Меню Рубрики

Классификация по с точки зрения основы

Изучив эту тему, вы узнаете:

— что такое классы и подклассы;
— что такое основание для классификации;
— что такое наследование свойств;
— для чего нужна классификация;
— как проводить классификацию разнообразных объектов;
— как классифицируются компьютерные документы.

Классы и классификация

Человеку присуща способность обобщать и упорядочивать все многообразие объектов. Каждое имя существительное отражает представление человека об обширной группе объектов: дом, стол, книга. Объекты одной группы обладают общими для всей группы характеристиками, а также некоторыми чертами, позволяющими отличить их от других объектов.

Человеку свойственно отождествлять несколько объектов, родственных по какому-то признаку, рассматривая их как самостоятельный объект.

Например, про скрипку, виолончель, альт, контрабас, флейту, гобой, фагот, трубу мы говорим, что это «музыкальные инструменты». Видя на столе чашки, блюдца, сахарницу, чайник, называем это общим словом «посуда». У этих групп объектов существуют некоторые общие свойства, на них можно одинаково воздействовать для получения определенного результата. Обычно они существуют в одной среде. Такие группы объектов получили название «класс».

Класс — группа объектов с одинаковым набором характеристик.

Объекты, входящие в класс, называются экземплярами класса. Необходимо понять, что объекты, которые вы по каким-то параметрам объединили в класс с общим названием, отличаются друг от друга конкретными значениями параметров. Например, мячи, сохраняя основные свойства данного класса объектов (легкость, упругость), могут различаться материалом (каучуковые, резиновые, кожаные), цветом, размером. Птицами называют орла и курицу, страуса и колибри. Даже внутри узкого класса экземпляры могут сильно различаться: среди крылатых насекомых под названием «пчелы» существует матки, трутни, рабочие пчелы. В этом проявляется важное свойство классов — многообразие экземпляров, входящих в класс. Эти различия позволяют выделять внутри классов более узкие группы — подклассы, то есть проводить классификацию объектов в окружающем мире.

Классификация — распределение объектов на классы и подклассы на основании общих признаков.

Результаты классификации принято отображать в виде иерархической (древовидной) схемы. Общий вид такой схемы изображен на рисунке 9.1.

Внешне схема классификации напоминает перевернутое дерево, за что и получила название иерархической (древовидной). Пунктирными линиями на схеме выделены уровни иерархии. Самый верхний уровень (корень дерева) задает основные признаки, позволяющие отличить объекты данного класса от других. Каждый следующий нижестоящий уровень выделяет из вышестоящего группы объектов на основании совпадения одного или нескольких признаков. На нижнем уровне располагаются конкретные экземпляры выделенных подклассов.

С подобными схемами вы, возможно, уже встречались при изучении биологии, истории и других предметов.

Рис. 9.1. Общий вид иерархической схемы

В виде такой схемы часто изображают родословную. Ее принято называть генеалогическим древом.

Родословная — перечень поколений одного рода, устанавливающий происхождение и степени родства.

Основание классификации

С известными примерами классификации вы уже знакомы. Например, в биологии это классификация растений и животных. С глубокой древности люди, знакомясь с многообразием форм жизни на Земле, стремились распределить это многообразие по группам. Так сложилась естественная классификация, основанная на наблюдении и группировке по некоторым признакам. Идеи, изложенные в книге К. Линнея «Виды растений», изданной в 1753 году, до сих пор служат исходной точкой йри класси- фикации растений. С того времени используется и двойное название растений: первая часть имени указывает на подкласс (семейство), а вторая — на конкретные особенности экземпляра этого подкласса. Например, название Citrus limon указывает, что речь идет о семействе цитрусовых, а конкретно — о лимонном дереве.

Классификации поддаются не только природные, но и искусственные объекты: в грамматике принято разделение слов по частям речи, в физике — классификация видов движения, в математике — классификация чисел. В их основе лежит группировка объектов по одному или нескольким намеренно выбранным признакам. В разных отраслях науки и техники классы и подклассы могут иметь свои специфические названия: виды, семейства, отделы, разряды, группы и т. п. При этом суть их не меняется.

Рассмотрим объект «книга». Под этим словом мы подразумеваем множество разнообразных книг: художественных и технических, разных авторов, разной стоимости, толстых и тонких, в подарочном издании и в мягкой обложке.

А теперь представьте, что вам необходимо разложить все это многообразие «по полочкам» в буквальном смысле слова, например упорядочить свою библиотеку.

Каждый подойдет к этому вопросу по-разному. Один человек расставит все книги в алфавитном порядке, по фамилии автора. Другой разделит их на жанры: детективы, фантастика, приключения, любовные или исторические романы. Третий поместит их на полки, руководствуясь цветом переплета и размером книг (наверняка вы сталкивались и с таким подходом). Несмотря на разницу в способах классификации, все эти примеры роднит нечто общее: подразделение объектов на «родственные» группы (классы), для которых существует один или несколько общих параметров.

Во всех приведенных примерах при группировке был выбран общий признак: в первом случае это автор, во втором — жанр, в третьем — цвет и размер. Именно по этим признакам затем производилось выделение из общей массы тех объектов, у которых его значение совпадает.

Таких общих признаков может быть несколько. Они являются основанием классификации. Выбрав основание, из класса с общим названием «книга» можно выделить подклассы: «книга определенного автора», «книга определенного жанра», «книга определенного размера».

Классификация — творческий процесс, поэтому у каждого человека может получиться своя схема. Один из возможных вариантов выделения подклассов из класса книг показан на рисунке 9.2.

Рис. 9.2. Классификация книг

На первом уровне за основу разбиения книг на две группы выбран признак «вымысел» (да, нет). По этому признаку произошло разделение на художественную и техническую литературу.

На втором уровне признак выделения подклассов можно было бы назвать «форма подачи информации» (художественная проза, поэзия, словари и т. д.).

Третий уровень разбиения можно охарактеризовать признаком «стиль изложения».

Четвертый уровень классификации выделен только для романов, чтобы не загромождать схему. Признаком этого уровня выбран «жанр».

На самом нижнем уровне находятся конкретные экземпляры разнообразных книг.

Наследование свойств

Важнейшим свойством классов является наследование. Это слово вам хорошо знакомо. Дети наследуют от родителей черты характера и внешние признаки. Каждый подкласс, выделяющийся из класса, наследует свойства и действия, присущие этому классу. В приведенном на рисунке 9.2 примере и роман Д. С. Мережковского, и все другие изданные романы, и вся художественная литература вообще — наследуют от класса «книга» общие свойства и действия. Все они напечатаны на бумаге, переплетены и предназначены для чтения.

Из приведенной выше классификации видно, что образовалась иерархическая структура (дерево). Во главе ее класс-пра- родитель — «книга». В самом основании экземпляры подклассов — конкретные книги конкретных авторов.

Такая древовидная структура с общим корнем называется «иерархией наследования». Характеристики и поведение, связанные с экземплярами определенного класса, становятся доступны любому классу, расположенному ниже в иерархическом дереве.

Утверждая, что «книга — источник знаний», вы подразумеваете как все книги вообще, так и конкретную книгу, например «О вкусной и здоровой пище». В этом проявляется наследование.

Для чего же нужна классификация?

Классификация позволяет выделить из всего многообразия объектов группы с интересующими исследователя свойствами и сосредоточиться на их изучении.

Предположим, что вы — неопытный огородник, но хотите, используя достижения науки, выращивать на своем участке хорошие урожаи помидоров. Вам незачем штудировать толстый том «Растениеводство», достаточно прочесть книги о семействе пасленовых, а еще лучше — об особенностях выращивания помидоров в вашей местности.

Классификация объектов проводится с целью установления наследственных связей между объектами. Свойство наследования позволяет изучать характеристики всех объектов класса, не привязываясь к конкретному экземпляру.

В геологии существует «теория единообразных изменений», которая гласит, что все природные факторы действуют повсюду одинаково. Не надо изучать, как действуют ветры на Уральские горы, так как механизм разрушения гор под воздействием ветров давно исследован, он един для всех случаев. То же относится к землетрясениям, вулканам, наводнениям, селям и т. п.

Классификация позволяет систематизировать знания об объектах любой природы и назначения.

Иллюстрацией этого утверждения служит то, что нет ни одной школьной дисциплины, в которой не использовалась бы классификация объектов изучения как средство обобщения информации, получаемой на уроках. Откройте любой учебник и убедитесь в этом.

Примеры классификации различных объектов

Исследуя один и тот же объект с разными целями, можно увидеть его различные грани. Например, врач, описывая конкретного человека, сделает акцент на симптомах возможной болезни.

Психолога заинтересуют черты характера и особенности психики. Социальные службы обратят внимание на возраст, наличие родственников, условия жизни. Поэтому одни и те же объекты можно классифицировать по-разному, выбрав те или иные основания. Вы уже столкнулись в учебнике с примерами различных классификаций. Например, изучая раздел 1, вы классифицируете информацию по разным признакам: по способу восприятия и по форме представления.

На рисунке 9.3 приведен еще один пример классификации информации — по содержанию.

Рис. 9.3. Классификация информации по содержанию

В этой классификации на основании признака «содержание» на первом уровне выделены следующие группы информации:

♦ статистическая — показатели развития производства и общества;
♦ коммерческая — наиболее важные сведения о производственных, торговых и финансовых операциях;
♦ экологическая — сведения о состоянии окружающей среды и влиянии деятельности человека на природу;
♦ политическая — информация о деятельности государственной власти, общественных движений и партий;
♦ другая (демографическая, медицинская и т. д.).

Все выделенные подклассы характеризуются теми же свойствами (ясность, полнота, актуальность и т. п.) и действиями (обмен, хранение, обработка), что и вышестоящий класс «информация».

Приведем еще один пример классификации, касающейся наиболее значимых систем (рисунок 9.4).

В качестве основания для классификации на первом уровне выбрано участие человека в создании системы (естественные и искусственные).

На втором уровне основанием для классификации был выбран признак «сфера жизнедеятельности человека». Здесь выделены такие подклассы систем:

♦ духовные у касающиеся духовной жизни человека;
♦ технологические у связанные с производственной деятельностью человека;
♦ организационные у обеспечивающие обслуживание всех видов деятельности.

Рис. 9.4. Классификация наиболее значимых систем

На схеме не показано дальнейшее разветвление дерева, так как это сделало бы рисунок громоздким. Но подразумевается, что дальнейшее выделение подклассов возможно. Например, рассматривая класс систем, называемых «Искусство», можно было выделить следующие подклассы по средствам воплощения замыслов авторов: Живопись, Скульптура, Архитектура, Литература, Театр, Музыка, Кино и т. д.

Наряду с устоявшимися и общепризнанными классификациями имеет право существовать любая классификация объектов, если за ее основу взят характерный признак и соблюдены правила выделения классов и подклассов. На рисунке 9.5 приведен пример классификации используемых в реальной жизни и встречающихся в сказках средств передвижения.

Здесь на нулевом уровне расположен класс объектов с общим названием «средства передвижения».

На первом уровне выделено два подкласса по признаку «реальность» (существуют в реальной жизни или в сказках, фантазиях).

Рис. 9.5. Классификация средств передвижения

Второй уровень выделяет из реальных и сказочных средств передвижения новые подгруппы по признаку «среда передвижения».

Третий уровень делит реальные средства передвижения на подгруппы по признаку «вид транспортйого средства». На схеме не указано выделение подгрупп из реальных наземных средств передвижения, чтобы не загромождать ее. Но эти группы могли быть следующими: рельсовые, дорожные. Возможно и дальнейшее подразделение. Важно понять, что нижние уровни наследуют все характерные признаки, свойственные более высоким уровням: например, объект Ка-26, принадлежащий к подклассу вертолетов, наследует от вышестоящего уровня среду перемещения (воздух), а также является реальным средством передвижения со всеми сопутствующими признаками (существует в реальной жизни, осуществляет перевозки людей и грузов).

Классификация компьютерных документов

В самом общем смысле компьютер можно назвать инструментом для обработки информации. Для этого существует множество разнообразных программных сред. Разработчики постоянно совершенствуют программы, упрощая работу с ними и предусматривая в них новые возможности.

Чтобы не «утонуть» в море программных продуктов, пользователь очень хорошо должен представлять, с какой информацией ему предстоит работать. Каждая программная среда предназначена для создания документов определенного вида.

На практических занятиях вы уже познакомились со многими видами компьютерных документов, которые будут упоминаться при классификации документов.

Приведенная на рисунке 9.6 схема показывает классификацию, в которой в качестве основания выбран признак «назначение документа». Основным назначением компьютерных документов является представление информации в удобном для пользователя виде. В таблице 9.1 дана более конкретная характеристика каждого класса документов.

Рис. 9.6. Классификация компьютерных документов

Обратите внимание, что название среды, как правило, совпадает с видом документа и формой представленной в нем информации.

Приведенная классификация поможет вам выбрать среду в соответствии с предполагаемой формой представления информации.

В настоящее время документы, используемые в различных областях человеческой деятельности, создаются на компьютере. Рассмотрим примеры документов различного назначения и сферы применения.

Литературное произведение, газетная статья, приказ — примеры текстовых документов.

Рисунки, чертежи, схемы — это графические документы.

Таблица 9.1. Виды компьютерных документов

Бухгалтер на предприятии представляет в табличном виде данные для расчета зарплаты сотрудников. Основная особенность электронных таблиц состоит в том, что они позволяют не только представлять информацию в табличной форме, но и производить автоматические вычисления по формулам, связывающим ячейки таблицы.

Один из видов компьютерных документов — база данных. Она представляет собой совокупность упорядоченных сведений об объектах. В обычной жизни вы не раз встречались с базами данных. Это и картотека с названиями книг в библиотеке, и телефонный справочник, и каталог товаров. В настоящее время вместо обычных «бумажных» баз данных повсеместно создаются компьютерные, представленные документами соответствующего вида. Диспетчер справочной службы имеет в своем распоряжении всеобъемлющую компьютерную базу данных, позволяющую ответить на любой ваш вопрос. Система управления базой данных обеспечивает быстрый поиск интересующей вас информации.

Текст, графика, таблица, база данных — это примеры документов, в которых представлена информация какого-то одного вида.

Однако наиболее часто мы имеем дело с составными документами, в которых информация присутствует в разных формах. Такие документы могут содержать и текст, и формулы, и рисунки, и таблицы, и многое другое. Школьные учебники, журналы, газеты — это хорошо знакомые всем примеры составных документов.

Для создания составных документов используются программные среды, в которых предусмотрена возможность представлять информацию в разных формах.

Развитие программного обеспечения привело к тому, что в настоящее время появились новые виды компьютерных документов. В частности, это презентации и гипертекстовые документы.

Презентация представляет собой совокупность компьютерных слайдов. Специальная программа обеспечивает не только подготовку информации, но и показ ее по заранее созданному сценарию.

Гипертекст — это документ, который содержит так называемые гиперссылки на другие части документа или другие файлы, где содержится дополнительная информация.

Контрольные вопросы и задания

1. Для чего нужно классифицировать объекты?

2. Что лежит в основе любой классификации?

3. Приведите пример классификации объектов по общим свойствам.

4. Приведите пример классификации объектов по общим действиям.

5. Может ли среда существования стать основанием классификации?

6. Произведите классификацию объектов с общим названием «велосипед».

7. Классифицируйте домашнюю посуду по следующим признакам: материал, назначение, долговечность.

8. Предложите несколько вариантов упорядочения (классификации) разнообразных объектов на вашем письменном столе.

9. Назовите основание, по которому в одну группу могли бы попасть следующие объекты:

■ кенгуру, утконос, кролик, броненосец;
■ роза, колесо, футбольные бутсы, кактус;
■ молоко, бензин, кислота, магма.

10. Назовите разнородные объекты окружающего мира, которые вошли бы в одну группу по основанию «одно вещество».

11. Какие классификации используют в вашей школьной среде?

12. Перечислите наиболее распространенные группы компьютерных документов.

13. Приведите примеры классов программных продуктов. Какое можно выбрать для этого основание классификации?

14. Какое основание классификации можно использовать для выделения групп аппаратной части компьютера?

15. Какие вы знаете классы памяти компьютера?

Часть 3. Методы прикладной статистики

3.2.4. Основы теории классификации

При внедрении современных статистических методов в практику фундаментальных и прикладных научно-технических, социально-экономических, медицинских и иных исследований, при разработке соответствующих программных продуктов невозможно обойтись без классификации самих этих методов. Естественно исходить из вида обрабатываемых данных. В соответствии с современными воззрениями делим прикладную статистику на четыре области: — статистика случайных величин (одномерная статистика); многомерный статистический анализ; статистика временных рядов и случайных величин; статистика объектов нечисловой природы. В первой области элемент выборки — число, во второй — вектор, в третьей — функция, в четвертой — объект нечисловой природы.

Как известно, математический аппарат статистики объектов нечисловой природы базируется на использовании расстояний (мер близости, показателей различия) в пространствах таких объектов. Это вызвано отсутствием в таких пространствах операций суммирования, на которых основано большинство методов других областей статистики. Любые методы, использующие только расстояния (меры близости, показатели различия) между объектами, следует относить к статистике объектов нечисловой природы, поскольку такие методы могут работать с объектами произвольного пространства, если в нем задана метрика или ее аналоги. Таким образом, весьма многие методы прикладной статистики следует включать в статистику объектов нечисловой природы.

В настоящем пункте рассматривается важное направление прикладной статистики – математические методы классификации. Значительную их часть следовало бы отнести к статистике объектов нечисловой природы, а именно, методы классификации, основанные на расстояниях между объектами. Однако исторически теория классификации рассматривается в основном в рамках многомерного статистического анализа, поскольку многие ее методы используют специфику конечномерного евклидова пространства.

Основные направления в математической теории классификации. Какие научные исследования относить к этой теории? Исходя из потребностей специалиста, применяющего математические методы классификации, целесообразно принять, что сюда входят исследования, во-первых, отнесенные самими авторами к этой теории; во вторых, связанные с ней общностью тематики, хотя бы их авторы и не упоминали термин «классификация». Это предполагает ее сложную внутреннюю структуру.

В литературных источниках наряду с термином «классификация» в близких смыслах используются термины «группировка», «распознавание образов», «диагностика», «дискриминация», «сортировка» и др. Терминологический разнобой связан прежде всего с традициями научных кланов, к которым относятся авторы публикаций, а также с внутренним делением самой теории классификации.

В научных исследованиях по современной теории классификации можно выделить два относительно самостоятельных направления. Одно из них опирается на опыт таких наук, как биология, география, геология, и таких прикладных областей, как ведение классификаторов продукции и библиотечное дело. Типичные объекты рассмотрения — классификация химических элементов (таблица Д.И. Менделеева), биологическая систематика, универсальная десятичная классификация публикаций (УДК), классификатор товаров на основе штрих-кодов.

Другое направление опирается на опыт технических исследований, экономики, маркетинговых исследований, социологии, медицины. Типичные задачи — техническая и медицинская диагностика, а также, например, разбиение на группы отраслей промышленности, тесно связанных между собой, выделение групп однородной продукции. Обычно используются такие термины, как «распознавание образов» или «дискриминантный анализ». Это направление обычно опирается на математические модели; для проведения расчетов интенсивно используется ЭВМ. Однако относить его к математике столь же нецелесообразно, как астрономию или квантовую механику. Рассматриваемые математические модели можно и нужно изучать на формальном уровне, и такие исследования проводятся. Но направление в целом сконцентрировано на решении конкретных задач прикладных областей и вносит вклад в технические или экономические науки, медицину, социологию, но, как правило, не в математику. Использование математических методов как инструмента исследования нельзя относить к чистой математике.

В 60-х годах XX века внутри прикладной статистики достаточно четко оформилась область, посвященная методам классификации. Несколько модифицируя формулировки М. Дж. Кендалла и А. Стьюарта 1966 г. (см. русский перевод [8, с.437]), в теории классификации выделим три подобласти: дискриминация (дискриминантный анализ), кластеризация (кластер-анализ), группировка. Опишем эти подобласти.

В дискриминантном анализе классы предполагаются заданными — плотностями вероятностей или обучающими выборками. Задача состоит в том, чтобы вновь поступающий объект отнести в один из этих классов. У понятия «дискриминация» имеется много синонимов: диагностика, распознавание образов с учителем, автоматическая классификация с учителем, статистическая классификация и т.д.

При кластеризации и группировке целью является выявление и выделение классов. Синонимы: построение классификации, распознавание образов без учителя, автоматическая классификация без учителя, типология, таксономия и др. Задача кластер-анализа состоит в выяснении по эмпирическим данным, насколько элементы «группируются» или распадаются на изолированные «скопления», «кластеры» (от cluster (англ.) — гроздь, скопление). Иными словами, задача — выявление естественного разбиения на классы, свободного от субъективизма исследователя, а цель — выделение групп однородных объектов, сходных между собой, при резком отличии этих групп друг от друга.

При группировке, наоборот, «мы хотим разбить элементы на группы независимо от того, естественны ли границы разбиения или нет» [8, с.437]. Цель по-прежнему состоит в выявлении групп однородных объектов, сходных между собой (как в кластер-анализе), однако «соседние» группы могут не иметь резких различий (в отличие от кластер-анализа). Границы между группами условны, не являются естественными, зависят от субъективизма исследователя. Аналогично при лесоустройстве проведение просек (границ участков) зависит от специалистов лесного ведомства, а не от свойств леса.

Задачи кластеризации и группировки принципиально различны, хотя для их решения могут применяться одни и те же алгоритмы. Важная для практической деятельности проблема состоит в том, чтобы понять, разрешима ли задача кластер-анализа для конкретных данных или возможна только их группировка, поскольку совокупность объектов достаточно однородна и не разбивается на резко разделяющиеся между собой кластеры.

Как правило, в математических задачах кластеризации и группировки основное — выбор метрики, расстояния между объектами, меры близости, сходства, различия. Хорошо известно, что для любого заданного разбиения объектов на группы и любого e > 0 можно указать метрику такую, что расстояния между объектами из одной группы будут меньше e, а между объектами из разных групп — больше 1/e. Тогда любой разумный алгоритм кластеризации даст именно заданное разбиение.

Понимание и обсуждение постановок задач осложняется использованием одного и того же термина в разных смыслах. Термином «классификация» (и термином «диагностика») обозначают, по крайней мере, три разные вещи: процедуру построения классификации (и выделение классов, используемых при диагностике), построенную классификацию (систему выделенных классов) и процедуру ее использования (правила отнесения вновь поступающего объекта к одному из ранее выделенных классов). Другими словами, имеем естественную триаду: построение – изучение – использование классификации.

Как уже отмечалось, для построения системы диагностических классов используют разнообразные методы кластерного анализа и группировки объектов. Наименее известен второй член триады (отсутствующий у Кендалла и Стьюарта [8]) – изучение отношений эквивалентности, полученных в результате построения системы диагностических классов. Статистический анализ полученных, в частности экспертами, отношений эквивалентности — часть статистики бинарных отношений и тем самым — статистики объектов нечисловой природы (см. главу 3.4).

Диагностика в узком смысле слова (процедура использования классификации, т.е. отнесения вновь поступающего объекта к одному из выделенных ранее классов) — предмет дискриминантного анализа. Отметим, что с точки зрения статистики объектов нечисловой природы дискриминантный анализ является частным случаем общей схемы регрессионного анализа, соответствующим ситуации, когда зависимая переменная принимает конечное число значений, а именно — номера классов, а вместо квадрата разности стоит функция потерь от неправильной классификации. Однако есть ряд специфических постановок, выделяющих задачи диагностики среди всех регрессионных задач.

О построении диагностических правил. Начнем с краткого обсуждения одного распространенного заблуждения. Иногда рекомендуют сначала построить систему диагностических классов, а потом в каждом диагностическом классе отдельно проводить регрессионный анализ (в классическом смысле) или применять иные методы многомерного статистического анализа. Однако обычно забывают, что при этом нельзя опираться на вероятностную модель многомерного нормального распределения, так как распределение результатов наблюдений, попавших в определенный кластер, будет отнюдь не нормальным, а усеченным нормальным (усечение определяется границами кластера).

Процедуры построения диагностических правил делятся на вероятностные и детерминированные. К первым относятся так называемые задачи расщепления смесей. В них предполагается, что распределение вновь поступающего случайного элемента является смесью вероятностных законов, соответствующих диагностическим классам. Как и при выборе степени полинома в регрессии (см. предыдущий подраздел), при анализе реальных социально-экономических данных встает вопрос об оценке числа элементов смеси, т.е. числа диагностических классов. Были изучены результаты применения обычно рекомендуемого критерия Уилкса для оценки числа элементов смеси. Оказалось (см. статью [9]), что оценка с помощью критерия Уилкса не является состоятельной, асимптотическое распределение этой оценки – геометрическое, как и в случае задачи восстановления зависимости в регрессионном анализе. Итак, продемонстрирована несостоятельность обычно используемых оценок. Для получения состоятельных оценок достаточно связать уровень значимости в критерии Уилкса с объемом выборки, как это было предложено и для задач регрессии [7].

Как уже отмечалось, задачи построения системы диагностических классов целесообразно разбить на два типа: с четко разделенными кластерами (задачи кластер-анализа) и с условными границами, непрерывно переходящими друг в друга классами (задачи группировки). Такое деление полезно, хотя в обоих случаях могут применяться одинаковые алгоритмы. Сколько же существует алгоритмов построения системы диагностических правил? Иногда называют то или иное число. На самом же деле их бесконечно много, в чем нетрудно убедиться.

Действительно, рассмотрим один определенный алгоритм — алгоритм средней связи. Он основан на использовании некоторой меры близости d(x,y) между объектами x и у. Как он работает? На первом шаге каждый объект рассматривается как отдельный кластер. На каждом следующем шаге объединяются две ближайших кластера. Расстояние между объектами рассчитывается как средняя связь (отсюда и название алгоритма), т.е. как среднее арифметическое расстояний между парами объектов, один из которых входит в первый кластер, а другой — во второй. В конце концов все объекты объединяются вместе, и результат работы алгоритма представляет собой дерево последовательных объединений (в терминах теории графов), или «Дендрограмму». Из нее можно выделить кластеры разными способами. Один подход — исходя из заданного числа кластеров. Другой — из соображений предметной области. Третий — исходя из устойчивости (если разбиение долго не менялось при возрастании порога объединения – значит, оно отражает реальность). И т.д.

К алгоритму средней связи естественно сразу добавить алгоритм ближайшего соседа (когда расстоянием между кластерами называется минимальное из расстояний между парами объектов, один из которых входит в первый кластер, а другой — во второй). А также и алгоритм дальнего соседа (когда расстоянием между кластерами называется максимальное из расстояний между парами объектов, один из которых входит в первый кластер, а другой — во второй).

Каждый из трех описанных алгоритмов (средней связи, ближайшего соседа, дальнего соседа), как легко проверить, порождает бесконечное (континуальное) семейство алгоритмов кластер-анализа. Дело в том, что величина d a (x,y), a>0, также является мерой близости между x и у и порождает новый алгоритм. Если параметр а пробегает отрезок, то получается бесконечно много алгоритмов классификации.

Каким из них пользоваться при обработке данных? Дело осложняется тем, что практически в любом пространстве данных мер близости различных видов существует весьма много. Именно в связи с обсуждаемой проблемой следует указать на принципиальное различие между кластер-анализом и задачами группировки.

Если классы реальны, естественны, существуют на самом деле, четко отделены друг от друга, то любой алгоритм кластер-анализа их выделит. Следовательно, в качестве критерия естественности классификации следует рассматривать устойчивость относительно выбора алгоритма кластер-анализа.

Проверить устойчивость можно, применив к данным несколько подходов, например, столь непохожие алгоритмы, как «ближнего соседа» и «дальнего соседа». Если полученные результаты содержательно близки, то они адекватны действительности. В противном случае следует предположить, что естественной классификации не существует, задача кластер-анализа не имеет решения, и можно проводить только группировку.

Как уже отмечалось, часто применяется т.н. агломеративный иерархический алгоритм «Дендрограмма», в котором вначале все элементы рассматриваются как отдельные кластеры, а затем на каждом шагу объединяются два наиболее близких кластера. Для работы «Дендрограммы» необходимо задать правило вычисления расстояния между кластерами. Оно вычисляется через расстояние d(x,у) между элементами х и у. Поскольку d a (x,y) при 0 a (x,y), а>0, также являющихся алгоритмами «ближайшего соседа». Тогда дендрограммы, полученные с помощью этих алгоритмов, совпадают при всех a, поскольку при их реализации происходит лишь сравнение мер близости между объектами. Другими словами, дендрограмма, полученная с помощью алгоритма «ближайшего соседа», является адекватной в порядковой шкале (измерения меры близости d(x,у)), т.е. сохраняется при любом строго возрастающем преобразовании этой меры. Однако выделенные по обсуждаемому методу «устойчивые разбиения» меняются. В частности, при достаточно большом а «наиболее объективным» в соответствии с рассматриваемым предложением будет, как нетрудно показать, разбиение на два кластера! Таким образом, разбиение, выдвинутое им как «устойчивое», на самом деле оказывается весьма неустойчивым.

Семантическая классификация фразеологизмов

Фразеологизмы делятся на типы с точки зрения их семантической слитности. Фразеологизм представляет собой единое смысловое целое, однако, степень лексической независимости фразеологических единиц различна.

В основе данной классификации, предложенной Виноградовым, два важнейших признака фразеологизмов:

1) идиоматичность значения — это смысловая неразложенность фразеологизма на значения слов компонентов и его составляющих. Идиоматичность может возникать в результате утраты реальных смысловых соотношений между словами;

2) мотивированность значения — это признак, который может быть или не быть у фразеологизма. Втирать очки, ни рыба ни мясо — немотивированное значения. Языком чесать, скатертью дорога — мотивированные значения.

Виноградов выделил три типа фразеологизмов: фразеологические сращения, фразеологические единства и фразеологические сочетания. Фразеологизмы первой и второй групп обладают слитным фразеологическим значением, являются целостными наименованием явления действительности. Фразеологические сочетания представляют собой семантические и синтаксические членимые единицы.

1. Фразеологические сращения — это фразеологизмы, общий смысл которых никак не зависит от лексических значений входящих в них слов.

Семантические признаки: 1) идиоматичность; 2) немотивированность.

Лексические признаки: некоторые фразеологические сращения, включают устаревшие слова, которые для носителя языка современного русского языка не имеют лексического значения. Например, бить баклуши, точить лясы.

Грамматические признаки: устаревшие синтаксические связи. Например, шутка сказать (значение: совсем непросто). Может быть архаическая морфологическая форма, например, притча во языцех. Грамматическим признаком является также синтаксическая целостность, т.е. фразеологическое сращение выступает как один член предложения. Например, ты чего лясы точишь? Не всегда в сочетании фразеологических сращений есть яркие внешние признаки. К фразеологическим сращениям относим устойчивые сочетания, которые соответствуют современной лексике и грамматике. Например, собаку съел (о человеке, который имеет большой опыт).

2. Фразеологические единства — устойчивые сочетания, смысл которых в более или менее степени мотивирован значениями слов-компонентов.

Семантические признаки: 1) идиоматичность; 2) мотивированность.

Лексические признаки: большая часть фразеологических единств соотносится со свободными сочетаниями слов, это омонимическое соотношение. Фразеологизмы обладают образностью. Фразеологические единства понимаем как фразеологические метафоры, образность может быть восстановлена. Например, закидывать удочку (намекать) соотносится со свободным словосочетанием «закидывать удочку в пруд», можно установить ассоционную связь между ними и выявить основы переноса.

Грамматические признаки: синтаксическая целостность.

3. Фразеологические сочетания — фразеологизмы, в которых одно из слов-компонентов имеет связанное значение, а другой компонент — свободное. В отличие от сращений и единств, каждый компонент сохраняет самостоятельное лексическое значение.

Семантический признак: наличие одного компонента с фразеологически связанным значением.

Грамматические признаки: слово с фразеологически связанным значением является самостоятельным членом предложения. Приведем пример. Ты затронул щекотливую тему (щекотливую — определение, тему — главное слово). Он потупил взор (потупил — сказуемое, взор — дополнение).

Итак, фразеологические сращения, единства относятся к разряду идиом, т.е. сочетанием слов, являющихся устойчивыми структурно-семантическими объединениями.

В языкознании существует узкое и широкое понимание фразеологии. В узком понимании фразеологизмы — это идиомы, в более широком фразеологизмы — это идиомы как ядро фразеологии плюс фразеологические сочетания. В самом широком понимании к фразеологии, кроме собственно фразеологизмов, относят пословицы, поговорки, крылатые слова, речевые стандарты (желаем счастья в личной жизни), слоганы и т.д.

В след за Николаем Максимовичем Шанским многие языковеды выделяют фразеологические выражения — это ставшие крылатыми цитаты, пословицы, поговорки, речевые штампы. Общее с фразеологизмами — они не создаются в процессе речи, а представляются заранее данными. Например, а Васька слушает да ест, цыплят по осень считают и другие.

Классификация систем

Примеры классификации систем

Системы разделяют на классы по различным признакам, и в зависимости от решаемой задачи можно выбирать разные принципы классификации.

Предпринимались попытки классифицировать системы по следующим признакам:

по виду отображаемого объекта (технические, биологические, экономические и т.п. системы);

виду научного направления, используемого для их моделирования (математические, физические, химические и др.);

взаимодействию со средой (открытые и закрытые);

Предлагалось также различать следующие типы систем:

детерминированные и стохастические;

абстрактные и материальные (существующие в объективной реальности); и т.д.

Классификации всегда относительны. Так, в детерминированной системе можно найти элементы стохастичности, и, напротив, детерминированную систему можно считать частным случаем стохастической (при вероятности равной единице).

Аналогично, если принять во внимание диалектику субъективного и объективного в системе, то станет понятной относительность разделения систем на абстрактные и объективно существующие: это могут быть стадии развития одной и той же системы.

Действительно, естественные и искусственные объекты, отражаясь в сознании человека, выступают в роли абстракций, понятий, а абстрактные проекты создаваемых систем воплощаются в реально существующие объекты, которые можно ощутить, а при изучении снова отразить в виде абстрактной системы.

Однако относительность классификаций не должна останавливать исследователей. Цель любой классификации – ограничить выбор подходов к отображению системы, сопоставить выделенным классам приемы и методы системного анализа и дать рекомендации по выбору методов для соответствующего класса систем. При этом система, в принципе, может быть одновременно охарактеризована несколькими признаками, т.е. ей может быть найдено место одновременно в разных классификациях, каждая из которых может оказаться полезной при выборе методов моделирования.

Рассмотрим некоторые из наиболее важных классификаций систем.

Открытые и закрытые системы. Понятие «открытая система» ввел Л. фон Берталанфи [16, 17, 107]. Основные отличительные черты открытых систем – способность обмениваться со средой массой, энергией и информацией. В отличие от них предполагается, что закрытые системы (разумеется, с точностью до принятой чувствительности модели) полностью лишены этой способности, т.е. изолированны от среды.

Возможны частные случаи: например, не учитываются гравитационные и энергетические процессы, а в модели системы отражается только обмен информацией со средой; тогда говорят об информационно-проницаемых или, соответственно, об информационно-непроницаемых системах.

С моделью открытой системы Берталанфи можно познакомиться в его книгах по общей теории систем [16,17]. Там же рассмотрены некоторые интересные особенности открытых систем.

Одна из наиболее важных состоит в следующем. В открытых системах «проявляются термодинамические закономерности, которые кажутся парадоксальными и противоречат второму началу термодинамики» [17, с. 42]. Напомним, что второй закон термодинамики («второе начало»), сформулированный для закрытых систем, характеризует систему ростом энтропии, стремлением к неупорядоченности, разрушению.

Проявляется этот закон и в открытых системах (например, старение биологических систем). Однако (в отличие от закрытых систем) в открытых системах возможен «вывод энтропии», ее снижение; «подобные системы могут сохранять свой высокий уровень и даже развиваться в сторону увеличения порядка сложности» [17, с. 42], т.е. в них проявляется рассматриваемая в следующем параграфе закономерность самоорганизации (хотя Берталанфи этот термин еще не использовал). Именно поэтому важно для системы управления поддерживать хороший обмен информацией со средой.

Целенаправленные, целеустремленные системы. При изучении экономических, организационных объектов важно выделять класс целенаправленных или целеустремленных систем [91, 92 и др.1.

В этом классе, в свою очередь, можно выделить системы, в которых цели задаются извне (обычно это имеет место в закрытых системах), и системы, в которых цели формируются внутри (что характерно для открытых, самоорганизующихся систем).

Закономерности целеобразования в самоорганизующихся системах рассматриваются ниже. Методики, помогающие формировать и анализировать структуры целей, характеризуются в гл. 7.

Классификации систем по сложности. Существует несколько подходов к разделению систем по сложности.

Вначале термины «большая система» и «сложная система» использовались как синонимы.

Некоторые исследователи связывали сложность с числом элементов.

Пример

Г. Н. Поваров [1] в зависимости от числа элементов, входящих в систему, выделяет четыре их класса: малые системы (10–103 элементов), сложные (104–106 элементов), ультрасложные (107–1030 элементов), суперсистемы (1030–10200 элементов).

У. Р. Эшби считал, что система является большой с точки зрения наблюдателя, возможности которого она превосходит в каком-то аспекте, важном для достижения цели.

При этом один и тот же материальный объект в зависимости от цели наблюдателя и средств, имеющихся в его распоряжении, можно отображать или не отображать большой системой, и, кроме того, физические размеры объекта не являются критерием отнесения объекта к классу больших систем.

Н. П. Бусленко предложил (в силу отсутствия четкого определения отнесения системы к разряду больших и относительной условности этого понятия) связывать понятие «большая система» с тем, какую роль играют при изучении системы комплексные общесистемные вопросы, что, естественно, зависит от свойств систем и классов решаемых задач.

Этой точки зрения придерживаются и авторы первого в нашей стране учебника по теории больших систем управления А. А. Денисов и Д. Н. Колесников [5].

Для сфер биологических, экономических, социальных систем иногда понятие большой системы связывали в значительной степени с важными для них понятиями «эмерджентность», «открытость», «активность элементов». В результате чего такая система обладает как бы «свободой воли», нестабильным и непредсказуемым поведением и другими характеристиками развивающихся, самоорганизующихся систем.

В то же время есть и иные точки зрения: поскольку это разные слова в естественном языке, то и использовать их нужно как различные понятия.

При этом некоторые авторы связывают понятие «большая система» с величиной системы, количеством элементов (часто относительно однородных), а понятие «сложная система» – со сложностью отношений, алгоритмов. За основу классификации Б. С. Флейшман принимает сложность поведения системы [85].

Существуют и более убедительные обоснования различия понятий «большая система» и «сложная система».

В частности, Ю. И. Черняк предлагает называть большой системой «такую, которую невозможно исследовать иначе, как по подсистемам», а сложной – «такую систему, которая строится для решения многоцелевой, многоаспектной задачи» [91, с. 22].

Поясняя эти понятия на примерах, Ю. И. Черняк подчеркивает, что в случае большой системы объект может быть описан как бы на одном языке, т.е. с помощью единого метода моделирования, хотя и по частям, подсистемам (рис. 1.20, а). А сложная система отражает объект «с разных сторон в нескольких моделях, каждая из которых имеет свой язык», а для согласования этих моделей нужен особый метаязык (рис. 1.20, б).

Понятия большой и сложной системы Черняк связывает с понятием «наблюдатель» (на рис. 1.20 «наблюдатели» представлены прямоугольниками): для изучения большой системы необходим один «наблюдатель» (имеется в виду не число людей, принимающих участие в исследовании или проектировании системы, а относительная однородность их квалификации: например, инженер или экономист), а для понимания сложной системы – нужно несколько «наблюдателей», принципиально разной квалификации (например, инженер-машиностроитель, программист, специалист по вычислительной технике, экономист, а возможно, и юрист, психолог и т.п.).

При этом подчеркивается наличие у сложной системы «сложной, составной цели» или даже «разных целей» и «одновременно многих структур у одной системы (например, технологической, административной, коммуникационной, функциональной и т.д.)» [92, с. 22].

В последующем Черняк уточняет эти определения. В частности, при определении большой системы он вводит понятие «априорно выделенные подсистемы» [91, с. 28–29], а при определении сложной – понятие «несравнимые аспекты характеристики объекта», и включает в определение необходимость использования нескольких языков и разных моделей [92, с. 32].

Одна из наиболее полных и интересных классификаций по уровням сложности предложена К. Боулдингом [38, с. 106–124; 108]. Выделенные в ней уровни приведены в табл. 1.4.

Статические структуры (остовы).

Простые динамические структуры с заданным законом поведения.

Кибернетические системы с управляемыми циклами обратной связи

Кристаллы. Часовой механизм. Термостат

Открытые системы с самосохраняемой структурой (первая ступень, на которой возможно разделение на живое и неживое).

Живые организмы с низкой способностью воспринимать информацию.

Живые организмы с более развитой способностью воспринимать информацию, но не обладающие самосознанием.

Системы, характеризующиеся самосознанием, мышлением и нетривиальным поведением.

Трансцендентные системы или системы, лежащие в настоящий момент вне нашего познания

В классификации К. Боулдинга каждый последующий класс включает в себя предыдущий, характеризуется большим проявлением свойств открытости и стохастичности поведения, более ярко выраженными проявлениями закономерностей иерархичности и историчности (рассматриваемых в параграфе 1.6), хотя это не всегда отмечается, а также более сложными «механизмами» функционирования и развития.

Оценивая классификации с точки зрения их использования при выборе методов моделирования систем, следует отметить, что такие рекомендации (вплоть до выбора математических методов) имеются в них только для классов относительно низкой сложности (в классификации К. Боулдинга, например, –для уровня неживых систем). Для более сложных систем оговаривается, что дать такие рекомендации трудно. Поэтому далее рассматривается классификация, в которой делается попытка связать выбор методов моделирования со всеми классами систем. Основанием этой классификации является степень организованности.

Классификация систем по степени организованности. Разделение систем по степени организованности предложено [2] в продолжение идеи об их разделении на хорошо организованные и плохо организованные, или диффузные [3] . К этим двум классам был добавлен еще класс развивающихся, или самоорганизующихся систем. Эти классы кратко охарактеризованы в табл. 1.5.

1. Хорошо организованная

Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех случаях, когда исследователю удается определить все ее элементы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей.

В этот класс систем включается большинство моделей физических процессов и технических систем.

При представлении объекта этим классом систем задачи выбора целей и определения средств их достижения (элементов, связей) не разделяются. Проблемная ситуация может быть описана в виде выражений, связывающих цель со средствами (т.е. в виде критерия функционирования, критерия или показателя эффективности, целевой функции и т.п.), которые могут быть представлены уравнением, формулой, системой уравнений

Этот класс систем используется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения, т.е. экспериментально доказана адекватность модели реальному объекту или процессу. Попытки применить этот класс систем для представления сложных многокомпонентных объектов или многокритериальных задач, которые приходится решать при разработке технических комплексов, совершенствовании управления предприятиями и организациями и т.д., практически безрезультатны. Это требует недопустимо больших затрат времени на формирование модели, и, кроме того, как правило, не удается поставить эксперимент, доказывающий адекватность модели

2. Плохо организованная, или диффузная

При представлении объекта в виде плохо организованной, или диффузной, системы не ставится задача определить все компоненты и их связи с целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования определенной с помощью некоторых правил достаточно представительной выборки компонентов, отображающих исследуемый объект или процесс.

На основе такого, выборочного, исследования получают характеристики или закономерности (статистические, экономические и т.п.), и распространяют эти закономерности на поведение системы 8 целом с какой-то вероятностью (статистической или в широком смысле использования этого термина)

Отображение объектов в виде диффузных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например ремонтных цехах предприятия, в обслуживающих учреждениях (для решения подобных задач применяют методы теории массового обслуживания) и тщ. При применении этого класса систем основной проблемой становится доказательство адекватности модели.

В случае статистических закономерностей адекватность определяется репрезентативностью выборки. Для экономических закономерностей способы доказательства адекватности не исследованы

3. Самоорганизующаяся, или развивающаяся

Класс самоорганизующихся, или развивающихся, систем характеризуется рядом признаков, особенностей, приближающих их к реальным развивающимся объектам (см. подробнее в табл. 1.6). При исследовании этих особенностей выявлено важное отличие развивающихся систем с активными элементами от закрытых – принципиальная ограниченность их формализованного описания.

Эта особенность приводит к необходимости сочетания формальных методов и методов качественного анализа. Поэтому основную идею отображения проектируемого объекта классом самоорганизующихся систем можно сформулировать следующим образом. Разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компоненты и связи, а затем путем преобразования полученного отображения с помощью выбранных или принятых подходов и методов (структуризации, или декомпозиции; композиции, поиска мер близости на пространстве состояний и т.п.) получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения. Таким образом, можно накапливать информацию об объекте, фиксируя при этом все новые компоненты и связи (правила взаимодействия компонентов), и, применяя их, получать отображения последовательных состояний развивающейся системы, постепенно формируя все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта)

Отображение изучаемого объекта как системы этого класса позволяет исследовать наименее изученные объекты и процессы с большой неопределенностью на начальном этапе постановки задачи. Примерами таких задач являются задачи, возникающие при проектировании сложных технических комплексов, исследовании и разработке систем управления организациями.

Большинство из моделей и методик системного анализа основано на представлении объектов в виде самоорганизующихся систем, хотя не всегда это особо оговаривается. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей. Адекватность модели доказывается как бы последовательно (по мере ее формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

При представлении объекта классом самоорганизующихся систем задачи определения целей и выбора средств, как правило, разделяются. При этом задачи определения целей, выбора средств, в свою очередь, могут быть описаны в виде самоорганизующихся систем, т.е. структуры основных направлений развития организации, структуры функциональной части АСУ, структуры обеспечивающей части АСУ, организационной структуры предприятия и т.д. следует также рассматривать как развивающиеся системы

В предложенной классификации систем использованы существовавшие к середине 70-х гг. XX в. термины, но они объединены в единую классификацию, в которой выделенные классы рассматриваются как подходы к отображению объекта или решению задачи и предлагается их характеристика, позволяющая выбирать класс систем для отображения объекта в зависимости от стадии его познания и возможности получения информации о нем.

Проблемным ситуациям с большой начальной неопределенностью в большей мере соответствует представление объекта в виде системы третьего класса. В этом случае моделирование становится как бы своеобразным «механизмом» развития системы. Практическая реализация такого «механизма» связана с необходимостью разработки порядка построения модели процесса принятия решения. Построение модели начинается с применения знаковой системы (языка моделирования), в основе которой лежит один из методов дискретной математики (например, теоретико-множественные представления, математическая логика, математическая лингвистика) или специальных методов системного анализа (например, имитационное динамическое моделирование и т.д.). При моделировании наиболее сложных процессов (например, процессов формирования структур целей, совершенствования организационных структур и т.п.) «механизм» развития (самоорганизации) может быть реализован в форме соответствующей методики системного анализа. На рассмотренной идее отображения объекта в процессе представления его классом самоорганизующихся систем базируется и метод постепенной формализации модели принятия решений, характеризуемый в гл. 4.

Класс самоорганизующихся, или развивающихся, систем характеризуется рядом признаков или особенностей, приближающих их к реальным развивающимся объектам (табл. 1.6).

Перечисленные признаки самоорганизующихся, или развивающихся, систем имеют разнообразные проявления, которые иногда можно выделять как самостоятельные особенности. Эти особенности, как правило, обусловлены наличием в системе активных элементов и носят двойственный характер: они являются новыми свойствами, полезными для существования системы, ее приспособлению к изменяющимся условиям среды, но в то же время вызывают неопределенность, затрудняют управление системой.

Мы не приводили подробных поясняющих примеров, поскольку каждый студент может легко обнаружить большинство из названных особенностей на примере своего собственного поведения или поведения своих друзей, коллектива, в котором учится.

Часть из рассмотренных особенностей характерна для диффузных систем (стохастичность поведения, нестабильность отдельных параметров), но большинство из них являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.

В то же время при создании и организации управления предприятиями часто стремятся представить их, используя теорию автоматического регулирования и управления, разрабатывавшуюся для закрытых, технических систем и существенно искажающую понимание систем с активными элементами, что может нанести вред предприятию, сделать его неживым «механизмом», неспособным адаптироваться к среде и разрабатывать варианты своего развития.

Такая ситуация стала, в частности, наблюдаться в бывшем СССР в 60–70-е гг. XX в., когда слишком жесткие директивы стали сдерживать развитие промышленности.

Нестационарность (изменчивость, нестабильность) параметров и стохастичность поведения

Эта особенность легко интерпретируется для любых систем с активными элементами (живых организмов, социальных организаций и т.п.), обусловливая стохастичность их поведения

Уникальность и непредсказуемость поведения системы в конкретных условиях

Эти свойства проявляются у системы, благодаря наличию в ней активных элементов, в результате чего у системы как бы проявляется «свобода воли», но в то же время имеет место и наличие предельных возможностей, определяемых имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями

Способность адаптироваться к изменяющимся условиям среды и помехам

Это свойство, казалось бы, является весьма полезным. Однако адаптивность может проявляться не только по отношению к помехам, но и по отношению к управляющим воздействиям, что весьма затрудняет управление системой

При исследовании отличий живых, развивающихся объектов от неживых биолог Эрвин Бауэр высказал гипотезу о том, что живое принципиально находится в неустойчивом, неравновесном состоянии и, более того, использует свою энергию для поддержания себя в неравновесном состоянии (которое и является собственно жизнью). Эта гипотеза находит все большее подтверждение в современных исследованиях. При этом возникают проблемы сохранения устойчивости системы

Способность противостоять энтропийным (разрушающим систему) тенденциям и проявлять негэнтропийные тенденции

Она обусловлена наличием активных элементов, стимулирующих обмен материальными, энергетическими и информационными продуктами со средой и проявляющих собственные «инициативы», активное начало. Благодаря этому в таких системах нарушается закономерность возрастания энтропии (аналогичная второму закону термодинамики, действующему в закрытых системах, так называемому «второму началу»), и даже наблюдаются негэнтропийные тенденции, т.е. собственно самоорганизация, развитие, в том числе «свобода воли»

Способность вырабатывать варианты поведения и изменять свою структуру

Это свойство может обеспечиваться с помощью различных методов, позволяющих формировать разнообразные модели вариантов принятия решений, выходить на новый уровень эквифинальности, сохраняя при этом целостность и основные свойства

Способность и стремление к целеобразованию

В отличие от закрытых (технических) систем, которым цели задаются извне, в системах с активными элементами цели формируются внутри системы (впервые эта особенность применительно к экономическим системам была сформулирована Ю. И. Черняком [92]); целеобразование – основа негэнтропийных процессов в социально-экономических системах

Например, «цель – средство», «система – подсистема» и т.п. Эта особенность проявляется при формировании структур целей, разработке проектов сложных технических комплексов, автоматизированных систем управления и т.п., когда лица, формирующие структуру системы, назвав какую-то ее часть подсистемой, через некоторое время начинают говорить о ней, как о системе, не добавляя приставки «под», или подцели начинают называть средствами достижения вышестоящих целей. Из-за этого часто возникают затяжные дискуссии, которые легко разрешаются с помощью закономерности коммуникативности, свойства «двуликого Януса» (см. подробнее в параграфе 1.6)

Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Признаки систем не сразу можно понять и объяснить, выбрать и создать требуемую степень их проявления. Исследованием причин проявления подобных особенностей сложных объектов с активными элементами занимаются философы, психологи, специалисты по теории систем, которые для объяснения этих особенностей предлагают и исследуют закономерности систем. Основные изученные к настоящему времени закономерности построения, функционирования и развития систем, объясняющие эти особенности, будут рассмотрены в следующем параграфе.

Проявление противоречивых особенностей развивающихся систем и объяснение их закономерностей на примере реальных объектов необходимо изучать, постоянно контролировать, отражать в моделях и искать методы и средства, позволяющие регулировать степень их проявления.

При этом нужно иметь в виду важное отличие развивающихся систем с активными элементами от закрытых: пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что начиная с некоторого уровня сложности систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью.

По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось, и была осознана их основная особенность – принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем.

Эта особенность, т.е. необходимость сочетания формальных методов и методов качественного анализа, и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Основную конструктивную идею моделирования при отображении объекта классом самоорганизующихся систем можно сформулировать следующим образом.

Разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компоненты и связи, а затем путем преобразования уже имеющегося отображения с помощью установленных (принятых) правил (правил структуризации или декомпозиции; правил композиции, поиска мер близости на пространстве состояний) получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения.

Таким образом, можно накапливать информацию об объекте, фиксируя при этом все новые компоненты и связи (правила взаимодействия компонент), и, применяя их, получать отображения последовательных состояний развивающейся системы, постепенно создавая все более адекватную модель реального, изучаемого или создаваемого объекта.

При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта).

Адекватность модели также доказывается как бы последовательно (по мере ее формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

Иными словами, такое моделирование становится как бы своеобразным «механизмом» развития системы. Практическая реализация такого «механизма» связана с необходимостью разработки языка моделирования процесса принятия решения. В основу такого языка (знаковой системы) может быть положен один из методов моделирования систем (например, теоретико-множественные представления, математическая логика, математическая лингвистика, имитационное динамическое моделирование, информационный подход и т.д.), но по мере развития модели методы могут меняться.

При моделирования наиболее сложных процессов (например, процессов целеобразования, совершенствования организационных структур и т.п.) «механизм» развития (самоорганизации) может быть реализован в форме соответствующей методики системного анализа (примеры которых рассматриваются в прикладных главах учебника).

Рассматриваемый класс систем можно разбить на подклассы, выделив адаптивные или самоприспосабливающиеся системы, самообучающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и т.п. классы систем, в которых в различной степени реализуются рассмотренные выше и еще не изученные (например, для самовоспроизводящихся систем) особенности.

При представлении объекта классом самоорганизующихся систем задачи определения целей и выбора средств, как правило, разделяются. При этом задачи определения целей, в свою очередь, могут быть описаны в виде самоорганизующихся систем, т.е. структура основных направлений развития предприятия, плана, структура функциональной части АСУ и т.д.) должны развиваться (и даже здесь нужно чаще включать «механизм» развития), как и задачи выбора средств, разработки структуры обеспечивающей части АСУ, организационной структуры предприятия и т.д.

Большинство из рассматриваемых в последующих главах примеров методов, моделей и методик системного анализа основано на представлении объектов в виде самоорганизующихся систем, хотя не всегда это будет особо оговариваться.

Рассмотренные классы систем удобно использовать как подходы на начальном этапе моделирования любой задачи. Этим классам поставлены в соответствие методы формализованного представления систем (гл. 2), и таким образом, определив класс системы, можно дать рекомендации по выбору метода, который позволит более адекватно ее отобразить.

Читайте также:  Зрение изменилось с плюса на минус
Источники:
  • http://www.aup.ru/books/m163/3_2_4.htm
  • http://book-science.ru/humanities/linglang/lexicology/semanticheskaja-klassifikacija-frazeologizmov.html
  • http://studme.org/98095/informatika/klassifikatsiya_sistem