Меню Рубрики

Металлы с точки зрения зонной теории

Читайте также:

  1. D-металлы
  2. II. Первые теории Нового времени.
  3. VI. Разработка теории систем и теории компромиссов
  4. VI. Разработка теории систем и теории компромиссов
  5. А. Пигу: вклад в развитие теории благосостояния
  6. Аксиоматическое построение теории вероятностей
  7. АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ.
  8. Аксиомы теории вероятностей
  9. Аксиомы теории вероятностей и их следствия. Правило сложения вероятностей.
  10. Аксиомы теории полезности.
  11. Аксиомы теории управления.
  12. Альтернативные подходы к теории фирмы

Зонная теория проводников, полупроводников, диэлектриков

1. Основные положения (актуализация знаний)

2. Металлы по зонной теории

3. Щелочно-земельные элементы по зонной теории

4. Диэлектрики и полупроводники по зонной теории

5. Различие между металлами и диэлектриками с точки зрения зонной теории

6. Характеристика элементов, обладающих полупроводниковыми свойствами

1.Основные положения (актуализация знаний)

Согласно постулатам Бора энергетические уровни для электронов в изолированном атоме имеют дискретные значения. Твердое тело представляет собой ансамбль отдельных атомов, химическая связь между которыми объединяет их в кристаллическую решетку. Если твердое тело состоит из N атомов, то энергетические уровни оказываются N-кратно вырожденными (расщепленными). Дискретные моноэнергетические уровни атомов, составляющие твердое тело, расщепляются в энергетические зоны.

Заметно расщепляются и расширяются лишь уровни внешних, валентных электронов, наиболее слабо связанных с ядром и имеющих наибольшую энергию, а также более высокие уровни, которые в основном состоянии атома вообще электронами не заняты. Уровни же внутренних электронов либо совсем не расщепляются, либо расщепляются слабо. Таким образом, в твердых телах внутренние электроны ведут себя так же, как в изолированных атомах, валентные же электроны «коллективизированы» — принадлежат всему твердому телу.

Энергия внешних электронов может принимать значения в пределах областей, называемых разрешенными энергетическими зонами. Каждая разрешенная зона «вмещает» в себя столько близлежащих дискретных уровней, сколько атомов содержит кристалл: чем больше в кристалле атомов, тем теснее расположены уровни в зоне. Расстояние между соседними энергетическими уровнями в зоне составляет приблизительно 10 -22 эВ. Так как оно столь ничтожно, то зоны можно считать практически непрерывными, однако факт конечного числа уровней в зоне играет важную роль для распределения электронов по состояниям.

Разрешенные энергетические зоны разделены зонами запрещенных значений энергии, называемыми запрещенными энергетическими зонами. В них электроны находиться не могут. Ширина зон (разрешенных и запрещенных) не зависит от размера кристалла. Разрешенные зоны тем шире, чем слабее связь валентных электронов с ядрами.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также заполнена целиком. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зове проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов.

В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис.

На рис. а самая верхняя зона, содержащая электроны, заполнена лишь частично, т. е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны, т. е. стать свободным и участвовать в проводимости. Внутривенный переход вполне возможен, так как, например, при 1 К энергия теплового движения kT » 10 -4 эВ, т. е. гораздо больше разности энергий между соседними уровнями зоны (примерно 10 -22 эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

| следующая лекция ==>
Лекция 3. СОБСТВЕННОСТЬ, ЭКОНОМИЧЕСКИЕ ИНТЕРЕСЫ И ИХ РОЛЬ В ОБЩЕСТВЕННОМ РАЗВИТИИ | Щелочно-земельные элементы по зонной теории

Дата добавления: 2014-01-20 ; Просмотров: 728 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон. Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольна широка (например, для NaCl ∆Е=6 эВ), для полупроводников – достаточно узка (например, для германия ∆Е=0,72 эВ). При температурах, близких к 0 К, полупроводники ведут себя как диэлектрики, так как переброса электронов зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличивается.

10. Что такое собственная проводимость полупроводника?

Электропроводимость химически чистого полупроводника наз. Собственной проводимостью.

11. Какие примеси называются акцепторными?

Примеси, захватывающие электроны из валентной зоны.

12. Как перестраиваются энергетические зоны при внесении акцепторной примеси?

Предположим, что в решетку кремния введен примесный атом с тремя валентными электронами, например, бор. По зонной теории, введение трехвалентной примеси в решетку кремния приводит к возникновению в запрещенной зоне примесного энергетического уровня А, не занятого электронами. В случае кремния с примесью бора этот уровень располагается выше верхнего края валентной зоны на расстоянии ∆ЕА=0,08 эВ. Близость этих уровней к валентной зоне приводит к тому, что уже при сравнительтно низких температурах электроны из валентной заны переходят на примесные уровни и, связываясь с атомами бора, теряют способность перемещаться по решетке кремния, т.е. в проводимости не участвуют. Носителями тока являются лишь дырки, возникающие в валентной зоне.

13. Какие примеси называются донорными?

Примеси, являющиеся источниками электронов.

14. Как перестраиваются энергетические зоны при внесении донорной примеси?

В полупроводник вводят атомы с валентностью, отличной от валентности основных атомов на единицу. Например, замещение атома германия пятивалентным атомом мышьяка. Сточки зрения зонной теории этот процесс можно представить след. образом. Введение примеси искажает поле решетки, что приводит к возникновению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем. В случае германия с примесью мышьяка этот уровень располагается от дна зоны проводимости на расстоянии ∆ЕD=0,013 эВ. Так как ∆ЕD

Большая Энциклопедия Нефти и Газа

Зонная теория — металл

Зонная теория металлов основана на концепции электронного газа, для которого применимы законы квантовой статистики. В 1947 г. Полинг [42, 43] предложил другую, полуэмпирическую теорию, основанную на допущении, что атомы в металлах соединены в основном ковалентными связями. [2]

Зонная теория металлов основана на концепции электронного газа, для которого применимы законы квантовой статистики. В 1947 г. Полинг [42, 43] предложил другую, полуэмпирическую теорию, основанную на допущении, что атомы в металлах соединены в основном ковалентными связями. В применении к переходным металлам эта теория принимает, что из девяти d -, s — и р-орбиталей атомов металла только часть участвует в образовании связей между атомами, осуществляемых гибридными d -, s -, р-орбитал. [4]

Зонная теория металлов с ее концепцией перекрытия энергетических зон не объясняет, а скорее описывает металлические свойства вещества. Фундаментальная причина существования металлического состояния состоит в том, что в изолированном металлическом атоме потенциальная яма для валентных электронов сравнительно неглубока, так что в конденсированном состоянии возмущение со стороны соседних металлических атомов приводит к делокализации валентных электронов. С такой точки зрения деление элементов на металлы и металлоиды обусловлено строением атомов; металлы сосредоточены в левом нижнем углу таблицы Менделеева, а граница между металлами и металлоидами размыта и весьма условна. [5]

Зонная теория металлов способна описывать также их термические свойства. Например, высокую теплопроводность металлов можно объяснить способностью электронов быстро переносить тепло по решетке. Нагревая один конец металлического стержня, можно возбудить колебания решетки, которые в свою очередь будут возбуждать электроны, расположенные вблизи поверхности Ферми. Эти электроны, занимая уровни выше границы Ферми, получают возможность пробегать по решетке с высокой скоростью. Рано или поздно они нырнут обратно под поверхность Ферми и отдадут избыток энергии решетке, но эта часть решетки может оказаться удаленной от первоначально нагретого конца стержня. Так происходит передача тепла вдоль стержня. [6]

В модификации зонной теории металлов на основе теории поля лигандов, предложенной Тростом [6] и Гуденафом [7], рассматривается эффект кристаллического поля, обусловленный ближайшими и следующими за ближайшими соседями атома по отношению к валентным электронам. Этот вариант является промежуточным между зонной теорией и методом валентных связей. [7]

Ранее уже были предприняты успешные попытки трактовать каталитическую активность сплавов с точки зрения зонной теории металлов . [8]

Волновая функция каждого электрона распространяется на весь кристалл, и в этом смысле зонную теорию металлов можно сравнить с теорией молекулярных орбп-галей в применении к молекулам, хотя, как известно, пракшче-скн оказывается невозможно оперировать истинными молекулярными орбиталями. Аналогией теории валентных связен была бы теория металлов, в которой связи атома металла с его соседями рассматривались бы исходя из электронной структуры атома, а кристалл в целом представлялся бы как совокупность атомов, соединенных локализованными связями. Однако в металлических кристаллах в отличие от обычных кристаллов с ковалентными связями, как правило, реализуются очень высокие координационные числа. Из этих положений следует, что кратность связи и валентность могут быть дробными величинами. Уменьшение размеров атомов в ряду К, Са, Sc, Ti, V ( аналогично от Rb к Nb и от Cs к Та) и примерное постоянство размеров атомов для элемента V-VIII групп в каждом ряду переходных металлов объясняется следующим образом. При переходе от К к V происходят увеличение числа связывающих электронов от 1 до 5 и постепенный рост числа ковалентных связей, участвующих в резонансе, и, следовательно, монотонное уменьшение межатомных расстояний. Далее предполагается, что у атомов элементов от Сг до Ni в связывании участвуют не все девять имеющихся орбиталей ( одна s, три р и пять d), а лишь 5 78 из них являются устойчивыми связывающими spd — орбнталями, еще имеются 2 44 атомной пе-связывающей ( / — орбитали, а оставшиеся 0 78 металлической орбитали обеспечивают несинхронный резонанс между отдельными валентными связями. Эти значения были вычислены из магнитной восприимчивости ( при насыщении) ферромагнитных железа, кобальта и никеля. Электронные структуры Полнит для ряда металлов приведены в табл. 29.6. У атомов Сг, Уп и Fe число d — электронов меньше, чем число орбиталей, так что спаривания спинов не происходит. [9]

Читайте также:  Из за чего может упасть зрение после лазерной операции

Заметим, что возможность точно ввести такую эффективную волновую функцию как раз и оправдывает ряд качественных ( но отнюдь не количественных) утверждений зонной теории металлов . [10]

Электропроводность этих металлов очень высокая, но значительно ниже, чем у серебра ( 66 7 — 104 ом 1-см 1), которое является наилучшим проводником из всех элементов. Высокие значения электропроводности согласуются с зонной теорией металлов , так как у щелочных металлов s — зона заполнена электронами только наполовину. Одной из причин более низких значений электропроводности по сравнению с электропроводностью серебра и их изменения в пределах группы являются сравнительно небольшие плотности, понижающие число носителей заряда. [11]

Яков Ильич стремился развить в своих учениках способность критически относиться к теориям, в том числе и общепринятым, вошедшим в учебники. Хорошо помню его замечания в адрес зонной теории металлов , в том числе и замечание о том, что электропроводность ртути меняется всего на 30 % при переходе из твердого состояния в жидкое, где никаких зон нет. Любую теорию Яков Ильич склонен был считать скорее карикатурой, чем портретом действительности. [12]

Примеси специально вводятся в кремний и германий для создания полупроводниковых свойств. То 5 что кремний и германий не являются проводниками электричества, может быть объяснено с помощью зонной теории металлов ( см. стр. Все валентные электроны в этих кристаллах находятся в полностью заполненной зоне, и между этой и следующей зоной ( пустой) имеется энергетическая щель, которая не может быть преодолена обычным путем. При повышении температуры увеличивается число электронов, обладающих избытком энергии, достаточным для перехода через щель в следующую зону, и, поскольку эта зона почти полностью пустая, такие электроны могут двигаться при наложении электрического потенциала. Сопротивление полупроводника в отличие от металла убывает при повышении температуры. [13]

В некоторой степени переработано изложение материала, относящегося к природе химической связи в молекулах и кристаллах, рассмотрена донорно-акцепторная связь. Дополнен материал, относящийся к свойствам твердых тел, введены представления о зонной теории металлов и полупроводников. Расширено изложение особенностей свойств газов, кристаллов при очень высоких температурах. Расширен материал, посвященный внутреннему строению и свойствам воды в различных состояниях и процессам замерзания ее; введено представление о релаксационном характере процессов, связанных с достижением равновесного состояния воды при изменившихся внешних условиях. [14]

Так, кристаллическое строение металлов больших периодов может быть связано со строением внешних электронных оболочек. Число электронов, переходящих в электронный газ, определяет электронную концентрацию данной металлической структуры и строение внешней оболочки иона. Ненаправленное взаимодействие образовавшихся ионов с коллективизированными электронами обусловливает главную металлическую компоненту межатомной связи в металлах. Внешние валентные электроны в металлах коллективизированы и не образуют гибридных пар. В металлах с кубическими плотными упаковками направленных связей вообще не существует. Такие связи появляются только в результате обменного взаимодействия внешних оболочек ионов, когда они сближаются вследствие взаимодействия ионов с электронным газом и перекрываются. Обменная компонента связи ионов с внешними рв — или йв-оболочками обусловливает существование объ-емноцентрированной кубической структуры. Такая концепция заключает в себе достоинства модели свободных электронов и зонной модели, а вместе с тем представляет распространение квантовой теории валентности на область металлического состояния, позволяя из электронного строения оболочек ионов получить определенные данные о кристаллической структуре металлов. Зонная теория металлов , в которой при построении зон Бриллюэна исходят из заранее заданного типа решетки кристалла, позволяет успешно вычислять целый ряд электронных, магнитных и других свойств металлов и сплавов; эта теория остается справедливой. [15]

Зонная теория твердых тел. Металлы, диэлектрики и полупроводники в зонной теории.

Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле. Согласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей).В случае нескольких атомов, объединенных химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более 1020), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни расщепляются до практически непрерывных дискретных наборов — энергетических зон. Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной зоной, следующая за ней — зоной проводимости. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

В основе зонной теории лежат следующие главные приближения:[1]

1.Твердое тело представляет собой идеально периодический кристалл.

2.Равновесные положения узлов кристаллической решетки фиксированы, то есть ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы, вводятся впоследствии как возмущение электронного энергетического спектра.

3.Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.

полупроводники — зоны не перекрываются и расстояние между ними составляет менее 3.5 эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.

диэлектрики — зоны не перекрываются и расстояние между ними составляет более 3.5 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.

53.Собственная электропроводимость полупроводников

Полупроводники-вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (10 6 — 10 4 Ом -1 см -1 ) и диэлектриков (10 -8 — 10 -12 Ом -1 см -1 ), обусловлена переносом электронов и возрастает при повышении температуры. Наиболее существенная особенность полупроводников — способность изменять свои свойства в чрезвычайно широких пределах под влиянием различных воздействий (температуры, освещения, электрического и магнитного поля, внешнего гидростатического давления). В результате таких воздействий характеристики полупроводника могут сильно изменяться, (например, электропроводность может меняться в 10 6 -10 7 раз).

Собственными полупроводникамиявляются химически чистые полупроводники, а их проводимость называется собственной проводимостью. Примером собственных полупроводников могут служить химически чистые Ge, Se, а также многие химические соединения: InSb, GaAs, CdS и др.

Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости. При этом в зоне проводимости появляется некоторое число носителей тока- электронов, занимающих уровни вблизи дна зоны;одновременно в валентной зоне освобождается такое же число мест на верхних уровнях, в результате чего появляются дырки.

Распределение электронов по уровням валентной зоны и зоны проводимости описывается функцией Ферми-Дирака.
График функции распределения:

У собственных полупроводников отсчитанное от потолка валентной зоны значение уровня Ферми равно

где, — ширина запрещенной зоны, а и — эффективные массы дырки и электрона, находящегося в зоне проводимости.

Электропроводимость собственных полупроводников быстро растет с температурой, изменяясь по закону

Ϭ= Ϭexp(- /

Итак, в собственном полупроводнике идут одновременно 2 процесса: рождение попарно свободных электронов и дырок и рекомбинация, приводящая к попарному исчезновению электронов и дырок. Вероятность первого процесса растет температурой. Вероятность рекомбинации пропорциональна как числу свободных электронов, так и числу дырок.

Когда внешнее электрическое поле отсутствует, электроны проводимости и дырки движутся хаотически. При включении поля на хаотическое движение накладывается упорядоченное движение: электронов против поля и дырок – в направлении поля. Оба движения- и дырок, и электронов-приводят к переносу заряда вдоль кристалла. Следовательно, собственная электропроводимость обуславливается как бы носителями заряда двух знаков-отрицательными электронами и положительными дырками.

(54) приёмная электропроводность полупроводников

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов. Если повышения температуры нет, связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис. 1, б — черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 1 ,б — разорвавшаяся линия электрона). Чем выше температура полупроводника, тем больше в нем появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному заряду электрона.

Дата добавления: 2015-10-01 ; просмотров: 2020 . Нарушение авторских прав

Электрическая проводимость твердых тел с точки зрения зонной теории. Металлы, полупроводники, диэлектрики

Электрическая проводимость твердых тел с точки зрения зонной теории. Металлы, полупроводники, диэлектрики.

С точки зрения зонной теории все твердые тела можно подразделить на две основные группы: материалы, у которых валентная зона перекрывается зоной проводимости, и материалы, у которых валентная зона и зона проводимости разделены запрещенной зоной. В первом случае незначительное внешнее энергетическое воздействие переводит электроны на более высокие энергетические уровни, что обусловливает хорошую электропроводность материалов. Во втором случае переходы на более высокие энергетические уровни связаны с необходимостью внешнего энергетического воздействия, превышающего ширину запрещенной зоны. Материалы, в энергетической диаграмме которых отсутствует запрещенная зона, относятся к категории проводников, материалы с узкой запрещенной зоной (менее 3 эВ) — к категории полупроводников и материалы с широкой запрещенной зоной (более 3 эВ) — к категории диэлектриков.

Металлы, диэлектрики и полупроводники по зонной теории

Зонная теория позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заселением электронами разрешенных зон, и во-вторых, шириной запрещенных зон.

Рассматривая заполнение электронами разрешенных зон необходимо использовать два правила: 1) Электроны стремятся занять самые низкие энергетические уровни. 2) Принцип Паули: на одном энергетическом уровне не может быть более двух электронов. Эти электроны должны иметь разные спины.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующего атомного уровня. Если уровень атома полностью заполнен, то и зона полностью заполнена. Из незанятых уровней образуются свободные зоны, из частично заполненных – частично заполненные зоны. В общем случае можно говорить о валентной зоне, которая полностью заполнена и образовалась из энергетических уровней внутренних электронов свободных атомов и о зоне проводимости (свободной зоне), которая либо частично заполнена, либо свободна и образована из энергетических уровней внешних коллективизированных электронов изолированных атомов (рис.2).

Самая верхняя зона целиком занятая электронами (при Т=0 К) называется валентной. Зона, заполненная электронами частично (при Т = 0 К), называется зоной проводимости. Определим изменение энергии электрона, находящегося на некотором уровне в разрешенной зоне, под действием внешнего поля с напряженностью . Энергия приобретаемая электроном на длине свободного пробега , где — средняя длина свободного пробега электрона в кристалле равная примерно 10 -8 м в электрическом поле с напряженностью В/м, которая соответствует обычным источникам тока, эВ.
Рис.2.
Читайте также:  Упало зрение как его можно восстановить

Это означает, что возможны только внутризонные переходы, так как междузонные переходы имеют много большую энергию. Необходимым условием электрической проводимости является наличие в разрешенной зоне свободных энергетических уровней на которые электрическое поле сторонних сил могло бы перевести электроны. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны три случая, изображенных на рис.3.

(а) (б) (в)
Рис.3

3а). Зона проводимости заполнена лишь частично., то есть в ней имеются вакантные уровни. В этом случае электроны, получив сколь угодно малую энергетическую добавку ( от поля или теплового движения) переходят на более высокий энергетический уровень той же зоны, то есть они участвуют в проводимости. Такой переход возможен, так как 1 К = 10 -4 эВ, что много больше расстояния между уровнями равному 10 -22 эВ. Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

3б). Возможно также такое перераспределение электронов между зонами, возникающими из уровней различных атомов, которое привело к тому, что вместо двух частично заполненных зон кристалла окажется одна целиком заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны. Если ширина запрещенной зоны кристалла порядка нескольких электрон –вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах.

3в). Если запрещенная зона достаточно узка ( эВ), то переход электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию , и кристалл является полупроводником.

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например для NaCl =6 эВ), а для полупроводников достаточно узка (для германия =0,72 эВ). При температурах близких к 0 К полупроводники ведут себя как диэлектрики, то есть переброс электронов в зону проводимости не происходит.

Сущность зонной теории проводимости заключается в следующем:

1). При объединении атомов в кристалл твердого тела возникают энергетические зоны.

2). Ширина запрещенных зон и характер заполнения электронами разрешенных зон обуславливают электрические свойства твердого тела – оно может быть или металлом, или полупроводником, или диэлектриком.

Лекция 16
Электропроводность полупроводников. Термоэлектрические явления.

Не нашли то, что искали? Воспользуйтесь поиском:

22 (Зонная теория твердых тел. Металлы, диэлектрики, полупроводники с точки зрения зонной теории)

Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.

В соответствии с квантовой механикой свободные электроны могут иметь любую энергию — их энергетический спектрнепрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.

Согласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей).

В случае нескольких атомов, объединенных химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более 10 20 ), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни расщепляются до практически непрерывных дискретных наборов — энергетических зон. Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной зоной, следующая за ней — зоной проводимости. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

Зонная структура различных материалов

В различных веществах, а также в различных формах одного и того же вещества, энергетические зоны располагаются по-разному. По взаимному расположению этих зон вещества делят на три большие группы (см. Рисунок ):

металлы— зона проводимости и валентная зона перекрываются, образуя одну зону, называемую зоной проводимости, таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твёрдому телуразности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.

полупроводники— зоны не перекрываются, и расстояние между ними составляет менее 3.5 эВ.Для того, чтобы перевести электрон из валентной зоны в зону проводимости, требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.

диэлектрики— зоны не перекрываются, и расстояние между ними составляет более 3.5 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.

Зонная теория является основой современной теории твёрдых тел. Она позволила понять природу и объяснить важнейшие свойства проводников, полупроводников и диэлектриков. Величина запрещённой зоны между зонами валентности и проводимости является ключевой величиной в зонной теории, она определяет оптические и электрические свойства материала.

Поскольку одним из основных механизмов передачи электрону энергии является тепловой, то проводимость полупроводников очень сильно зависит от температуры. Также проводимость можно увеличить, создав разрёшенный энергетический уровень в запрещённой зоне путёмлегирования(добавление в состав материалов примесей для изменения (улучшения) физических и/или химических свойств основного материала). Таким образом создаются все полупроводниковые приборы: солнечные элементы (преобразователи света в электричество), диоды,транзисторы, твердотельныелазерыи другие.

Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного — электрона, и положительного — дырки), обратный переход — процессомрекомбинации.

Металлы, диэлектрики и полупроводники по зонной теории

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также заполнена целиком. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электро­нов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внеш­них «коллективизированных» электронов изолированных атомов.

В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис. 314. На рис. 314, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т. е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны, т. е. стать свободным и участвовать в проводимости. Внутризонный переход вполне возможен, так как, например, при 1 К энергия теплового движения kT » 10 –4 эВ, т. е. гораздо больше разности энергий между соседними уровнями зоны (примерно 10 –22 эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной зоной, что в конечном счете приводит к не полностью заполненной зоне (рис. 314, б). Это имеет место для щелочноземельных элементов, образующих II группу таблицы Менделеева ( Be , Mg , Ca , Zn , . ). В данном случае образуется так называемая «гибридная» зона, которая заполняется валентными электронами лишь частично. Следовательно, в данном случае металлические свойства щелочноземельных элементов обусловлены перекрытием валентной и свободной зон.

Помимо рассмотренного выше перекрытия зон возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов, которое может привести к тому, что вместо двух частично заполненных зон в кристалле окажутся одна полностью заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состоя­ний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны D Е.

Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону прово­димости и кристалл является диэлектриком, оставаясь им при всех реальных тем­пературах (рис. 314, в). Если запрещенная зона достаточно узка ( D Е порядка 1 эВ), то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко либо путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию D Е , и кристалл является полупровод­ником (рис. 314, г).

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например, для NaCl D Е=6 эВ), для полупроводников — достаточно узка (например, для германия D Е=0,72 эВ). При температурах, близких к 0 К, полупроводники ведут себя как диэлектрики, так как переброса электронов в зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличивается.

Зонная теория твердых тел. Металлы, диэлектрики и полупроводники в зонной теории.

Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле. Согласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей).В случае нескольких атомов, объединенных химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более 1020), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни расщепляются до практически непрерывных дискретных наборов — энергетических зон. Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной зоной, следующая за ней — зоной проводимости. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

Читайте также:  Понятие жизнь с точки зрения биохимии

В основе зонной теории лежат следующие главные приближения:[1]

1.Твердое тело представляет собой идеально периодический кристалл.

2.Равновесные положения узлов кристаллической решетки фиксированы, то есть ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы, вводятся впоследствии как возмущение электронного энергетического спектра.

3.Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.

полупроводники — зоны не перекрываются и расстояние между ними составляет менее 3.5 эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.

диэлектрики — зоны не перекрываются и расстояние между ними составляет более 3.5 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.

53.Собственная электропроводимость полупроводников

Полупроводники-вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (10 6 — 10 4 Ом -1 см -1 ) и диэлектриков (10 -8 — 10 -12 Ом -1 см -1 ), обусловлена переносом электронов и возрастает при повышении температуры. Наиболее существенная особенность полупроводников — способность изменять свои свойства в чрезвычайно широких пределах под влиянием различных воздействий (температуры, освещения, электрического и магнитного поля, внешнего гидростатического давления). В результате таких воздействий характеристики полупроводника могут сильно изменяться, (например, электропроводность может меняться в 10 6 -10 7 раз).

Собственными полупроводникамиявляются химически чистые полупроводники, а их проводимость называется собственной проводимостью. Примером собственных полупроводников могут служить химически чистые Ge, Se, а также многие химические соединения: InSb, GaAs, CdS и др.

Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости. При этом в зоне проводимости появляется некоторое число носителей тока- электронов, занимающих уровни вблизи дна зоны;одновременно в валентной зоне освобождается такое же число мест на верхних уровнях, в результате чего появляются дырки.

Распределение электронов по уровням валентной зоны и зоны проводимости описывается функцией Ферми-Дирака.
График функции распределения:

У собственных полупроводников отсчитанное от потолка валентной зоны значение уровня Ферми равно

где, — ширина запрещенной зоны, а и — эффективные массы дырки и электрона, находящегося в зоне проводимости.

Электропроводимость собственных полупроводников быстро растет с температурой, изменяясь по закону

Ϭ= Ϭexp(- /

Итак, в собственном полупроводнике идут одновременно 2 процесса: рождение попарно свободных электронов и дырок и рекомбинация, приводящая к попарному исчезновению электронов и дырок. Вероятность первого процесса растет температурой. Вероятность рекомбинации пропорциональна как числу свободных электронов, так и числу дырок.

Когда внешнее электрическое поле отсутствует, электроны проводимости и дырки движутся хаотически. При включении поля на хаотическое движение накладывается упорядоченное движение: электронов против поля и дырок – в направлении поля. Оба движения- и дырок, и электронов-приводят к переносу заряда вдоль кристалла. Следовательно, собственная электропроводимость обуславливается как бы носителями заряда двух знаков-отрицательными электронами и положительными дырками.

(54) приёмная электропроводность полупроводников

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов. Если повышения температуры нет, связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис. 1, б — черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 1 ,б — разорвавшаяся линия электрона). Чем выше температура полупроводника, тем больше в нем появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному заряду электрона.

Дата добавления: 2015-10-01 ; просмотров: 2021 . Нарушение авторских прав

Металлы с точки зрения зонной теории

Элементы физики твердого тела

§ 1 Понятие о зонной теории твердых тел

Известно, что в изолированном атоме электрон может находиться на вполне определенных энергетических уровнях. Эти значения энергии электрона (или атома) называют разрешенными. Разрешенные значения энергии в атоме отделены друг от друга широкими областями запрещенных энергий. Пусть имеется N изолированных атомов. Пока атомы не взаимодействуют, они имеют одинаковые энергетические уровни. Заполнение уровней электронами осуществляется в каждом атоме независимо от заполнения аналогичных уровней в других атомах. По мере сближения атомов между ними возникают все усиливающееся взаимодействие, приводящие к тому, что энергетические уровни смещаются, расщепляются и расширяются в зоны, образуется так называемый зонный энергетический спектр. Вместо одного одинакового для всех N атомов уровня возникает N очень близких, но не совпадающих уровней, т.е. каждый уровень изолированного атома расщепляется в пределе на N густо расположенных уровней, образующих полосу или зону.

Из рисунка 1 видно, что заметно расщепляются и расширяются лишь уровни внешних валентных электронов, наиболее слабо связанных с ядрами и имеющих наибольшую энергию, а также более высокие уровни, которые в основном состоянии атома электронами вообще не заняты. Уровни внутренних электронов либо вообще не расщепляются (ближайшие к ядру), либо расщепляются слабо, т.е. в твердых телах внутренние электроны ведут себя так же, как в изолированных атомах, валентные электроны обобществляются («коллективизируются») — принадлежит всему твердому телу.


Образование зонного энергетического спектра в кристалле является квантово-механическим эффектом и вытекает из соотношения неопределенностей Гейзенберга. В кристалле валентные электроны атомов связаны слабее с ядрами и могут переходить от атома к атому сквозь потенциальные барьеры, разделяющие атомы, т.е. перемещаться без изменения полной энергии (туннельный эффект). Это приводит к тому, что среднее время жизни t валентного электрона в данном атоме по сравнению с изолированным атомом существенно уменьшается и составляет

10 -15 с (для изолированного атома

10 -8 с ) . Время же жизни электронов в каком-либо состоянии связаны с неопределенностью его энергии (шириной уровня) соотношением неопределенности следовательно , если естественная ширина спектральных линий составляет

1 0 -7 эВ, то в пределах D E » 1 ¸ 1 0 , т.е. энергетические уровни валентных электронов расширяются в зону разрешенных значений энергии.

Каждая разрешенная зона «вмещает» в себя столько близлежащих дискретных уровней, сколько атомов содержит кристалл. Как правило , кристаллы содержат n

1 0 2 0 ¸ 1 0 2 5 атомов, следовательно, расстояния между соседними электронными уровнями в зоне составляет

Разрешенные энергетические зоны разделены запрещенными зонами. В запрещенных зонах электроны находиться не могут.

§ 2 Металлы, диэлектрики и полупроводники

в зонной теории

С точки зрения зонной теории различие электронных свойств металлов, диэлектриков и полупроводников объясняется двумя причинами: 1) характером расположения энергетических зон, точнее шириной запрещенной зоны 2) различным заполнением электронами разрешенных энергетических зон.

В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая:

Зона, образованная уровнями энергии, на которых находятся валентные электроны в основном состоянии атома, называется валентной зоной.

При абсолютном нуле валентные электроны заполняют попарно нижние уровни валентной зоны.

Зона проводимости — образована энергетическими уровнями, находясь на которых электрон является обобществленным, т.е. не связанным с отдельным атомом (зона свободных электронов). Если в зоне проводимости есть электроны, то при приложении электрического поля по веществу будет протекать ток.

В металлах (I) валентная зона не полностью заполнена электронами. Электронам, находящимся на верхних энергетических уровнях, достаточно сообщить энергию

1 0 -23 эВ, чтобы перевести их на более высокие уровни, сделать свободными. Энергия теплового движения ( k Т ) составляет при 1К величину порядка 10 -4 эВ, т.е. при » температурах имеются свободные электроны и такое твердое тело будет проводником, т.е. в металлах ( I ) валентная зона частично заполнена и является зоной проводимости. В металлах ( II ) зона проводимости перекрывается с валентной зоной. В этом случае образуется широкая «гибридная» зона, которую валентные электроны заполняют лишь частично. Выше занятых уровней расположены свободные уровни и такое твердое тело, как и в случае ( I ) будет проводником.

Зонная теория твердых тел позволила объяснить, почему электропроводимость не возрастает с увеличением валентности металла, как это следует из кинетической теории. Al 3+ , следовательно, имеет 3 валентных электрона, т.е. проводимость по классической теории должна быть больше чем у Cu 1+ ( 1 валентный электрон ). С современной точки зрения электропроводность зависит не от числа валентных электронов, а от числа электронов, для которых в верхней зоне проводимости имеется достаточное число свободных энергетических состояний.

У двухвалентных металлов имеется некоторое число свободных энергетических уровней в зоне проводимости. Но число электронов, которые могут быть переведены внешним электрическим полем в свободные состояния меньше, чем у одновалентных металлов. Еще меньше таких электронов у трехвалентных металлов.

У диэлектриков ( III ) валентная зона заполнена полностью, ширина запрещенной зоны велика ( D E > 3 эВ) тепловое движение не может перебросить электрон из валентной зоны в зону проводимости. Только при приложении очень сильных электрических полей возможен переход электрона в зону проводимости (пробой диэлектрика при пробивных напряжениях, зависящих от рода материала и его толщины).

У полупроводников ( IV ) валентная зона заполнена полностью. Ширина запрещенной зоны невелика ( D E

1 эВ). При температурах

200 – 300 ° С или внешних воздействиях (например, облучение светом — внутренний фотоэффект) электроны переходят из валентной зоны в зону проводимости и по полупроводниках протекает ток.

Отличия с точки зрения зонной теории:

  • Между металлами и диэлектриками

а) при 0 К у металлов в зоне проводимости имеются электроны, у диэлектриков их нет.

б) у металлов нет или очень узкая запрещенная зона, у диэлектриков — большая запрещенная зона.

  • Между диэлектриками и полупроводниками:

а) ширина запрещенной зоны полупроводника

1 эВ; диэлектрик > 3 эВ.

б) при 0 К полупроводники ведут себя как диэлектрики, при возрастании температуры проводимость полупроводника растет.

Понятие энергетический уровень или энергетическая зона характеризует только энергетическое состояние электрона, а не геометрическое расположение его в теле.

Источники:
  • http://mylektsii.ru/12-22627.html
  • http://www.ngpedia.ru/id508003p1.html
  • http://studopedia.info/8-7972.html
  • http://studizba.com/lectures/73-fizika/1066-otvety-na-voprosy-po-fizike/19555-elektricheskaya-provodimost-tverdyh-tel-s-tochki-zreniya-zonnoy-teorii-metally-poluprovodniki-dielektriki.html
  • http://studopedia.ru/3_100187_metalli-dielektriki-i-poluprovodniki-po-zonnoy-teorii.html
  • http://studfiles.net/preview/1943069/
  • http://www.pppa.ru/additional/02phy/06/quantum_physics_34.php
  • http://studopedia.info/8-7972.html
  • http://bog5.in.ua/lection/ftt_lect/lect1_ftt.html