Меню Рубрики

Научные точки зрения по происхождению вселенной

Космологи продолжают продвигаться к окончательному постижению процессов, сотворивших и сформировавших Вселенную.

Вселенная настолько велика в пространстве и во времени, что в течение почти всей истории человечества она оставалась недоступной как для наших приборов, так и для нашего разума. Но все изменилось в XX в., когда появились новые идеи — от общей теории относительности Эйнштейна до современных теорий элементарных частиц. Успех был достигнут также благодаря мощным приборам — от 100- и 200-дюймовых рефлекторов, созданных Джорджем Эллери Хейлом (George Ellery Hale) и открыв- шем для нас галактики за пределами Млечного Пути, до космическо- го телескопа «Хаббл», перенесшего нас в эпоху рождения галактик. За последние 20 лет прогресс ускорился. Стало ясно, что темная материя состоит не из обычных атомов, что существует темная энергия. Роди- лись смелые идеи о космической инфляции и множественности все- ленных.

Сто лет назад Вселенная была проще: вечная и неизменная, состоящая из одной галактики, содер- жащей несколько миллионов видимых звезд. Современная картина намного сложнее и гораздо богаче. Космос возник 13,7 млрд лет назад в результате Большого взрыва. Через долю секунды после начала Вселенная была горячей бесформенной смесью элементарных частиц — кварков и лептонов. По мере расширения и охлаждения шаг за ша- гом возникали структуры: нейтроны и протоны, атомные ядра, атомы, звезды, галактики, скопления галактик и, наконец, сверхскопления. В наблюдаемой части Вселенной сейчас содержится 100 млрд галактик, в каждой из них около 100 млрд звезд и, вероятно, столько же планет. Сами галактики удерживаются от расширения гравита- цией загадочной темной материи. А Вселенная продолжает расширяться и даже делает это с ускоре- нием под действием темной энергии — еще более загадочной формы энергии, чья гравитационная сила не притягивает, а отталкивает.

Главная тема нашего рассказа о Вселенной — это эволюция от примитивного кваркового «супа» к нарастающей сложности галактик, звезд, планет и жизни, наблюдаемой сегодня. Эти структуры появлялись одна за другой в течение миллиардов лет, повинуясь основным законам физики. Путешествуя в прошлое, к эпохе зарождения, космологи сначала продвигаются через детально изученную историю Вселенной назад, к первой микросекунде, затем к $10^$ с от начала (об этом времени есть ясные идеи, но пока нет их четкого подтверждения) и, наконец, к самому моменту рождения (о котором существуют пока лишь догадки). Хотя мы еще не в силах до конца понять, как родилась Вселенная, у нас уже есть потрясающие гипотезы, такие как понятие о множественной вселенной, включающей в себя бесконечное число не связанных между собой субвселенных.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

  • Наша Вселенная началась с горячего Большого взрыва 13,7 млрд лет назад и с тех пор расширяется и охлаждается. Она эволюционировала от бесформенной смеси элементар- ных частиц к современному высокоструктурированному космосу.
  • Первая микросекунда была определяющим периодом, когда вещество стало доми- нировать над антивеществом, зародилась структура будущих галактик и их скоплений, и возникла темная материя — неизвестное вещество, удерживающее эту структуру.
  • Будущее Вселенной определяется темной энергией — неизвестной формой энергии, ко- торая служит причиной ускорения космологического расширения, начавшегося несколько миллиардов лет назад.

Расширяющаяся Вселенная

В 1924 г. с помощью 100-дюймового телескопа «Хукер» Маунт-Вилсоновской обсерватории Эдвин Хаббл обнаружил, что расплывчатые туман- ности, остававшиеся загадочными несколько столетий, — это такие же галактики, как наша. Тем самым Хаббл увеличил наше представ- ление о Вселенной в 100 млрд раз! А через несколько лет он доказал, что галактики удаляются друг от друга, подчиняясь математической закономерности, известной теперь как закон Хаббла: чем дальше галактика, тем быстрее она движется. Именно из этого закона следует, что Большой взрыв был 13,7 млрд лет назад.


КОСМИЧЕСКОЕ РАСШИРЕНИЕ
Эволюция Вселенной происходит в резуль- тате расширения пространства. Поскольку пространство растягивается, как оболочка воздушного шарика, галактики удаляют- ся друг от друга, а световые волны удлиняются (краснеют).

В рамках общей теории относительности закон Хаббла толкуется так: само пространство расширяется, а галактики перемещаются вместе с ним (рис. вверху). Свет тоже растягивается, испытывая красное смещение, а значит, теряя энергию, поэтому Вселенная при расширении охлаждается. Космическое расширение помогает по- нять, как сформировалась современная Вселенная. Если мысленно устремиться в прошлое, то Вселенная будет становиться все плотнее, горячее, необычнее и проще. Приближаясь к самому началу, мы соприкасаемся с самыми глубинными механизмами природы, используя ускоритель мощнее любого из построенных на Земле — сам Большой взрыв.

Вглядываясь через телескоп в пространство, астрономы буквально попадают в прошлое — и чем больше телескоп, тем глубже проникает их взгляд. Свет, приходящий от далеких галактик, демонстрирует нам древние эпохи, а его крас- ное смещение показывает, насколько расширилась Вселенная за про- шедшее время. Наблюдаемое сейчас рекордное красное смещение около восьми, значит, этот свет был испущен, когда размер Вселенной был в девять раз меньше нынешнего, а возраст — всего лишь несколько сотен миллионов лет. Такие приборы, как космический телескоп «Хаббл» и десятиметровые телескопы «Кек» на Мауна-Кеа, запросто переносят нас в эпоху формирования галактик, подобных нашей — через несколько миллиардов лет после Большого взрыва. Свет из более ранних эпох настолько сильно смещен в красную часть спектра, что астрономы вынуждены принимать его в инфракрасном и радиодиапазонах. Строящиеся телескопы, такие как инфракрасный космический телескоп «Джеймс Уэбб» диаметром 6,5 м и Большой атакамский миллиметровый комплекс (Atacama Large Millimeter Array, ALMA) — сеть из 64 радиотелескопов на севере Чили, — перенесут нас в прошлое, к эпохе рождения самых первых звезд и галактик.

Компьютерное моделирование показывает, что эти звезды и галак- тики появились, когда возраст Вселенной был около 100 млн лет. Перед этим Вселенная прошла через период, называемый темной эрой, когда она была черной как смоль. Пространство заполняла бесформенная масса из пяти частей темной материи и одной части водорода с гелием, которая разрежалась по мере расширения Вселенной. Вещество было немного неоднородным по плотности, а гравитация действовала как усилитель этих неоднородностей: более плотные области расширялись медленнее, чем менее плотные. К моменту 100 млн лет наиболее плотные области не только замедлили свое расширение, но даже начали сжиматься. Каждая из таких зон содержала около 1 млн солнечных масс вещества; они-то и стали первыми гравитационно связанными объектами в космосе.

Основную часть их массы составляла темная материя, не способная, согласно своему названию, излучать или поглощать свет. Поэтому она образовывала весьма протяженные облака. С другой стороны, водород и гелий, излучая свет, теряли энергию и сжимались к центру каждого облака. В конце концов они съеживались настолько, что превращались в звезды. Эти первые объекты были значительно массивнее современных — сотни масс Солнца. Прожив очень короткую жизнь, они взрывались, выбрасывая в прост-ранство первые тяжелые элементы. Спустя несколько миллиардов лет эти облака с массами в миллионы солнечных под действием гравитации сгруппировались в первые галактики.

Излучение от самых первых водородных облаков, испытавшее сильное красное смещение из-за расширения, можно было бы зарегистрировать с помощью огромных комплексов радиоантенн с общей приемной площадью около квадратного километра. Когда эти радиотелескопы будут созданы, станет известно, как первое поколение звезд и галактик ионизовало водород и тем самым завершило темную эру (см.: Лоеб А. Темные века Вселенной // ВМН, № 3, 2007).

Слабый отблеск горячего начала

Позади темной эры заметен отблеск горячего Большого взрыва при крас- ном смещении 1100. Это изначально видимое (красно-оранжевое) излуче- ние из-за красного смещения стало даже не инфракрасным, а микровол- новым. Заглядывая в ту эпоху, мы ви- дим лишь стену микроволнового из- лучения, заполняющего все небо — космическое микроволновое фоно- вое излучение, открытое в 1964 г. Арно Пензиасом (Arno Penzias) и Ро- бертом Уилсоном (Robert Wilson). Это слабый отсвет Вселенной, пре- бывавшей в младенческом возрас- те 380 тыс. лет, в эпоху формирова- ния атомов. До этого она была почти однородной смесью атомных ядер, электронов и фотонов. Когда Вселен- ная охладилась до температуры око- ло 3000 К, ядра и электроны начали объединяться в атомы. Фотоны пе- рестали рассеиваться на электронах и стали свободно двигаться сквозь пространство, демонстрируя, какой была Вселенная задолго до рождения звезд и галактик.

В 1992 г. спутник NASA «Исследователь фонового излучения» (Cosmic Background Explorer, COBE) обнаружил, что интенсивность этого излучения немного меняется — пример но на 0,001%, указывая на слабую неоднородность в распределении вещества. Степень первичной неоднородности оказалась достаточной, чтобы малые уплотнения стали «затравкой» для будущих галактик и их скоплений, которые позже выросли под действием гравитации. Распределение неоднородностей фонового излучения по небу свидетельствует о важных свойствах Вселенной: о ее средней плотности и составе, о самых ранних этапах ее эволюции. Тщательное изучение этих неоднородностей поведало нам многое о Вселенной.


КОСМИЧЕСКОЕ МИКРОВОЛНОВОЕ ФОНОВОЕ ИЗЛУЧЕНИЕ — это изображение Вселенной в младенческом возрасте 380 тыс. лет. Слабые вариации интенсивности этого излучения (отмечены цветом) служат космическим Розеттским камнем, дающим ключ к загадкам Вселенной — ее возрасту, плотности, составу и геометрии.


СВЕРХГЛУБОКОЕ ПОЛЕ «ХАББЛА», самое чувствительное из когда-либо полученных изображений космоса, запечатлевшее более 1 тыс. галактик на ранней стадии их формирования.

Продвигаясь от этой точки назад, к началу эволюции Вселенной, мы увидим, как первичная плазма становится все более горячей и плотной. До возраста около 100 тыс. лет плотность энергии излучения была выше, чем у вещества, что и удерживало вещество от фрагментации. А в этот момент началось гравитационное скучивание всех структур, наблюдаемых сейчас во Вселенной. Еще ближе к началу, когда возраст Вселенной был менее одной секунды, не было атомных ядер, а только лишь их составляющие — протоны и нейтроны. Ядра возникли, когда Вселенной исполнилось несколько секунд, и температура и плотность стали подходящими для ядерных реакций. В этом нуклеосинтезе Большого взрыва родились только легкие химические элементы: много гелия (около 25% по массе от всех атомов Вселенной) и немного лития, дейтерия и гелия-3. Остальная плазма (около 75%) осталась в форме протонов, которые со временем стали атомами водорода. Все остальные элементы Периодической таблицы родились миллиарды лет спустя в недрах звезд и при их взрывах.


ВСЕЛЕННАЯ СОСТОИТ в основном из темной энергии и темной материи; природа обеих неизвестна. Обычное вещество, из которого сформированы звезды, планеты и межзвездный газ, составляет лишь малую долю.

Теория нуклеосинтеза точно предсказывает содержание элементов и изотопов, измеренное в наиболее древних объектах Вселенной — в самых старых звездах и газовых облаках с большим красным смещением. Содержание дейтерия, очень чувствительное к средней плотности атомов во Вселенной, играет особую роль: его измеренное значение показывает, что обычное вещество составляет (4,5 ± 0,1)% от полной плотности энергии. Остальное — темная материя и темная энергия. Это в точности согласуется с данными о составе, полученными из анализа фонового излучения. Такое соответствие — огромное достижение. Ведь это два совершенно разных измерения: первое основано на ядерной физике и относится к Вселенной в возрасте 1 с, а второе — на атомной физике и свойствах Вселенной в возрасте 380 тыс. лет. Их согласованность — важный тест не только для наших моделей эволюции космоса, но и для всей современной физики.

Ответы в кварковом супе

До возраста в одну микросекунду не было даже протонов и нейтронов; Вселенная была похожа на суп из базовых элементов природы: кварков, лептонов и переносчиков сил (фотонов, W- и Z-бозонов и глюонов). Мы уверены, что этот «суп с кварками» действительно существовал, поскольку физические условия той эпохи воспроизводятся сейчас в экспериментах на ускорителях частиц (см.: Райордэн М., Зэйц У. Первые микросекунды // ВМН, № 8, 2006).

Изучить ту эпоху космологи надеются не с помощью больших и зорких телескопов, а опираясь на глубокие идеи физики элементарных частиц. Создание Стандартной модели физики частиц 30 лет назад привело к смелым гипотезам, включая теорию струн, пытающуюся объединить казалось бы не связанные между собой частицы и силы. В свою очередь, эти новые идеи нашли приложение в космологии, став такими же важными, как исходная идея горячего Большого взрыва. Они указали на глубокую и неожиданную связь между микромиром и большой Вселенной. Возможно, вскоре мы получим ответы на три ключевых вопроса: какова природа темной материи, в чем причина асимметрии между веществом и антивеществом и как возник комковатый кварковый суп.

Читайте также:  Греет ли шуба с точки зрения

Судя по всему, темная материя родилась в эпоху первичного кваркового супа. Природа темной материи пока не ясна, но ее существование не вызывает сомнений. Наша Галактика и все другие галактики, а также их скопления удерживаются тяготением невидимой темной материи. Чем бы она ни была, она должна слабо взаимодействовать с обычным веществом, иначе она как-то проявила бы себя помимо гравитации. Попытки описать единой теорией все наблюдаемые в природе силы и частицы приводят к предсказанию стабильных или долгоживущих частиц, из которых могла бы состоять темная материя. Эти частицы могут быть реликтом эпохи кваркового супа и очень слабо взаимодействовать с атомами. Один из кандидатов — нейтралино, легчайшая из частиц недавно предсказанного класса массивных копий известных частиц. Нейтралино должно иметь массу от 100 до 1000 масс протона, т.е. оно должно рождаться в экспериментах на Большом адронном коллайдере в ЦЕРНе вблизи Женевы. К тому же, пытаясь поймать эти частицы из космоса (или же продукты их взаимодействия), физики создали сверхчувствительные детекторы под землей, а также запускают их на аэростатах и спутниках.

Второй кандидат — аксион, сверхлегкая частица с массой примерно в триллион раз меньше, чем у электрона. На ее существование указывают тонкие различия, предсказанные Стандартной моделью в поведении кварков. Попытки зарегистрировать аксион опираются на тот факт, что в очень сильном маг-нитном поле он может превратиться в фотон. Как нейтралино, так и аксион обладают важным свойством: физики называют эти частицы «холодными». Несмотря на то что они рождаются при очень высокой температуре, движутся они медленно и поэтому легко группируются в галактики.

Вероятно, еще один секрет кроется в эпохе первичного кваркового супа: почему сейчас Вселенная содержит только вещество и почти не содержит антивещества. Физики считают, что вначале у Вселенной их было в равном количестве, но в некоторый момент возник маленький избыток вещества — примерно один лишний кварк на каждый миллиард антикварков. Благодаря этому дисбалансу при аннигиляции кварков с антикварками в процессе расширения и охлаждения Вселенной сохранилось достаточно кварков. Более 40 лет назад эксперименты на ускорителях показали, что законы физики устроены немного в пользу вещества; именно это малое предпочтение в процессе взаимодействия частиц на очень раннем этапе привело к рождению избытка кварков.

Вероятно, сам кварковый суп возник очень рано — примерно через $10^$ с после Большого взрыва, во всплеске космического расширения, известного как инфляция. Причиной этого всплеска стала энергия нового поля, напоминающего электромагнитное поле и на-званного инфлатоном. Именно инфляция должна объяснить такие фундаментальные свойства космоса, как его общую однородность и мелкие флуктуации плотности, породившие галактики и другие структуры во Вселенной. Когда инфлатон распался, он передал свою энергию кваркам и другим частицам, создав таким образом тепло Большого взрыва и сам кварковый суп.

Теория инфляции демонстрирует глубокую связь между кварками и космосом: квантовые флуктуации инфлатона, существовавшие на субатомном уровне, выросли до астрофизических размеров благодаря быстрому расширению и стали зародышем для всех наблюдаемых сегодня структур. Иными словами, картина микроволнового фонового излучения на небе — это гигантское изображение субатомного мира. Наблюдаемые свойства этого излучения согласуются с теоретическим прогнозом, доказывая, что инфляция или нечто ей подобное действительно произошло в очень ранней истории Вселенной.

Рождение Вселенной

Когда космологи пытаются продвинуться еще дальше и понять самое начало Вселенной, их суждения становятся менее уверенными. В течение века общая теория относительности Эйнштейна была основой изучения эволюции Вселенной. Но она не согласуется с другим столпом современной физики — квантовой теорией, поэтому важнейшая задача — примирить их друг с другом. Только с такой объединенной теорией мы сможем продвинуться к самым ранним моментам эволюции Вселенной, к так называемой эре Планка с возрастом $10^$ с, когда формировалось само пространство-время.

Пробные варианты единой теории предлагают нам удивительные картины самых первых мгновений. Например, теория струн предсказывает существование дополнительных измерений пространства и, возможно, наличие других вселенных в этом суперпространстве. То, что мы называем Большим взрывом, могло быть столкновением нашей Вселенной с другой (см.: Венециано Г. Миф о начале времен // ВМН, № 8, 2004). Сочетание теории струн с теорией инфляции приводит, возможно, к самой грандиозной идее — к представлению о множественной Вселенной (multiverse), состоящей из бесконечного числа несвязанных частей, в каждой из которых свои физические законы (см.: Буссо Р., Полчински Й. Ландшафт теории струн // ВМН, № 12, 2004).

Идея множественной Вселенной еще находится в развитии и нацелена на две важнейшие теоретические проблемы. Во-первых, из уравнений, описывающих инфляцию, следует, что если она произошла один раз, то процесс будет происходить вновь и вновь, порождая бесконечное число «раздутых» областей. Они так велики, что не могут сообщаться друг с другом и поэтому не влияют друг на друга. Во-вторых, теория струн указывает, что эти области имеют разные физические параметры, такие как число пространственных измерений и семейства стабильных частиц.

Концепция множественной Вселенной позволяет по-новому взглянуть на две сложнейшие научные проблемы: что было до Большого взрыва и почему законы физики именно таковы? (Вопрос Эйнштейна: «Был ли у Бога выбор?» относился именно к таким законам.) Множественная Вселенная делает бессмысленным вопрос о том, что было до Большого взрыва, поскольку происходило бесконечное число больших взрывов, и каждый порождал свой всплеск инфляции. Вопрос Эйнштейна тоже теряет смысл: в бесконечном количестве вселенных реализуются все возможные варианты законов физики, поэтому законы, управляющие нашей Вселенной, не представляет собой что-то особенное.

Космологи неоднозначно относятся к идее множественной Вселенной. Если между отдельными субвселенными действительно нет связи, то мы не сможем убедиться в их существовании; фактически они находятся за пределами научных зна-ний. Часть меня хочет закричать: «Пожалуйста, не более одной Вселенной!» Но с другой стороны, идея множественной Вселенной решает ряд принципиальных проблем. Если она верна, то хаббловское расширение Вселенной всего лишь в 100 млрд раз и коперниковское изгнание Земли из центра Вселенной в XVI в. покажутся лишь малым дополнением к нашему осознанию своего места в космосе.

ВО ТЬМЕ

Важнейший элемент современного представления о Вселенной и ее величайшая загадка — темная энергия, недавно обнаруженная и глубоко таинственная форма энергии, вызывающая ускорение космического расширения. Темная энергия перехватила управление у материи несколько миллиардов лет назад. До этого расширение замедлялось под влиянием гравитационного притяжения материи, и гравитация была способна создавать структуры — от галактик до сверхскоплений. Ныне, из-за влияния темной энергии, структуры крупнее сверхскоплений не могут формироваться. А если бы темная энергия победила еще раньше — скажем, когда возраст Вселенной был всего 100 млн лет — то формирование структур прекратилось бы до того, как возникли галактики, и нас бы здесь не было.

У космологов пока весьма смутное представление о том, что же такое эта темная энергия. Чтобы расширение ускорялось, нужна сила отталкивания. Общая теория относительности Эйнштейна указывает, что гравитация предельно упругой формы энергии действительно может вызывать отталкивание. Квантовая энергия, заполняющая пустое пространство, действует именно так. Но проблема в том, что теоретические оценки плотности квантовой энергии не согласуются с требованиями наблюдений; фактически, они превосходят их на много порядков. Другая возможность: космическим ускорением может управлять не новая форма энергии, а нечто, имитирующее эту энергию, скажем, ошибочность общей теории относительности или влияние невидимых пространственных измерений (см.: Кросс Л., Тернер М. Космическая загадка // ВМН, № 12, 2004).

Если Вселенная продолжит ускоряться в нынешнем темпе, то через 30 млрд лет все признаки Большого взрыва исчезнут (см.: Кросс Л., Шеррер Р. Наступит ли конец космологии? // ВМН, № 6, 2008). Все галактики за исключением нескольких ближайших испытают столь большое красное смещение, что станут невидимыми. Температура космического фонового излучения опустится ниже чувствительности приборов. При этом Вселенная станет похожа на ту, какую астрономы представляли себе 100 лет назад, перед тем, как их приборы стали достаточно мощными, чтобы увидеть Вселенную, которую мы знаем сегодня

Современная космология по сути унижает нас. Мы состоим из протонов, нейтронов и электронов, которые в совокупности составляют всего 4,5% Вселенной; мы существуем лишь благодаря тончайшим связям между самым малым и самым большим. Законы микрофизики обеспечили доминирование вещества над антивеществом, появление флуктуаций, ставших затравкой для галактик, заполнение пространства частицами темной материи, обеспечившей гравитационную инфраструктуру, которая позволила сформироваться галактикам, прежде чем возобладала темная энергия, а расширение начало ускоряться (врезка вверху). В то же время космология по своей природе высокомерна. Мысль о том, что мы можем понять что-то в таком безбрежном океане пространства и времени, как наша Вселенная, на первый взгляд кажется абсурдной. Эта странная смесь скромности и самоуверенности позволила нам за прошедший век весьма далеко продвинуться в понимании строения современной Вселенной и ее эволюции. Я с оптимизмом жду дальнейшего прогресса в ближайшие годы и совершенно уверен, что мы живем в золотой век космологии.


Если бы во Вселенной было еще больше темной энергии, она бы осталась почти бесформенной (слева), без тех крупных структур, которые мы видим (справа).

Перевод: В.Г. Сурдин

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

  • The Early Universe. Edward W. Kolb and Michael S. Turner. Westview Press, 1994.
  • The Inflationary Universe. Alan Guth. Basic, 1998.
  • Quarks and the Cosmos. Michael S. Turner in Science, Vol. 315, pages 59–61; January 5, 2007.
  • Dark Tnergy and the Accelerating Uni- verse. Joshua Frieman, Michael S. Turn- er and Dragan Huterer in Annual Reviews of Astronomy and Astrophysics, Vol. 46, pages 385–432; 2008. Доступно онлайн: arxiv.org.
  • Черепащук А.М., Чернин А.Д. Гори- зонты Вселенной. Новосибирск: Изд- во СО РАН, 2005.

ОБ АВТОРЕ

Майкл Тернер (Michael S. Turner) первым взялся за объединение физики частиц, астрофизики и космологии и в начале нынешнего десятилетия возглавил работу Национальной академии в этой новой области исследований. Он профессор Института космологической физики Фонда Кавли в Чикагском университете. С 2003 по 2006 г. он возглавлял отделение физико-математических наук Национального научного фонда. Среди его наград премия Уорнера Американского астрономического общества, премия Лилиенфельда Американского физического общества и премия Клопстега Американской ассоциации учителей физики.

Не многие люди, живущие в современном обществе, смогут уверенно рассказать о том, каким образом возникла Вселенная. Мало кто на сегодняшний день задумывается, а как она смогла превратиться в громадное колоссальное пространство, не знающее определенных и четких границ. Немногие думают о том, что может произойти с Вселенной через миллиарды лет.Тематика подобного рода всегда мучила древние умы ученых мужей, в лице неутомимых исследователей и философов, которые в порыве минутного озарения создавали собственные шедевры – интересные и очень безумные теории, касающиеся истории возникновения Вселенной.

Современные ученые зашли дальше в рамках научного познания, чем их древние предшественники. Многие астрономы, физики, а вместе с ними и космологи убеждены в том, что Вселенная могла появиться в результате масштабного взрыва, который смог стать не только родоначальником основной части материи, но и стать базисом для формирования всех главнейших физических законов, определившим существование космоса. Это явление принято называть «теорией Большого взрыва».

Смысл теории

Ее основы чрезвычайно просты. Теория констатирует тот факт, что материя современная и материя, существовавшая в далекой-предалекой древности, идентичны друг другу, так как по сути своей они являются одним и тем же изучаемым объектом. Вся материя сформировалась примерно 13,8 миллиардов лет назад. В те далекие времена она существовала в виде точки, или компактно сформированного абстрактного тела в форме шара, обладающего в свою очередь бесконечной плотностью и определенной температурой. Данное состояние учеными принято называть «сингулярностью». По неизвестным причинам эта самая сингулярность внезапно начала стремительно расширяться в разные стороны, вследствие чего и появилась Вселенная.Данная точка зрения является на самом деле лишь гипотезой, причем одной из самых распространенных и популярных на сегодняшний день. Она принята наукой в качестве объяснения, касающегося возникновения материи, основных физических законов и колоссальной структуры самой Вселенной. Это связано с тем, что в теории Большого взрыва описаны причины, которые повлияли на расширение Вселенной, так же в ней содержится огромное количество прочих аспектов и феноменов, связанных с безграничным пространством.

Читайте также:  Когда можно вешать мобиль на кроватку с точки зрения окулиста

Экскурс в историю

Тематика Большого взрыва стала актуальна для науки с самого начала прошлого столетия. В 1912 году астроном из США по имени Весто Слайфер в течение некоторого времени провел ряд наблюдений за спиральными галактиками (раннее принимались за туманности), в ходе которых ученому удалось измерить допплеровское красное смещение этих самых галактик. Он пришел к выводу, что объект его исследования на протяжении определенного временного интервала все дальше и дальше удаляется прочь от Млечного Пути.Наука на месте долго не стояла, и уже в 1922-м году советский космолог и математик А. Фридман, опираясь на труды Эйнштейна, смог из уравнений, относящихся к теории относительности, вывести свои уравнения. Именно он стал первым ученым, кто смог заявить ученому обществу о расширении Вселенной, высказав одно только личное предположение.

Эдвин Хаббл в 1924-м году измерил дистанцию от Земли до ближайшей к ней спиральной туманности, чем доказал, что рядом могут находиться другие галактические системы. Проводя свои эксперименты при помощи мощного телескопа, ученый установил взаимосвязь, образованную между расстоянием галактик и скоростью, с которой те друг от друга удалялись.

Церковь всегда навязывала людям то мнение, что Бог сотворил мир практически за неделю, то есть за 6 дней. Это догмата христианской религии активно поддерживается и по сей день. Однако не все церковные канонники убеждены в данной точке зрения.

Отцом-основателем концепции теории Большого взрыва принято считать священнослужителя, Жоржа Леметра. Он стал первым человеком, который поставил перед обществом вопрос о происхождении такого мирового безграничного пространства, как Вселенная. Он занимался исследованием первобытного атома и его превращения многочисленных осколков в небесные тела – звезды с галактиками. В 1927 году священник опубликовал собственные доводы в газете. Когда с размышлениями Леметра ознакомился великий Эйнштейн, он отметил, что священник абсолютно все правильно рассчитал, однако познания святого отца в области физики мэтра не удовлетворили. Теория Большого взрыва была принята только в 1933 году, когда сам Эйнштейн сдался под напором тезисов и фактов научного открытия, признав версию Леметра одной из самых убедительных из всех тех, с которыми ему только доводилось сталкиваться.Над тайной происхождения Вселенной работал и сам Эйнштейн. Ученый в 1931 году написал рукопись, в которой он изложил свой вариант событий, отличный от версии Жоржа Леметра. Точно в таком же направлении была в 1940-х годах написана работа еще одного выдающегося ученого Альфреда Хойла, который работал независимо от других знаменитых исследователей.

Эйнштейн скептически относился к одному факту, имевшему быть в теории Большого взрыва, а именно к сингулярности материи, в которой она пребывала до взрыва. Он попытался высказать свое собственное суждение, относящееся к бесконечному расширению космического пространства. Согласно его убеждениям, материя во Вселенной возникла и вовсе неоткуда, она нужна была для поддержания космической плотности в условиях постоянного расширения. Согласно мнению Эйнштейна, данный процесс можно описать, используя теорию относительности, однако позднее ученый осознал, что совершил в своих расчетах ошибку и отказался от своего открытия.

Подобной этой теории придерживался всемирно известный писатель-фантаст Эдгар Аллан По, который размышлял над происхождением Вселенной в далеком 1848 году. Физиком этот человек не был, следовательно, все его размышления никакой научной ценности не несли вследствие того, что не были закреплены никакими вычислениями. К тому же в те далекие времена не были изобретены необходимые математические аппараты, позволяющие рассчитывать исследования такого рода. По мог воплотить свою идею только лишь в литературном произведении, что он и сделал с большим успехом, написав поэму «Эврика», в которой уже рассказывается о таком явлении, как черная дыра, и доступно объясняется парадокс Олберса. Сам фантаст называл свое литературное творение откровением, о котором прежде человечество даже и не слышало. Парадокс Олберса являет собой косвенное подтверждение теории Большого взрыва, он заключается в следующем: если в ночное время суток поднять голову и увидеть какую-нибудь звезду (акцентируя на ней свое пристальное внимание), то мысленно прочерченная линия, имеющая начало на земле на этой самой звезде и закончится. По в своей «Эврике» написал о первобытной частице, которая по его словам являлась совершенно уникальной и индивидуальной. Его литературный труд был подвергнут жестокой критике, поэма оказалась разнесенной буквально в пух и прах, она оказалась неудачной работой с художественной точки зрения. Современные ученые же, наоборот, повергнуты в смятение, они не могут до сих пор понять, как человек, не имеющий научного образования, мог прогнозировать такие факты. По их словам Эдгар Аллан По своей книгой намного опередил официальные научные познания.Открытия физиков и астрономов 20-х – 30-х годов прошлого столетия взбудоражили научный мир, так как большинство ученых придерживались той точки зрения, что Вселенная находится в стационарном положении.

Уже после окончания Второй Мировой войны в обществе ученых вновь стали говорить о теории Большого взрыва и размышлять над ее концептуальностью. Именно этот вариант происхождения Вселенный с каждым годом набирал обороты популярности, отставляя позади другие вариации, которые время от времени предлагались неутомимыми исследователями космоса и объектов ему принадлежащих.

Время шло, а теория Большого взрыва все прочнее занимала свою нишу на научном Олимпе, стационарность же Вселенной стала и вовсе ставиться под сомнение. В 1965-м году было обнаружено реликтовое излучение: открытие подобного рода, ставшее фундаментальным, окончательно укрепило Большой взрыв, и связанное с ним рождение Вселенной в науке. С 60-х по 90-е годы XX века огромное количество космологов и астрономов проводили целые серии исследовательских работ, касающихся знаменитой теории, вследствие чего ими было обнаружено множество проблем теоретического характера и соответственно их решений, которые относились к предмету возникновения огромной Вселенной из одной точки. О том, что сингулярность – есть неоспоримое начальное состояние общей относительности, а также космологического состояния самого взрыва, высказался всемирно известный физик, имя которого на сегодняшний день знает каждый человек, Стивен Хокинг.1981 год ознаменовался появлением теории, описывающей период стремительного расширения космического пространства: она в свою очередь позволила решить огромное количество проблемных вопросов, на которые ранее никто не мог дать конкретного ответа.

К концу XX века у многих ученых появился неподдельный интерес, сопровождающийся любопытством, к такому объекту исследования, как темная энергия. Она была рассмотрена в качестве ключа, позволяющего раскрыть важность многих космологических проблем. Ученых интересовало, по какой причине происходит потеря веса Вселенной, а также, почему теряет свою массу и темная энергия. Гипотеза такого рода была создана давно ученым Яном Оортом, еще в 1932 году.

В последнее десятилетие прошлого столетия интенсивно создавались телескопы, усовершенствованные и позволяющие проводить четкое обследование космического пространства. Спутники, напичканные компьютерным оборудованием, позволяют современным ученым исследовать буквально каждый миллиметр Вселенной, и передавать через спутниковую систему данные прямиком в исследовательские центры различных государств.

Откуда взялось название

Автором названия для теории Большого взрыва явился ее противник Альфред Хойл, английский физик. Именно он придумал фразу «Big Bang», но сделал это физик не чтобы возвысить суждение Леметра, а чтобы наоборот его унизить, объявив абсурдом, а не величайшим феноменом в области космологии, физики и астрономии.

Хронология событий

Современные исследователи, имеющие достоверные сведения о состоянии положения дел во Вселенной, сводятся к единому мнению, согласно которому все создалось из точки. Постоянно увеличивающиеся бесконечная плотность и конечное время, непременно должны были иметь свое собственное начало в определенной точке. Когда произошло первоначальное расширение, согласно уже вышеупомянутой теории, Вселенная смогла пройти фазу охлаждения, ставшую соавтором создания субатомных частиц, а немного позднее и самых простых атомов. Спустя некоторое время, огромных размеров облака, состоящие из первоначальных древних элементов, благодаря исключительно лишь гравитации, стали формировать звезды, которые теперь каждой ночью может лицезреть абсолютно любой человек, и галактики, где, по мнению уфологов, могут находиться параллельные миры и сосредотачиваться высокоразвитые цивилизации инопланетных существ. Весь этот механизм, по предположению исследователей, запустился как раз 13,8 миллиардов лет назад: следовательно, данную отправную точку можно указывать в качестве возраста Вселенной. В ходе исследования огромного количества теоретической информации, проведения многочисленных экспериментов, которые базировались на привлечении ускорителей частиц и всевозможных высокоэнергетических состояний, обследования при помощи телескопа дальних потаенных углов космического пространства, была установлена хронологическая событийность, начавшаяся с момента Большого взрыва и приведшая Вселенную к современному виду, или как его иначе называют физики и астрономы — к «состоянию космической эволюции».
Среди ученых бытует мнение о том, что первоначальные периоды формирования космического пространства могли длиться от 10-43 до 10-11 секунды от взрыва; однако на этот счет однозначного мнения на сегодняшний день не существует. Стоит иметь в виду, что все известные современному обществу физические законы в далеком прошлом просто-напросто еще не существовали в полном наборе, который известен человечеству, следовательно, сам процесс формирования молодой Вселенной остается непонятным. Эту таинственность подкрепляет и тот факт, что до настоящего времени, включая также и его, ни в одном развитом государстве не был проведен ни один эксперимент, относящийся к исследованию тех видов энергии, которые существовали в момент создания безграничного космического пространства. В одном только сходятся мнения ученых мужей: некогда существовала точка, ставшая опорной, вот с нее-то и все началось.

Эпохальный период становления

1. Эпоха сингулярности (планковская). Ее принято считать первичной, в качестве раннего эволюционного периода Вселенной. Материя была сосредоточена в одной точке, имеющей свою температуру и бесконечную плотность. Ученые утверждают, что эта эпоха характерна для доминирования квантовых эффектов, принадлежащих гравитационному взаимодействию над физическими, причем ни одна физическая сила из всех существовавших в те далекие времена по своей силе не была идентична гравитации, то есть не была ей равна. Время продолжительности планковской эры сосредотачивается в интервале от 0 до 10-43 секунды. Она получила такое название по причине того, что полноценно измерить ее протяженность смогло лишь планковское время. Этот временной интервал считается очень нестабильным, что в свою очередь тесным образом связано с экстремальной температурой и безграничной плотностью материи. Следом за эпохой сингулярности произошел период расширения, а вместе с ним и охлаждения, приведшие к формированию основных физических сил.

С периода с 10-43 до 10-3 секунды в безграничном пространстве происходит новое событие в виде столкновения переходных температур, это, в свою очередь, отображается на их состоянии. Бытует мнение, что фундаментальные силы, ныне главенствующие в современной космическом безграничном пространстве, в данный момент начали стремительно удаляться друг от друга. Следствием этого процесса стало формирование слабых гравитационных сил, такого состояния, как электромагнетизм, а вместе с тем слабых, наряду с сильными, ядерных взаимодействий.

С 10-36 до 10-32 секунды от Большого взрыва во Вселенной устанавливается очень низкая температура, равная 1028К, этот факт в свою очередь становится причиной разделения электромагнитных сил, что происходит в процессе сильного взаимодействия со слабым (ядерным). 2. Эпоха инфляции. С появлением на безграничных просторах Вселенной первых сил, названных учеными не иначе, как фундаментальными, начинается новая эпоха, длившаяся с 10-32 секунды (согласно планковскому времени) до абсолютно никому неизвестному времени.Огромное количество космологических моделей устанавливают, что в данный временной интервал Вселенная могла пребывать в состоянии бариогенезиса – очень высокая температура влияет на хаотичное движение частиц в пространственной среде, происходящее с запредельной скоростью.

Это время характерно для столкновения и отталкивания античастиц – разрушающихся пар частиц. Исследователи склонны считать, что именно тогда произошло доминирование материи над ее антиподом, антиматерией, что является на сегодняшний день характерной особенностью Вселенной, имеется в виду доминант. К моменту завершения эпохи инфляции Вселенная сформировалась на основе кварк-глюоновой плазмы и прочих элементарных частиц. Она стала постепенно остывать, а материя в свою очередь начала активное образование и соединение. 3. Эпоха охлаждения. С момента понижения уровня плотности и температуры в самой Вселенной стали происходить существенные изменения каждой частицы – у них стала снижаться энергия. Состояние подобного рода закончилось лишь тогда, когда к своему современному виду пришли элементарные частицы, а вместе с ними и фундаментальные силы. Энергия частиц стала опускаться до тех параметров, которые на сегодняшний день удается получить исключительно лишь в рамках лабораторных условий, в ходе проведения многочисленных опытов и наряду с ними экспериментов.Ученые ни на секунду не сомневаются, что данный временной интервал существовал в истории формирования Вселенной. Они отмечают, что сразу же после Большого взрыва энергия частиц постепенно уменьшилась, в результате чего она приобрела значительные размеры. На 10-6 секунде барионы в виде протонов и нейтронов стали образовываться из глюонов и кварков. Вместе с этим появился диссонанс в форме преобладания кварков над антикварками, барионов над антибарионами. Вследствие понижения температуры началось прекращение выработки протонно-нейтронных пар и соответственно, их антиподов, протоны и нейтроны стали стремительно исчезать, а их античастицы и вовсе прекратили свое существование. Подобный процесс вновь произошел спустя некоторое время. Однако на этот раз действие коснулось позитронов и электронов.

Читайте также:  Мушки и пелена перед глазами ухудшение зрения

Вследствие стремительного уничтожения частицы прекратили свое хаотичное движение, а энергетическую плотность, относящуюся к Вселенной, стали интенсивно заполнять фотоны.

С момента расширения безграничного пространства формируется процесс запуска нуклеосинтеза. Благодаря низкой температуре и понижению плотности энергии нейтрон и протон своим симбиозом создали первый в мире дейтерий (изотоп водорода), также они приняли непосредственное участие в формировании атомов гелия. Огромное количество протонов в свою очередь стали базой для создания ядра водорода.

Через 379 000 лет ядра водорода соединятся с электронами, вследствие чего появятся уже атомы все того же водорода. В данный момент времени происходит отделение радиации от материи, она отныне самостоятельно заполняет все вселенское пространство. Эта радиация получила название реликтового излучения, ее принято считать самым древнейшим источником света из всех существующих. 4. Эпоха структуры. В течение последующего временного интервала, насчитывающего пару миллиардов лет, материя уже смогла распространиться по всей Вселенной, а ее наиболее плотные регионы стали активней притягиваться друг к другу, становясь плотнее. Вследствие такого действия начали возникать облака, состоящие из газа, галактики, звезды и прочие космические объекты, которые можно увидеть и сегодня. Данный период известен еще под одним названием, его принято именовать «Иерархической эпохой».Этот временной период связан с тем, что Вселенная удалось обрести определенную форму. Материя начала образовываться в разнообразные структуры, имеющие разнообразные размеры:
— звезды,
— галактики,
— планеты,
— галактические скопления и сверхскопления, разделенные между собой при помощи межгалактических перемычек и включающие в себя несколько галактик.

Прогнозы на будущее

Вследствие того, что Вселенная имеет собственную точку начала, у ученых периодически создаются гипотезы относительно того, что когда-нибудь появится и та точка, которая прекратит ее существование. Также физиков и астрономов интересует вопрос, касающийся расширения Вселенной всего из одной точки, они даже строят прогнозы на предмет того, что она может расширяться еще больше. Или же и вовсе однажды может произойти обратный процесс, в безграничном пространстве по неизвестным причинам может прекратить действовать экспансивная сила, вследствие чего может произойти обратный процесс, заключающийся в сжатии.В 1990-х годах в качестве основной модели развития Вселенной была принята теория Большого взрыва, именно тогда же примерно и были разработаны два основных пути дальнейшего существования космического безграничного пространства.

1. Большое сжатие. В один момент Вселенная может достигнуть максимального пика в виде огромного размера, а потом начнется ее разрушение. Подобный вариант развития станет возможным только в том случае, когда плотность массы Вселенной будет больше, чем ее критическая плотность.

2. В данном случае будет происходить иная картина действий: плотность приравняется или даже станет ниже критический. Итог – замедление расширения, которое никогда не остановится. Этот вариант был назван тепловой смертью Вселенной. Расширение будет длиться до тех времен, пока звездообразованиями не перестанет активно потребляться газ, находящийся внутри близлежащих галактик. В таком случае произойдет следующее: от энергии и материи просто-напросто прекратится передача от одного космического объекта к другому. Всех звезд, которые невооруженным взглядом можно лицезреть каждые вечер и ночь на небосводе, постигнет одна и та же печальная участь: они станут не чем иным, как белым карликом, черной дырой либо же нейтронной звездой. Черные дыры всегда представляли неприятность не только для космологов. Новообразованные дыры будут соединяться с собой, образовывая себе подобные же объекты гораздо большего размера. Между тем показатель средней температуры в безграничном пространстве может достичь отметки в 0. Следствием данной ситуации станет абсолютное испарение черных дыр, которые напоследок начнут выдавать в окружающую среду излучение Хокигнга. Завершающим этапом в данном случае будет тепловая смерть.Современные ученые проводят огромное количество исследований, касающихся не только существования темной энергии, но и ее непосредственного влияния на расширение космического пространства. В ходе проведения своих исследований они в свою очередь установили, что расширение Вселенной происходит настолько быстрыми темпами, что скоро человечество даже не будет и знать, насколько безграничным на самом деле является безграничное пространство. Конечно же, по какому именно дальнейшему пути развития может пойти планета, умы ученых мужей даже и представить себе не могут. Они лишь прогнозируют результат, обосновывая свой выбор теми или иными критериями. Однако, многие из светил предрекают безграничному пространству такой конец, как тепловая смерть, считая его наиболее вероятным.

Также в научной среде бытует мнение, что все планеты, ядра атомов, атомы, материя и звезды будут в далеком будущем сами собой разрываться, что приведет к большому разрыву. Это еще один вариант гибели Вселенной, однако, он формируется на расширении.

Другие варианты

Конечно же, теория Большого Взрыва единственной не является, о чем было не раз указано выше. Человечество на протяжении всего своего существования имело право на свою версию возникновения Вселенной.

1. В очень глубокой древности люди задумывались о том, в каком мире они живут и существуют. Еще не установилась религиозное мировоззрение, а человек уже задумывался над тем, как устроен мир, какое именно место он сам занимает в окружающем его пространстве.
Древние развитые народы связывали свою жизнь тесным образом с религиозными догмами. Кто, как не божество могло создать дерево, человека, огонь? А огда ему это все под силу, следовательно, весь мир тоже создан каким-нибудь богом. Если сделать обзор жизни одной из самых древних цивилизации, проживающей некогда на территории Междуречья (современные земли Ирака, Ирана, Сирии, Турции), то можно на примере антагонистов добра и зла – Ахурамазды и Ахримана увидеть, что именно эти боги, согласно древним письменным источникам, являются непосредственными творцами Вселенной. Каждый древний народ связывал образование космического пространства с деятельностью какого-нибудь божества (чаще всего верховного).Великие мыслители древности пытались понять происхождение Вселенной, они понимали, что боги не имеют к ней абсолютно никакого отношения. Космологией занимался Аристотель, который пытался доказать, что Вселенная имеет собственную эволюцию. На Востоке всем известно имя врача Авиценны, но не только медицина довлела над его пытливым разумом. Авиценна был одним из первых исследователей, который попытался при помощи разума и собственной логики опровергнуть божественное образование Вселенной. 2. Время неумолимо движется вперед, а вместе с ним происходит стремительное развитие человеческой мысли. Исследователи Средневековья (те люди, которые прятались от Святой Инквизиции) и Нового времени, идя наперекор авторитарной религиозной власти, доказали не только, что из себя представляет планета Земля, но и заложили методики астрологического исследования, а немного позже и астрофизиеского.Над вопросами космогонии ломали свои светлые головы многие философы, среди которых следует выделить француза Рене Декарта. Декарт предпринял попытку при помощи теории разобраться в происхождении небесных тел, объединив при этом все математические, физические и биологические знания, которыми обладал этот талантливый человек. Успехов он на своем поприще не добился. 3. Вплоть до начала XX века люди считали, что Вселенная четких границ в ни пространстве, ни во времени не имеет, да к тому же в добавок к этому является статичной и однородной.О том, что космическое пространство безгранично посмел высказаться Исаак Ньютон. Немецкий философ Эммануил Кант прислушался к его доводам и на основе ньютоновских рассуждений выдвинул собственную теорию, о том, что Вселенная не имеет своего времени и совсем не имеет начала. Все процессы, имевшие место быть во Вселенной, он относил к законам механики.

Свою теорию Кант развивал, подкрепив знаниями из биологии. Ученый говорил о том, что в просторах Вселенной может существовать огромное количество возможностей, которые дают жизнь биологическому продукту. Подобным утверждением позднее заинтересуется не менее знаменитый ученый – Чарльз Дарвин.

Кант создал свою теорию, опираясь на опыт исследователей-астрономов, являющихся практически его современниками. Она считалась единственной верной и непоколебимой вплоть до того момента, покуда не возникла теория Большого взрыва.
4. Автор знаменитой теории относительности Альберт Эйнштейн тоже не остался в стороне от проблематики сотворения Вселенной. В 1917 году он представил обществу свой проект.Эйнштейн также думал, что Вселенная стационарна, он стремился доказать, что космическое безграничное пространство не должно ни сжиматься, ни расширяться. Однако его собственные мысли шли наперекор его главному труду (теории относительности), согласно которому Вселенная одновременно у Эйнштейна и расширялась, и сжималась.

Ученый поспешил установить, что Вселенная является статической, это он обосновал тем, что космическая сила отталкивания влияет на уравновешивание притяжения звезд и тем самым прекращает движение небесных тел в пространстве.

У Эйнштейна Вселенная обладала конечными размерами, однако четких границ он вместе с этим не устанавливал: это становится возможным лишь в случае искривления пространства. 5. Отдельной теорией сотворения Вселенной стоит Креационизм. Она в свою очередь основана на том, что человечество и Вселенная основаны творцом. Конечно же, речь идет о христианской догматике.Теория эта возникла в XIX веке, ее сторонники утверждали, что создание космического пространства записано в Ветхом Завете. В это время в единое научное течение складывались знания из области биологии, физики, астрономии. Теория эволюции Дарвина занимала весомое место в жизни общества. Вследствие этого наука пошла против религии: знания против божественной концепции сотворения мира. Креационизм стал своеобразным протестом против новшества. Консервативные христиане выступали против научных открытий. Креационизм был известен публике в виде двух направлений:

Младоземельный (буквалистский). Бог трудился над созданием мира ровно 6 дней, как это указано в Библии. Они утверждают, что мир был создан около 6 000 лет назад.

Староземельный (метафорический). Описанные в Библии 6 дней – есть не что иначе, как метафора, которая была понятна исключительно лишь людям, жившим в глубокой древности. На самом деле такое христианское понятие, как «день» может не включать в себя установленные 24 часа, оно сосредоточено в неопределенном отрезке времени (то есть не имеющим фиксированных четких границ), который в свою очередь может исчисляться миллионами лет.

Староземельный креационизм принимает некоторые научные идеи и открытия, его последователи соглашаются с астрофизическим возрастом небесных тел, но существование теории эволюции вместе с естественным отбором они напрочь отрицают, утверждая, что только лишь Бог может оказывать влияние на появление и исчезновение биологических видов.

История создания Вселенной на протяжении всего человеческого существования не раз претерпевала изменения, которые диктовались религиозными верованиями или научными исследованиями.На сегодняшний день существует одна версия, удовлетворяющая ученые умы. Теория Большого взрыва является наиболее удачным вариантом, точно описывающим, как именно происходило рождение безграничного пространства, какие эпохи оно проживало. На ее основе ученые прогнозируют дальнейшее развитие Вселенной.

Однако, как показывает предыдущий опыт, не всегда теория, даже если она и весьма популярна в человеческом обществе, верна. Наука на одном месте не стоит, она постоянно прогрессирует, находя все новые и новые источники пополнения знаний.

Не исключено, что однажды в научной среде появится очередной физик, космолог или астроном, который представит свою собственную теорию сотворения Вселенной, которая, быть может, окажется вернее, чем теория Большого взрыва.

Источники:
  • http://mostinfo.su/6541-vselennaya-istoriya-vozniknoveniya.html