Меню Рубрики

Металл с точки зрения проводимости электрического тока

Электронная проводимость металлов была впервые экспериментально доказана немецким физиком Э.Рикке в 1901 г. Через три плотно прижатых друг к другу отполированных цилиндра — медный, алюминиевый и снова медный — длительное время (в течение года) пропускали электрический ток. Общий заряд, прошедший за это время, был равен 3.5·10 6 Кл. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то массы цилиндров должны были бы заметно измениться, если бы носителями заряда были ионы.

Результаты опытов показали, что масса каждого из цилиндров осталась неизменной. В соприкасающихся поверхностях были обнаружены лишь незначительные следы взаимного проникновения металлов, которые не превышали результатов обычной диффузии атомов в твердых телах. Следовательно, свободными носителями заряда в металлах являются не ионы, а такие частицы, которые одинаковы и в меди, и в алюминии. Такими частицами могли быть только электроны.

Прямое и убедительное доказательство справедливости этого предположения было получено в опытах, поставленных в 1913 г. Л. И. Мандельштамом и Н. Д. Папалекси и в 1916 г. Т. Стюартом и Р. Толменом.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 1). К концам дисков с помощью скользящих контактов присоединяют гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы будут некоторое время двигаться вдоль проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток будет существовать короткое время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц прекращается.

Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т.е. . Поэтому, измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение . Оно оказалось равным 1,8·10 11 Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе, найденным ранее из других опытов.

Таким образом, электрический ток в металлах создается движением отрицательно заряженных частиц электронов. Согласно классической электронной теории проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), металлический проводник можно рассматривать как физическую систему совокупности двух подсистем:

    свободных электронов с концентрацией

10 28 м -3 и

  • положительно заряженных ионов, колеблющихся около положения равновесия.
  • Появление свободных электронов в кристалле можно объяснить следующим образом.

    При объединении атомов в металлический кристалл слабее всего связанные с ядром атома внешние электроны отрываются от атомов (рис. 2). Поэтому в узлах кристаллической решетки металла располагаются положительные ионы, а в пространстве между ними движутся электроны, не связанные с ядрами своих атомов. Эти электроны называются свободными или электронами проводимости. Они совершают хаотическое движение, подобное движению молекул газа. Поэтому совокупность свободных электронов в металлах называют электронным газом.

    Если к проводнику приложено внешнее электрическое поле, то на беспорядочное хаотическое движение свободных электронов накладывается направленное движение под действием сил электрического поля, что и порождает электрический ток. Скорость движения самих электронов в проводнике — несколько долей миллиметра в секунду, однако возникающее в проводнике электрическое поле распространяется по всей длине проводника со скоростью, близкой к скорости света в вакууме (3·10 8 м/с).

    Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

    Электроны под влиянием постоянной силы, действующей со стороны электрического поля, приобретают определенную скорость упорядоченного движения (ее называют дрейфовой). Эта скорость не увеличивается в дальнейшем со временем, так как при столкновении с ионами кристаллической решетки электроны передают кинетическую энергию, приобретенную в электрическом поле, кристаллической решетке. В первом приближении можно считать, что на длине свободного пробега (это расстояние, которое электрон проходит между двумя последовательными столкновениями с ионами) электрон движется с ускорением и его дрейфовая скорость линейно возрастает со временем

    В момент столкновения электрон передает кинетическую энергию кристаллической решетке. Потом он опять ускоряется, и процесс повторяется. В результате средняя скорость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике и, следовательно, разности потенциалов на концах проводника, так как , где l — длина проводника.

    Известно, что сила тока в проводнике пропорциональна скорости упорядоченного движения частиц

    а значит, согласно предыдущему, сила тока пропорциональна разности потенциалов на концах проводника: I

    U. В этом состоит качественное объяснение закона Ома на основе классической электронной теории проводимости металлов.

    Однако в рамках этой теории возникли трудности. Из теории следовало, что удельное сопротивление должно быть пропорционально корню квадратному из температуры (), между тем, согласно опыту,

    Т. Кроме того, теплоемкость металлов, согласно этой теории, должна быть значительно больше теплоемкости одноатомных кристаллов. В действительности теплоемкость металлов мало отличается от теплоемкости неметаллических кристаллов. Эти трудности были преодолены только в квантовой теории.

    В 1911 г. голландский физик Г. Камерлинг-Оннес, изучая изменение электрического сопротивления ртути при низких температурах, обнаружил, что при температуре около 4 К (т.е. при -269°С) удельное сопротивление скачком уменьшается (рис. 3) практически до нуля. Это явление обращения электрического сопротивления в нуль Г. Камерлинг-Оннес назвал сверхпроводимостью.

    В дальнейшем было выяснено, что более 25 химических элементов — металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама — 0,012К, самое высокое у ниобия — 9К.

    Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtSb и другие.

    Вещества в сверхпроводящем состоянии обладают необычными свойствами:

    1. электрический ток в сверхпроводнике может существовать длительное время без источника тока;
    2. внутри вещества в сверхпроводящем состоянии нельзя создать магнитное поле:
    3. магнитное поле разрушает состояние сверхпроводимости. Сверхпроводимость — явление, объясняемое с точки зрения квантовой теории. Достаточно сложное его описание выходит за рамки школьного курса физики.

    Широкому применению сверхпроводимости до недавнего времени препятствовали трудности, связанные с необходимостью охлаждения до сверхнизких температур, для чего использовался жидкий гелий. Тем не менее, несмотря на сложность оборудования, дефицитность и дороговизну гелия, с 60-х годов XX века создаются сверхпроводящие магниты без тепловых потерь в их обмотках, что сделало практически возможным получение сильных магнитных полей в сравнительно больших объемах. Именно такие магниты требуются для создания установок управляемого термоядерного синтеза с магнитным удержанием плазмы, для мощных ускорителей заряженных частиц. Сверхпроводники используются в различных измерительных приборах, прежде всего в приборах для измерения очень слабых магнитных полей с высочайшей точностью.

    В настоящее время в линиях электропередачи на преодоление сопротивления проводов уходит 10 — 15% энергии. Сверхпроводящие линии или хотя бы вводы в крупные города принесут громадную экономию. Другая область применения сверхпроводимости — транспорт.

    На основе сверхпроводящих пленок создан ряд быстродействующих логических и запоминающих элементов для счетно-решающих устройств. При космических исследованиях перспективно использование сверхпроводящих соленоидов для радиационной защиты космонавтов, стыковки кораблей, их торможения и ориентации, для плазменных ракетных двигателей.

    В настоящее время созданы керамические материалы, обладающие сверхпроводимостью при более высокой температуре — свыше 100К, то есть при температуре выше температуры кипения азота. Возможность охлаждать сверхпроводники жидким азотом, который имеет на порядок более высокую теплоту парообразования, существенно упрощает и удешевляет все криогенное оборудование, обещает огромный экономический эффект.

    Практически все металлы можно рассматривать, как проводники электрического тока. Это обусловлено их строением, представляющим собой кристаллическую пространственную решетку. Узлы этой решетки совпадают с центрами положительных ионов, вокруг которых наблюдается хаотическое движение свободных электронов. Этим объясняется явление проводимости, благодаря которому применение электрического тока в металлах получило наиболее широкое распространение.

    Физические свойства металлов

    Свойства металлов полностью зависят от их внутреннего строения. Твердое состояние металлов представляет собой кристаллическую решетку пространственного типа, где кристаллы расположены упорядоченно. Как уже было отмечено, между узлами кристаллической решетки наблюдается движение свободных электронов.

    Абсолютное значение их отрицательных зарядов совпадает с положительным зарядом всех ионов, расположенных в узлах кристаллической решетки. Когда через проводник пропускается электрический ток, ионы остаются на своем месте. Происходит перемещение свободных электронов, одинаковых в любом веществе.

    Электрический ток в металлах: применение

    То, что в металлах существуют электроны, проводящие ток, было доказано очень давно. Прежде всего, эти полезные свойства используются при передаче электроэнергии от источника к потребителям. В основе работы генераторов и электродвигателей также используются физические свойства металлов. Они применяются и в нагревательных приборах всех типов, предназначенных для промышленного производства и домашних условий.

    Таким образом, электрический ток в металлах является упорядоченным движением свободных электронов, на которые воздействует электрическое поле. При его отсутствии, движение электронов становится хаотичным, подобно движению молекул жидкостей или газов. Однако, при наличии в проводнике электрического поля, происходит смещение электронов к положительному полюсу источника тока, то есть их движение становится упорядоченным.

    Сами электроны в проводнике перемещаются с невысокой скоростью, в отличие от электрического поля, которое перемещается в проводнике со скоростью, приближающейся к скорости света. Именно эта величина служит показателем скорости распространения в проводнике электрического тока.

    Металл с точки зрения проводимости электрического тока

    «Физика — 10 класс»

    Как движутся электроны в металлическом проводнике, когда в нём нет электрического поля?
    Как изменяется движение электронов, когда к металлическому проводнику прикладывают напряжение?

    Электрический ток проводят твёрдые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?

    Вы познакомились с электрическим током в металлических проводниках и с установленной экспериментально вольт-амперной характеристикой этих проводников — законом Ома.

    Читайте также:  Сколько стоят линзы для глаз для зрения голубые

    Наряду с металлами хорошими проводниками, т. е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизованный газ — плазма. Эти проводники широко используются в технике.

    В вакуумных электронных приборах электрический ток образуют потоки электронов.

    Металлические проводники находят самое широкое применение в передаче электроэнергии от источников тока к потребителям. Кроме того, эти проводники используются в электродвигателях и генераторах, электронагревательных приборах и т. д.

    Кроме проводников и диэлектриков (веществ со сравнительно небольшим количеством свободных заряженных частиц), имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, но и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников.

    Долгое время полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, когда сначала была предсказана теоретически, а затем обнаружена и изучена легкоосуществимая возможность управления электрической проводимостью полупроводников.

    Нет универсального носителя тока. В таблице приведены носители тока в различных средах.

    Электронная проводимость металлов.

    Начнём с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о её объяснении с точки зрения молекулярнокинетической теории.

    Носителями свободных зарядов в металлах являются электроны. Их концентрация велика — порядка 10 28 1/м 3 .

    Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10 -4 м/с.

    Экспериментальное доказательство существования свободных электронов в металлах.

    Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Мандельштама и Папалекси (1913), Стюарта и Толмена (1916). Схема этих опытов такова.

    На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 16.1). К концам дисков при помощи скользящих контактов подключают гальванометр.

    Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

    Направление тока в этом опыте говорит о том, что он создаётся движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8 • 10 11 Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе е/m, найденным ранее из других опытов.

    Движение электронов в металле.

    Свободные электроны в металле движутся хаотично. При подключении проводника к источнику тока в нём создаётся электрическое поле, и на электроны начинает действовать кулоновская сила Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения. Этот факт подтверждает, например, зависимость сопротивления от температуры. Согласно классической теории металлов, в которой движение электронов рассматривается на основе второго закона Ньютона, сопротивление проводника пропорционально эксперимент же показывает линейную зависимость сопротивления от температуры.

    Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

    Электрический ток в различных средах — Физика, учебник для 10 класса — Класс!ная физика

    22 (Зонная теория твердых тел. Металлы, диэлектрики, полупроводники с точки зрения зонной теории)

    Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.

    В соответствии с квантовой механикой свободные электроны могут иметь любую энергию — их энергетический спектрнепрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.

    Согласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей).

    В случае нескольких атомов, объединенных химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более 10 20 ), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни расщепляются до практически непрерывных дискретных наборов — энергетических зон. Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной зоной, следующая за ней — зоной проводимости. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

    Зонная структура различных материалов

    В различных веществах, а также в различных формах одного и того же вещества, энергетические зоны располагаются по-разному. По взаимному расположению этих зон вещества делят на три большие группы (см. Рисунок ):

    металлы— зона проводимости и валентная зона перекрываются, образуя одну зону, называемую зоной проводимости, таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твёрдому телуразности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.

    полупроводники— зоны не перекрываются, и расстояние между ними составляет менее 3.5 эВ.Для того, чтобы перевести электрон из валентной зоны в зону проводимости, требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.

    диэлектрики— зоны не перекрываются, и расстояние между ними составляет более 3.5 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.

    Зонная теория является основой современной теории твёрдых тел. Она позволила понять природу и объяснить важнейшие свойства проводников, полупроводников и диэлектриков. Величина запрещённой зоны между зонами валентности и проводимости является ключевой величиной в зонной теории, она определяет оптические и электрические свойства материала.

    Поскольку одним из основных механизмов передачи электрону энергии является тепловой, то проводимость полупроводников очень сильно зависит от температуры. Также проводимость можно увеличить, создав разрёшенный энергетический уровень в запрещённой зоне путёмлегирования(добавление в состав материалов примесей для изменения (улучшения) физических и/или химических свойств основного материала). Таким образом создаются все полупроводниковые приборы: солнечные элементы (преобразователи света в электричество), диоды,транзисторы, твердотельныелазерыи другие.

    Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного — электрона, и положительного — дырки), обратный переход — процессомрекомбинации.

    Электронная теория проводимости металлов

    В 1900 году немецкий физик П. Друде создал теорию электропроводности металлов. В основе этой теории лежат следующие допущения:

    1. Свободные электроны в металлах ведут себя подобно молекулам идеального газа. Электронный газ подчиняется законам идеального газа.
    2. Движение свободных электронов подчиняется законам Ньютона.
    3. Свободные электроны в процессе хаотического движения сталкиваются только с ионами кристаллической решетки.
    4. При столкновении электронов с ионами электроны передают ионам свою кинетическую энергию полностью.

    Согласно данной модели, на отрезке проводника свободные электроны совершают хаотическое тепловое движение. Действующее в проводнике электрическое поле перемещает электроны с небольшой скоростью (скорость дрейфа электронов

    0,1 мм/с) вдоль проводника.

    Сила тока в проводнике:

    где n – концентрация свободных электронов в проводнике

    – средняя скорость дрейфа электронов

    S – поперечное сечение проводника.

    С позиции электронной проводимости металлов удалось объяснить причину нагревания проводников при прохождении электрического тока.

    Электронная теория проводимости металлов экспериментально подтверждена в 1913 году российскими физиками Л.И. Мандельштамом и Н.Д. Папалекси и в 1916 году американскими физиками Т. Стюартом и Р. Толменом.

    Направление электрического тока в проводнике выбрано в сторону движения положительно заряженных частиц.

    Отношение заряда, переносимого через поперечное сечение проводника за интервал времени, к этому интервалу времени называется силой тока.

    В СИ [I] = 1 А (Ампер)

    Для поддержания электрического тока в проводнике необходимо электрическое поле. Его действие характеризуется электрическим напряжением.

    В СИ [U] = 1 В (Вольт)

    Для поддержания постоянного направленного движения заряженных частиц в проводнике электрическое поле должно совершать работу. Эту работу принято называть работой электрического тока.

    Работа сил электрического поля или работа электрического тока на участке цепи сопротивлением R и за время t равна:

    В СИ [A] = 1 Дж (Джоуль)

    При нагревание проводника растет его температура, следовательно, увеличивается внутренняя энергия. С прекращением роста температуры проводника он начинает передавать окружающим телам некоторое количество теплоты, равное работе электрического тока. Таким образом, формула A=IUt определяет количество теплоты, переданное проводником другим телам.

    Для последовательного соединения проводников удобнее воспользоваться формулой:

    При параллельном соединении удобно использовать формулу:

    Для характеристики электрических приборов удобнее пользоваться физической величиной, получившей название мощность тока.

    Электропроводность металлов

    Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

    Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы — электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

    Читайте также:  Методика восстановления зрения по методу жданова

    Как отличается электропроводность разных металлов?

    Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

    Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

    Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы — медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

    По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

    Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже — не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

    Классическая теория электропроводности металлов

    Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

    Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

    Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

    Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

    Металлы с высокой электопроводностью

    Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

    Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

    В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции — изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

    Объясните механизм проводимости в металлах с точки зрения электронной теории

    С точки зрения классической электронной теории металлов при образовании кристаллической решетки от атомов отщепляются некоторые, слабее всего связанные с ними электроны (валентные). Отщепленные электроны становятся общими для всех атомов и могут свободно перемещаться в кристалле. Именно эти электроны, в отличие от электронов,

    заполняющих внутренние электронные оболочки атомов, обеспечивают электропроводность металлов. Поэтому их называют электронами проводимости. Следует отметить, что электроны проводимости в металлах не являются, вообще говоря, абсолютно свободными и испытывают взаимодействие с ионами, находящимися в узлах кристаллической решетки. Однако в первом приближении этим взаимодействием можно пренебречь. Справедливость такого подхода подтверждается, в частности, высокой проводимостью металлов, что может иметь место только в случае достаточно свободного движения электронов внутри проводника. Таким образом, в проводниках можно рассматривать идеальный газ свободных электронов или электронный газ.

    2. Почему сопротивление металлов увеличивается с возрастанием температуры?

    С повышение температуры увеличивается амплитуда колебаний атомов в узлах кристаллических решетках металлов, в результате чего возрастает вероятность столкновения свободных электронов с ними. Соответственно при одном и том же токе протекающем через проводник, требуются различные величины Э.Д.С приложенные к нему.

    3. У всех ли проводников сопротивление увеличивается с возрастанием температуры?

    Нет. Среди проводников есть исключения с отрицательным ТКС, в частности, это жидкие проводники и уголь.

    4. Что называется температурным коэффициентом сопротивления?

    Температурный коэффициент электрического сопротивления, это величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу.

    ТКС характеризует зависимость электрического сопротивления от температуры и измеряется в кельвинах в минус первой степени (К -1 ).

    studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.001 с) .

    Механизмы электропроводности

    Существует классификация веществ в зависимости от их проводимости. Так, к проводникам относят вещества, удельная проводимость которых лежит в диапазоне $^6-^8\frac$, к диэлектрикам вещества с удельной проводимостью меньше $^\frac$ . Полупроводники лежат внутри этого диапазона, их проводимость может быть от $^\ до$ $^4\frac$. Такая классификация весьма условна и неточна. Так, у полупроводника с ростом температуры проводимость растет и при комнатной температуре может быть такой же, как и у проводника. При температурах около абсолютного нуля полупроводники являются диэлектриками. К проводникам относят, прежде всего, металлы.

    Механизм электропроводности в металлах

    Задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано с переносом вещества, атомы и молекулы металлов не принимают участия в переносе тока.

    Атомы металла, находящегося в твёрдом (или жидком) состоянии, расщепляются на несколько электронов и положительный ион. Ионы находятся в узлах кристаллической решетки и совершают колебания около положения равновесия. Они составляют «твердый скелет» металлического тела. Электроны же пребывают в свободном беспорядочном движении в промежутках между ионами и составляют так называемый «электронный газ». При отсутствии внешнего электрического поля электроны совершают хаотичное, тепловое движение. Внешнее поле ведет к упорядочению движения электронов, то есть возникновению электрического тока. Электроны в процессе движения сталкиваются с ионами кристаллической решетки, передают ионам избыток кинетической энергии, которую они получили при взаимодействии с полем. Это приводит к интенсификации колебаний ионов, то есть нагреванию металла.

    Попробуй обратиться за помощью к преподавателям

    Все металлы не только хорошие проводники электрического тока, но и имеют высокую теплопроводность. С точки зрения представления о механизме тока в металлах, это совпадение объясняется не просто случайностью, а является следствием одной общей причины — наличием в металлах свободных электронов. В металлах теплопередача происходит не только посредством столкновения атомов, но и свободными, легко подвижными электронами, которые переносят дополнительную энергию в веществе.

    Прямое доказательство того, что носителями тока в металлах являются электроны дали опыты Р.Ч. Толмена. Он измерил силу электрического тока, который появляется в металле, когда металлическому телу сообщают ускорение. Возникновение тока вызывается отставанием электронов от движения кристаллической решетки вещества.

    То, что в проводниках существуют свободные электроны, объясняют тем, что при образовании кристаллической решетки от атомов металла отделяются валентные (самые слабо связанные) электроны, которые становятся общей собственностью всего вещества.

    Задай вопрос специалистам и получи
    ответ уже через 15 минут!

    Механизм электропроводности полупроводников

    Особый интерес представляют электронные полупроводники. В таких полупроводниках носителями тока являются, как и в металлах, электроны. Различие в проводимости металлов и полупроводников связано с очень большой разницей в концентрации носителей тока. В полупроводниках концентрация электронов в свободном состоянии в тысячи раз меньше, чем в металлах. В полупроводнике постоянно идут два противоположных процесса: процесс освобождения электронов, при этом используется внутренняя или световая энергия; процесс воссоединения с ионом, который потерял свой электрон. Равновесие между свободными и связанными электронами динамическое. Для того чтобы в полупроводнике перевести электрон из связанного состояния в свободное, необходимо сообщить ему дополнительную энергию. В металлах даже при низких температурах количество свободных электронов велико. Силы межмолекулярного взаимодействия в металлах достаточно для освобождения части электронов.

    Читайте также:  Кто такой топ менеджер с точки зрения управления

    Сравнительно немногочисленные свободные электроны полупроводника, оторвались от атомов, при этом атомы стали ионами. Каждый ион окружен большим количеством атомов, которые не заряжены. Нейтральные атомы могут отдать свой электрон иону, превращаясь в ион, а ион становится нейтральным. Так, обмен электронами ведет к изменению местоположения положительных ионов в полупроводнике, то есть положительный заряд перемещается. До тех пор пока на полупроводник внешнего поля нет в среднем каждому электрону, который смещается в одном направлении, соответствует перемещение электрона в противоположном направлении. Аналогичный процесс идет с положительным зарядом. При наложении внешнего поля процессы получают преимущественное направление: свободные электроны движутся в направлении противоположном полю, положительные места — по полю. Возникает ток одного направления (по полю), проводимость вызывается этими двумя процессами. Место, где вместо нейтрального атома имеется положительный ион, называют дыркой. Надо отметить, что фактически всегда имеет место только движение электронов, но движение связанных электронов от атомов к ионам ведет к результату, при котором будто бы движутся дырки, которые имеют положительный заряд.

    Механизм электропроводности полупроводников описывает зонная теория. Она базируется на анализе энергетического спектра электронов. Электронный спектр разбивается на зоны, разделенные запрещенными промежутками. В том случае, если в верхней зоне имеющей электроны, ими заполнены не все квантовые состояния, то есть в пределах зоны имеется возможность перераспределения энергии и импульсов электронов, то данное вещество является проводником электрического тока. Движение электронов в зоне проводимости подчиняются квантовым законам.

    Классическая электронная теория металлов

    Интерпретация разных свойств вещества с точки зрения движения и существования электронов является содержанием электронной теории. В классической теории металлов считают, что движение электрона описывают законы Ньютоновой механики. В этой теории считают, что взаимодействие электронов между собой несущественно, а взаимодействие ионов и электронов осуществляется только как соударения. Это значит, что электроны проводимости рассматривают как электронный газ, который подобен идеальному одноатомному газу. Такой газ хорошо изучен и его свойства описаны. В частности он подчиняется закону равномерного распределения энергии по степеням свободы. В соответствии с этим законом средняя кинетическая энергия теплового движения, которая приходится на каждую степень свободы, равна $\frackT$, где $k=1,38\cdot ^\frac$, $T$ — термодинамическая температура. Средняя энергия теплового движения одного электрона равна:

    где $\left\langle v^2_T\right\rangle $- среднее значение квадрата скорости теплового движения.

    Классическая электронная теория качественно объясняет многие законы электрического тока.

    Задание: Чему равна концентрация свободных электронов, если от каждого атома отщепился один электрон.

    Если от каждого атома отщепился один электрон, концентрация свободных электронов равна числу атомов в единице объема ($n$):

    где $\rho $ — плотность металла, $\mu $ — молярная масса вещества, $N_=6\cdot ^моль^$ — число Авогадро. Для металлов значения $\frac$ для металлов равны: калий$:\ \frac_1>_1>$=$2\cdot ^4\frac$, бериллий:$\ \frac_2>_2>$=$2\cdot ^5\frac$.

    Тогда концентрация свободных электронов проводимости будут иметь значения порядка:

    Задание: Чему равна подвижность электронов в калии? Удельная проводимость металлов равна $\sigma =^6\frac.$

    Подвижностью электронов ($b$) является отношение скорости дрейфа ($v_d$) к напряженности электрического поля (E):

    можно записать в виде:

    где $n$ — концентрация электронов проводимости, $q_e=1,6\cdot ^Кл$ — заряд электрона, $\sigma $ — удельная проводимость. Используя (2.1) и (2.3) выразим подвижность:

    Используем результат первого примера, концентрация свободных электронов в калии равна $n=^м^$. Проведем вычисления:

    Так и не нашли ответ
    на свой вопрос?

    Просто напиши с чем тебе
    нужна помощь

    Электрический ток в металлах

    Этот видеоурок доступен по абонементу

    У вас уже есть абонемент? Войти

    Этот факт ни в коей мере не постулировался, а был проверен и доказан независимо многими учеными разными методами. Например, немецкий физик Карл Рикке проводил опыт по пропусканию тока в 0,1 А в течении года через три отполированных цилиндра: одного алюминиевого и двух медных. По истечению эксперимента (а за это время по цепи прошел огромный заряд в ) никаких изменений в структуре цилиндров не произошло, за исключением небольшой диффузии (рис. 1). А если бы носителями заряда были не электроны, а ионы, то тогда был бы перенос вещества одного цилиндра в вещество другого, и, конечно же, в результате столь длительного эксперимента, химическое строение цилиндров изменилось бы.

    Рис. 1. Схема опыта Рикке

    Еще одним опытом по подтверждению электронной проводимости металлов стал опыт 1912 года российских ученых Мангельштама и Папалекси, спустя небольшое время проведенный также англичанами Стюартом и Толменом. В ходе этого опыта катушка с большим количеством витков быстро вращалась, а затем резко тормозилась. В результате чего замкнутый вместе с ней в цепь гальванометр показывал наличие небольшого тока (рис. 2).

    Рис. 2. Схема опыта Мангельштама-Папалекси

    Дело в том, что вместе с раскручиваемой катушкой вращаются, конечно же, и находящиеся в металле электроны. Когда же катушка тормозится, электроны некоторое время продолжают двигаться внутри катушки по инерции, производя таким образом ток.

    Сверхпроводимость

    Определение. Сверхпроводимость – явление, когда сопротивление проводника становится близким к нулю.

    Открытию явления сверхпроводимости предшествовало получение в 1908 году голландцем Камерлингом Оннесом (рис. 4) жидкого гелия. Помещая образец проводника в жидкий гелий, стало возможным наблюдать поведение проводников при сверхнизких температурах (близко к 0 ). И в 1911 году Оннес установил, что ртуть при температуре около 4 К резко приобретает сопротивление, равное нулю.

    Рис. 4. Камерлинг Оннес (Источник)

    Его опытам с ртутью предшествовали опыты с платиной, в результате которых он установил, что чем чище вещество (чем меньше в нем примесей), тем быстрее уменьшается его сопротивление с уменьшением температуры. Благодаря жидкому состоянию ртути при нормальных условиях, этот металл очень легко было очистить от примесей. И была установлена следующая зависимость удельного сопротивления ртути от низких температур: линейное снижение прерывается скачком к нулю (рис. 5):

    Явление сверхпроводимости объясняется с точки зрения квантовой физики.

    Электронный газ

    Чтобы оценить, как много в металле тех самых электронов проводимости, нужно понимать, что каждый атом металла обеспечивает как минимум один свободный электрон. В среднем, концентрация электронов проводимости составляет:

    И в качестве модели поведения свободных электронов можно принять модель газа. Каждый электрон электронного газа ведет себя, как отдельно взятая молекула газа. При появлении внешнего электрического поля на хаотическое движение электронов накладывается упорядоченное движение. Именно это движение и обуславливает электрический ток.

    Зависимость сопротивления от температуры

    Самое распространенное действие тока – это тепловое действие. Как уже было отмечено в прошлой главе, механизмом этого действия является столкновение электронов с узлами кристаллической решетки, в результате чего кинетическая энергия электронов переходит во внутреннюю энергию проводника.

    В свою очередь, имея повышенную внутреннюю энергию, узлы решетки начинают колебаться быстрее, чаще сталкиваясь с электронами. То есть электроны тормозятся более эффективно. Иными словами при увеличении температуры проводника увеличивается его электрическое сопротивление.

    Простым опытом, подтверждающим этот теоретический вывод, может служить нагревание проводника в цепи со включенной лампой и измерительными приборами (см. рис. 3).

    По мере прогревания проводника как лампа начнет светить менее ярко, так и приборы станут показывать падение силы тока.

    После качественного подтверждения зависимости сопротивления от температуры была получена количественная зависимость. После ряда экспериментов было выяснено, что относительное приращение сопротивления прямо пропорционально абсолютному приращению температуры:

    Здесь:

    Так как при изменении температуры линейные размеры проводников меняются незначительно, значит, меняется удельное сопротивление, причем по такому же закону:

    Применение сверхпроводимости

    Применение сверхпроводимости чрезвычайно облегчает многие технические аспекты использования электрического тока. Во-первых, отсутствие сопротивления означает отсутствие каких-либо потерь на нагревание, которые, как правило, составляют 15% всей энергии. Как подтверждение можно привести опыт по двухгодичному пропусканию тока через проводник, погруженный в жидкий гелий, который прервался только из-за нехватки гелия. Отсутствие нагревания и потерь энергии на него чрезвычайно важно для электродвигателей и электронной вычислительной техники.

    Кроме того в сверхпроводниках протекают из-за отсутствия сопротивления чрезвычайно высокие токи, создающие сильные магнитные поля, что может применяться при термоядерном синтезе.

    Бытовой пример использования сверхпроводников – это существующая на сегодняшний момент железнодорожная сеть с поездами на магнитной подушке (рис. 6):

    Рис. 6. Поезд на магнитной подушке

    Высокотемпературные сверхпроводники

    После открытия сверхпроводимости Оннес, пытаясь создать сверхпроводящий электромагнит, обнаружил, что изменение тока, или же магнитные поля, разрушают эффект сверхпроводимости. Только к середине двадцатого века удалось создать сверхпроводящие электромагниты.

    Также чрезвычайно важное открытие было сделано в 1986 году. Были обнаружены материалы, обладающие сверхпроводимостью при температурах около . Такие температуры возможно получать, используя жидкий азот, который значительно дешевле жидкого гелия. Однако при попытке создания таких сверхпроводящих проводов и кабелей столкнулись с проблемой чрезвычайной хрупкости таких материалов, которые рассыпаются в процессе прокатки. На данный момент продолжаются работы по решению этой проблемы.

    На следующем уроке мы рассмотрим электрический ток в полупроводниках.

    Список литературы

    1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
    2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
    3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.

    Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    Домашнее задание

    1. Как зависит сопротивление металлов от температуры? Чем обусловлена такая зависимость?
    2. Во сколько раз увеличится сопротивление медного провода при повышении температуры от 200Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
    Источники:
    • http://electric-220.ru/news/primenenie_ehlektricheskogo_toka_v_metallakh/2014-10-26-727
    • http://class-fizika.ru/10_a150.html
    • http://studfiles.net/preview/1943069/
    • http://fizclass.ru/elektronnaya-teoriya-provodimosti-metallov/
    • http://promplace.ru/vidy-metallov-i-klassifikaciya-staty/electroprovodnost-metallov-1479.htm
    • http://studopedia.org/13-70093.html
    • http://spravochnick.ru/fizika/mehanizmy_elektroprovodnosti/
    • http://interneturok.ru/lesson/physics/10-klass/elektricheskiy-tok-v-razlichnyh-sredah/elektricheskiy-tok-v-metallah