЙТПЧБОЩЕ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ

уЙУФЕНБ рбрймпо «гЙТЛПО» ПУОПЧБОБ ОБ ВЙПНЕФТЙЮЕУЛПН НЕФПДЕ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ.

тБУРПЪОБЧБОЙЕ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ СЧМСЕФУС ПДОЙН ЙЪ ОБЙВПМЕЕ ФПЮОЩИ Й ОБДЕЦОЩИ УРПУПВПЧ ВЙПНЕФТЙЮЕУЛПК ЙДЕОФЙЖЙЛБГЙЙ. чЕТПСФОПУФШ ФПЗП, ЮФП УЙУФЕНБ «ОЕ ХЪОБЕФ УЧПЕЗП» ЙМЙ «РТПРХУФЙФ ЮХЦПЗП» ДМС ЬФПЗП НЕФПДБ РТБЛФЙЮЕУЛЙ ТБЧОБ ОХМА.

пДОЙН ЙЪ РТЕЙНХЭЕУФЧ НЕФПДБ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦЛЕ СЧМСЕФУС ЕЗП “ОЕБЗТЕУУЙЧОПУФШ” Л РТПЧЕТСЕНПНХ – ОЕФ ОЕРПУТЕДУФЧЕООПЗП ЛПОФБЛФБ ЮЕМПЧЕЛБ У БРРБТБФХТПК, ЪБИЧБФ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ РТПЙЪЧПДЙФУС РТПУФП РТЙ ЧЪЗМСДЕ Ч ПВЯЕЛФЙЧ УЛБОЕТБ.

уЛБОЕТ БОБМЙЪЙТХЕФ ЛБЮЕУФЧП ЙЪПВТБЦЕОЙС ЗМБЪБ Ч ЛБДТЕ, ПРТЕДЕМСЕФ ГЕОФТ ЪТБЮЛБ, ГЕОФТ ТБДХЦОПК ПВПМПЮЛЙ Й ЕЕ ЗТБОЙГЩ. ъБФЕН РТПЙУИПДЙФ УПРТПЧПЦДБАЭЙКУС УЙЗОБМПН ЪБИЧБФ ЙЪПВТБЦЕОЙС, ЕЗП ЛПДЙТПЧБОЙЕ Й РТПЧЕТЛБ РП вд.

  • ТЕЗЙУФТБГЙС Й ГЙЖТПЧПЕ ЛПДЙТПЧБОЙЕ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ
  • УПЪДБОЙЕ Й ИТБОЕОЙЕ Ч ЬМЕЛФТПООПК вд НБУУЙЧБ ЪБРЙУЕК, ЛБЦДБС ЙЪ ЛПФПТЩИ УПДЕТЦЙФ: ЪБЛПДЙТПЧБООПЕ ЙЪПВТБЦЕОЙЕ ТБДХЦОПК ПВПМПЮЛЙ, ФЕЛУФПЧЩЕ ДБООЩЕ, ЖПФПЗТБЖЙЙ ЪБТЕЗЙУФТЙТПЧБООПК МЙЮОПУФЙ
  • РТПЧЕТЛБ ЛПДБ ТБДХЦОПК ПВПМПЮЛЙ РП вд Ч ТЕЦЙНЕ «ПДЙО-ЛП НОПЗЙН»
  • РТПЧЕТЛБ ЛПДБ ТБДХЦОПК ПВПМПЮЛЙ РП вд Ч ТЕЦЙНЕ «ПДЙО-Л ПДОПНХ»
  • ТБВПФБ У вд: РПМХЮЕОЙЕ ЧЩВПТПЛ ЙЪ вд, УПТФЙТПЧЛБ УРЙУЛПЧ вд, ХДБМЕОЙЕ Й ТЕДБЛФЙТПЧБОЙЕ ЪБРЙУЕК Й Ф.Д.


йОФЕЗТБГЙС УЙУФЕНЩ рбрймпо «гЙТЛПО» Ч улхд

уЙУФЕНБ ТЕЗЙУФТБГЙЙ Й ТБУРПЪОБЧБОЙС РП ТЙУХОЛХ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ рбрймпо «гЙТЛПО» БДБРФЙТПЧБОБ ДМС ЙОФЕЗТБГЙЙ Ч БЧФПНБФЙЪЙТПЧБООЩЕ УЙУФЕНЩ ЛПОФТПМС Й ХРТБЧМЕОЙС ДПУФХРПН (улхд). дМС ЬФЙИ ГЕМЕК ОБ РТЕДРТЙСФЙЙ ТБЪТБВПФБОБ SDK-ВЙВМЙПФЕЛБ рбрймпо гйтлпо SDK, РПУФБЧМСЕНБС УПЧНЕУФОП У ВМПЛПН ДПУФХРБ гйтлпо-4.

рПУФТПЕОЙЕ улхд ОБ ВБЪЕ ВМПЛПЧ ДПУФХРБ гйтлпо-4 ЙМЙ ЙОФЕЗТБГЙС ВМПЛПЧ ДПУФХРБ Ч ДЕКУФЧХАЭХА улхд ПУХЭЕУФЧМСЕФУС РХФЕН ПВТБЭЕОЙС Л ЖХОЛГЙСН ВЙВМЙПФЕЛЙ рбрймпо гйтлпо SDK УП УФПТПОЩ ЛМЙЕОФУЛПЗП РТЙМПЦЕОЙС.

жХОЛГЙЙ ЖБКМПЧПЗП УЕТЧЕТБ ЧПЪМБЗБАФУС ОБ ГЕОФТБМШОЩК ХЪЕМ улхд. чЪБЙНПДЕКУФЧЙЕ ЧУФТПЕООПЗП Ч гйтлпо-4 ЧЩЮЙУМЙФЕМС Й ГЕОФТБМШОПЗП ХЪМБ улхд ПУХЭЕУФЧМСЕФУС Ч МПЛБМШОПК УЕФЙ РП РТПФПЛПМХ Ethernet. рЕТЕДБЮБ ЛПНБОД НЕЦДХ ЧЩЮЙУМЙФЕМЕН Й ПЛПОЕЮОЩН ПВПТХДПЧБОЙЕН улхд – ЮЕТЕЪ ЙОФЕТЖЕКУОЩК РПТФ RS-232 (RS-485).

лБЦДЩК ВМПЛ ДПУФХРБ РПДДЕТЦЙЧБЕФ ЪБИЧБФ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ, ЛБЛ Ч ТЕЦЙНЕ ТЕЗЙУФТБГЙЙ, ФБЛ Й Ч ТЕЦЙНБИ ЧЕТЙЖЙЛБГЙЙ (УТБЧОЕОЙЕ У ЛПОФТПМШОЩН ЫБВМПОПН «ПДЙО-Л-ПДОПНХ») ЙМЙ ЙДЕОФЙЖЙЛБГЙЙ («ПДЙО-ЛП-НОПЗЙН»). дМС ТБВПФЩ Ч ТЕЦЙНЕ ЧЕТЙЖЙЛБГЙЙ ВМПЛ ДПУФХРБ ДПРПМОСЕФУС ХЪМПН УЮЙФЩЧБОЙС РЕТУПОБМШОЩИ ID-ЛБТФ.

лБЦДЩК ВМПЛ ДПУФХРБ РПДДЕТЦЙЧБЕФ УПВУФЧЕООХА ВБЪХ ДБООЩИ ВЙПНЕФТЙЮЕУЛЙИ ДБООЩИ, ЮЕН ПВЕУРЕЮЙЧБЕФУС ЗЙВЛПУФШ ОБУФТПКЛЙ УЙУФЕНЩ Й ЙУЛМАЮБАФУС РПФЕТЙ ЧТЕНЕОЙ, УЧСЪБООЩЕ У ЧОХФТЙУЕФЕЧЩН ЧЪБЙНПДЕКУФЧЙЕН.

ч РТБЛФЙЮЕУЛПК ТЕБМЙЪБГЙЙ улхд ГЕМЕУППВТБЪОП ПУФБЧЙФШ ЖХОЛГЙА ТЕЗЙУФТБГЙЙ ОБ ПДОПН ЙМЙ ОЕУЛПМШЛЙИ ВМПЛБИ ДПУФХРБ. оБ ПУФБМШОЩИ ПУХЭЕУФЧМСЕФУС ФПМШЛП ПРЕТБГЙС ЙДЕОФЙЖЙЛБГЙЙ/ЧЕТЙЖЙЛБГЙЙ.

фЕТТЙФПТЙБМШОПЕ НБУЫФБВЙТПЧБОЙЕ УЙУФЕНЩ ПВЕУРЕЮЙЧБЕФУС ЧЧЕДЕОЙЕН ДПРПМОЙФЕМШОЩИ ВМПЛПЧ ДПУФХРБ У РПДЛМАЮЕОЙЕН ЙИ Л ГЕОФТБМШОПНХ ХЪМХ улхд РП МАВЩН ДПУФХРОЩН МЙОЙСН УЧСЪЙ, РПДДЕТЦЙЧБАЭЙН РТПФПЛПМ TCP/IP. лПМЙЮЕУФЧП ВМПЛПЧ ДПУФХРБ Ч УЙУФЕНЕ ОЕ ПЗТБОЙЮЙЧБЕФУС.

рПДПВОБС УЙУФЕНБ ОБИПДЙФУС Ч РТБЛФЙЮЕУЛПК ЬЛУРМХБФБГЙЙ ОБ ПДОПН ЙЪ РТЕДРТЙСФЙК юЕМСВЙОУЛПК ПВМБУФЙ.

вМПЛ ДПУФХРБ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ гйтлпо-4

вМПЛ ДПУФХРБ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ гйтлпо-4 РТЕДУФБЧМСЕФ УПВПК ПЛПОЕЮОЩК ХЪЕМ ТЕЗЙУФТБГЙЙ Й ТБУРПЪОБЧБОЙС РП ТЙУХОЛХ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ.

вМПЛ ДПУФХРБ РТЕДОБЪОБЮЕО ДМС ЪБИЧБФБ Й БЧФПНБФЙЮЕУЛПЗП УПРПУФБЧМЕОЙС ЙЪПВТБЦЕОЙК ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ ЛБЛ Ч БЧФПОПНОПН ТЕЦЙНЕ, ФБЛ Й Ч УПУФБЧЕ БЧФПНБФЙЪЙТПЧБООПК УЙУФЕНЩ ЛПОФТПМС Й ХРТБЧМЕОЙС ДПУФХРПН (булхд) Ч ТЕЦЙНБИ ЧЕТЙЖЙЛБГЙЙ (УТБЧОЕОЙЕ У ЛПОФТПМШОЩН ЫБВМПОПН «ПДЙО-Л-ПДОПНХ») ЙМЙ ЙДЕОФЙЖЙЛБГЙЙ («ПДЙО-ЛП-НОПЗЙН»).

ч БЧФПОПНОПН ТЕЦЙНЕ ТЕЗЙУФТБГЙС РПМШЪПЧБФЕМЕК, УПЪДБОЙЕ Й ИТБОЕОЙЕ ВБЪЩ ЛМАЮЕК ПУХЭЕУФЧМСЕФУС МПЛБМШОП ОБ ВМПЛЕ ДПУФХРБ. вМПЛ ЧУЕЗДБ ТБВПФБЕФ Ч ТЕЦЙНЕ ЙДЕОФЙЖЙЛБГЙЙ Й РТЙ ХУРЕЫОПН ТБУРПЪОБЧБОЙЙ ХРТБЧМСЕФ ЬМЕЛФТПООЩН ЪБНЛПН.

рТЙ ТБВПФЕ ВМПЛБ Ч УПУФБЧЕ булхд Ч ТЕЦЙНЕ ЧЕТЙЖЙЛБГЙЙ ВБЪБ ДБООЩИ ЛМАЮЕК НПЦЕФ УПЪДБЧБФШУС ОБ РХОЛФЕ ТЕЗЙУФТБГЙЙ Й ИТБОЙФШУС ОБ УЕТЧЕТЕ. булхд ЧЪБЙНПДЕКУФЧХЕФ У ВМПЛПН ДПУФХРБ РП РТПФПЛПМХ, ПРЙУБООПНХ Ч SDK. лМАЮ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ УТБЧОЙЧБЕФУС «ПДЙО-Л-ПДОПНХ» У ЛПОФТПМШОЩН ЫБВМПОПН У РПНПЭША ДПРПМОЙФЕМШОПЗП ЙДЕОФЙЖЙЛБФПТБ — ВЕУЛПОФБЛФОПК ЛБТФЩ, ВТЕМПЛБ Й Ф. Р.

пФМЙЮЙЕ ТБВПФЩ ВМПЛБ Ч УПУФБЧЕ булхд Ч ТЕЦЙНЕ ЙДЕОФЙЖЙЛБГЙЙ УПУФПЙФ Ч ФПН, ЮФП ЛМАЮ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ ЙДЕОФЙЖЙГЙТХЕНПЗП УХВЯЕЛФБ УТБЧОЙЧБЕФУС «ПДЙО-ЛП-НОПЗЙН» УП ЧУЕНЙ ЪБРЙУСНЙ вд, ЪБЗТХЦЕООЩНЙ Ч ВМПЛ ДПУФХРБ булхд.

вМПЛ ДПУФХРБ ТБЪНЕЭБЕФУС Ч ЛПОФТПМЙТХЕНПК ФПЮЛЕ РЕТЕУЕЮЕОЙС ПИТБОСЕНПЗП РЕТЙНЕФТБ Й ЛТЕРЙФУС ОБ ЧЕТФЙЛБМШОПК РПЧЕТИОПУФЙ Ч ОЕРПУТЕДУФЧЕООПК ВМЙЪПУФЙ ПФ ПВПТХДПЧБООПЗП РТПИПДБ Ч ПИТБОСЕНПЕ РПНЕЭЕОЙЕ, У ЧОЕЫОЕК ЕЗП УФПТПОЩ.

вМПЛ ДПУФХРБ ПВПТХДПЧБО ЪЕТЛБМПН РПЪЙГЙПОЙТПЧБОЙС Й ВМПЛПН УЧЕФПДЙПДОПК ЙОДЙЛБГЙЙ, ФБЛЦЕ ТЕБМЙЪПЧБОБ ЖХОЛГЙС ЗПМПУПЧПК РПДУЛБЪЛЙ. чУЕ ЬФЙ ЙОУФТХНЕОФЩ ЙУРПМШЪХАФУС ДМС ХРТПЭЕОЙС РПЪЙГЙПОЙТПЧБОЙС ПВЯЕЛФБ Ч ТБВПЮЕК ПВМБУФЙ УЛБОЕТБ.

дМС ЪБРХУЛБ РТПГЕДХТЩ ЪБИЧБФБ ЙЪПВТБЦЕОЙС ДПУФБФПЮОП РПДПКФЙ Л ВМПЛХ ДПУФХРБ Й ХЧЙДЕФШ Ч ЪЕТЛБМЕ РПЪЙГЙПОЙТПЧБОЙС ПФТБЦЕОЙЕ УЧПЙИ ЗМБЪ. ъБИЧБФ ЙЪПВТБЦЕОЙС РТПЙУИПДЙФ ОБ ТБУУФПСОЙЙ 350—500 НН ПФ РЕТЕДОЕК РБОЕМЙ ВМПЛБ ДПУФХРБ Ч РПМЕ ЪТЕОЙС ЕЗП ПРФЙЮЕУЛПЗП ВМПЛБ.

тЕЗХМЙТПЧЛБ РТЙВПТБ РПД ТПУФ ЮЕМПЧЕЛБ ПУХЭЕУФЧМСЕФУС ЧТХЮОХА, РПЧПТПФПН РЕТЕДОЕК РБОЕМЙ ОБ ОЕПВИПДЙНЩК ХЗПМ.

ч УЛБОЕТЕ ТБДХЦОПК ПВПМПЮЛЙ ТЕБМЙЪПЧБОБ ЖХОЛГЙС БЧФПЖПЛХУБ. йУРПМШЪХЕНБС ЙОЖТБЛТБУОБС РПДУЧЕФЛБ ВЕЪПРБУОБ ДМС ЪТЕОЙС.

ч УЙУФЕНЕ ЙУРПМШЪХАФУС ФПМШЛП ЮЕТОП-ВЕМЩЕ ЙЪПВТБЦЕОЙС ДМС ФПЗП, ЮФПВЩ ОБ ТЕЪХМШФБФ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ ОЕ ЧМЙСМП ГЧЕФПЧПЕ ЙЪНЕОЕОЙЕ ТБДХЦОПК ПВПМПЮЛЙ, РТПЙУИПДСЭЕЕ Ч ТЕЪХМШФБФЕ РЕТЕОЕУЕООЩИ ЪБВПМЕЧБОЙК.

фЕИОЙЮЕУЛЙЕ ИБТБЛФЕТЙУФЙЛЙ ВМПЛБ ДПУФХРБ гйтлпо-4

источник

2.2 Идентификация по радужной оболочке глаз

Первооткрывателем в области идентификации личности по радужной оболочке глаза является доктор Джон Даугман. В 1994 г. он запатентовал в США метод распознавания радужной оболочки глаза (US Patent S, 291, 560). Разработанные им алгоритмы используются до сих пор.

С помощью этих алгоритмов необработанные видеоизображения глаза преобразуются в уникальный идентификационный двоичный поток Iris-код, полученный в результате определения позиции радужки, ее границы и выполнения других математических операций для описания текстуры радужки в виде последовательности чередования фаз, похожей на штрих-код.

Полученный таким образом Iris-код используется для поиска совпадений в базах данных (скорость поиска — около 1 млн. сравнения Iris-кодов в 1 с) и для подтверждения или неподтверждения заявленной личности

Преимущество сканеров для радужной оболочки глаза состоит в том, что они не требуют от пользователя сосредоточения на цели, так как образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза может быть отсканировано на расстоянии менее 1 м, что делает возможным использование сканеров для радужной оболочки глаза, допустим, в банкоматах. Разработкой технологии идентификации личности на основе принципа сканирования радужной оболочки глаза в настоящее время занимаются более 20 компаний, в том числе British Telecom, Sensar, японская компания Oki.

Различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

В качестве примера современной системы идентификации на основе анализа радужной оболочки глаза рассмотрим решение, предложенное компанией LG.

Система IrisAccess позволяет менее чем за 1 с отсканировать рисунок радужной оболочки глаза, обработать и сравнить с 4 тыс. других записей, которые она хранит в своей памяти, а затем послать соответствующий сигнал в охранную систему. Технология — полностью бесконтактная. На основе изображения радужной оболочки глаза строится компактный цифровой код размером 512 байт. Устройство имеет высокую надежность по сравнению с большинством известных систем биометрического контроля, поддерживает объемную базу данных, выдает звуковые инструкции на русском языке, позволяет интегрировать в систему карты доступа и ПИН-клавиатуры. Один контроллер поддерживает четыре считывателя Система может быть интегрирована с LAN Система IrisAccess 3000 состоит из оптического устройства внесения в реестр E01J3000, удаленного оптического устройства R01J3000, контрольного устройства опознавания ICLI3000, платы захвата изображения, дверной интерфейсной платы и PC-сервера. Если требуется осуществлять контроль за несколькими входами, то ряд удаленных устройств, включая ICU3000 и R01J3000, может быть подключен к PC-серверу через локальную сеть (LAN).

Представляет интерес камера для идентификации личности путем сканирования радужной оболочки глаза, используемая в системах защиты и безопасности для компьютеров типа десктоп/лэптоп. Разработки визуальных систем (Vision Systems) компании Panasonic и хорошо показавшие себя на прак-тике разработки в области идентификации личности на основе рисунка радужной оболочки глаз компании Iridian Technologies позволили создать легкие в использовании и отличающиеся высокой точностью средства, которые можно использовать в широком диапазоне современных и будущих потребностей в области обеспечения безопасности.

Камера Authenticam™ компании Panasonic в сочетании с программным продуктом PrivatelD™ компании Indian Technologies представляет собой экономически выгодный и надежный путь обеспечения безопасности доступа. Для такой камеры характерны безопасность и простота использования. Достаточно взглянуть в объектив камеры с расстояния приблизительно 50 см, и менее чем через 2 с произойдет захват изображения.

Программный продукт PrivatelD™ обрабатывает рисунок радужной оболочки глаз и кодирует полученную информацию в виде 512-байтовой записи IrisCode. Эти записи вводятся для хранения в память и используются для сравнения с другими записями кодов IrisCodes — для идентификации личности при любых транзакциях и деловых операциях, когда для сравнения представляется радужная оболочка глаза живого человека.

Дифференциатор ключей для идентификации личности по рисунку радужной оболочки глаза осуществляет поиск в базе данных для нахождения соответствующего идентификационного кода. При этом база данных может состоять из неограниченного числа записей кодов IrisCode. Технология допуска, основанная на сканировании радужной оболочки глаза, уже несколько лет успешно применяется в государственных организациях США и в учреждениях с высокой степенью секретности (в частности, на заводах по производству ядерного вооружения). Эффективность этого способа доказана, он безопасен для пользователя и надежен в работе. Он обеспечивает моментальную аутентификацию личности, предназначенную для замены символов ПИН-кодов и паролей.

Многие эксперты подчеркивают «незрелость» технологии, хотя потенциальные возможности метода достаточно высоки, так как характеристики рисунка радужной оболочки человеческого глаза достаточно стабильны и не изменяются практически в течение всей жизни человека, невосприимчивы к загрязнению и ранам. Отметим также, что радужки правого и левого глаза по рисунку существенно различаются. Этот метод идентификации отличается от других большей сложностью в использовании, более высокой стоимостью аппаратуры и жесткими условиями регистрации.

источник

Обеспечение транспортной безопасности

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов.

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов. Основным источником информации для идентификации этим способом служит специфическая ткань, которая окончательно формируется в глазах человека еще до рождения, примерно на 8-м месяце беременности матери. В медицине радужную оболочку глаза рассматривали в качестве инструмента для диагностики различных заболеваний, в частности, было обнаружено, что при определенных заболеваниях на радужной оболочке глаза появляются так называемые пигментные пятна. Для уменьшения влияния этого фактора на результат распознавания в биометрических системах используют черно-белые (полутоновые) изображения. Технология биометрического распознавания по радужной оболочке предусматривает несколько степеней защиты:

  • идентификация пользователя при условии затенения (или повреждения) радужной оболочки, но не более, чем на 2/3, то есть по оставшейся 1/3 изображения возможна идентификация с вероятностью ошибки 1 к 100 000;
  • обнаружение замены глаза и контактных линз на роговице – за счет контроля размера зрачка (система отличает живой глаз от изображения глаза, искуственного глаза и неживого глаза за счет использования инфракрасного освещения для определения состояния ткани глаза и контроля расширения/сужения зрачка).

Преимуществами технологии биометрического распознавания по радужной оболочке являются:

— независимость от косвенных факторов, таких как прическа, грим, макияж, и прочее;

— вероятность пропуска незарегистрированного пользователя равна вероятности ложного отказа в допуске зарегистрированному пользователю и составляет 1 к 1 200 000 (это самый высокий показатель по сравнению с другими типами биометрического распознавания).

Как работает система биометрического распознавания человека по радужной оболочке глаза? Технология распознавания базируется на формировании до 266 уникальных точек идентификации на изображении роговицы, решение принимается на основании результатов сравнения с точек идентификации с эталонными данными базы авторизованных пользователей. Захват видеоизображения глаза осуществляется регистрирующей аппаратурой на расстоянии до одного метра. Далее, система выполняет ряд действий: выделение зрачка, сбор и подсчет точек идентификации радужной оболочки, принятие решения и верификации или идентификации.

Мы протестировали высокоточную систему биометрического распознавания человека по радужной оболочке глаза, разработанную компанией eyeLock (США). Эта система обеспечивает быстрое распознавание человека на расстоянии и в движении. Оборудование eyeLock применяется для создания систем биометрического контроля и управления доступом (СКУД) на объектах с повышенными требованиями обеспечения безопасности, таких как: опасные производства, центры обработки данных, банки, объекты транспортной инфраструктуры. Для построения системы контроля доступа с биометрическим распознаванием по радужной оболочке eyaLock предлагает несколько типов оборудования: NANO NXT, HBOX, MYRIS.

NANO NXT – комплексное устройство, выполняющее функции считывателя биометрических данных, устройства обработки данных для выполнения алгоритма идентификации, хранилища эталонных данных базы авторизованных пользователей и контроллера управления замком или запирающим устройством. Устройство легко интегрировать в существующую систему управления доступом.

  • Регистрация и проверка соответствия самим устройством — «On Board»
  • Распознавание в темных очках или цветных линзах
  • Хранение в памяти «On Board» записей на 20 000 человек
  • Регистрация по 1 или 2 глазам
  • Возможность подключения кардридера для обеспечения двухфакторной аутентификации (глаза + карта)
  • Типы (протоколы) подключения: Wiegand, F/2/F, OSDP, PAC, реле и Ethernet для простой интеграции со всеми существующими платформами и СКУД
  • Питание через PoE (IEEE 802.3af)

HBOX — комплексное устройство, устанавливаемое на проходных с высокой пропускной способностью, обеспечивает биометрическое распознавание на расстоянии до 1,6 метра потока людей со скоростью 50 человек в минуту. Темные очки и цветные контактные линзы не являются препятствием для работы HBOX.

MYRIS — устройство для контроля логического доступа пользователей к информационным ресурсам. Устройство позволяет обеспечить дополнительную защиту доступа к информационным ресурсам предприятия и надежную идентификацию/авторизацию пользователей, это может быть актуально, например, для доступа к банковским системам при совершении операций повышенного риска и в других подобных случаях.

источник

Дактилоскопия — наиболее известный и распространенный метод установления личности по биометрическому параметру, отлично зарекомендовала себя в криминалистике XX века и помогла раскрыть ни одну сотню преступлений. Однако технологии не стоят на месте, и отпечатки пальцев перестали быть единственным «ключом» к идентификации.

Современная техника научились узнавать пользователей по сетчатке и радужной оболочке глаза, форме лица и рук и ряду динамических характеристик — голосу, биологической активности сердца, рукописному и клавиатурному почерку.

Подобно отпечатку пальца, рисунок радужной оболочки глаза является уникальной характеристикой человека, а метод установления личности по этому биометрическому параметру, по мнению экспертов, превосходит в надежности привычную дактилоскопию. Для того, чтобы зафиксировать узор на радужке, нужна фотокамера с высоким разрешением. Полученное изображение увеличивается и преобразуется в уникальный код, присваиваемый человеку.

Рисунок радужки, который окончательно формируется на втором году жизни ребенка, практически не изменяется в течение жизни, если человек не получает травм и не страдает от серьезных офтальмологических патологий. В то же время, папиллярный узор отпечатка пальца подвержен изменению даже в результате мелких бытовых повреждений — ожогов или порезов, что делает этот метод идентификации менее эффективным, чем анализ радужной оболочки.

Достоинством метода является и простота в сканировании. Человеку не обязательно сосредоточенно смотреть в одну точку, ведь пятна на сетчатке находятся прямо на поверхности глазного яблока и легко считываются на расстоянии, не превышающем 1 метр. Использовать данный метод удобно в банковских организациях или общественном транспорте. Заинтересовались технологией и производители смартфонов — в 2015 году в Японии в продажу поступила первая модель со сканером радужной оболочки — Fujitsu Arrows NX F-04G. По мнению разработчиков, внедрение технологии идентификации по радужке глаза поможет защитить личные данные владельцев смартфонов.

Просканировать сетчатку — внутреннюю оболочку глазного яблока, реагирующую на свет, сложнее: для этого к кровеносным сосудам задней стенки глаза через зрачок посылают низкоинтенсивные инфракрасные световые лучи. Подобный метод установления личности считается высокоэффективным и активно используется на правительственных и военных объектах.

Капилярный рисунок сетчатки различается даже у близнецов, что снижает вероятность ошибки идентификации. Однако, в 2012 году ученые из Университета Нотр-Дам в США обнаружили погрешности в определении личностей людей, чьи данные были внесены в базу ранее 2008 года, и доказали, что, в отличие от рисунка на радужной оболочке, рисунок сетчатки подвержен ряду возрастных изменений.

И снова производители мобильных гаджетов не остались в стороне. Ряд компаний (например, китайская ZTE CORPORATION) работает на созданием комбинированных технологий идентификации по сетчатке и радужке.

Метод установления личности по чертам кажется экспертам одним из наиболее перспективных, во многом благодаря своей «привычности»: люди с легкостью идентифицируют друг друга по лицам, так почему бы не научить этому компьютер? В основе технологии — создание двухмерных или трехмерных «карт» человеческих черт — система запоминает и опознает контуры носа и губ, форму бровей, расстояние между отдельными чертами.

Разработчики систем биометрического анализа отечественной компании BioLink называют распознавание по лицу второй по распространенности и популярности биометрической технологией. Однако, «опознание» по геометрии лица — задача трудоемкая, ведь на восприятие машины влияет освещение, угол наклона головы, наличие макияжа.

Наиболее эффективно техника распознает статичные изображения — фотографии. Так, система искусственного интеллекта FaceNet, созданная Google, “опознала” 99,63% фото пользователей интернета.

Одна из новейших технологий динамической биометрической идентификации — установление личности на основе данных о работе сердечно-сосудистой системы.

В 2014 году Канадская компания Bionym представила миру устройство, позволяющее использовать ЭКГ человека в качестве персонального идентификатора. «В научном сообществе существует устоявшаяся идея о том, что уникальность и постоянство человеческого сердечного ритма позволяет использовать его в качестве биометрического идентификатора», — заметил генеральный директор Bionym Карл Мартин. — «В сущности, нужно сделать следующее: взять форму ЭКГ и подвергнуть ее машинному анализу, чтобы выявить уникальные и постоянные особенности».

Высокую эффективность технологии отметили отечественные специалисты по безопасности. «Кардиограмма, как оказывается, тоже может быть вполне перспективным средством биометрической аутентификации,» — отмечали эксперты «Лаборатории Касперского».

Подобные разработки уже сейчас ведутся в России. Например, представители отечественной компании CardioQVARK (о них уже были статьи на Хабре и Гиктаймс), производящей чехлы-кардиомониторы для iPhone, в работе «Исследование искусственных нейронных сетей в задаче идентификации личности по электрокардиосигналу» показали, что их продукт может помочь в установлении личности пользователей.

Основное назначение устройства — удаленный контроль за состоянием здоровья пациентов-сердечников, однако возможность сделать экспресс-анализ состояния сердечно-сосудистой системы позволит идентифицировать человека без временных затрат. Процедура снятия ЭКГ при помощи чехла от CardioQVARK предельно проста и занимает всего лишь несколько секунд: достаточно приложить пальцы к датчикам и результат ЭКГ появится на экране гаджета и в приложении для врача.

Биометрический метод идентификации по голосу прост в применении — достаточно оснастить аналитическое устройство микрофоном и записать «звучание» конкретного человека. Широкое распространение данного метода обусловлено наличием микрофона и возможности записи звука на большинстве современных мобильных гаджетов и компьютеров. Однако, технология имеет ряд существенных недостатков: голос одного и того же человека может звучать по-разному в зависимости от его психологического и физического состояния, уровня шума, качества микрофона.

Редакторы Хабра врываются в велосезон, каждый по-своему

источник

Источники:
  • http://spravochnick.ru/informacionnaya_bezopasnost/biometricheskie_sistemy_zaschity/
  • http://www.techportal.ru/glossary/kontrol-dostupa-po-raduzhnoi-obolochke-glaza.html
  • http://habr.com/post/311876/
  • http://papillon.ru/rus/79
  • http://www.kazedu.kz/referat/189175/2
  • http://tbexpert.ru/biometriya_eyelock/
  • http://habr.com/post/311876/