Меню Рубрики

Методы идентификации по радужной оболочке глаза

Обеспечение транспортной безопасности

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов.

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов. Основным источником информации для идентификации этим способом служит специфическая ткань, которая окончательно формируется в глазах человека еще до рождения, примерно на 8-м месяце беременности матери. В медицине радужную оболочку глаза рассматривали в качестве инструмента для диагностики различных заболеваний, в частности, было обнаружено, что при определенных заболеваниях на радужной оболочке глаза появляются так называемые пигментные пятна. Для уменьшения влияния этого фактора на результат распознавания в биометрических системах используют черно-белые (полутоновые) изображения. Технология биометрического распознавания по радужной оболочке предусматривает несколько степеней защиты:

  • идентификация пользователя при условии затенения (или повреждения) радужной оболочки, но не более, чем на 2/3, то есть по оставшейся 1/3 изображения возможна идентификация с вероятностью ошибки 1 к 100 000;
  • обнаружение замены глаза и контактных линз на роговице – за счет контроля размера зрачка (система отличает живой глаз от изображения глаза, искуственного глаза и неживого глаза за счет использования инфракрасного освещения для определения состояния ткани глаза и контроля расширения/сужения зрачка).

Преимуществами технологии биометрического распознавания по радужной оболочке являются:

— независимость от косвенных факторов, таких как прическа, грим, макияж, и прочее;

— вероятность пропуска незарегистрированного пользователя равна вероятности ложного отказа в допуске зарегистрированному пользователю и составляет 1 к 1 200 000 (это самый высокий показатель по сравнению с другими типами биометрического распознавания).

Как работает система биометрического распознавания человека по радужной оболочке глаза? Технология распознавания базируется на формировании до 266 уникальных точек идентификации на изображении роговицы, решение принимается на основании результатов сравнения с точек идентификации с эталонными данными базы авторизованных пользователей. Захват видеоизображения глаза осуществляется регистрирующей аппаратурой на расстоянии до одного метра. Далее, система выполняет ряд действий: выделение зрачка, сбор и подсчет точек идентификации радужной оболочки, принятие решения и верификации или идентификации.

Мы протестировали высокоточную систему биометрического распознавания человека по радужной оболочке глаза, разработанную компанией eyeLock (США). Эта система обеспечивает быстрое распознавание человека на расстоянии и в движении. Оборудование eyeLock применяется для создания систем биометрического контроля и управления доступом (СКУД) на объектах с повышенными требованиями обеспечения безопасности, таких как: опасные производства, центры обработки данных, банки, объекты транспортной инфраструктуры. Для построения системы контроля доступа с биометрическим распознаванием по радужной оболочке eyaLock предлагает несколько типов оборудования: NANO NXT, HBOX, MYRIS.

NANO NXT – комплексное устройство, выполняющее функции считывателя биометрических данных, устройства обработки данных для выполнения алгоритма идентификации, хранилища эталонных данных базы авторизованных пользователей и контроллера управления замком или запирающим устройством. Устройство легко интегрировать в существующую систему управления доступом.

  • Регистрация и проверка соответствия самим устройством — «On Board»
  • Распознавание в темных очках или цветных линзах
  • Хранение в памяти «On Board» записей на 20 000 человек
  • Регистрация по 1 или 2 глазам
  • Возможность подключения кардридера для обеспечения двухфакторной аутентификации (глаза + карта)
  • Типы (протоколы) подключения: Wiegand, F/2/F, OSDP, PAC, реле и Ethernet для простой интеграции со всеми существующими платформами и СКУД
  • Питание через PoE (IEEE 802.3af)

HBOX — комплексное устройство, устанавливаемое на проходных с высокой пропускной способностью, обеспечивает биометрическое распознавание на расстоянии до 1,6 метра потока людей со скоростью 50 человек в минуту. Темные очки и цветные контактные линзы не являются препятствием для работы HBOX.

MYRIS — устройство для контроля логического доступа пользователей к информационным ресурсам. Устройство позволяет обеспечить дополнительную защиту доступа к информационным ресурсам предприятия и надежную идентификацию/авторизацию пользователей, это может быть актуально, например, для доступа к банковским системам при совершении операций повышенного риска и в других подобных случаях.

источник

2.2 Идентификация по радужной оболочке глаз

Первооткрывателем в области идентификации личности по радужной оболочке глаза является доктор Джон Даугман. В 1994 г. он запатентовал в США метод распознавания радужной оболочки глаза (US Patent S, 291, 560). Разработанные им алгоритмы используются до сих пор.

С помощью этих алгоритмов необработанные видеоизображения глаза преобразуются в уникальный идентификационный двоичный поток Iris-код, полученный в результате определения позиции радужки, ее границы и выполнения других математических операций для описания текстуры радужки в виде последовательности чередования фаз, похожей на штрих-код.

Полученный таким образом Iris-код используется для поиска совпадений в базах данных (скорость поиска — около 1 млн. сравнения Iris-кодов в 1 с) и для подтверждения или неподтверждения заявленной личности

Преимущество сканеров для радужной оболочки глаза состоит в том, что они не требуют от пользователя сосредоточения на цели, так как образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза может быть отсканировано на расстоянии менее 1 м, что делает возможным использование сканеров для радужной оболочки глаза, допустим, в банкоматах. Разработкой технологии идентификации личности на основе принципа сканирования радужной оболочки глаза в настоящее время занимаются более 20 компаний, в том числе British Telecom, Sensar, японская компания Oki.

Различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

В качестве примера современной системы идентификации на основе анализа радужной оболочки глаза рассмотрим решение, предложенное компанией LG.

Система IrisAccess позволяет менее чем за 1 с отсканировать рисунок радужной оболочки глаза, обработать и сравнить с 4 тыс. других записей, которые она хранит в своей памяти, а затем послать соответствующий сигнал в охранную систему. Технология — полностью бесконтактная. На основе изображения радужной оболочки глаза строится компактный цифровой код размером 512 байт. Устройство имеет высокую надежность по сравнению с большинством известных систем биометрического контроля, поддерживает объемную базу данных, выдает звуковые инструкции на русском языке, позволяет интегрировать в систему карты доступа и ПИН-клавиатуры. Один контроллер поддерживает четыре считывателя Система может быть интегрирована с LAN Система IrisAccess 3000 состоит из оптического устройства внесения в реестр E01J3000, удаленного оптического устройства R01J3000, контрольного устройства опознавания ICLI3000, платы захвата изображения, дверной интерфейсной платы и PC-сервера. Если требуется осуществлять контроль за несколькими входами, то ряд удаленных устройств, включая ICU3000 и R01J3000, может быть подключен к PC-серверу через локальную сеть (LAN).

Представляет интерес камера для идентификации личности путем сканирования радужной оболочки глаза, используемая в системах защиты и безопасности для компьютеров типа десктоп/лэптоп. Разработки визуальных систем (Vision Systems) компании Panasonic и хорошо показавшие себя на прак-тике разработки в области идентификации личности на основе рисунка радужной оболочки глаз компании Iridian Technologies позволили создать легкие в использовании и отличающиеся высокой точностью средства, которые можно использовать в широком диапазоне современных и будущих потребностей в области обеспечения безопасности.

Камера Authenticam™ компании Panasonic в сочетании с программным продуктом PrivatelD™ компании Indian Technologies представляет собой экономически выгодный и надежный путь обеспечения безопасности доступа. Для такой камеры характерны безопасность и простота использования. Достаточно взглянуть в объектив камеры с расстояния приблизительно 50 см, и менее чем через 2 с произойдет захват изображения.

Программный продукт PrivatelD™ обрабатывает рисунок радужной оболочки глаз и кодирует полученную информацию в виде 512-байтовой записи IrisCode. Эти записи вводятся для хранения в память и используются для сравнения с другими записями кодов IrisCodes — для идентификации личности при любых транзакциях и деловых операциях, когда для сравнения представляется радужная оболочка глаза живого человека.

Дифференциатор ключей для идентификации личности по рисунку радужной оболочки глаза осуществляет поиск в базе данных для нахождения соответствующего идентификационного кода. При этом база данных может состоять из неограниченного числа записей кодов IrisCode. Технология допуска, основанная на сканировании радужной оболочки глаза, уже несколько лет успешно применяется в государственных организациях США и в учреждениях с высокой степенью секретности (в частности, на заводах по производству ядерного вооружения). Эффективность этого способа доказана, он безопасен для пользователя и надежен в работе. Он обеспечивает моментальную аутентификацию личности, предназначенную для замены символов ПИН-кодов и паролей.

Многие эксперты подчеркивают «незрелость» технологии, хотя потенциальные возможности метода достаточно высоки, так как характеристики рисунка радужной оболочки человеческого глаза достаточно стабильны и не изменяются практически в течение всей жизни человека, невосприимчивы к загрязнению и ранам. Отметим также, что радужки правого и левого глаза по рисунку существенно различаются. Этот метод идентификации отличается от других большей сложностью в использовании, более высокой стоимостью аппаратуры и жесткими условиями регистрации.

источник

Дактилоскопия — наиболее известный и распространенный метод установления личности по биометрическому параметру, отлично зарекомендовала себя в криминалистике XX века и помогла раскрыть ни одну сотню преступлений. Однако технологии не стоят на месте, и отпечатки пальцев перестали быть единственным «ключом» к идентификации.

Современная техника научились узнавать пользователей по сетчатке и радужной оболочке глаза, форме лица и рук и ряду динамических характеристик — голосу, биологической активности сердца, рукописному и клавиатурному почерку.

Подобно отпечатку пальца, рисунок радужной оболочки глаза является уникальной характеристикой человека, а метод установления личности по этому биометрическому параметру, по мнению экспертов, превосходит в надежности привычную дактилоскопию. Для того, чтобы зафиксировать узор на радужке, нужна фотокамера с высоким разрешением. Полученное изображение увеличивается и преобразуется в уникальный код, присваиваемый человеку.

Рисунок радужки, который окончательно формируется на втором году жизни ребенка, практически не изменяется в течение жизни, если человек не получает травм и не страдает от серьезных офтальмологических патологий. В то же время, папиллярный узор отпечатка пальца подвержен изменению даже в результате мелких бытовых повреждений — ожогов или порезов, что делает этот метод идентификации менее эффективным, чем анализ радужной оболочки.

Достоинством метода является и простота в сканировании. Человеку не обязательно сосредоточенно смотреть в одну точку, ведь пятна на сетчатке находятся прямо на поверхности глазного яблока и легко считываются на расстоянии, не превышающем 1 метр. Использовать данный метод удобно в банковских организациях или общественном транспорте. Заинтересовались технологией и производители смартфонов — в 2015 году в Японии в продажу поступила первая модель со сканером радужной оболочки — Fujitsu Arrows NX F-04G. По мнению разработчиков, внедрение технологии идентификации по радужке глаза поможет защитить личные данные владельцев смартфонов.

Просканировать сетчатку — внутреннюю оболочку глазного яблока, реагирующую на свет, сложнее: для этого к кровеносным сосудам задней стенки глаза через зрачок посылают низкоинтенсивные инфракрасные световые лучи. Подобный метод установления личности считается высокоэффективным и активно используется на правительственных и военных объектах.

Капилярный рисунок сетчатки различается даже у близнецов, что снижает вероятность ошибки идентификации. Однако, в 2012 году ученые из Университета Нотр-Дам в США обнаружили погрешности в определении личностей людей, чьи данные были внесены в базу ранее 2008 года, и доказали, что, в отличие от рисунка на радужной оболочке, рисунок сетчатки подвержен ряду возрастных изменений.

И снова производители мобильных гаджетов не остались в стороне. Ряд компаний (например, китайская ZTE CORPORATION) работает на созданием комбинированных технологий идентификации по сетчатке и радужке.

Метод установления личности по чертам кажется экспертам одним из наиболее перспективных, во многом благодаря своей «привычности»: люди с легкостью идентифицируют друг друга по лицам, так почему бы не научить этому компьютер? В основе технологии — создание двухмерных или трехмерных «карт» человеческих черт — система запоминает и опознает контуры носа и губ, форму бровей, расстояние между отдельными чертами.

Разработчики систем биометрического анализа отечественной компании BioLink называют распознавание по лицу второй по распространенности и популярности биометрической технологией. Однако, «опознание» по геометрии лица — задача трудоемкая, ведь на восприятие машины влияет освещение, угол наклона головы, наличие макияжа.

Наиболее эффективно техника распознает статичные изображения — фотографии. Так, система искусственного интеллекта FaceNet, созданная Google, “опознала” 99,63% фото пользователей интернета.

Одна из новейших технологий динамической биометрической идентификации — установление личности на основе данных о работе сердечно-сосудистой системы.

В 2014 году Канадская компания Bionym представила миру устройство, позволяющее использовать ЭКГ человека в качестве персонального идентификатора. «В научном сообществе существует устоявшаяся идея о том, что уникальность и постоянство человеческого сердечного ритма позволяет использовать его в качестве биометрического идентификатора», — заметил генеральный директор Bionym Карл Мартин. — «В сущности, нужно сделать следующее: взять форму ЭКГ и подвергнуть ее машинному анализу, чтобы выявить уникальные и постоянные особенности».

Высокую эффективность технологии отметили отечественные специалисты по безопасности. «Кардиограмма, как оказывается, тоже может быть вполне перспективным средством биометрической аутентификации,» — отмечали эксперты «Лаборатории Касперского».

Подобные разработки уже сейчас ведутся в России. Например, представители отечественной компании CardioQVARK (о них уже были статьи на Хабре и Гиктаймс), производящей чехлы-кардиомониторы для iPhone, в работе «Исследование искусственных нейронных сетей в задаче идентификации личности по электрокардиосигналу» показали, что их продукт может помочь в установлении личности пользователей.

Читайте также:  Если ребенок закатывает глаза когда нервничает

Основное назначение устройства — удаленный контроль за состоянием здоровья пациентов-сердечников, однако возможность сделать экспресс-анализ состояния сердечно-сосудистой системы позволит идентифицировать человека без временных затрат. Процедура снятия ЭКГ при помощи чехла от CardioQVARK предельно проста и занимает всего лишь несколько секунд: достаточно приложить пальцы к датчикам и результат ЭКГ появится на экране гаджета и в приложении для врача.

Биометрический метод идентификации по голосу прост в применении — достаточно оснастить аналитическое устройство микрофоном и записать «звучание» конкретного человека. Широкое распространение данного метода обусловлено наличием микрофона и возможности записи звука на большинстве современных мобильных гаджетов и компьютеров. Однако, технология имеет ряд существенных недостатков: голос одного и того же человека может звучать по-разному в зависимости от его психологического и физического состояния, уровня шума, качества микрофона.

Редакторы Хабра врываются в велосезон, каждый по-своему

источник

Ассистент Буланая Л.В. , студент Л ы сенко А.Г.

Национальный авиационный университет

Биометрическая идентификация личности по радужной оболочке глаза

В наше время традиционные методы идентификации личности, в основе которых находятся различные идентификационные карты, ключи или уникальные данные, такие как, например, пароль не являются надежными в той степени, которая требуется сейчас. Следующим шагом в повышении надежности идентификаторов стало использование биометрических технологий для систем распознавания личности.

В данной работе рассматривается биометрическая система идентификации по радужной оболочке глаза.

Данный метод биометрической идентификации личности основывается на уникальных характерных признаках и особенностях радужной оболочки человеческого глаза.

Радужная оболочка глаза (Iris) является уникальной для каждого человека биометрической характеристикой. Она формируется в первые полтора года жизни и остаётся практически без изменений до самой смерти (изменения могут выражаться в виде изменения цвета, появления пигментных пятен, линий, кругов, изменений обвода оболочки, деформации зрачка при определенных болезнях и т.д.).

В биометрии используется полутоновое изображение радужки, и некоторые пигментные изменения незаметны.

Рисунок радужки в большей степени случаен, а чем больше степень случайности, тем больше вероятность того, что конкретный рисунок будет уникальным. Математически описывается степенью свободы (это такой параметр у распределения Стьюдента и у распределения хи-квадрат). Исследования показали, что текстура радужки имеет степень свободы равной 250, что гораздо больше степени свободы отпечатков пальцев (35) и изображений лиц (20).

Это означает, что использование текстуры радужки для идентификации личности в большей степени оправдано и весьма перспективно.

Сейчас используются два основных к подхода идентификации по радужной оболочке глаза.

В первом подходе радужка выделяется из изображения, во втором — образом является матрица штрих-кодов, соответствующая радужке.

В первом подходе сначала определяется центр зрачка и два радиуса относительно него — радиус зрачка и радиус внешнего края радужки (границы определяются пороговой обработкой). Границы зрачка и радужки не являются при этом круглыми. Они становятся таковыми после дополнительной обработки. После чего выполняется увеличение чёткости образа.

Вкратце можно описать так:

Ø Определение местоположения, центра и контуров зрачка.

Ø Определение радиусов зрачка и внешнего края радужки.

Ø Формирование координат полярной системы.

Ø Преобразование каждого пикселя из декартовой системы в полярную. На этом этапе может потребоваться интерполяция изображения, т.к. целочисленные декартовы координаты не всегда соответствуют целочисленным полярным.

В результате по оси X отложены углы полярной системы координат, а по оси Y — значения радиуса (радиус внешней окружности радужки минус радиус внутренней [или минус радиус зрачка, что одно и то же).

Второй способ (получение матрицы штрих-кодов можно представить так:

Ø Изображение глаза выделяется из изображения лица.

Ø На радужку накладывается специальная маска штрих-кодов.

Результатом будет матрица, полученная путём логического умножения маски на радужку. Образ-эталон получается размером 512 байт.

Радужная оболочка — элемент достаточно уникальный. Во-первых, она имеет очень сложный рисунок, в ней много различных элементов. Поэтому даже не очень качественное ее изображение позволяет точно определить личность человека. Во-вторых, радужная оболочка является объектом простой формы (почти плоский круг). Поэтому во время идентификации возможно учесть практически все возможные искажения изображения, возникающие из-за различных условий съемки. В-третьих, радужная оболочка глаза человека не меняется в течение всей его жизни с самого рождения. Точнее, неизменной остается ее форма (исключение составляют травмы и некоторые серьезные заболевания глаз), цвет же со временем может измениться, но изменения происходят медленно (за исключением патологических случаев, которые требуют отдельного рассмотрения), что возможно учитывать и компенсировать. Это придает идентификации по радужной оболочке глаза дополнительный плюс по сравнению со многими биометрическими технологиями, использующими относительно недолговечные параметры, например геометрию лица или руки.

У идентификации личности по радужной оболочке глаза есть еще одно серьезное преимущество. Дело в том, что некоторые биометрические технологии страдают одним общим недостатком. При установке в настройках системы идентификации высокой степени защиты от ошибок первого рода (вероятность ложного допуска) вероятность появления ошибок второго рода (ложный недопуск в систему) возрастает до непозволительно высоких величин — нескольких десятков процентов. Так вот, идентификация по радужной оболочке глаза практически полностью избавлена от этого недостатка. В ней соотношение ошибок первого и второго родов является одним из лучших на сегодняшний день. Для примера можно привести несколько цифр. Исследования показали, что при вероятности возникновения ошибки первого рода в 0,001% (отличный уровень надежности) вероятность появления ошибок второго рода составляет всего лишь 1%.

Преимущество сканеров для радужной оболочки глаза состоит прежде всего в том, что они не требуют от пользователя сосредоточения на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Фактически, видеоизображение глаза может быть отсканировано на расстоянии трех футов, что делает возможным использование сканеров для радужной оболочки глаза во в многих сферах.

К сожалению, есть у рассматриваемой технологии и недостатки. Основным из них является относительно высокая стоимость оборудования, поскольку для проведения регистрации необходима камера с достаточно высокими характеристиками, также присутствует сложная система позиционирования глаза в область эффективной регистрации. Всё это необходимо, чтобы получить изображение требуемого качества. Стоит это устройство дороже, чем, например, сенсор отпечатков пальцев. Это ограничивает область использования идентификации личности по радужной оболочке глаза. На сегодняшний день она применяется в основном в системах допуска на различные объекты как гражданского, так и военного назначения.

В Украине биометрические системы контроля появились в середине 90-х годов. В силу то ли неразвитости отечественных технологий, то ли их излишней засекреченности, все коммерческие биометрические системы были импортного производства. На том этапе себестоимость и, соответственно, цена этих систем была довольно высока: например, довольно простое устройство физического контроля доступа стоило около $12 000. Подобное дорогостоящее оборудование приобрело скорее характер новомодной экзотики и массового распространения не получило. Сегодня подобные системы подешевели примерно в 10 раз, так что первая причина появления активного спроса на них у нас в стране исключительно экономическая — устройства стали гораздо дешевле. Вторая причина сводится к объективной потребности заказчиков организовать современную, грамотно построенную систему безопасности у себя на предприятии, в офисе компании или в частном доме.

По мнению большинства специалистов, особенно широкое распространение в Украине получили дактилоскопические устройства. Есть основания полагать, что в банковских структурах у нас привьются системы распознавания подписи — традиционной биометрической характеристики, которая издавна используется в банковском деле.

Несмотря на некоторые недостатки, технология идентификации личности по радужной оболочке глаза является весьма перспективной. Особенно хороша она благодаря своей надежности и хорошему соотношению ошибок первого и второго рода для систем доступа к различным гражданским и военным объектам. Ну а если учесть еще и неизменность радужки в течение всей жизни человека, то становится понятно, что эта технология вполне может быть использована для создания биометрических паспортов, о которых в последнее время ведется множество споров во многих странах мира.

По мнению специалистов в области биометрических систем, средства идентификации личности по радужной оболочке глаза способны заменить ключи и персональные идентификационные номера (пины). Рисунок радужной оболочки уникален и не повторяется даже у близнецов. Вероятность того, что два разных человека имеют один и тот же рисунок радужной оболочки глаза, равняется приблизительно 10 -78 , в то время как все население Земли составляет примерно 10 10 . В отличие от других биометрических систем контроля доступа, идентификация по рисунку радужки допускает полностью бесконтактную реализацию.

1. Jafar M. H. Ali, Aboul Ella Hassanien. An Iris Recognition System to Enhance E-security Environment Based on Wavelet Theory. AMO — Advanced Modeling and Optimization, Volume 5, Number 2, pp. 93-104, 2003.

2. Кухарев Г. А. Биометрические системы: Методы и средства идентифика-ции личности человека. – СПб.: Политехника, 2001. – 240 с.

3. Yong Zhu, Tieniu Tan and Yunhong Wang. Biometric Personal Identification Based on Iris Patterns. Proc. of IAPR, Inter. Conf. Pattern Recognition(ICPR’2000), vol. II, pp. 805-808, 2000.

источник

уЙУФЕНБ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ рбрймпо «гЙТЛПО» ОБ ВБЪЕ ВМПЛБ ДПУФХРБ гйтлпо-4

пФУЛБОЙТПЧБОЩЕ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ

уЙУФЕНБ рбрймпо «гЙТЛПО» ПУОПЧБОБ ОБ ВЙПНЕФТЙЮЕУЛПН НЕФПДЕ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ.

тБУРПЪОБЧБОЙЕ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ СЧМСЕФУС ПДОЙН ЙЪ ОБЙВПМЕЕ ФПЮОЩИ Й ОБДЕЦОЩИ УРПУПВПЧ ВЙПНЕФТЙЮЕУЛПК ЙДЕОФЙЖЙЛБГЙЙ. чЕТПСФОПУФШ ФПЗП, ЮФП УЙУФЕНБ «ОЕ ХЪОБЕФ УЧПЕЗП» ЙМЙ «РТПРХУФЙФ ЮХЦПЗП» ДМС ЬФПЗП НЕФПДБ РТБЛФЙЮЕУЛЙ ТБЧОБ ОХМА.

пДОЙН ЙЪ РТЕЙНХЭЕУФЧ НЕФПДБ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦЛЕ СЧМСЕФУС ЕЗП “ОЕБЗТЕУУЙЧОПУФШ” Л РТПЧЕТСЕНПНХ – ОЕФ ОЕРПУТЕДУФЧЕООПЗП ЛПОФБЛФБ ЮЕМПЧЕЛБ У БРРБТБФХТПК, ЪБИЧБФ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ РТПЙЪЧПДЙФУС РТПУФП РТЙ ЧЪЗМСДЕ Ч ПВЯЕЛФЙЧ УЛБОЕТБ.

уЛБОЕТ БОБМЙЪЙТХЕФ ЛБЮЕУФЧП ЙЪПВТБЦЕОЙС ЗМБЪБ Ч ЛБДТЕ, ПРТЕДЕМСЕФ ГЕОФТ ЪТБЮЛБ, ГЕОФТ ТБДХЦОПК ПВПМПЮЛЙ Й ЕЕ ЗТБОЙГЩ. ъБФЕН РТПЙУИПДЙФ УПРТПЧПЦДБАЭЙКУС УЙЗОБМПН ЪБИЧБФ ЙЪПВТБЦЕОЙС, ЕЗП ЛПДЙТПЧБОЙЕ Й РТПЧЕТЛБ РП вд.

  • ТЕЗЙУФТБГЙС Й ГЙЖТПЧПЕ ЛПДЙТПЧБОЙЕ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ
  • УПЪДБОЙЕ Й ИТБОЕОЙЕ Ч ЬМЕЛФТПООПК вд НБУУЙЧБ ЪБРЙУЕК, ЛБЦДБС ЙЪ ЛПФПТЩИ УПДЕТЦЙФ: ЪБЛПДЙТПЧБООПЕ ЙЪПВТБЦЕОЙЕ ТБДХЦОПК ПВПМПЮЛЙ, ФЕЛУФПЧЩЕ ДБООЩЕ, ЖПФПЗТБЖЙЙ ЪБТЕЗЙУФТЙТПЧБООПК МЙЮОПУФЙ
  • РТПЧЕТЛБ ЛПДБ ТБДХЦОПК ПВПМПЮЛЙ РП вд Ч ТЕЦЙНЕ «ПДЙО-ЛП НОПЗЙН»
  • РТПЧЕТЛБ ЛПДБ ТБДХЦОПК ПВПМПЮЛЙ РП вд Ч ТЕЦЙНЕ «ПДЙО-Л ПДОПНХ»
  • ТБВПФБ У вд: РПМХЮЕОЙЕ ЧЩВПТПЛ ЙЪ вд, УПТФЙТПЧЛБ УРЙУЛПЧ вд, ХДБМЕОЙЕ Й ТЕДБЛФЙТПЧБОЙЕ ЪБРЙУЕК Й Ф.Д.


йОФЕЗТБГЙС УЙУФЕНЩ рбрймпо «гЙТЛПО» Ч улхд

уЙУФЕНБ ТЕЗЙУФТБГЙЙ Й ТБУРПЪОБЧБОЙС РП ТЙУХОЛХ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ рбрймпо «гЙТЛПО» БДБРФЙТПЧБОБ ДМС ЙОФЕЗТБГЙЙ Ч БЧФПНБФЙЪЙТПЧБООЩЕ УЙУФЕНЩ ЛПОФТПМС Й ХРТБЧМЕОЙС ДПУФХРПН (улхд). дМС ЬФЙИ ГЕМЕК ОБ РТЕДРТЙСФЙЙ ТБЪТБВПФБОБ SDK-ВЙВМЙПФЕЛБ рбрймпо гйтлпо SDK, РПУФБЧМСЕНБС УПЧНЕУФОП У ВМПЛПН ДПУФХРБ гйтлпо-4.

рПУФТПЕОЙЕ улхд ОБ ВБЪЕ ВМПЛПЧ ДПУФХРБ гйтлпо-4 ЙМЙ ЙОФЕЗТБГЙС ВМПЛПЧ ДПУФХРБ Ч ДЕКУФЧХАЭХА улхд ПУХЭЕУФЧМСЕФУС РХФЕН ПВТБЭЕОЙС Л ЖХОЛГЙСН ВЙВМЙПФЕЛЙ рбрймпо гйтлпо SDK УП УФПТПОЩ ЛМЙЕОФУЛПЗП РТЙМПЦЕОЙС.

жХОЛГЙЙ ЖБКМПЧПЗП УЕТЧЕТБ ЧПЪМБЗБАФУС ОБ ГЕОФТБМШОЩК ХЪЕМ улхд. чЪБЙНПДЕКУФЧЙЕ ЧУФТПЕООПЗП Ч гйтлпо-4 ЧЩЮЙУМЙФЕМС Й ГЕОФТБМШОПЗП ХЪМБ улхд ПУХЭЕУФЧМСЕФУС Ч МПЛБМШОПК УЕФЙ РП РТПФПЛПМХ Ethernet. рЕТЕДБЮБ ЛПНБОД НЕЦДХ ЧЩЮЙУМЙФЕМЕН Й ПЛПОЕЮОЩН ПВПТХДПЧБОЙЕН улхд – ЮЕТЕЪ ЙОФЕТЖЕКУОЩК РПТФ RS-232 (RS-485).

лБЦДЩК ВМПЛ ДПУФХРБ РПДДЕТЦЙЧБЕФ ЪБИЧБФ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ, ЛБЛ Ч ТЕЦЙНЕ ТЕЗЙУФТБГЙЙ, ФБЛ Й Ч ТЕЦЙНБИ ЧЕТЙЖЙЛБГЙЙ (УТБЧОЕОЙЕ У ЛПОФТПМШОЩН ЫБВМПОПН «ПДЙО-Л-ПДОПНХ») ЙМЙ ЙДЕОФЙЖЙЛБГЙЙ («ПДЙО-ЛП-НОПЗЙН»). дМС ТБВПФЩ Ч ТЕЦЙНЕ ЧЕТЙЖЙЛБГЙЙ ВМПЛ ДПУФХРБ ДПРПМОСЕФУС ХЪМПН УЮЙФЩЧБОЙС РЕТУПОБМШОЩИ ID-ЛБТФ.

лБЦДЩК ВМПЛ ДПУФХРБ РПДДЕТЦЙЧБЕФ УПВУФЧЕООХА ВБЪХ ДБООЩИ ВЙПНЕФТЙЮЕУЛЙИ ДБООЩИ, ЮЕН ПВЕУРЕЮЙЧБЕФУС ЗЙВЛПУФШ ОБУФТПКЛЙ УЙУФЕНЩ Й ЙУЛМАЮБАФУС РПФЕТЙ ЧТЕНЕОЙ, УЧСЪБООЩЕ У ЧОХФТЙУЕФЕЧЩН ЧЪБЙНПДЕКУФЧЙЕН.

ч РТБЛФЙЮЕУЛПК ТЕБМЙЪБГЙЙ улхд ГЕМЕУППВТБЪОП ПУФБЧЙФШ ЖХОЛГЙА ТЕЗЙУФТБГЙЙ ОБ ПДОПН ЙМЙ ОЕУЛПМШЛЙИ ВМПЛБИ ДПУФХРБ. оБ ПУФБМШОЩИ ПУХЭЕУФЧМСЕФУС ФПМШЛП ПРЕТБГЙС ЙДЕОФЙЖЙЛБГЙЙ/ЧЕТЙЖЙЛБГЙЙ.

фЕТТЙФПТЙБМШОПЕ НБУЫФБВЙТПЧБОЙЕ УЙУФЕНЩ ПВЕУРЕЮЙЧБЕФУС ЧЧЕДЕОЙЕН ДПРПМОЙФЕМШОЩИ ВМПЛПЧ ДПУФХРБ У РПДЛМАЮЕОЙЕН ЙИ Л ГЕОФТБМШОПНХ ХЪМХ улхд РП МАВЩН ДПУФХРОЩН МЙОЙСН УЧСЪЙ, РПДДЕТЦЙЧБАЭЙН РТПФПЛПМ TCP/IP. лПМЙЮЕУФЧП ВМПЛПЧ ДПУФХРБ Ч УЙУФЕНЕ ОЕ ПЗТБОЙЮЙЧБЕФУС.

рПДПВОБС УЙУФЕНБ ОБИПДЙФУС Ч РТБЛФЙЮЕУЛПК ЬЛУРМХБФБГЙЙ ОБ ПДОПН ЙЪ РТЕДРТЙСФЙК юЕМСВЙОУЛПК ПВМБУФЙ.

вМПЛ ДПУФХРБ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ гйтлпо-4

вМПЛ ДПУФХРБ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ гйтлпо-4 РТЕДУФБЧМСЕФ УПВПК ПЛПОЕЮОЩК ХЪЕМ ТЕЗЙУФТБГЙЙ Й ТБУРПЪОБЧБОЙС РП ТЙУХОЛХ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ.

вМПЛ ДПУФХРБ РТЕДОБЪОБЮЕО ДМС ЪБИЧБФБ Й БЧФПНБФЙЮЕУЛПЗП УПРПУФБЧМЕОЙС ЙЪПВТБЦЕОЙК ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ ЛБЛ Ч БЧФПОПНОПН ТЕЦЙНЕ, ФБЛ Й Ч УПУФБЧЕ БЧФПНБФЙЪЙТПЧБООПК УЙУФЕНЩ ЛПОФТПМС Й ХРТБЧМЕОЙС ДПУФХРПН (булхд) Ч ТЕЦЙНБИ ЧЕТЙЖЙЛБГЙЙ (УТБЧОЕОЙЕ У ЛПОФТПМШОЩН ЫБВМПОПН «ПДЙО-Л-ПДОПНХ») ЙМЙ ЙДЕОФЙЖЙЛБГЙЙ («ПДЙО-ЛП-НОПЗЙН»).

ч БЧФПОПНОПН ТЕЦЙНЕ ТЕЗЙУФТБГЙС РПМШЪПЧБФЕМЕК, УПЪДБОЙЕ Й ИТБОЕОЙЕ ВБЪЩ ЛМАЮЕК ПУХЭЕУФЧМСЕФУС МПЛБМШОП ОБ ВМПЛЕ ДПУФХРБ. вМПЛ ЧУЕЗДБ ТБВПФБЕФ Ч ТЕЦЙНЕ ЙДЕОФЙЖЙЛБГЙЙ Й РТЙ ХУРЕЫОПН ТБУРПЪОБЧБОЙЙ ХРТБЧМСЕФ ЬМЕЛФТПООЩН ЪБНЛПН.

рТЙ ТБВПФЕ ВМПЛБ Ч УПУФБЧЕ булхд Ч ТЕЦЙНЕ ЧЕТЙЖЙЛБГЙЙ ВБЪБ ДБООЩИ ЛМАЮЕК НПЦЕФ УПЪДБЧБФШУС ОБ РХОЛФЕ ТЕЗЙУФТБГЙЙ Й ИТБОЙФШУС ОБ УЕТЧЕТЕ. булхд ЧЪБЙНПДЕКУФЧХЕФ У ВМПЛПН ДПУФХРБ РП РТПФПЛПМХ, ПРЙУБООПНХ Ч SDK. лМАЮ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ УТБЧОЙЧБЕФУС «ПДЙО-Л-ПДОПНХ» У ЛПОФТПМШОЩН ЫБВМПОПН У РПНПЭША ДПРПМОЙФЕМШОПЗП ЙДЕОФЙЖЙЛБФПТБ — ВЕУЛПОФБЛФОПК ЛБТФЩ, ВТЕМПЛБ Й Ф. Р.

пФМЙЮЙЕ ТБВПФЩ ВМПЛБ Ч УПУФБЧЕ булхд Ч ТЕЦЙНЕ ЙДЕОФЙЖЙЛБГЙЙ УПУФПЙФ Ч ФПН, ЮФП ЛМАЮ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ ЙДЕОФЙЖЙГЙТХЕНПЗП УХВЯЕЛФБ УТБЧОЙЧБЕФУС «ПДЙО-ЛП-НОПЗЙН» УП ЧУЕНЙ ЪБРЙУСНЙ вд, ЪБЗТХЦЕООЩНЙ Ч ВМПЛ ДПУФХРБ булхд.

вМПЛ ДПУФХРБ ТБЪНЕЭБЕФУС Ч ЛПОФТПМЙТХЕНПК ФПЮЛЕ РЕТЕУЕЮЕОЙС ПИТБОСЕНПЗП РЕТЙНЕФТБ Й ЛТЕРЙФУС ОБ ЧЕТФЙЛБМШОПК РПЧЕТИОПУФЙ Ч ОЕРПУТЕДУФЧЕООПК ВМЙЪПУФЙ ПФ ПВПТХДПЧБООПЗП РТПИПДБ Ч ПИТБОСЕНПЕ РПНЕЭЕОЙЕ, У ЧОЕЫОЕК ЕЗП УФПТПОЩ.

вМПЛ ДПУФХРБ ПВПТХДПЧБО ЪЕТЛБМПН РПЪЙГЙПОЙТПЧБОЙС Й ВМПЛПН УЧЕФПДЙПДОПК ЙОДЙЛБГЙЙ, ФБЛЦЕ ТЕБМЙЪПЧБОБ ЖХОЛГЙС ЗПМПУПЧПК РПДУЛБЪЛЙ. чУЕ ЬФЙ ЙОУФТХНЕОФЩ ЙУРПМШЪХАФУС ДМС ХРТПЭЕОЙС РПЪЙГЙПОЙТПЧБОЙС ПВЯЕЛФБ Ч ТБВПЮЕК ПВМБУФЙ УЛБОЕТБ.

дМС ЪБРХУЛБ РТПГЕДХТЩ ЪБИЧБФБ ЙЪПВТБЦЕОЙС ДПУФБФПЮОП РПДПКФЙ Л ВМПЛХ ДПУФХРБ Й ХЧЙДЕФШ Ч ЪЕТЛБМЕ РПЪЙГЙПОЙТПЧБОЙС ПФТБЦЕОЙЕ УЧПЙИ ЗМБЪ. ъБИЧБФ ЙЪПВТБЦЕОЙС РТПЙУИПДЙФ ОБ ТБУУФПСОЙЙ 350—500 НН ПФ РЕТЕДОЕК РБОЕМЙ ВМПЛБ ДПУФХРБ Ч РПМЕ ЪТЕОЙС ЕЗП ПРФЙЮЕУЛПЗП ВМПЛБ.

тЕЗХМЙТПЧЛБ РТЙВПТБ РПД ТПУФ ЮЕМПЧЕЛБ ПУХЭЕУФЧМСЕФУС ЧТХЮОХА, РПЧПТПФПН РЕТЕДОЕК РБОЕМЙ ОБ ОЕПВИПДЙНЩК ХЗПМ.

ч УЛБОЕТЕ ТБДХЦОПК ПВПМПЮЛЙ ТЕБМЙЪПЧБОБ ЖХОЛГЙС БЧФПЖПЛХУБ. йУРПМШЪХЕНБС ЙОЖТБЛТБУОБС РПДУЧЕФЛБ ВЕЪПРБУОБ ДМС ЪТЕОЙС.

ч УЙУФЕНЕ ЙУРПМШЪХАФУС ФПМШЛП ЮЕТОП-ВЕМЩЕ ЙЪПВТБЦЕОЙС ДМС ФПЗП, ЮФПВЩ ОБ ТЕЪХМШФБФ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ ОЕ ЧМЙСМП ГЧЕФПЧПЕ ЙЪНЕОЕОЙЕ ТБДХЦОПК ПВПМПЮЛЙ, РТПЙУИПДСЭЕЕ Ч ТЕЪХМШФБФЕ РЕТЕОЕУЕООЩИ ЪБВПМЕЧБОЙК.

фЕИОЙЮЕУЛЙЕ ИБТБЛФЕТЙУФЙЛЙ ВМПЛБ ДПУФХРБ гйтлпо-4

источник

Авторы: Дегтярева А.А., Вежневец В.П.

Обоснование.

Глаз – пожалуй, единственный внутренний орган человека, который виден снаружи. Поскольку внутренние органы человека уникальны, а изображение глаза к тому же можно легко получить обыкновенным цифровым фотоаппаратом, возник вопрос о том, можно ли использовать рисунок радужки как некоторый код, отличающий одного человека от другого.

Развитие глаз начинается у зародыша человека в начале второго триместра и заканчивается на восьмом месяце беременности (впрочем, это не касается цвета глаз, который может меняться в течение первого года жизни; часто младенцы рождаются голубоглазыми и впоследствии глаза ребенка темнеют). Это означает, что даже у однояйцовых близнецов радужки различны. Рисунок радужки может меняться в течение жизни только вследствие болезней глаза, таких как катаракта, но часто даже на перенесших операцию глазах рисунок остается прежним либо меняется незначительно [3].

Единственной функцией радужки является контролировать количество света, которое попадает на сетчатку глаза через зрачок. Контроль осуществляется сокращением мускулатуры радужки.

Рисунок радужки в большой степени случаен, а чем больше степень случайности, тем больше вероятность того, что конкретный рисунок будет уникальным. Математически описывается степенью свободы. Исследования показали, что текстура радужки имеет степень свободы равной 250, что гораздо больше степени свободы отпечатков пальцев (35) и изображений лиц (20) [2]. Это означает, что использование текстуры радужки для идентификации личности в большой степени оправдано и весьма перспективно.

Идея использовать текстуру радужки для идентификации личности была предложена в 70-80х годах прошлого века. В 1981 Flom (ученый) и Aran Safir (офтальмолог) начали активно изучать научные медицинские доклады об устройстве глаза и, в частности, радужки человека, по результатам исследования сделали вывод о возможности использования текстуры радужки для задач идентификации. В 1987 они обратились в Кэмбридж с приглашением к сотрудничеству ученых в области computer science. На их приглашение откликнулся ученый по имени John Daugman. Заинтересовавшись темой, он начал работать в этом направлении. Результаты своих исследований Daugman впервые опубликовал в 1992 на конференции . На сегодняшний момент работы Daugman’а является основополагающим трудом в данной области. В 1994 году система идентификации личности по радужной оболочке глаза на основе исследований Daugman’а была запатентована (патент 5 291 560). Разумеется, задача не могла остаться без внимания. В 1996 Richard P. Wilds предложил альтернативный метод хранения информации о текстуре, а в 1998 еще один метод был предложен W. Boles. Позже были предложены и другие методы. На настоящий момент три из предложенных подходов получили коммерческое распространение – это подход исследовательских групп Daugman, Noh и Lim [1]. Среди компаний, занимающихся идентификацией, можно назвать Iridian, IriTech, Evermedia. Более подробно об использованных ими, а также других, некоммерческих, методах будет рассказано ниже.

Общий алгоритм

Методы идентификации личности по радужной оболочке построены по одному и тому же принципу – выделение частотной или какой-либо другой информации о текстуре радужки из изображения и сохранение этой информации в виде специального кода (для системы Daugman этот код получил специальное название – IrisCode (радужковый код)). Можно сравнивать коды радужек, и хранить коды радужек разных людей в базе данных. Построение кода производится в три этапа:

1. Выделение радужки из общего изображения

2. Предобработка полученного изображения – например убирание шума(denoising), улучшение изображения (enhansing), в том числе выравнивание гистограммы, убирание блика. Некоторые методы «разворачивают» круглый зрачок в прямоугольное изображение – происходит переход из полярных координат в декартовы. Иногда после такой «развертки» часть изображения отрезается, чтобы накопленная на данном этапе ошибка не повлияла на качество распознавания.

3. Составление кода. Предобработанное изображение фильтруется способом, зависящим от конкретного метода. По результатам фильтрации составляется представление в виде кода.

Для кодов необходимо выработать критерий сравнения. Часто код записывается в виде последовательности битов и критерием сравнения служит код Хэмминга. В частности, код Хэмминга используется в системах Daugman, Tisse [6]. Большинство методов работает с изображениями в градациях серого либо картами яркости изображений, то есть цветовая составляющая является избыточной.

Локализация радужки

Некоторые методы, например Wildes, используют специальное оборудование для захвата изображения, чтобы полученное изображение глаза было высокого разрешения, с хорошей контрастностью, освещением (при этом человек, которого снимают, не должен чувствовать дискомфорта от слишком яркой вспышки), и центрировано (радужка должна находиться в центре изображения). Кроме того, система камер должна быть неинвазивна, то есть не принуждать человека сесть в определенную позу на фиксированном расстоянии от камеры при специальном освещении. Для этого Wildes предлагает специальную систему камер [4]. Иногда, кроме снимка в видимом диапазоне, делается дополнительный снимок инфракрасной камерой [7].

Для того, чтобы отделить собственно радужку от остальных деталей на изображении, в простейшем случае можно использовать выделение краев (путем анализа первой производной) и последующую аппроксимацию границ радужки простыми геометрическими объектами. Так, окружность зрачка и внешнюю границу радужки можно найти при помощи преобразования Хафа (Hough transform) [5]. Другие методы дополнительно определяют границу радужки и век двумя параболами, как Wildes, либо просто отрезают те части изображения, которые могут не относиться к радужке, как Daugman, Ma [4], [5]. Если для захвата изображения не было использовано специальной аппаратуры, может понадобиться предварительное подавление нежелательных эффектов, таких как блик внутри зрачка от вспышки либо другого яркого источника света, если эти артефакты мешают корректной работе алгоритма выделения радужки [6].

Нормализация изображения

Часто для дальнейшей работы производится перевод изображения радужки из полярных координат в декартовы [5], [6], [7], [8], [9]. Однако есть методы и не требующие такого перевода [4], [11]. В частности, [11] использует обратный перевод – из декартовых координат в полярные, причем перевод задается специальным образом так, чтобы окружность границы зрачка и радужки при переводе отобразилась на прямую. К полученному изображению можно применить фильтрацию гауссовым фильтром для устранения высокочастотного шума [5], [8] или медианную фильтрацию [7]. После этого изображение все еще слабоконтрастно, и для повышения надежности производят выравнивание гистограммы (histogram equalization) [5], [8], [9]. Часто помимо этого производится отбрасывание малозначащих частей изображения – это могут быть верхняя и нижняя строки (по несколько пикселей) изображения после его перевода в декартовы координаты [5], [6] или устранение бликующих областей, портящих рисунок радужки [11].

Составление кода

После проведенной предобработки изображение радужки готово к тому, чтобы из него можно было извлечь более формальную информацию. К классическим способам составления кода можно отнести пространственно-частотную свертку изображения фильтрами Габора (Gabor’s filters), предложенную Daugman. Каждый бит кода определяется знаком результата воздействия двухмерного фильтра Габора на некоторую небольшую окрестность текстуры радужки [12]. Для кода Daugman и подобных ему в качестве сравнения используется расстояние Хэмминга (количество отличающихся бит кода). Развитием этого направления является применение специальных симметричных функций Circular symmetric filter [5]. Другой модификацией кода на основе фильтров Габора является составление кода на основе среднего абсолютного отклонения (average absolute deviation, AAD) отфильтрованного изображения от оригинального. В этом случае функцией сравнения будет выступать евклидово расстояние между векторами [8].

Wildes использует декомпозицию изображения на основе Laplacian of Gaussian filters. Результирующее изображение представляется как лапласова (многомасштабная) пирамида изображений, подвергнутых действию гауссовых фильтров, и призвано представлять пространственные характеристики радужки. В этом случае для дальнейшего сравнение используются нормированная корреляция (normalized correlation) обрабатываемого изображения и изображений из базы данных [4]. Нормализованная корреляция показывает меру соответствия точек двух изображений или областей изображений друг другу. Tisse использует многомерное преобразование Гилберта (multidimentional Hilbert transform). [6]. Процесс составления кода похож на составление кода Daugman, и процесс сравнения, соответственно, тоже (расстояние Хэмминга). Авторы работы [11] применяют многомасштабную фильтрацию (scale-space filtering) на основе данных о направлении выпуклости функции изменения яркости исходного изображения. По изображению строятся карта направлений вогнутости – величина вогнутости во внимание не берется, так как является следствием условий съемки (например освещения). Затем для каждой окружности внутри радужки ее сигнал яркости фильтруется scale-space filter-ом, и результатам фильтрации инициируется специальная двоичная переменная. Проделав эту операцию для всех радиусов внутри радужки и набору масштабов, двоичные коды по разным масштабам складываются. Полученный результат используется как одномерный код. Для сравнения результатов используется расстояние Хэмминга.

Обеспечение инварианта относительно масштаба и поворота

Инвариант относительно масштаба входного изображения во многих системах регулируется приведением текстуры радужки к карте фиксированного размера [8]. Обеспечение стабильности относительно поворота достигается за счет хранения нескольких изображений одной радужки в базе данных – под несколькими углами поворота [6], [8], [9].

Классические методы

Система Daugman’а спроектирована в 1992 году. Основа для составления кода – фильтры Габора, критерий сравнения кодов – расстояние Хэмминга. Код представляется в виде двоичной переменной 512 байт (4096 бит), имеющей запатентованное название IrisCode. Это наиболее ранняя и по-видимому наиболее развитая система, имеются коммерческие разработки.

Система была предложена в 1996. Система использует преобразование Хафа для локализации радужки, Лапласову пирамиду фильтров Гаусса (мультимасштаная декомпозиция) для составления кода, в качестве критерия сравнения берется нормализованная корелляция (normalized correlation). Для захвата изображения использует специальное оборудование.

В 98 Boles предложил метод составления кода, основанный на вейвлет-преобразованиях. Изображение радужки представляется одномерной функцией, которая фильтруется вейвлетами специального вида. Код составляется с помощью точек, в которых результирующее представление обнуляется (zero-crossings of one-dimensional wavelet transforms).

Коммерческая разработка. В основе лежит использование анализа независимых компонент с переменной разрешающей способностью (Multiresolution Independent Component Analysis).

По мнению специалистов в области биометрических систем, средства идентификации личности по радужной оболочке глаза способны заменить ключи и персональные идентификационные номера (пины). Рисунок радужной оболочки уникален и не повторяется даже у близнецов. Вероятность того, что два разных человека имеют один и тот же рисунок радужной оболочки глаза, равняется приблизительно 10 -78 , в то время как все население Земли составляет примерно 10 10 . В отличие от других биометрических систем контроля доступа, идентификация по рисунку радужки допускает полностью бесконтактную реализацию. В данной статье изложены основные принципы и дан краткий обзор существующих методов идентификации личности по радужной оболочке глаза.

Список литературы

[2] Resources Related to Biometrics and People with Disabilities, The international Center for Disability Resources on the Internet, http://www.icdri.org/biometrics/biometrics.htm [4] Richard P. Wildes. Iris Recognition: An Emerging Biometric Technology, Proceedings of The IEEE, vol. 85, no. 9, pp. 1347-1347, September 1997 [5] Li Ma, Yunhong Wang, Tieniu Tan. Iris Recognition Using Circular Symmetric Filters, Proceedings of the 16 th International Conference on Pattern Recognition (ICPR’02), pp. 20414-20418 [6] Christel-loic Tisse, Lionel Martin, Lionel Torres, Michel Robert. Person identification technique using human iris recognition. Proc. of Vision Interface, pp.294-299, 2002. [7] Jafar M. H. Ali, Aboul Ella Hassanien. An Iris Recognition System to Enhance E-security Environment Based on Wavelet Theory. AMO — Advanced Modeling and Optimization, Volume 5, Number 2, pp. 93-104, 2003 [8] Li Ma, Yunhong Wang, Tieniu Tan. Iris Recognition Based on Multichannel Gabor Filtering. ACCV2002: The 5th Asian Conference on Computer Vision, pp. 23-25 January 2002, Melbourne, Australia. [9] Yong Zhu, Tieniu Tan and Yunhong Wang. Biometric Personal Identification Based on Iris Patterns. Proc. of IAPR, Inter. Conf. Pattern Recognition(ICPR’2000), vol. II, pp. 805-808, 2000. [10] Seung-In Noh, Kwanghuk Pae1, Chulhan Lee, and Jaihie Kim. Multiresolution Independent Component Analysis for Iris Identification. The 2002 International Technical Conference on Circuits/Systems, Computers and Communications, 2002, Phuket, Tailand, July 2002. [11] Kyong Woo Nam, Kyong Lok Yoon, Jun Sung Bark, Woo S. Yang. A Feature Extraction Method for Binary Iris Code Construction. Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004)

источник

В некоторых системах идентификации в качестве ключа используется глаз человека. Существует две разновидности этих систем, использующие разные идентификаторы. В первом случае в качестве «носителя» идентификационного кода применяется рисунок капилляров (кровеносных сосудов) на сетчатке (дне) глаза, а во втором — узор радужной оболочки глаза.
Для начала рассмотрим способ идентификации по узору кровеносных сосудов, расположенных на поверхности глазного дна (сетчатке). Сетчатка расположена глубоко внутри глаза, но это не останавливает современные технологии. Более того, именно благодаря этому свойству, сетчатка — один из наиболее стабильных физиологических признаков организма. Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Для этих целей используется лазерный луч мягкого излучения. Вены и артерии, снабжающие глаз кровью, хорошо видны при подсветке глазного дна внешним источником света. Еще в 1935 году Саймон и Голдштейн доказали уникальность дерева кровеносных сосудов глазного дна для каждого конкретного индивидуума.
Сканеры для сетчатки глаза получили большое распространение в сверхсекретных системах контроля доступа, так как у них один из самых низких процентов отказа доступа зарегистрированных пользователей. Кроме того, в системах предусмотрена защита от муляжа.
В настоящее время широкому распространению этого метода препятствует ряд причин:
высокая стоимость считывателя;
невысокая пропускная способность;
психологический фактор.
Невысокая пропускная способность связана с тем, что пользователь должен в течение нескольких секунд смотреть в окуляр на зеленую точку.
Примером такого устройства распознавания свойств сетчатки глаза может служить продукция EyeDentify’s. Она использует камеру с сенсорами, которые с короткого расстояния (менее 3 см) измеряют свойства сетчатки глаза. Пользователю достаточно взглянуть одним глазом в отверстие камеры ICAM 2001, и система принимает решение о праве доступа. Основные характеристики считывателя ICAM 2001:
время регистрации (enrolment) — менее 1 мин;
время распознавания при сравнении с базой эталонов в 1 500 человек — менее 5 с; средняя пропускная способность — 4—7 с.
И тем не менее, эти системы совершенствуются и находят свое применение. В США, например, разработана новая система проверки пассажиров, основанная на сканировании сетчатки глаза. Специалисты утверждают, что теперь для проверки не нужно доставать из кармана бумажник с документами, достаточно лишь пройти перед камерой. Исследования сетчатки основываются на анализе более 500 характеристик. После сканирования код будет сохраняться в базе данных вместе с другой информацией о пассажире, и в последующем идентификация личности будет занимать всего несколько секунд. Использование подобной системы будет абсолютно добровольной процедурой для пассажиров.
Английская Национальная физическая лаборатория (National Physical Laboratory, NPL), по заказу организации Communications Electronics Security Group, специализирующейся на электронных средствах защиты систем связи, провела исследования различных биометрических технологий идентификации пользователей.
В ходе испытаний система распознавания пользователя по сетчатке глаза не разрешила допуск ни одному из более чем 2,7 млн «посторонних», а среди тех, кто имел права доступа, лишь 1,8% были ошибочно отвергнуты системой (проводилось три попытки доступа). Как сообщается, это был самый низкий коэффициент ошибочных решений среди проверяемых систем биометрической идентификации. А самый большой процент ошибок был у системы распознавания лица — в разных сериях испытаний она отвергла от 10до 25% законных пользователей.
Еще одним уникальным для каждой личности статическим идентификатором является радужная оболочка глаза. Уникальность рисунка радужной оболочки обусловлена генотипом личности, и существенные отличия радужной оболочки наблюдаются даже у близнецов. Врачи используют рисунок и цвет радужной оболочки для диагностики заболеваний и выявления генетической предрасположенности к некоторым заболеваниям. Обнаружено, что при ряде заболеваний на радужной оболочке появляются характерные пигментные пятна и изменения цвета. Для ослабления влияния состояния здоровья на результаты идентификации личности в технических системах опознавания используются только черно-белые изображения высокого разрешения.
Идея распознавания на основе параметров радужной оболочки глаза появилась еще в 1950-х годах. Джон Даугман, профессор Кембриджского университета, изобрел технологию, в состав которой входила система распознавания по радужной оболочке, используемая сейчас в Nationwide ATM. В то время ученые доказали, что не существует двух человек с одинаковой радужной оболочкой глаза (более того, даже у одного человека радужные оболочки глаз отличаются), но программного обеспечения, способного выполнять поиск и устанавливать соответствие образцов и отсканированного изображения, тогда еще не было.
В 1991 году Даугман начал работу над алгоритмом распознавания параметров радужной оболочки глаза и в 1994 году получил патент на эту технологию. С этого момента ее лицензировали уже 22 компании, в том числе Sensar, British Telecom и японская OKI.
Получаемое при сканировании радужной оболочки глаза изображение обычно оказывается более информативным, чем оцифрованное в случае сканирования отпечатков пальцев.
Уникальность рисунка радужной оболочки глаза позволяет выпускать фирмам целый класс весьма надежных систем для биометрической идентификации личности. Для считывания узора радужной оболочки глаза применяется дистанционный способ снятия биометрической характеристики.
Системы этого класса, используя обычные видеокамеры, захватывают видеоизображение глаза на расстоянии до одного метра от видеокамеры, осуществляют автоматическое выделение зрачка и радужной оболочки. Пропускная способность таких систем очень высокая. Вероятность же ложных срабатываний небольшая. Кроме этого, предусмотрена защита от муляжа. Они воспринимают только глаз живого человека. Еще одно достоинство этого метода идентификации — высокая помехоустойчивость. На работоспособность системы не влияют очки, контактные линзы и солнечные блики.
Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Даже у людей с ослабленным зрением, но с неповрежденной радужной оболочкой, все равно могут сканироваться и кодироваться идентифицирующие параметры. Даже если есть катаракта (повреждение хрусталика глаза, которое находится позади радужной оболочки), то и она никак не влияет на процесс сканирования радужной оболочки. Однако плохая фокусировка камеры, солнечный блик и другие трудности при распознавании приводят к ошибкам в 1% случаев.
В качестве такого устройства идентификации можно привести, например, электронную систему контроля доступа «Iris Access 3000», созданную компанией LG. Эта система за считанные секунды считывает рисунок оболочки, оцифровывает его, сравнивает с 4000 других записей, которые она способна хранить в своей памяти, и посылает соответствующий сигнал в систему безопасности, в которую она интегрирована. Система очень проста в эксплуатации, но при этом, данная технология
обеспечивает высокую степень защищенности.
Считыватель сетчатки объекта. Модель ICAM 2001. В состав системы входят:
устройство регистрации пользователей EOU 3000;
оптическое устройство идентификации / оптический считыватель ROU 3000;
контроллер двери ICU 3000;
сервер.
Устройство регистрации пользователей EOU 3000 обеспечивает начальный этап процесса регистрации пользователей. Оно снимает изображение радужной оболочки глаза при помощи камеры и подсветки. В процессе получения изображения и при его завершении устройство использует голосовую и световую подсказку.
Оптическое устройство идентификации, оно же оптический считыватель ROU 3000, содержит элементы для получения изображения радужной оболочки глаза. Голосовая и световая индикация информирует пользователя, определен он системой или нет.
Контроллер двери ICU 3000 создает специальный код (IrisCode) изображения сетчатки глаза, получаемой от считывателя ROU, сравнивает этоткод с уже имеющимися в его памяти кодами изображений. При идентификации соответствующего кода, результат сообщается голосом из динамика в считывателе ROU
3000. К контроллеру возможно подключение до четырех считывателей ROD 3000, что обеспечивает управление четырьмя дверями.
Сервер выполнен на базе персонального компьютера. Он выполняет функции главного сервера, сервера,
станции регистрации пользователей, станции мониторинга и управления системой. Главный сервер контролирует передачу информации из базы данных по запросу от одного сервера другим серверам. Сервер отвечает за управление рабочими станциями и контроллерами дверей ICU. Станция ввода изображения обеспечивает регистрацию пользователей при помощи устройства EOU 3000. Станция мониторинга производит отслеживание статуса контроллеров ICU, оптических считывателей ROU? устройства регистрации и состояния дверей ROU. Станция управления обеспечивает поддержку основной базы данных пользователей, загрузку необходимых данных в контроллер ICU.
Пример построения системы доступа на основе электронной системы распознавания радужной оболочки глаза «Iris Access 3000» представлен на рисунке.

Перспективы распространения этого способа биометрической идентификации для организации доступа в компьютерных системах очень хорошие. Тем более, что сейчас уже существуют мультимедийные мониторы со встроенными в корпус видеокамерами. Поэтому на такой компьютер достаточно установить необходимое программное обеспечение, и система контроля доступа готова к работе. Понятно, что и ее стоимость при этом будет не очень высокой.

Акции! Скидки!

При заказе монтажа Охранно-пожарной сигнализации, пожаротушения скидка на техническое обслуживание смонтированных систем 30%.

При заказе огнезащитной обработки свыше 1500 м2 протокол испытаний образцов из ИПЛ бесплатно.

Обслуживание пожарной сигнализации от 1000 рублей в месяц .

Проект бесплатно.

При заказе пожарной или охранной сигнализации
от 50 000 рублей проект бесплатно.

Работаем по бартеру.

Вы оплачиваете оборудование и материалы, оплата работ возможна бартером.

источник

Обеспечение транспортной безопасности

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов.

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов. Основным источником информации для идентификации этим способом служит специфическая ткань, которая окончательно формируется в глазах человека еще до рождения, примерно на 8-м месяце беременности матери. В медицине радужную оболочку глаза рассматривали в качестве инструмента для диагностики различных заболеваний, в частности, было обнаружено, что при определенных заболеваниях на радужной оболочке глаза появляются так называемые пигментные пятна. Для уменьшения влияния этого фактора на результат распознавания в биометрических системах используют черно-белые (полутоновые) изображения. Технология биометрического распознавания по радужной оболочке предусматривает несколько степеней защиты:

  • идентификация пользователя при условии затенения (или повреждения) радужной оболочки, но не более, чем на 2/3, то есть по оставшейся 1/3 изображения возможна идентификация с вероятностью ошибки 1 к 100 000;
  • обнаружение замены глаза и контактных линз на роговице – за счет контроля размера зрачка (система отличает живой глаз от изображения глаза, искуственного глаза и неживого глаза за счет использования инфракрасного освещения для определения состояния ткани глаза и контроля расширения/сужения зрачка).

Преимуществами технологии биометрического распознавания по радужной оболочке являются:

— независимость от косвенных факторов, таких как прическа, грим, макияж, и прочее;

— вероятность пропуска незарегистрированного пользователя равна вероятности ложного отказа в допуске зарегистрированному пользователю и составляет 1 к 1 200 000 (это самый высокий показатель по сравнению с другими типами биометрического распознавания).

Как работает система биометрического распознавания человека по радужной оболочке глаза? Технология распознавания базируется на формировании до 266 уникальных точек идентификации на изображении роговицы, решение принимается на основании результатов сравнения с точек идентификации с эталонными данными базы авторизованных пользователей. Захват видеоизображения глаза осуществляется регистрирующей аппаратурой на расстоянии до одного метра. Далее, система выполняет ряд действий: выделение зрачка, сбор и подсчет точек идентификации радужной оболочки, принятие решения и верификации или идентификации.

Мы протестировали высокоточную систему биометрического распознавания человека по радужной оболочке глаза, разработанную компанией eyeLock (США). Эта система обеспечивает быстрое распознавание человека на расстоянии и в движении. Оборудование eyeLock применяется для создания систем биометрического контроля и управления доступом (СКУД) на объектах с повышенными требованиями обеспечения безопасности, таких как: опасные производства, центры обработки данных, банки, объекты транспортной инфраструктуры. Для построения системы контроля доступа с биометрическим распознаванием по радужной оболочке eyaLock предлагает несколько типов оборудования: NANO NXT, HBOX, MYRIS.

NANO NXT – комплексное устройство, выполняющее функции считывателя биометрических данных, устройства обработки данных для выполнения алгоритма идентификации, хранилища эталонных данных базы авторизованных пользователей и контроллера управления замком или запирающим устройством. Устройство легко интегрировать в существующую систему управления доступом.

  • Регистрация и проверка соответствия самим устройством — «On Board»
  • Распознавание в темных очках или цветных линзах
  • Хранение в памяти «On Board» записей на 20 000 человек
  • Регистрация по 1 или 2 глазам
  • Возможность подключения кардридера для обеспечения двухфакторной аутентификации (глаза + карта)
  • Типы (протоколы) подключения: Wiegand, F/2/F, OSDP, PAC, реле и Ethernet для простой интеграции со всеми существующими платформами и СКУД
  • Питание через PoE (IEEE 802.3af)

HBOX — комплексное устройство, устанавливаемое на проходных с высокой пропускной способностью, обеспечивает биометрическое распознавание на расстоянии до 1,6 метра потока людей со скоростью 50 человек в минуту. Темные очки и цветные контактные линзы не являются препятствием для работы HBOX.

MYRIS — устройство для контроля логического доступа пользователей к информационным ресурсам. Устройство позволяет обеспечить дополнительную защиту доступа к информационным ресурсам предприятия и надежную идентификацию/авторизацию пользователей, это может быть актуально, например, для доступа к банковским системам при совершении операций повышенного риска и в других подобных случаях.

источник

Источники:
  • http://www.kazedu.kz/referat/189175/2
  • http://habr.com/post/311876/
  • http://www.rusnauka.com/35_OINBG_2010/Informatica/75975.doc.htm
  • http://papillon.ru/rus/79
  • http://masters.donntu.org/2010/fknt/kolesnik/library/article6.htm
  • http://txcom.ru/identifikatsiya-po-glazu
  • http://tbexpert.ru/biometriya_eyelock/