Меню Рубрики

Каков механизм возникновения давления газа с точки зрения мкт

Вычислим с помощью молекулярно-кинетической теории давление газа. Вывод формулы для давления не очень сложный, но довольно громоздкий. Разобьем его на отдельные этапы.
Пусть газ находится в прямоугольном сосуде ABCD, одна из стенок которого представляет собой поршень CD, способный перемешаться без трения (рис. 21). Причем газ и сосуд имеют одинаковые температуры.

Вычислим давление газа на поршень CD, имеющий площадь S. Поверхность поршня расположена перпендикулярно оси Ox. Давление газа возникает в результате столкновений молекул с поршнем. Чтобы поршень не был вытолкнут из сосуда, к нему извне нужно приложить некоторую силу F.
Столкновение молекулы с поршнем. Рассмотрим вначале случай, когда скорость v молекулы до соударения с поршнем (рис. 22) перпендикулярна поверхности поршня. Молекулы в нашей модели это твердые шарики. При столкновениях со стенкой они отскакивают от нее без изменения кинетической энергии. Подобные соударения называют абсолютно упругими. При этом модуль скорости не меняется, а направление движения меняется на противоположное: v = –v. Изменение импульса молекулы равно:

Если же скорость молекулы направлена под произвольным углом к поршню (рис. 23), то при столкновении молекулы с поршнем проекция v0x ее скорости на направление, перпендикулярное поверхности поршня, меняет знак vx = –v0x, а проекция v0y и v0z скоростей на направления, параллельные поверхности поршня, остаются без изменения: vy = v0y и vz = v0z. То же самое происходит с мячом при столкновении с гладкой стенкой, если считать это столкновение абсолютно упругим.

Изменение проекции импульса молекулы на ось Ox равно:

Согласно закону сохранения импульса суммарный импульс молекулы и поршня остается неизменным. Это означает, что модуль изменения импульса поршня равен модулю изменения импульса молекулы. Иначе говоря, при столкновении молекулы с поршнем поршню передается импульс, модуль которого равен 2m|vx|.

Согласно второму закону Ньютона изменение импульса тела равно импульсу силы – произведению силы на время ее действии. Поэтому модуль импульса силы, действующей на поршень со стороны молекулы за время удара, равен 2m|vx|.

Число соударений молекул с поршнем. Для того чтобы вычислить импульс силы, действующей на поршень со стороны всех молекул, необходимо подсчитать число соударений молекул с поршнем за некоторый интервал времени ∆t, много больший времени столкновения с поршнем одной молекулы. (Интервал ∆t можно считать таким, что в слое толщиной |vx|∆t столкновений молекул практически не происходит, хотя число молекул и велико. Это возможно, так как среднее расстояние между молекулами много меньше средней длины свободного пробега молекул, т. е. среднего расстояния, проходимого молекулами без столкновений.)

За время ∆t поршня могут достичь только молекулы, которые находятся от него на расстоянии, не превышающем CC’ = |vx|∆t (рис. 24). Молекулы, находящиеся на больших расстояниях, не успеют долететь до поршня. Надо еще учесть, что стенки CD достигают за это время лишь те молекулы, у которых vx > 0, т е. движущиеся слева направо.

Значения проекций скоростей vy и vz не влияют на достижение молекулами поршня CD. Если молекула упруго столкнется со стенкой BC или AD (рис 24), то проекция скорости vx при этом не изменится и молекула сместится вдоль оси Ox асе равно на отрезок |vx|∆t.

Выделенный объем CC’D’D равен |vx|∆t · S. Если концентрация молекул составляет n, то число их в выделенном объеме равно n|vx|∆t · S.

Вследствие хаотичности движения в среднем лишь половина молекул в выделенном объеме имеет проекцию скорости vx > 0 и движется слева направо. У другой половины молекул vx 2 вместо vx 2 .

Выражение для среднего значения модуля импульса силы определится формулой F∆t = nmSvx2∆t.

Это и есть основное уравнение молекулярно-кинетической теории.

Давление идеального газа пропорционально произведению массы молекулы, числа молекул в единице объема и среднего квадрата скорости движения молекул.

Формула (1.17) связывает макроскопическую величину – давление, которое может быть измерено манометром, – с микроскопическими величинами, характеризующими молекулы, и является как бы мостом между двумя мирами: макроскопическим и микроскопическим.

В следующей главе будет доказано, что средняя кинетическая энергия молекул определяется температурой газа.

1. Что называют идеальным газом в молекулярно-кинетической теории? 2. Каков механизм возникновения давления газа с точки зрения молекулярно-кинетической теории? 3. Чему равно среднее значение проекции скорости молекулы на ось Ox? 4. Дайте определение среднего значения квадрата скорости молекул. 5. Чему равно изменение импульса молекулы при ее соударении со стенкой? 6. От чего зависит число соударений молекул с поршнем площади S за время ∆t? 7. Запишите основное уравнение молекулярно-кинетической теории.

Давление газа с точки зрения молекулярно-кинетической теории.

Давление газа на стенку сосуда есть результат ударов мапе-кул газа об эту стенку. При каждом ударе молекула газа действует на стенку с определенной (с макроскопической точки зрения бесконечно малой) силой. Обратно направленная сила, с которой действует на молекулу стенка сосуда, заставляет молекулу отражаться от стенки. Если бы в сосуде содержалось всего несколько молекул, го пх удары следовали бы друг за другом редко и беспорядочно, п нельзя было бы говорить ни о какой регулярной силе давления, действующей на стенку. Мы имели бы дело с отдельными практически мгновенными бесконечно малыми толчками, которым время от времени подвергалась бы стенка. Если же число молекул в сосуде очень велико, то будет велико и числе ударов их о стенку сосуда. Удары станут следовать непрерывно друг за другом. Одновременно о стенку сосуда будет ударяться громадное количество молекул. Бесконечно малые силы отдельных ударов складываются в конечную и почти постоянную силу, действующую на стенку. Эта сила, усредненная по времени, и есть давление газа, с которым имеет дело макроскопическая физика.

При своем движении молекулы газа ударяются о стенки сосуда, в котором находится газ, создавая тем самым давление газа на стенки. Если газ находится в равновесии, то все направляющие движения молекул равновероятны.

Пусть в единице объема содержится n0 молекул. При абсолютно упругом ударе молекулы об стенку ее импульс изменяетмся на 2m0v. Ясно, что за время t до стенки долетят и упруго отразятся от нее все молекулы, находящиеся внутри параллелепипеда с основанием S и высотой vt.

Таких молекул будет: n = (1/6) n0 S v t ; следовательно общее изменение импульса молекул, долетевших за время t до стенки и упруго-отразившихся от нее будет: 2m0 v n = (1/3) n0 m0 v (ст.2) S t ; Это изменение импульса равно импульсу силы, действующей со стороны стенки на молекулы, а следовательно, согласно третьему закону Нбютона со стороны молекул на стенки: (1/3) n0 m0 v (ст.2) S t = F t ; F = (1/3) m0 v (ст.2) n0 S ; P = (1/3) n0 m0 v (ст.2) — основное уравнение.

Термодинамическая температура с молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы.

Связь между кинетической энергией, массой и скоростью выражаестя следующей формулой:

Таким образом частицы одинаковой массы и имеющие одинаковую скорость имеют и одинаковую температуру.

Средняя кинетическая энергия частицы связана с термодинамической температурой постоянной Больцмана:

kB = 1.380 6505(24) × 10−23 Дж/K — постоянная Больцмана

T — термодинамическая температура, К

Абсолютная температура – есть величина, пропорциональная средней энергии поступательного движения молекул.

Каков механизм возникновения давления газа с точки зрения мкт

Опубликовано 12.06.2017 по предмету Физика от Гость >>

Ответ оставил Гость

Из за движение молекул газа происходят соударения о стенки сосуда. Тк молекул много и они маленькие, то соударения происходят в огромном количество и равномерно по всей площади сосуда. Они и вызывают давление

Если ответа нет или он оказался неправильным по предмету Физика, то попробуй воспользоваться поиском на сайте или задать вопрос самостоятельно.

Если же проблемы возникают регулярно, то возможно Вам стоит обратиться за помощью. Мы нашли великолепную онлайн школу, которую без всяких сомнений можем порекомендовать. Там собраны лучшие преподаватели, которые обучили множество учеников. После обучения в этой школе, Вы сможете решать даже самые сложные задачи.

Читайте также:  Иллюзии обмана зрения 3d и обман зрения

Опишите характер движения молекул в газах, жидкостях и твердых телах.

Газы: частица движутся свободно между столкновениями друг с другом.

Жидкости: частицы колеблются около положения равновесия, сталкиваюсь с соседними молекулами. Время от времени она совершает прыжок на другое место.

Твёрдые тела: частицы колеблются около определенных положений равновесия. Иногда частицы меняют положения равновесия, но это происходит крайне редко.

Каков характер упаковки частиц у газов, жидкостей и твердых тел?

Твёрдые тела и жидкости упаковка плотная: расстояния между центрами соседних частиц приблизительно равно диаметру самих частиц. В газах: расстояние между соседними частицами во много раз больше диаметров частиц.

Каково среднее расстояние между молекулами у газов, жидкостей и твердых тел?

Среднее расстояние между молекулами а) газов: намного больше размеров самих молекул; б) жидкостей: равно диаметру молекул; в) твердых тел: равно диаметру молекул.

Перечислите основные свойства газов, жидкостей и твердых тел.

а) Газы: занимают весь предоставленный объём, не имеют форму; б) жидкостей: текучи, сохраняют объём, принимают форму сосуда; в) твёрдые тела: сохраняют объём и форму.

Что называют идеальным газом в МКТ?

Идеальный газ-это модель сильно разряжённых реальных газов, это газ частицы которого только движутся и не взаимодействуют электромагнитными силами друг с другом. Частицы этого газа представляются в виде упругих шариков.

Назовите условия, при которых газ можно считать идеальным?

Плотность газа очень мала, то есть он сильно разряжён: промежутки между молекулами настолько велики, что они не притягиваются и не отталкиваются электромагнитными силами.

Модуль 6. Основное уравнение МКТ.

Каков механизм возникновения давления газа с точки зрения МКТ?

Газы давят на поверхности тел и стенки сосудов за счёт столкновений молекул этими поверхностями.

Какую скорость движения молекул называют средней квадратичной?

Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа.

Что называют концентрацией молекул? Какая формула выражает смысл этого понятия?

Концентрация показывает, какое количество молекул содержится в метр.

Запишите и объясните физический смысл основного уравнения МКТ?

,Эта формула связывает макроскопическую величину-давление, которая может быть измерена манометром, — с микроскопическими величинами, характеризующими молекулы, и является ка бы мостом между двумя мирами: макроскопическим и микроскопическим.

Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы

1.2.Молекулярно-кинетическая теория газов

Молекулярно-кинетическая теория газов рассматривает идеальный газ:

а) молекулы не притягиваются и не отталкиваются;

б) молекулы взаимодействуют только при упругих столкновениях;

в) молекулы представляют собой материальные точки, т.е. обладают массой, но не имеют объёма.

В качестве критерия идеальности газов принято считать соотношение α/L1, где α и L соответственно линейные масштабы молекул и расстояний между ними. Все реальные газы при высоких температурах и малых давлениях можно практически считать как идеальные газы.

Давление – с точки зрения молекулярно-кинетической теории есть средний результат ударов молекул газа, находящихся в непрерывном хаотическом движении, о стенку сосуда, в котором заключен газ.

Давление измеряется в паскалях по имени французского учёного и математика

Блеза Паскаля (1623-1662). 1Па = 1. 1МПа = 10 6 Па.

Различают избыточное и абсолютное давление. Избыточное давление (Ри)– разность между давлением жидкости или газа и давлением окружающей среды.

Абсолютное давление (Р) – давление, отсчитываемое от абсолютного нуля давления или от абсолютного вакуума. Это давление является термодинамическим параметром состояния.

Температура – физическая величина, характеризующая интенсивность теплового движения молекул и пропорциональная средней кинетической энергии поступательного движения молекул.

Термодинамическая температура Т всегда положительна. При температуре абсолютного нуля (Т=0) тепловые движения прекращаются, и эта температура является началом отсчета абсолютной температуры.

Т = t + 273,15 .

Ro= 8,314 универсальная газовая постоянная.

Удельный объем – отношение объема вещества к его массе , .

Абсолютное давление p, удельный объем v и абсолютная температура Т однозначно определяют термодинамическое состояние однофазного тела и называются термодинамическими параметрами состояния.

1.3. Универсальное уравнение состояния идеального газа

Уравнение состояния идеального газа Клапейрона – Менделеева:

(1.1),

где р – давление, Па,

удельный объем(отношение объема вещества к его массе),

Rμ= газовая постоянная данного газа,,

Например, для кислорода ==. (1.2)

Уравнение состояния содержит три параметра: давление, удельный объём и температуру. Два из них независимы, а третий определяется по уравнению (1.1).

Для любого процесса 1-2:, p1v1=RμT1,

p2v2=RμT2.

Разделив левую часть первого уравнения на левую часть второго уравнения, а правую часть первого уравнения на правую часть второго уравнения и сократив Rμ, получим:

(1.3)

1.4. Смесь идеальных газов

Под газовой смесью понимается смесь отдельных газов, не вступающих между собой ни в какие химические реакции. Каждый газ (компонент) в смеси независимо от других газов полностью сохраняет все свои свойства и ведет себя так, как если бы он один занимал весь объем смеси.

Парциальное давление – это давление, которое имел бы каждый газ, входящий в состав смеси, если бы этот газ находился один в том же количестве, в том же объеме и при той же температуре, что и в смеси.

Закону Дальтона: Общее давление смеси газов равно сумме парциальных давлений отдельных газов, составляющих смесь.

Состав смеси задается долями объемными r, r1= ;r2= ;

массовыми g g1= и мольными r1 : r1 = ;r2 = ; .

где V1; V2; Vсм – объемы компонентов и смеси; m1; m2; mсм – массы компонентов и смеси; ν1; ν2; νсм – количество вещества (киломолей) компонентов и смеси.

Для идеального газа по закону Дальтона объёмные доли равны мольным:

Молярная масса смеси: μсм= μ1r1+ μ2r2. μсм=

где: μ1 , μ2, μсм – молярные массы компонентов и смеси.

Связь между объемными и массовыми долями: g1= r1;g2= r2.

Каков механизм возникновения давления газа с точки зрения мкт

59. Давление газа с точки зрения молекулярно-кинетической теории

59. Давление газа с точки зрения молекулярно-кинетической теории

1. Молекулы взаимодействуют друг с другом посредством моле-кулярных сил. На далеких расстояниях — это силы притяжения, убывающие с увеличением расстояния, на близких — силы отталкивания, быстро возрастающие при сближении молекул. Расстояние между центрами сблизившихся молекул, на котором силы притяжения переходят в силы отталкивания, принимается за диаметр молекулы. В газах при нормальных условиях средние расстояния между молекулами еще велики по сравнению с их диаметрами. На таких расстояниях молекулярные силы очень слабы и не играют существенной роли. Молекулярные силы проявляются лишь на близких расстояниях порядка диаметров молекул. Под действием этих сил скорости сблизившихся молекул претерпевают значительные изменения как по величине, так и но направлению. Взаимодействия молекул на близких расстояниях называют столкновениями. Между двумя последовательными столкновениями молекула газа движется практически свободно, т. е. прямолинейно и равномерно. При каждом столкновении молекула газа почти мгновенно меняет направление своего движения, а затем движется с новой скоростью опять прямолинейно и равномерно, пока не произойдет следующее столкновение. Если газ в целом находится в покое (например, заключен в закрытом сосуде), то в результате столкновений устанавливается хаотическое движение, в котором все направления движения молекул равновероятны. Оно называется тепловым движением. Чем более разрежен газ, тем длиннее средний путь, проходимый молекулой между двумя последовательными столкно-вениями. Для достаточно разреженного газа, заключенного в сосуд, можно в первом приближении пренебречь размерами молекул и столкновениями их друг с другом. Надо учесть только столкновения молекул со стенками сосуда, в который газ заключен. В этом при-ближении молекулы газа могут рассматриваться как материальные точки, не взаимодействующие между собой и движущиеся прямолинейно и равномерно между каждыми двумя последовательными столк-новениями со стенками сосуда. Такая простейшая модель приводит к законам идеальных газов. Чтобы показать это, надо выяснить моле-кулярный смысл давления, температуры и внутренней энергии газа.

2. Давление газа на стенку сосуда есть результат ударов мапе-кул газа об эту стенку. При каждом ударе молекула газа действует на стенку с определенной (с макроскопической точки зрения бесконечно малой) силой. Обратно направленная сила, с которой действует на молекулу стенка сосуда, заставляет молекулу отражаться от стенки. Если бы в сосуде содержалось всего несколько молекул, го пх удары следовали бы друг за другом редко и беспорядочно, п нельзя было бы говорить ни о какой регулярной силе давления, действующей на стенку. Мы имели бы дело с отдельными практически мгновенными бесконечно малыми толчками, которым время от времени подвергалась бы стенка. Если же число молекул в сосуде очень велико, то будет велико и числе ударов их о стенку сосуда. Удары станут следовать непрерывно друг за другом. Одновременно о стенку сосуда будет ударяться громадное количество молекул. Бесконечно малые силы отдельных ударов складываются в конечную и почти постоянную силу, действующую на стенку. Эта сила, усредненная по времени, и есть давление газа, с которым имеет дело макроскопическая физика.

Читайте также:  Предписание что это такое с точки зрения права

3. Вычислим давление газа на стенку сосуда. Пусть газ заключен в закрытый сосуд, и все молекулы одинаковы. Вообще говоря, они дви-жутся с различными скоростями, отличающимися друг от друга как по величине, так и по направлению. Разделим все молекулы на группы так, чтобы молекулы одной и той же группы в рассматриваемый момент времени имели приблизительно одинаковые по величине и направлению скорости. Скорость молекул i-й группы обозначим Vi, а число таких молекул в единице объема — /7,. Возьмем на стенке сосуда малую площадку о (рис. 43). Если молекулы движутся по направлению к площадке о, то они могут столкнуться с ней. Если же они движутся от площадки, то столкновений не будет. Предположим, что молекулы г-й группы движутся ио направлению к площадке а, и подсчитаем число г; молекул такой группы, ударяющихся об эту площадку за малое время dt. Построим на площадке а, как на основании, косой цилиндр с обра-зующими V >
Zi = atiiVix dt.

Дальнейший ход вычислений зависит от характера взаимодействия ударяющихся молекул со стенкой. Обычно при вычислениях считают, что стенка гладкая, а молекулы при ударе отражаются от нее зеркально, т. е. по законам удара идеально упругих шаров: абсолютная величина скорости при отражении не изменяется, угол падения равен углу отражения. Затем доказывается, что эти предположения не являются существенными. Однако в действительности стенка сосуда для ударяющейся молекулы не может быть идеальным зеркалом — ведь она сама состоит из молекул. Благодаря этому молекулы i-й группы после отражения будут иметь, вообще говоря, самые разнообразные по величине и направлению скорости, направленные от стенки, и распределятся по различным скоростным группам. Поэтому мы проведем дальнейшие вычисления, не вводя никаких специальных предположений относительно законов отражения молекул от стенки сосуда. Единственное предположение, которое будет и пользовано в вычислениях, состоит в том, что при отражении от стенки молекула в среднем не теряет и не приобретает кинетическую энергию. В дальнейшем будет показано, что это предположение означает, что температура газа должна быть равна температуре стенки. Для целей вычисления процесс взаимодействия молекулы со стенкой удобно мысленно разбить на два этапа. На первом этапе молекула замедляется и останавливается, как бы прилипая к стенке. Иа втором этапе молекула отталкивается стенкой, ускоряется и отскакивает от нее. Вычислим сначала силу F, которая действовала бы на площадку о со стороны газа, если бы весь процесс взаимодействия молекул газа со стенкой ограничивался только первым этапом, т. е. в предположении, что после ударов молекулы газа как бы прилипают к стенке. Молекулы i-ii группы, ударившиеся о площадку о за время dt, до удара обладали количеством движения г,р; == — atiiVixP > 0), т.е.

К силе F] следует прибавить силу F, которая действует на площадку о на втором этапе. Сила F, вполне аналогична силе отдачи, испытываемой орудием при выстреле. Роль снаряда играют молекулы, летящие от площадки о, т. е. молекулы, для которых vix а с неи и Давление газа Р.

Однако столкновения вносят качественные изменения в физическую интерпретацию давления Р. Пока не было столкновений, молекулы газа совершенно не взаимодействовали друг с другом. Величина Р имела только один смысл: она давала давление газа иа стенку сосуда. При наличии столкновений появляется силовое взаимодействие между макроскопическими частями газа. Роль стенки для любой макроскопической части газа может играть граничащая с ней другая макроскопическая часть того же газа. В этих условиях величина Р имеет также смысл внутреннего давления, посредством которого осуществляется силовое взаимодействие между примыкающими друг к другу макроскопическими частями газа. Именно такой смысл имеет давление Р в гидродинамике и аэродинамике.

5. Формулы (59.4) и (59.5) применимы как к нерелятпвистским,

так и к релятивистским движениям молекул. В случае нереляти-

вистских движений масса молекулы т может считаться постоянной.

§ eoj СКОРОСТИ ТЕПЛОВОГО ДВИЖЕНИЯ ГАЗОВЫХ МОЛЕКУЛ 193

Полагая в формулах (59.4) и (59.5) р = mv, получим для этого случая

При выводе этих формул молекулы рассматривались как бес-структурные материальные точки. Не принималось во внимание вращение молекул, а также внутримолекулярное движение. При столкновениях могут меняться скорости вращения молекул. Молекула может перейти в возбужденное состояние, или из возбужденного состояния вернуться в нормальное. Но все эти процессы не играют роли, когда речь идет о вычислении давления газа. Существенно только изменение поступательного количества движения молекулы при столкновениях ее со стенкой. Оно равно массе молекулы, умноженной на изменение скорости ее центра масс. Поэтому формулы (59.6) и (59.7) остаются в силе. Надо только понимать под v скорость поступательного движения молекулы (точнее, ее центра масс). Таким образом, формуле (59.7) можно придать вид

где (/inner) — среднее значение суммы кинетических энергий по-ступательного движения всех молекул газа. При столкновениях энергии вращательного и внутримолекулярного движений могут переходить в энергию поступательного движения и наоборот. Однако в установившемся состоянии среднее значение величины ЕтсТ остается неизменным.

Формула (59.8), как ясно из ее вывода, справедлива не только для однородного газа, но и для смеси различных газов. В этом случае под ЕПОСТ по-прежнему следует понимать сумму кинетических энергий поступательного движения молекул всех газов, содержащихся в сосуде. Из вывода ясно также, что для нашей модели газа, состоящей из невзаимодействующих молекул, справедлив закон Дальтона: давление смеси газов равно сумме парциальных давлений этих газов.

Автор: Диков Александр Дата: 2010-05-17 01:08:18 Просмотров: 7646

Репетиторы, математика, русский язык, физика, сдать ЕГЭ, ЕГЭ 2012, тестирование ЕГЭ, ответы по ЕГЭ, репетитор, карта сайта,

Все права защищены и принадлежат авторам размещающих материалы на сайте. Данный сайт ни какой ответственности за размещенный материал не несет. Копирование материалов возможна только с указанием URL ссылки на исходный материал.

Давление газа с точки зрения молекулярно-кинетической теории. Молекулярно-кинетический смысл абсолютной температуры

Давление газа с точки зрения молекулярно-кинетической теории.

Давление газа на стенку сосуда есть результат ударов мапе-кул газа об эту стенку. При каждом ударе молекула газа действует на стенку с определенной (с макроскопической точки зрения бесконечно малой) силой. Обратно направленная сила, с которой действует на молекулу стенка сосуда, заставляет молекулу отражаться от стенки. Если бы в сосуде содержалось всего несколько молекул, го пх удары следовали бы друг за другом редко и беспорядочно, п нельзя было бы говорить ни о какой регулярной силе давления, действующей на стенку. Мы имели бы дело с отдельными практически мгновенными бесконечно малыми толчками, которым время от времени подвергалась бы стенка. Если же число молекул в сосуде очень велико, то будет велико и числе ударов их о стенку сосуда. Удары станут следовать непрерывно друг за другом. Одновременно о стенку сосуда будет ударяться громадное количество молекул. Бесконечно малые силы отдельных ударов складываются в конечную и почти постоянную силу, действующую на стенку. Эта сила, усредненная по времени, и есть давление газа, с которым имеет дело макроскопическая физика.

Читайте также:  Чем различаются с точки зрения морали следующие высказывания ответ

При своем движении молекулы газа ударяются о стенки сосуда, в котором находится газ, создавая тем самым давление газа на стенки. Если газ находится в равновесии, то все направляющие движения молекул равновероятны.

Пусть в единице объема содержится n0 молекул. При абсолютно упругом ударе молекулы об стенку ее импульс изменяетмся на 2m0v. Ясно, что за время t до стенки долетят и упруго отразятся от нее все молекулы, находящиеся внутри параллелепипеда с основанием S и высотой vt.

Таких молекул будет: n = (1/6) n0 S v t ; следовательно общее изменение импульса молекул, долетевших за время t до стенки и упруго-отразившихся от нее будет: 2m0 v n = (1/3) n0 m0 v (ст.2) S t ; Это изменение импульса равно импульсу силы, действующей со стороны стенки на молекулы, а следовательно, согласно третьему закону Нбютона со стороны молекул на стенки: (1/3) n0 m0 v (ст.2) S t = F t ; F = (1/3) m0 v (ст.2) n0 S ; P = (1/3) n0 m0 v (ст.2) — основное уравнение.

Термодинамическая температура с молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы.

Связь между кинетической энергией, массой и скоростью выражаестя следующей формулой:

Таким образом частицы одинаковой массы и имеющие одинаковую скорость имеют и одинаковую температуру.

Средняя кинетическая энергия частицы связана с термодинамической температурой постоянной Больцмана:

kB = 1.380 6505(24) × 10−23 Дж/K — постоянная Больцмана

T — термодинамическая температура, К

Абсолютная температура – есть величина, пропорциональная средней энергии поступательного движения молекул.

Основное уравнение молекулярно-кинетической теории газов

Это уравнение устанавливает взаимосвязь между давлением газа (термодинамическим параметром) и средней кинетической энергией теплового движения его молекул (механической характеристикой системы). С точки зрения молекулярно-кинетической теории, давление газа на стенку сосуда является результатом многочисленных ударов молекул газа о стенку. При огромном числе молекул, находящихся в сосуде, одновременно будет производиться огромное количество ударов о стенки. Поэтому достаточно малые и очень быстро меняющиеся силы, порождаемые отдельными ударами, будут складываться практически в постоянную силу, давления, действующую на каждую единицу площади стенок сосуда.

Найдем давление идеального газа на стенку сосуда. Сила, с которой газ действует на стенку, определяется упругими столкновениями молекул со стенкой и, в соответствии со вторым основным законом динамики, равна импульсу, передаваемому стенке всеми молекулами за единицу времени, а давление газа найдется как отношение этой силы к площади стенки. При этом будем считать, что идеальный газ – это система, состоящая из исчезающе малых по размерам твердых шариков конечной массы, хаотически движущихся во всем доступном им объеме, не взаимодействующих на расстоянии и сталкивающихся между собой и со стенками сосуда по законам соударения упругих шаров.

Выделим на поверхности сосуда, в который газ заключен, малую площадку S. Вследствие малости ее можно считать плоской. Введем декартову систему координат, направив ось X перпендикулярно выделенной площадке, как показано на рис. 2.2. С площадкой S могут столкнуться только те молекулы, которые летят в ее направлении, т.е. у которых x-компонента скорости Предположим сначала, что все подлетающие к площадке молекулы имеют одно и то же значение этой x-компоненты. При упругом ударе молекулы о площадку знак этой скорости, а значит, и импульса меняются на противоположный, не изменяя своей величины. Изменение импульса одной молекулы при столкновении с площадкой составит Здесь – масса молекулы. Импульс, переданный площадке этой молекулой, в соответствии с законом сохранения импульса, будет

Рис. 2.2

За время до площадки долетят и столкнутся с ней только те молекулы, которые в начальный момент находились от площадки на расстоянии, не большем vxΔt, и занимали объем слоя пространства, примыкающего к площадке. Число ударов молекул о площадку за время будет равно числу молекул, находящихся внутри этого слоя, т.е. где n – концентрация молекул газа. Импульс, переданный площадке этими молекулами, составит

Предположение, что все молекулы газа имеют скорости с одной и той же компонентой vx, конечно, не верно. Скорости vx у всех молекул разные и каждая молекула, ударяясь о площадку, вносит свой вклад. Учтем, однако, что нам требуется оценить только коллективный эффект, возникающий от столкновения с площадкой большого числа молекул. Этот эффект описывается средним значением полученного выше выражения. Именно средний импульс определяет силу давления молекул на стенку сосуда. Усредняя это выражение по всем , примем во внимание, что не все молекулы с одним и тем же значением сталкиваются с площадкой, а только те из них, у которых x-компонента vx > 0. Учтем также, что в равновесном состоянии движение молекул является полностью беспорядочным. Поэтому число молекул, летящих к площадке S и от нее, в среднем одно и то же. Это означает, что среднее значение для vx > 0 вдвое меньше среднего значения для всех vx. Таким образом, оказывается, что за время площадка S со стороны газа получит импульс, в среднем равный Разделив этот импульс на промежуток времени , получим среднее значение силы, с которой газ действует на данную площадку, а разделив затем эту силу на площадь площадки S, найдем давление, оказываемое газом на площадку:

Вследствие беспорядочности движения молекул средние значения квадратов компонент вектора скорости будут одинаковы. А так как то для средних значений всех квадратов компонент скорости будем иметь

(2.5)

С учетом этого находим

(2.6)

Отсюда видно, что давление идеального газа определяется только концентрацией молекул, их массой и средним значением квадрата скорости молекулы.

Правую часть этой формулы можно записать в виде где – среднее значение кинетической энергии поступательного движения молекулы. Учитывая это, получим

(2.7)

Это и есть основное уравнение молекулярно-кинетической теории газов. Основным его называют потому, что это первое соотношение, которое было получено на основе представления о газе как о совокупности быстро и хаотически движущихся частиц. Его называют также уравнением Клаузиуса.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8158 — | 6643 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Каков механизм возникновения давления газа с точки зрения мкт

Опубликовано 12.06.2017 по предмету Физика от Гость >>

Ответ оставил Гость

Из за движение молекул газа происходят соударения о стенки сосуда. Тк молекул много и они маленькие, то соударения происходят в огромном количество и равномерно по всей площади сосуда. Они и вызывают давление

Если ответа нет или он оказался неправильным по предмету Физика, то попробуй воспользоваться поиском на сайте или задать вопрос самостоятельно.

Если же проблемы возникают регулярно, то возможно Вам стоит обратиться за помощью. Мы нашли великолепную онлайн школу, которую без всяких сомнений можем порекомендовать. Там собраны лучшие преподаватели, которые обучили множество учеников. После обучения в этой школе, Вы сможете решать даже самые сложные задачи.

Давление газа с точки зрения МКТ

Допущения:

· Сосуд имеет форму прямоугольного параллелепипеда со сторонами a,b,c.

· Удары подчиняются зеркальному закону и без изменения модуля скорости

· Все направления движения равновероятны.

В сосуде N молекул. Вдоль каждого направления движется N/3 молекул, причем половина из них движется в одну сторону, другая половина – в противоположную сторону. Все молекулы движутся со скоростью . Тогда количество молекул, достигающих площадь ΔS за время Δt будет равно (n – число молекул в единице объема)

Дата добавления: 2015-09-18 ; просмотров: 876 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источники:
  • http://mydocx.ru/1-14696.html
  • http://shkolniku.com/fizika/task1910777.html
  • http://infopedia.su/13x9a9a.html
  • http://studfiles.net/preview/5276108/page:2/
  • http://repetitor.biniko.com/blog-id114.htm
  • http://mydocx.ru/1-14696.html
  • http://studopedia.ru/16_44680_osnovnoe-uravnenie-molekulyarno-kineticheskoy-teorii-gazov.html
  • http://shkolniku.com/fizika/task1910777.html
  • http://helpiks.org/5-28206.html