Меню Рубрики

Миндалина является высшим подкорковым центром зрения

Строение зрительного нерва

Для лечения суставов наши читатели успешно используют Око-плюс. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию.
Подробнее здесь…

Для понимания причин заболеваний и методов лечения необходимо знать строение зрительного нерва. Его средняя длина у взрослых варьируется от 40 до 55 мм, основная часть нерва расположена внутри глазницы— костного образования, в котором расположен сам глаз. Со всех сторон нерв окружен парабульбарной клетчаткой — жировой тканью.

В нем выделяют 4 части:

Диск зрительного нерва

Зрительный нерв начинается на глазном дне, в виде диска зрительного нерва (ДЗН), который сформирован отростками клеток сетчатки, а заканчивается он в хиазме — своеобразном «перекрестке», расположенном над гипофизом внутри черепа. Так как ДЗН сформирован скоплением нервных клеток, он немного выступает над поверхностью сетчатки, поэтому иногда его называют «сосочком».

Площадь ДЗН составляет всего 2-3 мм2, а диаметр — около 2 мм. Расположен диск не строго в центре сетчатки, а немного смещен в носовую сторону, в связи с этим на сетчатке формируется физиологическая скотома — слепое пятно. ДЗН практически не защищен. Оболочки у нерва появляются только при прохождении его через склеру, то есть на выходе из глазного яблока в глазницу. Кровоснабжение ДЗН осуществляется за счет маленьких отростков цилиарных артерий и имеет лишь сегментарный характер. Именно поэтому при нарушении кровообращения на этом участке происходит резкая и зачастую безвозвратная потеря зрения.

Оболочки зрительного нерва

Как уже было сказано, сам диск зрительного нерва собственных оболочек не имеет. Оболочки зрительного нерва появляются только лишь во внутриглазничной части, на месте выхода его из глаза в орбиту.

Они представлены следующими тканевыми образованиями:

  • Мягкая мозговая оболочка.
  • Арахноидальная (паутинная, или сосудистая) оболочка.
  • Твердая мозговая оболочка.

Все оболочки послойно обволакивают зрительный нерв до его выхода из глазницы в череп. В дальнейшем сам нерв, а также хиазму покрывает лишь мягкая оболочка, и уже внутри черепа они находятся в специальной цистерне, образованной субарахноидальной (сосудистой) оболочкой.

Кровоснабжение зрительного нерва

Внутриглазная и глазничная часть нерва имеют много сосудов, но из-за их малого размера (преимущественно капилляры) кровоснабжение остается хорошим только при условиях нормальной гемодинамики во всем организме.

ДЗН имеет небольшое количество сосудов малых размеров — это задние короткие цилиарные артерии, которые лишь сегментарно обеспечивают эту важную часть зрительного нерва кровью. Уже более глубокие структуры ДЗН кровоснабжает центральная артерия сетчатки, но опять же, из-за низкого градиента давления в ней, малого калибра нередко происходит застой крови, окклюзии и различные инфекционные заболевания.

Внутриглазничная часть имеет уже более хорошее кровоснабжение, которое поступает преимущественно от сосудов мягкой мозговой оболочки, а также от центральной артерии зрительного нерва.

Краниальная часть зрительного нерва и хиазма богато кровоснабжаются также за счет сосудов мягкой, а также субарахноидальной оболочек, в которые кровь поступает из ветвей внутренней сонной артерии.

Функции зрительного нерва

Их не очень много, но все они играют значимую роль в жизнедеятельности человека.

Список основных функций зрительного нерва:

  • передача информации от сетчатки к коре головного мозга через различные промежуточные структуры;
  • быстрое реагирование на различные сторонние раздражители (свет, шум, взрыв, приближающийся автомобиль и т. д.) и как результат — оперативная рефлекторная защита в виде закрытия глаз, прыжков, отдергивания рук и т. п.;
  • обратная передача импульсов от корковых и подкорковых структур мозга к сетчатке.

Зрительный путь, или схема движения зрительного импульса

Анатомическое строение зрительного пути сложное.

Он состоит из двух последовательно идущих участков:

  • Периферическая часть. Представлена палочками и колбочками сетчатки (1 нейрон), далее — биполярными клетками сетчатки (2 нейрон), а уже затем — длинными отростками клеток (3 нейрон). Вместе взятые эти структуры образуют зрительный нерв, хиазму и зрительный тракт.
  • Центральная часть зрительного пути. Зрительные тракты заканчивают свой путь в наружном коленчатом теле (которые являются подкорковым центром зрения), задней части зрительного бугра и переднем четверохолмии. Далее отростки ганглиев образуют зрительную лучистость в головном мозге. Скопление коротких аксонов этих клеток, называемое зоной Вернике, от которого отходят длинные волокна, формирующие сенсорный зрительный центр — корковое поле 17 по Бродману. Этот участок коры головного мозга является «руководителем» зрения в организме.

Нормальная офтальмологическая картина диска зрительного нерва

При осмотре глазного дна с помощью офтальмоскопии доктор видит на сетчатке следующее:

  • ДЗН обычно светло-розового цвета, но с возрастом, при глаукоме или при атеросклерозе наблюдается побледнение диска.
  • На ДЗН в норме нет никаких включений. С возрастом иногда появляются мелкие желтовато-серые друзы диска (отложения солей холестерина).
  • Контуры ДЗН четкие. Размытость контуров диска может говорить о повышенном внутричерепном давлении и других патологиях.
  • ДЗН в норме не имеет выраженных выпячиваний или вдавлений, он практически плоский. Экскавации наблюдаются при миопии высокой степени, на поздних стадиях глаукомы и при других болезнях. Отек диска наблюдается при застойных явлениях как в головном мозге, так и в ретробульбарной клетчатке.
  • Сетчатка у молодых и здоровых людей ярко-красного цвета, без различных включений, прилежит плотно на всей площади к хориоидее.
  • В норме вдоль сосудов нет полос ярко-белого или желтого цвета, а также кровоизлияний.

Симптомы поражения зрительного нерва

Заболевания зрительного нерва в большинстве случаев сопровождаются основными симптомами:

  • Быстрое и безболезненное ухудшение зрения.
  • Выпадение полей зрения — от незначительных, до тотальных скотом.
  • Появление метаморфопсий — искаженного восприятия изображений, а также неправильного восприятия размера и цвета.

Болезни и патологические изменения зрительного нерва

Все заболевания зрительного нерва принято делить по причине возникновения:

  • Сосудистые — передняя и задняя ишемическая нейрооптикопатия.
  • Травматические. Могут быть любой локализации, но наиболее часто нерв повреждается именно в канальцевой и краниальной части. При переломах костей черепа, преимущественно лицевой части, нередко возникает перелом отростка клиновидной кости, в которой проходит нерв. При обширных кровоизлияниях в головной мозг (ДТП, геморрагические инсульты и т. д.) может возникать сдавливание области хиазмы. Любое повреждение зрительного нерва может обернуться слепотой.
  • Воспалительные заболевания зрительного нерва — бульбарный и ретробульбарный неврит, оптико-хиазмальный арахноидит, а также папиллит. Симптомы воспаления зрительного нерва во многом схожи с другими поражениями зрительного тракта — быстро и безболезненно ухудшается зрение, появляется туман в глазах. На фоне лечения ретробульбарного неврита очень часто происходит полное восстановление зрения.
  • Невоспалительные заболевания зрительного нерва. Частые патологические явления в практике офтальмолога, представлены отеком различной этиологии, атрофией зрительного нерва.
  • Онкологические заболевания. Наиболее часто встречающаяся опухоль зрительного нерва — это доброкачественные глиомы у детей, которые проявляются в возрасте до 10-12 лет. Злокачественные опухоли — редкое явление, обычно имеют метастатическию природу.
  • Врожденные аномалии — увеличение размеров ДЗН, гипоплазия зрительного нерва у детей, колобома и другие.

Методы исследования при заболеваниях зрительного нерва

При всех нейроофтальмологических заболеваниях диагностические обследования включают в себя как общеофтальмологические методы, так и специальные.

К общим методам относятся:

  • визометрия — классическое определение остроты зрения с коррекцией и без;
  • периметрия — самый показательный метод обследования, позволяющий врачу определить локализацию очага поражения;
  • офтальмоскопия — при поражении начальных отделов нерва, особенно при ишемической оптикопатии, выявляется бледность, экскавация диска или отек, его побледнение или же, наоборот, инъекция.

К специальным методам диагностики относятся:

  • Магнитно-резонансная томография головного мозга (в меньшей степени компьютерная томография и прицельная рентгеногрфия). Является оптимальным исследованием при травматических, воспалительных, невоспалительных (рассеянный склероз) и онкологических причинах заболевания (глиома зрительного нерва).
  • Флуоресцентная ангиография сосудов сетчатки — «золотой стандарт» во многих странах, который дает возможность увидеть, на каком участке произошло прекращение кровообращения, если возникла передняя ишемическая нейропатия зрительного нерва, установить локализацию тромба, определить дальнейшие прогнозы в восстановлении зрения.
  • HRT (хайдельбергская ретинальная томография) — обследование, показывающее в мельчайших подробностях изменения ДЗН, что очень информативно при глаукоме, сахарном диабете, дистрофиях зрительного нерва.
  • УЗИ орбиты также широко применяется при поражении внутриглазного и глазничного отдела нерва, оно очень информативно, если у ребенка выявлена глиома зрительного нерва.

Лечение заболеваний зрительного нерва

Из-за многообразия причин, вызывающих поражение зрительного нерва, лечение должно проводиться только после постановки точного клинического диагноза. Наиболее часто лечение таких патологий проводится в специализированных офтальмологических стационарах.

Ишемическая нейропатия зрительного нерва — очень серьезное заболевание, которое нужно начинать лечить в первые 24 часа от начала заболевания. Более длительное отсутствие терапии приводит к стойкому и значительному снижению зрения. При этом заболевании назначаются курс кортикостероидов, мочегонные средства, ангиопротекторы, а также препараты направленные на устранение причины заболевания.

Травматическая патология зрительного нерва на любом участке его пути может грозить серьезным ухудшением зрения, поэтому в первую очередь необходимо устранить компрессию на нерв или хиазму, что возможно с помощью методики форсированного диуреза, а также выполнения трепанации черепа или орбиты. Прогнозы при таких травмах весьма неоднозначные: зрение может остаться и 100%, а может и полностью отсутствовать.

Ретробульбарный и бульбарный неврит чаще всего являются первым признаком рассеянного склероза (до 50% случаев). Второй по частоте причиной является инфекция, как бактериальная, так и вирусная (вирус герпеса, ЦМВ, краснухи, гриппа, кори и т. д.). Лечение направлено на то, чтобы устранить отек и воспаление зрительного нерва, применяя большие дозы кортикостероидов, а также антибактериальных или противовирусных препаратов, в зависимости от этиологии.

Доброкачественные новообразования встречаются в 90% у детей. Глиома зрительного нерва расположена внутри зрительного канала, то есть под оболочками, и для нее характерно разрастание. Лечению эта патология зрительного нерва не поддается, и ребенок может ослепнуть.

Глиома зрительного нерва дает такие симптомы:

  • очень рано и быстро снижается зрение, вплоть до слепоты на стороне поражения;
  • развивается пучеглазие — непульсирующий экзофтальм глаза, нерв которого поражен опухолью.

Глиома зрительного нерва в большинстве случаев влияет именно волокна нерва и гораздо реже — оптико-хиазмальную зону. Поражение последней обычно значительно затрудняет раннюю диагностику заболевания, что может привести к распространению опухоли на оба глаза. Для ранней диагностики возможно использование МРТ или рентгенограммы по Резе.

Атрофии зрительного нерва любого происхождения лечатся обычно курсами два раза в год для поддержания стабильности состояния. Терапия включает как лекарственные препараты (Кортексин, витамины группы В, Мексидол, Ретиналамин), так и физиотерапевтические процедуры (электростимуляция зрительного нерва, магнито- и электрофорез с лекарствами).

При выявлении изменений со стороны зрения у себя или же у своих родственников, особенно старческого или детского возраста, необходимо как можно быстрее обратиться к лечащему офтальмологу. Только врач сможет правильно установить диагноз и назначить необходимые мероприятия. Промедление при заболеваниях зрительного нерва грозит слепотой, которую уже нельзя вылечить.

Подкорковые функции

Подкорковые функции в механизмах формирования поведенческих реакций человека и животных функции подкорковых образований проявляются всегда в тесном взаимодействии с корой больших полушарий. К подкорковым образованиям относят структуры, лежащие между корой и продолговатым мозгом: таламус (см. Головной мозг), гипоталамус (см.), базальные узлы (см.), комплекс образований, объединяемых в лимбическую систему мозга, а также ретикулярную формацию (см.) ствола мозга и таламуса. Последней принадлежит ведущая роль в формировании восходящих активирующих потоков возбуждения, генерализованно охватывающих кору больших полушарий. Любое афферентное возбуждение, возникшее при раздражении рецепторов на периферии, на уровне ствола мозга трансформируется в два потока возбуждений. Один поток по специфическим путям достигает специфической для данного раздражения проекционной области коры; другой — от специфического пути по коллатералям попадает в ретикулярную формацию и от нее в виде мощного восходящего возбуждения направляется к коре больших полушарий, активируя ее (рис.). Лишенная связей с ретикулярной формацией кора головного мозга приходит в недеятельное состояние, характерное для состояния сна.

Читайте также:  Что такое нефть с точки зрения происхождения


Схема восходящего активирующего влияния ретикулярной формации (по Мегуну): 1 и 2 — специфический (лемнисковый) проводящий путь; 3 — коллатерали, отходящие от специфического пути к ретикулярной формации ствола мозга; 4 — восходящая активирующая система ретикулярной формации; 5 — генерализованное влияние ретикулярной формации на кору больших полушарий.

Ретикулярная формация имеет тесные функциональные и анатомические связи с гипоталамусом, таламусом, продолговатым мозгом, лимбической системой, мозжечком, поэтому все наиболее общие функции организма (регуляция постоянства внутренней среды, дыхание, пищевая и болевая реакции) находятся в ее ведении. Ретикулярная формация является областью широкого взаимодействия потоков возбуждений различной природы, так как к ее нейронам конвергируют как афферентные возбуждения от периферических рецепторов (звуковых, световых, тактильных, температурных и др.), так и возбуждения, приходящие от других отделов головного мозга.

Афферентные потоки возбуждений от периферических рецепторов на пути к коре больших полушарий имеют многочисленные синаптические переключения в таламусе. От латеральной группы ядер таламуса (специфические ядра) возбуждения направляются по двум путям: к подкорковым ганглиям и к специфическим проекционным зонам коры мозга. Медиальная группа ядер таламуса (неспецифические ядра) служит местом переключения восходящих активирующих влияний, которые направляются от стволовой ретикулярной формации в кору мозга. Тесные функциональные взаимосвязи между специфическими и неспецифическими ядрами таламуса обеспечивают первичный анализ и синтез всех афферентных возбуждений, поступающих в головной мозг. У животных, находящихся на низких ступенях филогенетического развития, таламус и лимбические образования играют роль высшего центра интеграции поведения, обеспечивая все необходимые рефлекторные акты животного, направленные на сохранение его жизни. У высших животных и человека высшим центром интеграции является кора больших полушарий.

С функциональной точки зрения к подкорковым образованиям относят комплекс структур головного мозга, который играет ведущую роль в формировании основных врожденных рефлексов человека и животных: пищевых, половых и оборонительных. Этот комплекс получил название лимбической системы и включает в себя поясную извилину, гиппокамп, грушевидную извилину, обонятельный бугорок, миндалевидный комплекс и область перегородки. Центральное место среди образований лимбической системы отводится гиппокампу. Анатомически установлен гиппокампальный круг (гиппокамп → свод → мамиллярные тела → передние ядра таламуса → поясная извилина → cingulum → гиппокамп), который вместе с гипоталамусом играет ведущую роль в формировании эмоций. Регуляторные влияния лимбической системы широко распространяются на вегетативные функции (поддержание постоянства внутренней среды организма, регуляция кровяного давления, дыхания, тонуса сосудов, моторики желудочно-кишечного тракта, половых функций).

Кора больших полушарий оказывает постоянные нисходящие (тормозные и облегчающие) влияния на подкорковые структуры. Существуют различные формы циклического взаимодействия между корой и подкоркой, выражающиеся в циркуляции возбуждений между ними. Наиболее выраженная замкнутая циклическая связь существует между таламусом и соматосенсорной областью коры мозга, составляющими в функциональном отношении единое целое. Корково-подкорковая циркуляция возбуждений определяется не только таламокортикальными связями, но и более обширной системой подкорковых образований. На этом базируется вся условно-рефлекторная деятельность организма. Специфика циклических взаимодействий коры и подкорковых образований в процессе формирования поведенческой реакции организма определяется его биологическими состояниями (голод, боль, страх, ориентировочно — исследовательская реакция).

Подкорковые функции. Кора головного мозга является местом высшего анализа и синтеза всех афферентных возбуждений, областью формирования всех сложных приспособительных актов живого организма. Однако полноценная аналитико-синтетическая деятельность коры больших полушарий возможна лишь при условии прихода к ней от подкорковых структур мощных генерализованных потоков возбуждений, богатых энергией и способных обеспечить системный характер корковых очагов возбуждений. С этой точки зрения и следует рассматривать функции подкорковых образований, являющихся, по выражению И. П. Павлова, «источником энергии для коры».

В анатомическом плане к подкорковым образованиям относят нейрональные структуры, расположенные между корой головного мозга (см.) и продолговатым мозгом (см.), а с функциональной точки зрения — подкорковые структуры, которые в тесном взаимодействии с корой больших полушарий формируют целостные реакции организма. Таковы таламус (см.), гипоталамус (см.), базальные узлы (см.), так называемая лимбическая система мозга. С функциональной точки зрения к подкорковым образованиям относят и ретикулярную формацию (см.) ствола мозга и таламуса, которой принадлежит ведущая роль в формировании восходящих активирующих потоков к коре больших полушарий. Восходящие активирующие влияния ретикулярной формации открыли Моруцци и Мегун (G. Moruzzi, Н. W. Magoun). Раздражая электрическим током ретикулярную формацию, эти авторы наблюдали переход медленной электрической активности коры головного мозга в высокочастотную, низкоамплитудную. Такие же изменения электрической активности коры мозга («реакция пробуждения», «реакция десинхронизации») наблюдались при переходе от сонного состояния животного к бодрствующему. На основании этого возникло предположение о пробуждающем влиянии ретикулярной формации (рис. 1).


Рис. 1. «Реакция десинхронизации» корковой биоэлектрической активности при раздражении у кошки седалищного нерва (отмечено стрелками): СМ — сенсомоторная область коры мозга; ТЗ — теменно-затылочная область коры мозга (л — левая, п — правая).

В настоящее время известно, что реакция десинхронизации корковой электрической активности (активация коры мозга) может возникать при любом афферентном воздействии. Это связано с тем, что на уровне ствола мозга афферентное возбуждение, возникающее при раздражении любых рецепторов, трансформируется в два потока возбуждения. Один поток направляется по классическому лемнисковому пути и достигает специфической для данного раздражения корковой проекционной области; другой — попадает от лемнисковой системы по коллатералям в ретикулярную формацию и от нее в виде мощных восходящих потоков направляется к коре мозга, генерализованно активируя ее (рис. 2).


Рис. 2. Схема восходящего активирующего влияния ретикулярной формации (по Мегуну): 1—3 — специфический (лемнисковый) проводящий путь; 4 — коллатерали, отходящие от специфического пути к ретикулярной формации ствола мозга; 5 — восходящая активирующая система ретикулярной формации; в — генерализованное влияние ретикулярной формации на кору больших полушарий.

Это генерализованное восходящее активирующее влияние ретикулярной формации — непременное условие поддержания бодрствующего состояния мозга. Лишенная источника возбуждения, которым служит ретикулярная формация, кора головного мозга приходит в недеятельное состояние, сопровождаемое медленной высокоамплитудной электрической активностью, характерной для состояния сна. Такую картину можно наблюдать при децеребрации, т. е. у животного с перерезанным стволом мозга (см. ниже). В этих условиях ни какие-либо афферентные раздражения, ни прямое раздражение ретикулярной формации не вызывает диффузной, генерализованной реакции десинхронизации. Таким образом, доказано наличие в головном мозге по крайней мере двух основных каналов поступления афферентных воздействий на кору больших полушарий: по классическому лемнисковому пути и по коллатералям через ретикулярную формацию ствола мозга.

Так как при любом афферентном раздражении генерализованная активация коры мозга, оцениваемая по электроэнцефалографическому показателю (см. Электроэнцефалография), всегда сопровождается реакцией десинхронизации, многие исследователи пришли к выводу, что любые восходящие активирующие влияния ретикулярной формации на кору головного мозга являются неспецифическими. Главными аргументами в пользу такого вывода явились следующие: а) отсутствие сенсорной модальности, т. е. однотипность изменений биоэлектрической активности при воздействии различных сенсорных раздражителей; б) постоянный характер активации и генерализованное распространение возбуждения по коре, оцениваемое опять-таки по электроэнцефалографическому показателю (реакция десинхронизации). На этом основании все виды генерализованной десинхронизации корковой электрической активности признавались также едиными, не различающимися по каким-либо физиологическим качествам. Однако при формировании целостных приспособительных реакций организма восходящие активирующие влияния ретикулярной формации на кору головного мозга носят специфический характер, соответствующий данной биологической деятельности животного — пищевой, половой, оборонительной (П. К. Анохин). Это означает, что в формировании различных биологической реакций организма участвуют различные области ретикулярной формации, осуществляющие активацию коры больших полушарий (А. И. Шумилина, В. Г. Агафонов, В. Гавличек).

Наряду с восходящими влияниями на кору больших полушарий ретикулярная формация может оказывать и нисходящие влияния на рефлекторную деятельность спинного мозга (см.). В ретикулярной формации различают области, которые оказывают тормозящие и облегчающие влияния на моторную активность спинного мозга. По своему характеру эти влияния диффузны и оказывают воздействие на все группы мышц. Они передаются по нисходящим спинальным путям, которые различны для тормозящих и облегчающих влияний. О механизме ретикулоспинальных влияний существует две точки зрения: 1) ретикулярная формация оказывает тормозящие и облегчающие влияния непосредственно на мотоневроны спинного мозга; 2) эти влияния на мотоневроны передаются через клетки Реншо. Особенно четко нисходящие влияния ретикулярной формации выражены у децеребрированного животного. Децеребрация осуществляется путем перерезки головного мозга по передней границе четверохолмия. При этом развивается так называемая децеребрационная ригидность с резким увеличением тонуса всех мышц-разгибателей. Считают, что этот феномен развивается в результате перерыва путей, идущих от вышележащих образований мозга к тормозящему отделу ретикулярной формации, что обусловливает уменьшение тонуса этого отдела. В результате облегчающие влияния ретикулярной формации начинают преобладать, что и приводит к увеличению тонуса мышц.

Важной особенностью ретикулярной формации является ее высокая чувствительность к различным химическими веществам, циркулирующим в крови (СO2, адреналин и др.). Это обеспечивает включение ретикулярной формации в регулирование некоторых вегетативных функций. Ретикулярная формация является также местом избирательного действия многих фармакологических и медикаментозных препаратов, что используют при лечении некоторых заболеваний ЦНС. Высокая чувствительность ретикулярной формации к барбитуратам и ряду нейроплегических средств позволила по-новому представить механизм наркотического сна. Действуя тормозящим образом на нейроны ретикулярной формации, наркотик тем самым лишает кору головного мозга источника активирующих влияний и обусловливает развитие состояния сна. Гипотермическое действие аминазина и подобных ему препаратов объясняют влиянием этих веществ на ретикулярную формацию.

Ретикулярная формация имеет тесные функциональные и анатомические связи с гипоталамусом, таламусом, продолговатым мозгом и другими отделами головного мозга, поэтому все наиболее общие функции организма (терморегуляция, пищевая и болевая реакции, регуляция постоянства внутренней среды организма) находятся в той или иной функциональной зависимости от нее. Ряд исследований, сопровождавшийся регистрацией при помощи микроэлектродной техники электрической активности отдельных нейронов ретикулярной формации, показал, что эта область является местом взаимодействия афферентных потоков различной природы. К одному и тому же нейрону ретикулярной формации могут конвергировать возбуждения, возникающие не только при раздражении различных периферических рецепторов (звуковых, световых, тактильных, температурных и др.), но и идущие от коры больших полушарий, мозжечка и других подкорковых структур. На основе этого механизма конвергенции в ретикулярной формации происходит перераспределение афферентных возбуждений, после чего они в виде восходящих активирующих потоков направляются к нейронам коры головного мозга.

Прежде чем достигнуть коры, эти потоки возбуждения имеют многочисленные синаптические переключения в таламусе, который служит как бы промежуточным, связующим звеном между низшими образованиями ствола мозга и корой больших полушарий. Импульсы от периферических концов всех внешних и внутренних анализаторов (см.) переключаются в латеральной группе ядер таламуса (специфические ядра) и отсюда направляются по двум путям: к подкорковым ганглиям и к специфическим проекционным зонам коры мозга. Медиальная группа ядер таламуса (неспецифические ядра) служит местом переключения восходящих активирующих влияний, которые направляются от стволовой ретикулярной формации в кору мозга.

Читайте также:  Центр охраны зрения детей 50 лет октября

Специфические и неспецифические ядра таламуса находятся в тесной функциональной взаимосвязи, что обеспечивает первичный анализ и синтез всех афферентных возбуждений, поступающих в головной мозг. В таламусе имеется четкая локализация представительства различных афферентных нервов, идущих от различных рецепторов. Эти афферентные нервы заканчиваются в определенных специфических ядрах таламуса, а от каждого ядра волокна направляются в кору головного мозга к специфическим проекционным зонам представительства той или иной афферентной функции (зрительной, слуховой, тактильной и т. д.). Особенно тесно таламус связан с соматосенсорной областью коры больших полушарий. Эта взаимосвязь осуществляется благодаря наличию замкнутых циклических связей, направленных как от коры к таламусу, так и от таламуса к коре. Поэтому соматосенсорную область коры и таламус в функциональном отношении можно рассматривать как единое целое.

У животных, находящихся на более низких ступенях филогенетического развития, таламус играет роль высшего центра интеграции поведения, обеспечивая все необходимые рефлекторные акты животного, направленные на сохранение его жизни. У животных, стоящих на высших ступенях филогенетической лестницы, и у человека высшим центром интеграции становится кора больших полушарий. Функции же таламуса заключаются в регуляции и осуществлении ряда сложных рефлекторных актов, являющихся как бы базой, на основе которой создается адекватное целенаправленное поведение животного и человека. Эти ограниченные функции таламуса четко проявляются у так называемого таламического животного, т. е. у животного с удаленными корой больших полушарий и подкорковыми узлами. Такое животное может самостоятельно передвигаться, сохраняет основные позно-тонические рефлексы, обеспечивающие нормальное положение тела и головы в пространстве, сохраняет регуляцию температуры тела и всех вегетативных функций. Но оно не может адекватно реагировать на различные раздражители внешней среды вследствие резкого нарушения условно-рефлекторной деятельности. Таким образом, таламус в функциональной взаимосвязи с ретикулярной формацией, оказывая локальные и генерализованное воздействия на кору больших полушарий, организует и регулирует соматическую функцию головного мозга как целого.

Среди структур головного мозга, относящихся к подкорковым с функциональной точки зрения, выделяют комплекс образований, который играет ведущую роль в формировании основных врожденных активностей животного: пищевой, половой и оборонительный. Этот комплекс получил название лимбической системы мозга и включает в себя гиппокамп, грушевидную извилину, обонятельный бугорок, миндалевидный комплекс и область перегородки (рис. 3). Все эти образования объединяются на функциональной основе, так как они принимают участие в обеспечении поддержания постоянства внутренней среды, регуляции вегетативных функций, в формировании эмоций (см.) и мотиваций (см.). Многие исследователи относят к лимбической системе и гипоталамус. Лимбическая система принимает непосредственное участие в формировании эмоционально окрашенных, примитивных врожденных форм поведения. Особенно это относится к формированию половой функции. При поражении (опухоль, травма и др.) некоторых структур лимбической системы (височная область, поясная извилина) у человека нередко наблюдаются сексуальные расстройства.


Рис. 3. Схематическое изображение основных связей лимбической системы (по Мак-Лейну): N — nucleus interpeduncularis; MS и LS — медиальная и латеральная обонятельные полоски; S — перегородка; MF — медиальный пучок переднего мозга; Т — обонятельный бугорок; AT — переднее ядро таламуса; М — мамиллярное тело; SM — stria medialis (стрелками обозначено распространение возбуждения по лимбической системе).

Центральное место среди образований лимбической системы отводится гиппокампу. Анатомически установлен гиппокампальный круг (гиппокамп → свод → мамиллярные тела → передние ядра таламуса → поясная извилина → cingulum → гиппокамп), который вместе с, гипоталамусом (си.) играет ведущую роль в формировании эмоций. Непрерывная циркуляция возбуждения по гиппокампальному кругу определяет главным образом тоническую активацию коры головного мозга, а также интенсивность эмоций.

Часто у больных с тяжелыми формами психоза и другими психическими заболеваниями после смерти находили патологические изменения в структурах гиппокампа. Предполагают, что циркуляция возбуждения по гиппокампальному кольцу служит одним из механизмов памяти. Отличительная особенность лимбической системы — тесная функциональная взаимосвязь между ее структурами. Благодаря этому возбуждение, возникшее в какой-либо структуре лимбической системы, тут же охватывает остальные образования и долгое время не выходит за пределы всей системы. Подобное длительное, «застойное» возбуждение лимбических структур, вероятно, также лежит в основе формирования эмоциональных и мотивационных состояний организма. Некоторые образования лимбической системы (миндалевидный комплекс) оказывают генерализованное восходящее активирующее влияние на кору головного мозга.

Учитывая регуляторные влияния лимбической системы на вегетативные функции (кровяное давление, дыхание, тонус сосудов, моторику желудочно-кишечного тракта), можно понять те вегетативные реакции, которые сопровождают любой условнорефлекторный акт организма. Этот акт как целостная реакция осуществляется всегда при непосредственном участии коры больших полушарий, которая является высшей инстанцией анализа и синтеза афферентных возбуждений. У животных после удаления коры головного мозга (декортицированных) резко нарушается условно-рефлекторная деятельность, причем, чем выше стоит животное в эволюционном отношении, тем ярче выражены эти нарушения. Поведенческие реакции животного, подвергшегося декортикации, сильно расстраиваются; большую часть времени такие животные спят, просыпаясь только при сильных раздражениях и для совершения простых рефлекторных актов (мочеиспускание, дефекация). У таких животных можно выработать условнорефлекторные реакции, однако слишком примитивные и недостаточные для осуществления адекватной приспособительной деятельности организма.

Вопрос о том, на каком уровне головного мозга (в коре или подкорке) происходит замыкание условного рефлекса, в настоящее время не рассматривается как принципиальный. Мозг участвует в формировании приспособительного поведения животного, в основе которого лежит принцип условного рефлекса, как единая целостная система. Любые раздражители — как условные, так и безусловные — конвергируют к одному и тому же нейрону различных подкорковых образований, а также к одному нейрону различных областей коры больших полушарий. Изучение механизмов взаимодействия коры и подкорковых образований в процессе формирования поведенческой реакции организма — одна из основных задач современной физиологии головного мозга. Кора больших полушарий, являясь высшей инстанцией синтеза афферентных возбуждений, организует внутренние нервные связи для совершения ответного рефлекторного акта. Ретикулярная формация и другие подкорковые структуры, оказывая множественные восходящие влияния на кору головного мозга, создают лишь необходимые условия для организации более совершенных корковых временных связей, а в результате этого — и для формирования адекватной поведенческой реакции организма. Кора больших полушарий в свою очередь оказывает постоянные нисходящие (тормозные и облегчающие) влияния на подкорковые структуры. В этом тесном функциональном взаимодействии между корой и нижележащими образованиями головного мозга заключена основа интегративной деятельности мозга как единого целого. С этой точки зрения, разделение функций мозга на чисто корковые и чисто подкорковые в какой-то степени искусственно и необходимо лишь для понимания роли различных образований мозга в формировании целостной приспособительной реакции организма.

Миндалина является высшим подкорковым центром зрения

Зрительный анализатор письменной речи располагается в угловой извилине нижней теменной дольки, рядом с ядром зрительного анализатора (см. рис. 37). При поражении этого центра зрение не страдает, но утрачивается способность узнавать буквы, слова и их значение. Человек не может читать и воспринимать написанный текст, формируется алексия.

6.5.2.2. Базальные ядра конечного мозга

В толще белого вещества каждого полушария большого мозга, ближе к их основаниям, располагаются скопления серого вещества, образующие базальные ядра (рис. 46, 47, см. рис. 34). К базальным, подкорковым ядрам, или узлам, относятся:

полосатое тело (corpus striatum), состоящее из хвостатого и чечевицеобразного ядер. Чечевицеобразное ядро, в свою очередь, состоит из бледного шара и скорлупы;

миндалевидное тело (СНОСКА: Иногда миндалевидное ядро коротко называют «миндалиной»).

Хвостатое ядро (см. рис. 46, 47) располагается выше и латеральнее таламуса и отделено от него пограничной (терминальной) полоской, состоящей из белого вещества. Хвостатое ядро имеет головку, образующую латеральную стенку переднего рога бокового желудочка, тело, лежащее под теменной долей, и хвост, участвующий в образовании крыши нижнего рога бокового желудочка. Предполагается, что хвостатое ядро участвует в регуляции активности мозга и регуляции некоторых видов движений; у человека при поражении хвостатого ядра также наблюдаются расстройства памяти.

Чечевицеобразное ядро (см. рис. 46, 47, см. рис. 34) расположено латеральнее хвостатого ядра. У чечевицеобразного ядра выделяют внутреннюю его часть – бледный шар (globus pallidus) и наружную – скорлупу. Эти ядра являются подкорковыми двигательными центрами.

Между хвостатым ядром и таламусом медиально и чечевицеобразным ядром латерально располагается прослойка белого вещества – внутренняя капсула (см. рис. 34). В ней выделяют переднее плечо, расположенное между чечевицеобразным ядром и головкой хвостатого ядра, заднее плечо, лежащее между чечевицеобразным ядром и таламусом, и соединяющее их колено внутренней капсулы. Эта капсула образована основными восходящими и нисходящими проводящими путями головного мозга, соединяющими кору полушарий большого мозга со стволом и спинным мозгом (рис. 48). Латерально к чечевицеобразному ядру прилегает наружная капсула (см. рис. 34), также являющаяся прослойкой белого вещества.

Органы нервной системы человека

Располагается в позвоночном канале и имеет сегментарное строение. Представляет собой тяж, сплющенный по бокам. В центре спинного мозга расположено серое вещество – скопление тел и дендритов нейронов, окруженное белым веществом, образованным нервными волокнами. В центре серого вещества находится полость, которая называется спинномозговым каналом. Она заполнена спинномозговой жидкостью – ликвором.

Спинной мозг выполняет рефлекторную и проводниковую функции. К рефлекторным функциям, которые выполняются при участии серого вещества, относят

1. сгибательные (разгибательные) рефлексы — заключаются в возникновении реципрокного торможения мышц-разгибателей (сгибателей) при сокращении мышц-сгибателей (разгибателей), например, прыжок, бег;

2. сухожильные рефлексы (например, коленный, ахиллов);

3. миотатический рефлекс (рефлекс растяжения) – заключаются в сокращении мышц-разгибателей, возникающем вследствие раздражения мышечных рецепторов при длительном растяжении (например, рефлекс стояния по стойке «смирно»);

4. ритмические рефлексы (например, рефлексы шагания, чесания);

5. тонические рефлексы – рефлексы поддержания позы;

6. вегетативные (сосудодвигательный, потоотделительный, регуляции функций сердца и бронхов, мочеиспускания, дефекации, деятельности половых органов).

В осуществлении проводниковой функции участвует белое вещество спинного мозга. Нервные волокна спинного мозга образуют проводящие пути: нисходящие – несущие информацию от головного мозга на периферию, и восходящие – несущие информацию идущую от рецепторов к головному мозгу.

Головной мозг человека анатомически делят на пять отделов:

· Задний мозг, образованный варолиевым мостом и мозжечком;

· Промежуточный мозг, образованный таламусом, гипоталамусом, эпиталамусом и метаталамусом;

· Конечный мозг, состоящий из больших полушарий, покрытых корой, и базальных ганглиев.

Продолговатый мозг, варолиев мост и средний мозг являются стволовыми структурами головного мозга.

Все отделы головного мозга пронизывает полость, которая образует в продолговатом и заднем мозге IV желудочек, в среднем мозге – сильвиев водопровод, в промежуточном мозге – III желудочек, в больших полушариях I и II боковые желудочки. Снаружи головной мозг покрыт тремя оболочками: твердой, паутинной и мягкой, в которых проходят кровеносные сосуды.

Продолговатый мозг является прямым продолжением спинного мозга и в своей нижней части сходен с ним по строению, в ней частично сохраняется сегментарное строение. От спинного мозга он отличается тем, что не имеет строгого разделения на серое и белое вещество. Серое вещество в продолговатом мозге располагается в толще белого в виде скоплений – ядер.

Ядра продолговатого мозга – это ядра следующих черепно-мозговых нервов (ЧМН): языкоглоточного (IX), блуждающего (X), добавочного (XI) и подъязычного (XII).

Читайте также:  Имеет хорошие характеристики с точки зрения

Созревание выше перечисленных ядер заканчивается к 7 годам.

В продолговатом мозге располагаются следующие жизненноважные центры:

Кроме этого продолговатый мозг принимает участие в осуществлении статических и статокинетических рефлексов. Статические рефлексы (рефлексы положения и выпрямления) обеспечивают сохранение определенной позы человека, а статокинетические (рефлексы прямолинейного и углового ускорения) – его перемещение в пространстве.

Проводниковая функция продолговатого мозга заключается в проведении нервных импульсов от центров спинного мозга до центров коры больших полушарий (афферентные связи) и обратно (эфферентные связи).

Располагается впереди продолговатого мозга. Его функции связаны с ядрами ЧМН: преддверно-улиткового (VIII), лицевого (VII), отводящего (VI) и тройничного (V).

Мост вместе с продолговатым мозгом, как единое функциональное образование, принимает участие в регуляции различных сложных двигательных актов, таких, как сосательный рефлекс, жевание, глотание, кашель, чихание, а также в регуляции мышечного тонуса и равновесии тела.

Проводниковая функция моста: осуществление связи коры больших полушарий с мозжечком и спинным мозгом.

Мозжечок расположен над продолговатым мозгом и мостом. Состоит из белого и серого вещества. Извилины мозжечка представляют собой пластинки белого вещества, покрытые серым веществом – корой.

Мозжечок обладает обширными афферентными и эфферентными связями и выполняет следующие функции:

· регуляция позы и мышечного тонуса;

· коррекция медленных целенаправленных движений и их координация с рефлексиями поддержания позы;

· правильное выполнение быстрых целенаправленных движений по командам коры больших полушарий в структуре общей программы движений;

· участвует в выполнении висцеральных функций.

Признаки поражения мозжечка:

· астения – заключается в снижении силы мышечных сокращений, появлении утомляемости;

· астазия – утрата способности мышц к длительному тетаническому сокращению, вследствие чего конечности и голова непрерывно дрожат и качаются;

· атаксия – нарушение точности движений;

· дисметрия – несоответствие между интенсивностью мышечного сокращения и задачей выполняемого движения;

· дистония – нарушение тонуса мышц в сторону повышения или понижения его.

Усиленный рост мозжечка отмечается на первом году жизни ребенка. В дальнейшем темпы роста снижаются. К 15 годам мозжечок достигает размеров взрослого.

Средний мозг располагается между мостом и промежуточным мозгом. Представлен ножками мозга и четверохолмием (состоит их нижних и верхних холмиков). В среднем мозге расположены черная субстанция, красное ядро, ядра черепно-мозговых нервов (глазодвигательного – III пара, блокового – IV пара). Черная субстанция участвует в сложной координации движений пальцев рук, актов глотания и жевания. Красное ядро имеет непосредственное отношение к регуляции мышечного тонуса. В четверохолмиях среднего мозга располагаются первичные центры слуха и зрения. Ядра этого образования обеспечивают возникновение «сторожевого рефлекса» в ответ на зрительные и слуховые раздражения, выпрямительного и статокинетических рефлексов.

Ретикулярная формация – это диффузная сеть, состоящая из скоплений интернейронов и их нервных волокон. Она начинается на уровне продолговатого мозга и распространяется до уровня среднего и промежуточного мозга сверху и спускается до центральных отделов спинного мозга.

Ретикулярная формация ствола мозга, прежде всего, выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активизировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы. Она участвует в регуляции уровня возбудимости и поддержании тонуса всех отделов ЦНС, в том числе коры больших полушарий. Активность самой ретикулярной формации поддерживают импульсы, приходящие от восходящих сенсорных путей. В свою очередь, кора больших полушарий оказывает нисходящие тормозящие влияния на ретикулярную формацию ствола. Ретикулярная формация получает также нисходящие влияния от мозжечка, подкорковых ядер, лимбической системы. Ретикулярные нейроны участвуют в регуляции работы сердечно-сосудистой системы (поддержание кровяного давления) и регуляции дыхания. Ретикулярная формация играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма.

Промежуточный мозг расположен выше среднего мозга, под мозолистым телом. Сверху он полностью покрыт большими полушариями. Промежуточный мозг состоит из таламуса, гипоталамуса, эпиталамуса и метаталамуса.

1. Таламус образован главным образом серым веществом. Он связан с лимбической системой, ретикулярной формацией, гипоталамусом, мозжечком, базальными ганглиями и корой. Таламус является подкорковым центром всех видов чувствительности (вкусовой, тактильной, температурной, болевой), подкорковым центром слуховых и зрительных ощущений, а также принимает участие в высших интегративных процессах головного мозга.

2. Гипоталамус включает в себя зрительный перекрест, зрительные тракты, серый бугор, воронку, сосцевидные тела и подбугорье. Гипоталамус связан с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, гипофизом. Сосцевидные тела содержат в себе подкорковые центры обонятельного анализатора. Серый бугор принимает участие в регуляции функций многих эндокринных желез и обмена веществ. В нем залегают ядра вегетативной нервной системы, которые оказывают влияние на эмоции человека (страх, ярость, гнев). Гипоталамус состоит из двух видов клеток: нейронов обычного типа и нейросекреторных клеток. Нейросекреторные клетки синтезируют нейрогормоны (вазопрессин и окситоцин), которые участвуют в регуляции вегетативных функций организма. Нейроны гипоталамуса воспринимают все изменения, происходящие в крови и ликворе (температуру, состав, содержание гормонов). Гипоталамус содержит в себе центры жажды, голода, насыщения, терморегуляции, регуляции водного и углеводного обменов, полового поведения, оборонительных и пищевых реакций. Развитие ядер гипоталамуса заканчивается в период полового созревания.

3. Эпиталамус включает эпифиз, являющийся железой внутренней секреции. Его гормоны влияют на развитие половых желез (тормозят их деятельность), и регуляцию биоритмов.

4. Метаталамус образован латеральными и медиальными коленчатыми телами. Медиальные коленчатые тела вместе с нижними холмиками среднего мозга являются подкорковыми центрами слухового анализатора, а латеральные тела вместе с верхними холмиками четверохолмия – подкорковыми центрами зрительного анализатора.

Конечный, или передний, мозг включает в себя базальные ганглии и большие полушария.

Подкорковые, или базальные, ядра ( ганглии ) погружены в белое вещество больших полушарий. Они связаны с корой и с таламусом. К ним относятся бледный шар, скорлупа, хвостатое ядро и миндалина. Первые три являются высшими подкорковыми центрами координаций движений. С их помощью осуществляется регуляция ориентировочных и оборонительных рефлексов. Миндалина относится к вегетативным центрам лимбической системы.

Большие полушария состоят из белого и серого вещества. Периферическая часть полушарий покрыта корой (серым веществом). Кора больших полушарий представляет собой слой серого вещества, образованный скоплениями нейронов. Эти скопления располагаются слоями и колонками. Слоев, образующих кору шесть. Каждый слой имеет определенный клеточный состав. Колонки располагаются в основном в третьем слое коры.

Поверхность коры складчатая. Борозды и извилины увеличивают площадь поверхности коры.

Каждое полушарие состоит из пяти долей: лобной, теменной, височной, затылочной и островковой. К каждой из долей подходят нервные волокна от нижележащих отделов мозга, определенных ядер таламуса или базальных ганглиев.

Деление полушария на доли осуществляется бороздами. Центральная борозда (роландова) отделяет лобную долю от теменной, латеральная (сильвиева) – височную от лобной и теменной, теменно-затылочная разделяет теменную долю и затылочную. В глубине латеральной борозды располагается островковая доля. В лобной доле перед центральной бороздой располагается предцентральная борозда, которая отделяет предцентральную извилину. В теменной доле постцентральная борозда отделяет постцентральную извилину. В затылочной доле наиболее постоянной является поперечная извилина. В височной доле две борозды – верхняя и нижняя височные – отделяют одну от другой верхнюю, среднюю и нижнюю височные извилины.

Особенностью функциональной организации коры является то, что сигналы от рецепторов проецируются не на один нейрон, а на группу связанных между собой нейронов. В результате сигнал фокусируется не только в одной точке, но и распространяется на некоторое расстояние и захватывает соседние нейронные комплексы. Это обеспечивает анализ сигнала и возможность его передачи в другие структуры мозга.

К функциям коры относят

1. сенсорную – в коре находятся высшие отделы всех сенсорных систем;

2. ассоциативную — эта функция связана с лобными долями, большей частью теменной и височной;

3. двигательную – двигательная область коры контролирует активность мотонейронов, и, следовательно, произвольные движения.

Из первичных сенсорных зон (проекционных зон) импульсы распространяются к ассоциативным и моторным областям.

К сенсорным зонам относят зоны, которые получают специфическую сенсорную информацию: зрительную (затылочная доля), слуховую и вестибулярную (височная доля), соматосенсорную и вкусовую (теменная доля).

Соматосенсорная зона коры– область мышечной и кожной чувствительности – располагается в постцентральной извилине. К этой зоне приходят сигналы от скелетных мышц, сухожилий и суставов, а также сигналы от тактильных, температурных и болевых рецепторов кожи.

Сенсорная зрительная зона располагается в шпорной борозде (затылочная доля).

Сенсорная слуховая зона располагается в височной доле.

Сенсорная зона вестибулярного аппарата располагается в височной доле.

Зона вкусовых ощущений располагается в теменной доле, в нижней части постцентральной извилины.

Зона обонятельной чувствительности располагается в старой коре – гиппокампальной извилине и амоновом роге.

Моторные зоны коры расположены в предцентральной извилине лобной доли и связаны с ядрами ствола мозга и мотонейронами спинного мозга.

Сенсорные и моторные зоны коры осуществляют анализ и синтез сигналов, поступающих из внешней и внутренней среды организма, составляют первую сигнальную систему действительности.

Ассоциативные зоны получают импульсы от всех зон коры. Здесь происходит интеграция информации, полученной от нескольких сенсорных систем. К ассоциативной относится лимбическая кора. К ней относятся поясная и паракампальная извилины, находящиеся в области конечного мозга, окаймляющей ствол мозга. Лимбическая система мозга интегрирует три вида информации:

— работе внутренних органов;

— от чувствительных, двигательных и ассоциативных зон коры;

— от обонятельных рецепторов.

К функциям лимбической системы относят

1. формирование эмоционального поведения (эмоций и мотиваций);

2. обеспечение поддержания гомеостаза;

3. регуляция цикла «сон-борствование»;

4. участие в процессах обучения и памяти.

Ассоциативные зоны коры связаны с наиболее сложными процессами, свойственными жизни и деятельности человека. Здесь располагаются центры второй сигнальной системы, с которыми связана членораздельная речь. Функция речи относится к специфическим особенностям человека, являясь основой абстрактного мышления. Центрами второй сигнальной системы являются

1. Центр Брока – двигательный центр речи (произношение слов и предложений) – расположен в нижней лобной извилине. Поражение этого центра ведет к двигательной афазии – утрате способности произносить слова.

2. Центр Вернике – акустический центр устной речи – расположен в верхней височной извилине. При поражении этого центра возникает речевая агнозия – неспособность понимать речь.

3. Центр письменной речи расположен в заднем участке средней лобной извилины. Поражение этого центра приводит к аграфии — утрате способности писать буквы и другие письменные знаки.

4. Оптический центр речи располагается в нижней теменной дольке слева в угловой извилине. При поражении центра наступает алексия – неспособность читать и понимать написанное.

Литература по теме
1. Брин В.Б. Физиология человека в схемах и таблицах. Р-на-Д, 1999.
2. Воронова Н.В., Климова Н.М., Менджерицкий А.М. Анатомия центральной нервной системы. М., 2005.
3. Леонтьева Н.Н., Маринова К.В. Анатомия и физиология детского организма. М., «Просвещение», 1986.
4. Любимова З.В., Маринова А.А., Никитина А.А. Возрастная физиология, ч.1. М., 2004.
5. Сапин М.Р., Брыксина З.Г. Анатомия и физиология детей и подростков. М., 2004.

Источники:
  • http://www.medical-enc.ru/15/subcortical-functions.shtml
  • http://pedlib.ru/Books/4/0137/4_0137-66.shtml
  • http://biofile.ru/bio/2436.html