Меню Рубрики

Какие точки зрения на возникновение науки высказывают историки науки

Возникновение науки. Наука в доисторическом обществе и Древнем мире

Относительно возникновения науки существуют пять точек зрения:

  • · Наука была всегда, начиная с момента зарождения человеческого общества, так как научная любознательность органично присуща человеку;
  • · Наука возникла в Древней Греции, так как именно здесь знания впервые получили свое теоретическое обоснование (общепринятое);
  • · Наука возникла в Западной Европе в XII-XIV вв., поскольку проявился интерес к опытному знанию и математике;
  • · Наука начинается в XVI—XVIIвв., и благодаря работам Г. Галилея, И. Кеплера, X. Гюйгенса и И. Ньютона, создается первая теоретическая модель физики на языке математики;
  • · Наука начинается с первой трети XIXв., когда исследовательская деятельность была объединена с высшим образованием.

В доисторическом обществе и древней цивилизации знание существовало в рецептурном виде, т.е. знания были неотделимы от умения и неструктурированны. Эти знания являлись дотеоретическими, несистематичными, отсутствовали абстракции. К вспомогательным средством дотеоретического знания мы относим: миф, магию, ранние формы религии. Миф (повествование) — рациональное отношение человека к миру. Магия — сами действия. Магия мыслит взаимосвязанными процессами физической, ментальной, символической и иной природы.

Основные идеи абстрактно-теоретического мышления в древнегреческой философии. В античной культуре древней Греции появляется теоретическое, систематическое и абстрактное мышление. В основе лежит идея особого знания (общее знание, первое знание). У древних греков появляется архе-первый (начало); физис-природа (то из чего происходит вещь). Начало у вещей одно, а природа различна. Это были два концентрата теоретического мышления. Там же возникли: закон идентичности, закон исключения третьего, закон непротиворечия, закон достаточного основания. Это систематический подход. Первые теории создавались в философии для нужд философии. Теория начинает соединяться с научными знаниями во 2-м веке до н.э. Версии возникновения теории: уникальная экономика, греческая религия.

Этапы развития науки:

1 этап — древняя Греция — возникновение науки в социуме с провозглашением геометрии, как науки об измерении земли.

В Древней Греции первые теоретические системы возникли в VI в. до н.э. Такие мыслители, как Фалес и Демокрит, уже объясняли действительность через естественные начала в противовес мифологии, Древнегреческий ученый Аристотель первым описал закономерности природы, общества и мышления, выдвигая на передний план объективность знания, логичность, убедительность. В момент познания была введена система абстрактных понятий, закладывались основы доказательного способа изложения материала; начали обособляться отдельные отрасли знания: геометрия (Евклид), механика (Архимед), астрономия (Птолемей).

Объект исследования — мегамир (включая вселенную во всём многообразии).

  • А) Работали не с реальными предметами, не с эмпирическим объектом, а с математическими моделями — абстракциями.
  • Б) Из всех понятий выводились аксиома и опираясь на них с помощью логического обоснования выводили новые понятия.

Идеалы и нормы науки: знание раде знаний.

Метод познания — наблюдение.

Научная картина мира: носит интегративный характер, основана на взаимосвязи микро- и макрокосмоса.

Философские основания науки: Философия — наука наук. Стиль мышления — интуитивно диалектический. Антропокосмизм — человек есть органическая часть мирового космического процесса. Ч. — мера всех вещей.

2 этап — Средневековая европейская наука — наука превратилась в служанку богословия. Противоборство между номиналистами (единичные вещи) и реалистами (универсальные вещи).

Ряд областей знания был обогащен в эпоху средневековья учеными Арабского Востока и Средней Азии: Ибн Ста, или Авиценна, (980—1037), Ибн Рушд (1126—1198), Бируни (973—1050). В Западной Европе из-за господства религии родилась специфическая философская наука — схоластика, а также получили развитие алхимия и астрология. Алхимия способствовала созданию базы для науки в современном смысле слова, поскольку опиралась на опытное изучение природных веществ и соединений и подготовила почву для становления химии. Астрология связана была с наблюдением за небесными светилами, что также развивало опытную базу для будущей астрономии.

Объект исследования — макромир (Земля и ближайший космос).

Идеалы и нормы науки: Знание — сила. Индуктивно эмпирический подход. Механицизм. Противопоставление объекта и субъекта.

Научная картина мира: Ньютоновская классическая механика; гелиоцентризм; божественное происхождение окружающего мира и его объектов; мир — сложно действующий механизм.

Философские основания науки: Механистический детерминизм. Стиль мышления — механистично метафизический (отрицание внутреннего противоречия).

  • · научное знание ориентируется на теологизм
  • · ориентировано на специфическое обслуживание интересов ограниченного числа
  • · возникают научные школы, провозглашается приоритет эмпирического познания в исследовании окружающей действительности (идёт разделение наук).
  • 3 этап: Новоевропейская классическая наука (15-16 вв).

Важнейшим этапом развития науки стало Новое время — XVI—XVII вв. Здесь определяющую роль сыграли потребности нарождавшегося капитализма. В этот период было подорвано господство религиозного мышления, и в качестве ведущего метода исследовании утвердился эксперимент (опыт), который наряду с наблюдением радикально расширил сферу познаваемой реальности. В это время теоретические рассуждения стали соединяться с практическим освоением природы, что резко усилило познавательные возможности науки Это глубокое преобразование науки, произошедшее в XVI—XVII вв., считают первой научной революцией, давшей миру такие имена, как Г.Галшей (1564—1642), (1571—1630), У.Гарвей (1578—1657), Р.Декарт (1596—1650), Х.Гюйгенс (1629—1695), И.Ньютон (1643—1727) и др. наука геометрия мышление номиналист

Научная революция XVII в., связана с революцией в естествознании. Развитие производительных сил требовало создания новых машин, внедрения химических процессов, законов механики, конструирования точных приборов для астрономических наблюдений.

Научная революция прошла несколько этапов, и ее становление заняло полтора столетия. Ее начало положено Н.Коперником и его последователями Бруно, Галилеем, Кеплером. В 1543 г. польский ученый Н.Коперник (1473—1543) опубликовал книгу «Об обращениях небесных сфер», в которой утвердил представление о том, что Земля так же, как и другие планеты Солнечной системы, обращается вокруг Солнца, являющегося центральным телом Солнечной системы. Коперник установил, что Земля не является исключительным небесным телом, чем был нанесен удар по антропоцентризм и религиозным легендам, в соответствии с которыми Земля якобы занимает центральное положение во Вселенной. Была отвергнута геоцентрическая система Птолемея.

Галилею принадлежат крупнейшие достижения в области физики и разработки самой фундаментальной проблемы — движения, огромны его достижения в астрономии: обоснование и утверждение гелиоцентрической системы, открытие четырех самых крупных спутников Юпитера из 13 известных в настоящее время; открытие фаз Венеры, необычайного вида планеты Сатурн, создаваемого, как известно теперь, кольцами, представляющими совокупность твердых тел; огромного количества звезд, не видимых невооруженным взглядом. Галилей добился успеха в научных достижениях в значительной мере потому, что в качестве исходного пункта познания природы признавал наблюдения, опыт.

Современный мир характеризуется как период бурного развития научно-технических аспектов жизнедеятельности человека, которые естественно находят свое применение в экономической сфере, снижая физическую нагрузку на человека. Однако очевидные преимущества использования научно-технических достижений имеют и обратную сторону, которая в курсе культурологии фиксируется как проблема социокультурных последствий научно-технической революции.

Ньютон создал основы механики, открыл закон всемирного тяготения и разработал на его основе теорию движения небесных тел. Это научное открытие прославило Ньютона навечно. Ему принадлежат такие достижения в области, механики, как введение понятий силы, инерции, формулировка трех законов механики; в области оптики — открытие рефракции, дисперсии, интерференции, дифракции света; в области математики — алгебра, геометрия, интерполяция, дифференциальное и интегральное исчисление.

В XVIII веке революционные открытия были совершены в астрономии И.Кантом (172-4—1804) и П. Лапласом (1749—1827), а также в химии — ее начало связано с именем АЛ .Лавуазье (1743—1794). К этому периоду относится деятельность М.В. Ломоносова (1711—1765), предвосхитившего многое из последующего развития естествознания.

В XIX веке в науке происходили непрерывные революционные перевороты во всех отраслях естествознания.

Опора науки Нового времени на эксперимент, развитие механики заложили фундамент для установления связи науки с производством. В то же время к началу XIX в. накопленный наукой опыт, материал в отдельных областях уже не укладывался в рамки механистического объяснения природы и общества. Потребовался новый виток научных знаний и более глубокий и широкий синтез, объединяющий результаты отдельных наук. В этот исторический период науку прославили Ю.Р. Майер (1814—1878), Дж. Джоулъ (1818—1889), Г. Гелъмголъц (1821—1894), открывшие законы сохранения и превращения энергии, что обеспечило единую основу для всех разделов физики и химии. Огромное значение в познании мира имело создание Т.Шванном (1810—1882) и М. Шлейденом (1804—1881) клеточной теории, показавшей единообразную структуру всех живых организмов. Ч. Дарвин (1809—1882), создавший эволюционное учение в биологии, внедрил идею развития в естествознание. Благодаря периодической системе элементов, открытой гениальным русским ученым Д.И. Менделеевым (1834—1907), была доказана внутренняя связь между всеми известными видами вещества.

Таким образом, к рубежу XIX—XX вв. произошли крупные изменения в основах научного мышления, механистическое мировоззрение исчерпало себя, что привело классическую науку Нового времени к кризису. Этому способствовали помимо названных выше, открытие электрона и радиоактивности. В результате разрешения кризиса произошла новая научная революция, начавшаяся в физике и охватившая все основные отрасли науки, Она связана прежде всего с именами М. Планка (1858—1947) и А.Эйнштейна (1879—1955), Открытие электрона, радия, превращения химических элементов, создание теории относительности и квантовой теории ознаменовали прорыв в область микромира и больших скоростей. Успехи физики оказали влияние на химию. Квантовая теория, объяснив природу химических связей, открыла перед наукой и производством широкие возможности химического преобразования вещества; началось проникновение в механизм наследственности, получила развитие генетика, сформировалась хромосомная теория.

Объект исследования — микромир. Совокупность элементарных частиц. Взаимосвязь эмпирического и рационального уровня познаний.

Идеалы и нормы науки: принцип зависимости объекта от субъекта. Сочетание теоретического и практического направлений.

Научная картина мира: формирование частно научных картин мира (химическая, физическая …)

Философские основания науки: диалектика — стиль естественнонаучного мышления.

  • · Культура постепенно освобождается от господства церкви.
  • · первые попытки убрать схоластику догматизм
  • · интенсивное развитие экономики
  • · лавиноообразный интерес к научному знанию.
  • · научная мысль начинает фокусироваться на получение объективно истинного знания с уклоном в практическую полезность
  • · попытка анализа и синтеза рациональных зерен преднауки
  • · начинают преобладать экспериментальные знания
  • · наука формируется как социальный институт (ВУЗы, научные книги)
  • · начинают выделяться технические и социально-гуманитарные науки
  • 4 этап: 20 век — набирает силу неклассическая наука.

К середине XX века на одно из первых мест в естествознании выдвинулась биология, где совершены такие фундаментальные открытия, как установление молекулярной структуры ДНК Ф. Криком (род. 1916) и Дж. Уотсоном (род. 1928), открытие генетического кода.

Наука в настоящее время — это чрезвычайно сложное общественное явление, имеющее многосторонние связи с миром. Ее рассматривают с четырех сторон (как и любое другое общественное явление — политику, мораль, право, искусство, религию):

  • 1) с теоретической, где наука — система знаний, форма общественного сознания;
  • 2) с точки зрения общественного разделения труда, где наука — форма деятельности, системой отношений между учеными и научными учреждениями;
  • 3) с точки зрения социального института;
  • 4) с точки зрения практического применения выводов науки со стороны ее общественной роли.

Объект исследования — микро-, макро- и мегамир. Взаимосвязь эмпирического, рационального и интуитивного познания.

Идеалы и нормы науки: аксиологизация науки. Повышение степени «фундаментализации» прикладных наук.

Научная картина мира: формирование общенаучной картины мира. Преобладание представления о глобальном эволюционизме (развитие — атрибут, присущий всем формам объективной реальности). Переход от антропоцентризму к биосфероцентризму (человек, биосфера, космос — во взаимосвязи и единстве).

Философские основания науки: синергетический стиль мышления (интегративность, нелинейность, бифуркационность)

· этап: постнеклассическая наука — современный этап развития научного познания.

Возникновение науки

Можно ли установить — хотя бы с относительной хронологической и географической точностью — когда и где возникла наука?

Можно ли узнать дату и место рождения науки?

Трудность ответа на этот вопрос состоит прежде всего в определении содержания понятия «наука», в попытке вычленить те основные характерные ее черты, которые как раз не были чертами «историческими», т.е. преходящими во времени.

Каким образом можно хотя бы попытаться ответить на такой вопрос?

Когда речь идет об исследовании истоков науки, то границы того, что мы называем сегодня «наукой» со всей очевидностью расширяются до границ «культуры». История как раз позволяет осознать, что современная наука уходит в своих истоках в глубинные пласты мировой культуры. Историк науки, ищущий ее культурные истоки, похож на географа, исследующего те участки реки, которые еще не река (ручьи, болота, возвышенности и т.п.), но без которых ее не было бы.

Об этом чрезвычайно выразительно сказал французский математик Лазар Карно (1753—1823): «Науки подобны величественной реке, по течению которой легко следовать после того, как оно приобретает известную правильность; но если хотят проследить реку до ее истока, то его нигде не находят, потому что его нигде нет, в известном смысле источник рассеян по всей поверхности Земли».

Сегодня перед нами наука выступает как семейство многочисленных научных дисциплин,

— одни из которых совсем молоды (вроде кибернетики, математической лингвистики или молекулярной генетики),

— другие появились в XIX веке, (статистическая физика, электродинамика, физическая химия, социология),

— третьи — в Новое Время (например, математический анализ, аналитическая геометрия, динамика),

— а некоторые — уходят своими корнями в Античность или даже в более отдаленные времена (геометрия, астрономия, география, история).

Наука жадно интегрирует опыт всей познавательной деятельности человечества, а также «присваивает» технические изобретения, практический опыт земледельцев, ремесленников, путешественников. она нуждается в определенной социально-политической обстановке, отстаивает свое «место под солнцем» в качестве особого фрагмента духовной культуры наряду с философией, теологией, технологией. организует себя как социальный институт, требует общественного признания самой профессии ученого, предъявляет требования к системе образования и частично содержательно завладевает ею.

Как здесь выделить существенные события от «фоновых», следствия — от их причин? Историки науки предлагают различные ответы на вопрос о дате и месте рождения науки в зависимости от того, какую теоретическую модель науки они принимают, в известном смысле от того, какому течению в рамках философии науки они принадлежат или неявно следуют, даже не отдавая себе требовательного отчета о природе своего выбора.

Читайте также:  При каком зрении нужны очки для вождения автомобиля

Таким образом, определение даты и места рождения науки — это вопрос открыто дискуссионный для сообщества профессиональных историков науки, здесь нет полного согласия.

Можно выделить пять радикальных, достаточно ясно и резко противопоставленных друг другу мнений. Познакомимся кратко с каждым из них.

— Одна из точек зрения исходит из того, что наука отождествляется с опытом практической и познавательной деятельности вообще.

Тогда отсчет времени надо вести с каменного века, с тех времен, когда человек в процессе непосредственной жизнедеятельности начинает накапливать и передавать другим знания о мире.

Известный английский ученый и общественный деятель Джон Бернал в своей книге «Наука в истории общества» пишет: «Так как основное свойство естествознания заключается в том, что оно имеет дело с действенными манипуляциями и преобразованиями материи, главный поток науки вытекает из практических технических приемов первобытного человека; их показывают и им подражают, но не изучают досконально. Вся наша сложная цивилизация, основанная на механизации и науке, развилась из материальной техники и социальных институтов далекого прошлого, другими словами — из ремесел и обычаев наших предков».

— Многие историки называют другую дату: наука рождается примерно двадцать пять веков назад (примерно V в. до н.э.) в Восточном Средиземноморье, точнее в Древней Греции.

Именно в это время на фоне разложения мифологического мышления возникают первые программы исследования природы, появляются не только первые образцы исследовательской деятельности, но и осознаются некоторые фундаментальные принципы познания природы.

Наука понимается этими историками как сознательное, целенаправленное исследование природы с ярко выраженной рефлексией о способах обоснования полученного знания и о самих принципах познавательной деятельности. Коротко говоря, наука — это особый вид знания, это — знание с его обоснованием.

Уже в Древнем Египте и Вавилоне были накоплены значительные математические знания, но только греки начали доказывать теоремы. Поэтому вполне справедливо считать, что столь специфическое духовное явление возникло в городах-полисах Греции, истинном очаге будущей европейской культуры.

— Третья точка зрения относит дату рождения науки к гораздо более позднему времени, к периоду расцвета поздней средневековой культуры Западной Европы (XII– XIV вв.).

Наука, считают они, возникает в тот период, когда была переосознана роль опытного знания, что связано с деятельнос-

тью английского епископа Роберта Гроссета (1168—1253 гг.), английского францисканского монаха Роджера Бэкона (ок. 1214— 1292 гг.), английского теолога Томаса Брадвардина и др.

Эти оксфордские ученые, все — математики и естествоиспытатели, призывают исследователя опираться на опыт, наблюдение и эксперимент, а не на авторитет предания или философской традиции, что составляет важнейшую черту современного научного мышления. Математика, по выражению Роджера Бэкона, является вратами и ключом к прочим наукам.

Характерной чертой этого периода в развитии духовной культуры Западной Европы была также начинающаяся критика аристотелизма, долгие века господствовавшего в природознании.

Таким образом, эта точка зрения прямо противоположна изложенной чуть выше. Она связывает рождение естествознания Нового Времени, а тем самым и науки вообще с постепенным освобождением научного мышления от догм аристотелианских воззрений, т.е. с бунтом против философского спекулятивного мышления.

— Большинство же историков науки считают, что о науке в современном смысле слова можно говорить только начиная с XVI—XVII вв.

Это эпоха, когда появляются работы И.Кеплера, Х.Гюйгенса, Г.Галилея. Апогеем духовной революции, связанной с появлением науки, являются, конечно, работы Ньютона, который, кстати говоря, родился в год смерти Г.Галилея (1643 г.).

Наука в таком понимании — новейшее естествознание, умеющее строить математические модели изучаемых явлений, сравнивать их с опытным материалом, проводить рассуждения посредством мысленного эксперимента.

Рождение науки здесь отождествляется с рождением современной физики и необходимого для нее математического аппарата. В этот же период складывается новый тип отношения между физикой и математикой, плодотворный для обеих областей познания. Надо прибавить, что в XVII веке происходит и признание социального статуса науки, рождение ее в качестве особого социального института. В 1662 г. возникает

Лондонское Королевское общество, в 1666 г. — Парижская Академия наук.

— Некоторые (правда, немногочисленные) исследователи сдвигают дату рождения современной науки на еще более позднее время и называют конец первой трети XIX в.

Такого мнения придерживаются те, кто считают существенным признаком современной науки совмещение исследовательской деятельности и высшего образования.

Первенство здесь принадлежит Германии, ее университетам. Новый тип обучения предлагается после реформ Берлинского университета, происходивших под руководством знаменитого и авторитетного естествоиспытателя Вильгельма Гумбольдта. Эти идеи были реализованы наилучшим образом в лаборатории известного химика Юстуса Либиха в Гисене.

Новация состоит в том, что происходит оформление науки в особую профессию.

Рождение современной науки связано поэтому с возникновением университетских исследовательских лабораторий, привлекающих к своей работе студентов, а также с проведением исследований, имеющих важное прикладное значение.

Новая модель образования в качестве важнейшего последствия для остальной культуры имела появление на рынке таких товаров, разработка и производство которых предполагает доступ к научному знанию.

Действительно, именно с середины XIX в. на мировом рынке появляются удобрения, ядохимикаты, взрывчатые вещества, электротехнические товары.

Историки показывают, что для Англии и Франции, не принявших поначалу «немецкой модели» образования, это обернулось резким культурным отставанием. Культ ученых-любителей, столь характерный для Англии, обернулся для нее потерей лидерства в науке.

Этот процесс превращения науки в профессию завершает ее становление как современной науки.

Теперь научно-исследовательская деятельность становится признанно важной, устойчивой социокультурной традицией,

закрепленной множеством осознанных норм, — делом столь серьезным, что государство берет на себя некоторые заботы о поддержании этой профессии на должном уровне, причем это делается в порядке защиты общезначимых национальных интересов.

— Иногда можно встретить и такую экстравагантную точку зрению, которая исходит из того, что «подлинная» наука — Наука с большой буквы — еще не родилась, она появится только в следующем веке. Здесь, конечно, мы уже покидаем почву былого, почву истории науки и попадаем в область социальных проектов.

Попробуем задать себе вопрос: является ли возникновение науки некоторой «железной» закономерностью в развитии человеческой истории, могут ли культуры, обладая разнообразными познаниями и техническими навыками, не создавать тот тип производства знания, который получил имя «наука»?

В большинстве своем историки науки согласны с тем, что такое возможно.

В Египте, Месопотамии, Индии, Китае, Центральной и Южной Америке доколумбовой эпохи существовали великие цивилизации, накопившие гигантский и по-своему глубокий, своеобразный опыт производственных навыков, ремесел и знаний, но не создавшие науки в современном смысле слова.

В технологическом плане Поднебесная империя Китая ощутимо обгоняла западноевропейскую цивилизацию вплоть до XV века. Китай дал миру порох, компас, книгопечатание, механические часы и технику железного литья, фарфор, бумагу и многое, многое другое. Китайцы смогли развить великолепную технику вычислений и применить ее во многих областях практики.

По мнению известного английского историка Джозефа Нидама, между I в. до н.э. и XV в. н.э. с точки зрения эффективности приложения человеческих знаний к нуждам человеческой практики китайская цивилизация была более высокой, чем западная. Но науки как таковой эта империя не создала.

В Индии религиозные каноны требовали строгого постоянства звуков священных санскритских текстов, и ради этой цели была изобретена поражающая своей детальностью грамматика, позволяющая очень точно описать звуковой строй языка, которая приводила в изумление даже лингвистов современности, ибо она «предвосхитила» теоретическую фонологию.

Да и мало ли других удивительных достижений насчитывает индийская культура! Достаточно вспомнить ее математику, медицину, разнообразную ремесленную практику. Однако познание внешнего мира не признавалось в Древней Индии высшей ценностью и благом для человека. Говорят, когда Будду спрашивали о природе мира, его происхождении и законах, он, как свидетельствует традиция, отвечал «благородным молчанием». Человек, в теле которого застряла стрела, говорил Будда, должен стараться извлечь ее, а не тратить время на размышления по поводу того, из какого материала она сделана и кем пущена.

Древний Вавилон создал развитую арифметику, на которой базировались тонкие геометрические измерения и обработка астрономических наблюдений. Вавилонская астрономия, в свою очередь, была средством государственного управления и регулирования хозяйственной жизни: она была нужна прежде всего для составления календарей и предсказания разлива рек.

И нам хорошо известно, что учителями древних греков в области математики и философии были прежде всего египтяне, которые сумели передать им многое из того драгоценного познавательного опыта, который был накоплен в Вавилоне и Месопотамии, добавив при этом то, что было накоплено ими самими.

В каком же смысле те историки науки, которые считают местом рождения науки Древнюю Грецию, выводят из рассмотрения эти замечательные достижения более древних культур?

Речь идет о том, что научное познание мира — это не просто объяснение его устройства, которое дает миф, и не просто технологические знания, которые могут вырабатываться, опираясь и на указания мифа, и на практическую повседневную жизнь, и быть «побочным продуктом» магических и ритуальных действий религиозного содержания.

Ни миф, ни технология сами по себе никогда не превращаются в науку.

Каким же образом мог произойти этот духовный скачок, столь важный в перспективе мировой истории?

Известный историк античной науки И.Д.Рожанский пишет: «В странах Ближнего Востока математические, астрономические, медицинские и иные знания имели прикладной характер и служили только практическим целям. Греческая наука с момента своего зарождения была наукой теоретической; ее целью было отыскание истины, что определило ряд ее особенностей, оставшихся чуждыми восточной науке».

— Так, ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим.

— Напротив, для греков имело значение только строгое решение, полученное путем логических рассуждений.

— Вавилонские астрономы умели наблюдать и предсказывать многие небесные явления, включая расположение пяти планет, но они не ставили вопроса о том, почему эти явления повторяются.

— Для греков же именно этот вопрос был основным, и они начали строить модель Космоса.

Первичным источником космологических учений для греческих мыслителей были, конечно, восточные мифы (например, идея первичного бесформенного или неопределенного состояния Вселенной, чаще всего представляющегося в виде водной бездны), однако в греческом контексте египетский миф претерпевает такую трансформацию, что становится философией, т.е. учением, которое должно быть рационализировано, которое можно опровергнуть и т.п.

Что же случилось?

Общий духовный скачок, который произошел в Греции в VI — V вв. до н.э., подчас именуется «греческим чудом».

В течение очень небольшого исторического срока маленькая Эллада стала лидером среди народов средиземноморского бассейна, опередив более древние и могущественные цивилизации Вавилона и Египта.

Это время великого перелома в жизни греческого общества, эпоха освобождения от власти родовых вождей, возникновения самоуправляющихся городов-полисов, интенсивного развития мореплавания, торговли.

Это — эпоха зарождения такой формы государственного устройства, которая греками же была названа «демократией» (властью народа).

Активность народа, невиданное и ранее невозможное в условиях восточных деспотий участие его в управлении социальной жизнью, требовало соответствующих форм выражения, и они были удачно найдены.

Прежде всего греческие полисы стихийно создали формы жизни, обеспечивающие возможность довольно свободной, открытой коммуникации и информационного обмена. В центре города-полиса располагалась агора — рыночная площадь. Это было место, на котором происходило народное собрание, но оно было и рынком, где продавались съестные припасы и ремесленные изделия. В приморских городах, например в Милете, агора находилась близ гавани.

Постепенно вокруг центральной площади начали концентрироваться различные общественные здания и храмы. Агора начала обстраиваться портиками, где посетители находили зимой защиту от дождей и холодного ветра, а летом — от зноя. Широкое обсуждение текущих дел, выбор должностных лиц, открытый суд приводили к столкновению мнений и интересов. Следствием было появление ораторского искусства, которое в кратчайшие сроки достигло высот совершенства.

Надо подчеркнуть, что искусство оратора — это искусство убеждения в условиях, когда каждый вправе сомневаться, требовать доказательств, задавать вопросы и возражать. Подобное невозможно во время проповеди, школьного урока или в условиях, когда отдает приказ облаченное непререкаемой властью лицо.

В лоне ораторского искусства рождалась логика.

В правилах «чистой рациональности», неумолимых сегодня законах логики, давно заглохли возбужденные крики толпы и давнее красноречие оратора, но именно там — в спорах об общественных работах, о ценах, о виновности подсудимого и т.п. — получили они свой исток. Логика греков, таким образом, с самого начала носила характер диалога, логики спора; она была механизмом человеческого общения в условиях, когда традиционные, мифологические координаты общественной жизни уже пришли в упадок. В дальнейшем эти правила стали не только нормами коммуникации, но и правилами мышления вообще.

Итак, наука (как рациональное мышление) и демократия связаны изначально.

И законы Солона (594 г. до н.э.), реформировавшие общественную жизнь Афин, были одним из тех деяний, отдаленным последствием которых явилось «чудо» греческой философии и науки.

В какой степени все же правомерно считать современную науку плодом западноевропейской цивилизации?

Известный и авторитетный историк науки Эдгар Цильзель (1891—1944) считал, что объективный исследователь должен с непреложностью увидеть: научный подход к миру — довольно позднее достижение в истории человечества. Он писал:

«Развитая наука появляется только однажды, а именно в современной западной цивилизации. Мы слишком склонны рассматривать себя и свою цивилизацию как естественную вершину человеческого развития. Из этой самонадеянной точки зрения вытекает уверенность, будто человек просто становился все более и более смышленым, пока в один прекрасный день не появились великие исследователи-пионеры и не создали науку как последнюю стадию однолинейного интеллектуального развития. Таким образом, не учитывается тот факт, что развитие человеческого мышления шло во многих качественно различных направлениях, где «научное» является лишь одной из ветвей».

С точки зрения Э.Цильзеля, при переходе от феодализма к раннему периоду капитализма человеческое общество претерпевает фундаментальные изменения, создавая необходимые условия для возникновения научного метода. Эти общие условия, или предпосылки генезиса науки состоят в следующем.

Читайте также:  Если пропасть из поля зрения овна

— Перемещение центра культурной жизни в города. Наука, будучи светской и невоенной по духу, не могла развиваться среди духовенства и рыцарства, она могла развиваться только среди горожан.

— Конец средневековья был периодом быстрого технологического прогресса. В производстве и в военном деле стали использоваться машины. Это, с одной стороны, ставило задачи для механиков и химиков, а с другой — способствовало развитию каузального мышления и в целом ослабляло магическое мышление.

— Развитие индивидуальности, разрушение оков традиционализма и слепой веры в авторитеты. «Индивидуализм нового общества есть предпосылка научного мышления, — подчеркивал Э.Цильзель.

— Ученый также доверяет в конечном счете только своему собственному разуму и склонен быть независимым от веры в авторитеты. Без критичности нет науки. Критический научный дух (который совершенно неизвестен всем обществам, где отсутствует экономическая конкуренция) есть наиболее сильное взрывчатое вещество, которое когда-либо производило человеческое общество».

— Феодальное общество управлялось традицией и привычкой, а возникновение экономической рациональности способствует развитию рациональных научных методов, основанных на вычислениях и расчетах.

Как видим, аргументы Э.Цильзеля говорят примерно о той же социальной атмосфере, которая, с точки зрения историков античности, способствовала развитию науки в Древней Греции.

Однако Джозеф Нидам, известный прежде всего своими глубокими исследованиями науки древнего и средневекового Китая, считает совершенно недопустимой точку зрения, согласно которой мировая цивилизация обязана рождением науки исключительно Западной Европе.

«Так уж получилось, — пишет Дж. Нидам, — что история науки, какой она родилась на Западе, имеет врожденный порок ограниченности — тенденцию исследовать только одну линию развития, а именно — линию от греков до европейского Ренессанса. И это естественно. Ведь то, что мы можем назвать по-настоящему современной наукой, в самом деле возникло только в Западной Европе во времена «научной революции» XV—XVI столетий и достигло зрелой формы в XVII столетии. Но это далеко не вся история, и упоминать только об этой части было бы глубоко несправедливо по отношению к другим цивилизациям. А несправедливость сейчас означает и неистинность, и недружелюбие — два смертных греха, которые человечество не может совершать безнаказанно».

Однако, как мы видим, Дж.Нидам предостерегает против недооценки великих цивилизаций Востока, но вовсе не отрицает сам факт научной революции XVI—XVII вв., происшедшей в Западной Европе. Он просто иначе ставит вопрос о возникновении современной науки, и вопрос вновь выглядит парадоксальным. Нидам пишет:

«Изучение великих цивилизаций, в которых не развилась стихийно современная наука и техника, ставит проблему причинного объяснения того, каким способом современная наука возникла на европейской окраине старого мира, причем поднимает эту проблему в самой острой форме. В самом деле, чем большими оказываются достижения древних и средневековых цивилизаций, тем менее приятной становится сама проблема».

Так называемая проблема европоцентризма, иначе выражаясь, ставит со всей остротой вопрос о более детальном и глубоком изучении социальных аспектов бытия науки, анализа тех социокультурных предпосылок, в которых нуждается ее развитие.

Никто не может отрицать достижений великих цивилизаций древности, на которых покоилась древнегреческая ученость, никто не сомневается в том, что великие цивилизации Азии и доколумбовой Америки также обладали важным познавательным опытом.

А. Койре напоминал о важнейшей роли арабского мира в том, что бесценное наследие античного мира было усвоено и передано далее Западной Европе.

«. Именно арабы явились учителями и воспитателями латинского Запада, — говорил А.Койре. — . Ибо если первые переводы греческих философских и научных трудов на латинский язык были осуществлены не непосредственно с греческого, а с их арабских версий, то это произошло не только потому, что на Западе не было больше уже — или еще — людей, знающих древнегреческий язык, но и еще (а быть может, особенно) потому, что не было никого, способного понять такие трудные книги, как «Физика» или «Метафизика» Аристотеля или «Альмагест» Птолемея, так что без помощи Фараби, Авиценны или Аверроэса латиняне никогда к такому пониманию и не пришли бы. Для того, чтобы понять Аристотеля и Платона, недостаточно — как ошибочно часто полагают классические филологи — знать древнегреческий, надо знать еще и философию. Латинская же языческая античность не знала философии».

Можно со всей основательностью сделать вывод, что ни один географический регион, ни один конкретный народ не может в полной мере считать себя «чудотворцем», породившим удивительное детище — современную науку.

По своему содержанию наука глубоко наднациональна и способна впитать завоевания любых эпох и народов.

Поэтому, в частности, и сама наука призывает к бережной реконструкции того, что знали и умели самые разные народы, населявшие когда-либо Землю.

Появление социальных наук

Рассмотренная нами выше полемика косвенным образом показывает глубокую обоснованность той концепции науки, которая относит ее рождение к XVI—XVII вв.

Именно в этот период происходит нечто почти осязаемо социологически значимое: наука превращается в особый институт, объявляет о своих целях и о тех правилах, которые будут соблюдать те, кто посвятит свою жизнь изучению вещей «как они есть».

Реальному появлению науки на «белый свет», т.е. ее институциональному оформлению, предшествовало широкое общественное движение, шедшее под лозунгами демократических реформ, выдвигавшее смелые проекты развития исследовательской деятельности познания природы и перестройки уже существующего университетского образования.

1660 г. — дата рождения нового общественного феномена, появления Лондонского Королевского общества естествоиспытателей, утвержденного Королевской хартией в 1662 г.

1666 г. — создание во многом похожей по целям организации в Париже — Академии наук.

Эти учреждения знаменовали собой общественное признание победы определенного интеллектуального умонастроения, которое зародилось существенно ранее (XIII—XIV вв.) и которое называлось «позитивной экспериментальной философией».

Как видим, наука впервые социализируется в тоге философии, хотя и особой, — «экспериментальной».

Основание этих учреждений привело к появлению первых «писаных» решений относительно исследовательских программ и главных содержательных компонент понятия «наука».

Теперь впервые явственно были сформулированы определенные научные нормы и установлены требования их соблюдения.

Обратим внимание на то, что наука этого периода была оторвана от образования: обычный естествоиспытатель XVII в. был любителем. Профессионального естественнонаучного или технического образования просто еще не существовало. Лондонское Королевское общество объединяло ученых-любителей в добровольную организацию с определенным уставом, который был санкционирован высшей государственной властью того времени — королем.

«Волна» социального движения, на гребне которой появились новые учреждения, включала борьбу против авторитета древности, осознание возможного прогресса, демократизм, ориентацию на высокие цели служения обществу, педагогические идеалы и дух гуманитарности, интерес к человеку.

Надо, правда, отметить, что становление естествознания в этот период не ставило проблемы перестройки традиционных культурных ценностей, адаптации их к ценностям науки. «Наука достигла узаконения, — пишет немецкий социолог Ван ден Дейль, — не за счет навязывания ее ценностей обществу в целом, а благодаря данной ею гарантии невмешательства в деятельность господствующих институтов».

Иными словами, наука начала с того, что сама резко отграничила себя от других феноменов культуры и их ценностей, т.е. от религии, морали, образования.

Только эти гарантии невмешательства в другие сферы дали ей возможность выживания на арене социального действия того времени.

В уставе Лондонского королевского общества, который был сформулирован Робертом Гуком, записано, что целью Общества является «совершенствование знания о естественных предметах и всех полезных искусствах. с помощью экспериментов (не вмешиваясь в богословие, метафизику, мораль, политику, грамматику, риторику или логику)».

Наука — это опытное познание, в XVII в. не уставали это повторять.

Сам король в Первой хартии Королевского общества подчеркивает эту ориентацию: «Мы особенно приветствуем те философские исследования, которые подкрепляются солидными экспериментами и направлены либо на расширение новой философии, либо на улучшение старой».

Историки отмечают, что Королевское общество стремилось пропагандировать и поддерживать, так сказать, экзальтированный эмпиризм. Выдвинутая кем-то гипотеза подвергалась проверке на опыте, в эксперименте и либо принималась и сохранялась, либо неминуемо отвергалась, если «свидетельство» эмпирического факта было для нее неблагоприятно. Члены Общества отвергали работы, выполненные по другим нормам.

Так, в 1663 г. некому Эккарду Лейхнеру, предложившему работу философско-теологического содержания для обсуждения на заседании Общества, было официально отвечено: «Королевское общество не заинтересовано в знании по схоластическим и теологическим материям, поскольку единственная его задача — культивировать знание о природе и полезных искусствах с помощью наблюдения и эксперимента и расширять его ради обеспечения безопасности и благосостояния человечества. Таковы границы деятельности британской ассамблеи философов, как они определены королевской хартией, и ее члены не считают возможным нарушать эти границы».

Отказ другому автору звучал столь же твердо и даже не так вежливо:

«Вы не можете не знать, что целью данного Королевского института является продвижение естественного знания с помощью экспериментов и в рамках этой цели среди других занятий его члены приглашают всех способных людей, где бы они ни находились, изучать Книгу Природы, а не писания остроумных людей».

Ван ден Дейль считает, что наука заплатила достаточно высокую плату за свое превращение в признанный обществом институт. Эта плата состояла в отречении от всех опасных лозунгов и целей, которые еще недавно связывали науку с широким демократическим движением за обновление образования, за политические и социальные реформы.

Отныне существование естествознания («экспериментальной философии») было нормативно закреплено, и в XVII в. появилась совершенно новая социальная роль — естествоиспытателя, которая теперь должна была разыгрываться по совершенно определенным правилам.

То, что сегодняшнему взгляду кажется делом сугубо личной рефлексии ученых, следствием ее самоопределения, непременной компонентой ее Я-образа, — т.е. проведение границы, отделяющей науку от ненауки, — было в XVII в. историческим компромиссом, который преследовал не столько какие-то содержательные цели науки, сколько использовал возможность получить «место под солнцем» в социальном и культурном пространстве того времени.

Роль времени в науке

Историк математики Ван дер Варден:

«Понять труды Ньютона, не зная античной науки, невозможно. Ньютон ничего не творил из ничего. Без огромных трудов Птолемея, дополнившего и завершившего античную астрономию, была бы невозможна и «Новая астрономия» Кеплера, а вслед за ней и механика Ньютона. Без конических сечений Аполлония, которые Ньютон знал в совершенстве, точно так же был бы немыслим и закон тяготения. И интегральное исчисление Ньютона можно понять только как развитие архимедовых методов для определения площадей и объемов. История механики как точной науки начинается только с установления закона рычага, определения направленного вверх давления воды и нахождения центров тяжести у Архимеда».

Великий человек в науке всегда стоит «на плечах» своих гигантов-предшественников.

В своей преемственности наука, научные труды прорывают границы узкого существования в рамках эпохи, их создавшей, и живут в границах, по выражению М.М.Бахтина, «большого времени».

В современной науке живут темы и идеи Аристотеля, например, о необходимости изучать даже «ничтожного червяка», идеи Пифагора и Платона о том, что математические формы представляют собой сущность мира, живут средневековые идеи о красоте бесконечного, доказательства гармонии Вселенной Иоганна Кеплера и тому подобное.

Все эти представления переосмысляются, меняются, но сохраняют свое интеллектуальное значение.

Вслед за М. М. Бахтиным, который говорит о развитии литературы, можно также утверждать, что посмертная жизнь великих произведений науки парадоксальна.

Чем глубже произведение, чем оно совершеннее, тем более оно обогащается со временем все новыми значениями, новыми смыслами.

Значительные произведения как бы перерастают то, чем они были в эпоху своего создания.

М. М. Бахтин говорит: «Мы можем сказать, что ни сам Шекспир, ни его современники не знали того «великого Шекспира», какого мы теперь знаем». Равным образом можно сказать, что современники не знали «великого Ньютона». Максвелл умер, еще не зная, что он — гений, а мы знаем «великого Максвелла» гораздо лучше, чем его современники. Даже Ч.Дарвин, не обойденный прижизненной славой, не мог подозревать, что схема «естественного отбора» станет категориальной схемой мышления вообще, что она потеряет непосредственную связь с биологией и будет фигурировать в трудах по кибернетике и теории познания.

«Автор — пленник своей эпохи, своей современности, — говорит М.М.Бахтин. — Последующие времена освобождают его из этого плена, и литературоведение призвано помочь этому освобождению».

Но не так ли и автор открытий в одной научной области вдруг начинает жить как человек, сделавший вклад в развитие дисциплины, о существовании которой он и не подозревал!

Историческое развитие научных знаний постоянно «освобождает» научные открытия и результаты из «плена» узких предметных интерпретаций.

— Во-первых, развитие знаний представляет собой непрерывный динамичный процесс, где уже созданные системы знаний постоянно перекраиваются, перестраиваются, выбрасывая одни разделы и вписывая другие, взятые, казалось бы, из далеких областей.

— Во-вторых, речь идет о том, что перед взором каждого труженика науки стоят как образцы действия других исследователей, и этот «обмен опытом» происходит постоянно, нарушая границы веков и пространств.

В последнем случае мы сталкиваемся с ситуацией, когда фольклорист В.Я.Пропп ссылается на биологические дисциплины (анатомию и морфологию) как на образец, его вдохновляющий.

Физик Нильс Бор, формулируя свой принцип дополнительности, опирается на «Принципы психологии» Уильяма Джемса.

Биолог Ч.Дарвин вычитывает исходную аналогию своей теории эволюции из работ демографа Т.Мальтуса.

Всеобщим поветрием нашего времени является «математизация», когда науки, весьма далекие от точных измерений (биология, геология, история) все же ориентируются на физику и ее методологический опыт, приведший к успеху («Книга Природы написана на языке математики»).

А Вернер Гейзенберг, объясняя психологическое состояние создателей квантовой физики, говорит о мужестве Христофора Колумба: «Когда спрашивают, в чем, собственно, заключалось великое достижение Христофора Колумба, открывшего Америку, то приходится отвечать, что дело не в идее использовать шарообразную форму земли, чтобы западным путем приплыть в Индию; эта идея уже рассматривалась другими. Дело было не в тщательной подготовке экспедиции, в мастерском оснащении кораблей, что могли осуществить опять-таки и другие. Но наиболее трудным в этом путешествии-открытии, несомненно, было решение оставить всю известную до сих пор землю и плыть так далеко на запад, чтобы возвращение назад с имеющимися припасами было уже невозможно.

Читайте также:  Как испортить зрение за пять минут

Аналогично этому настоящую новую землю в той или иной науке можно достичь лишь тогда, когда в решающий момент имеется готовность оставить то основание, на котором покоится прежняя наука, и в известном смысле совершить прыжок в пустоту».

В своем историческом прогрессе наука, таким образом, постоянно опирается на прошлые достижения, сплошь и рядом меняя их содержание почти до неузнаваемости и порождая иллюзию поступательного своего движения в одной-единственной, идущей от древности социокультурной традиции.

Историк науки может вполне убедительно продемонстрировать иллюзорность такого представления о траектории научного развития, но он не будет спорить с тем, что возможность ассимилировать познавательный опыт прошлого самым различным образом — также удивительное свойство человеческой цивилизации, и в этом смысле готов содействовать высвобождению великих научных трудов из «плена» породившего их времени.

Вопрос о времени возникновения науки далеко не так прост, как может показаться на первый взгляд, поскольку ответ на него зависит от понимания того, что же такое наука. На сегодняшний день наиболее распространенными являются три варианта на вопрос времени ее возникновения.

Согласно первому подходу, наука является ровесницей человеческой цивилизации и возникает в ее древнейших центрах: Шумере, Вавилоне, древнем Египте, Индии и Китае. Эта точка зрения основывается на обширных данных о высоком уровне знаний жителей этих цивилизационных центров. Хорошо известны успехи египтян в строительстве гигантских пирамид, В медицине, позволяющей древним целителям производить сложнейшие хирургические операции. Не менее впечатляющими выглядят их точные астрономические наблюдения, способность решать сложные геометрические задачи, производить математические вычисления, связанные с необходимостью учета и контроля материальных ценностей огромного централизованного государства. Нас поражают высокоразвитые технологии древнего Китая, позволяющие выплавлять металлы, изготавливать бумагу и порох, шелковые ткани и фарфор. Нами используется индийская система десятичного исчисления и практики йоги, направленные на совершенствование человеческих способностей. В этом же ряду сложные ирригационные системы Шумера, успехи финикийских купцов-мореплавателей, составивших первые в истории географические карты и разработавшие методы навигации.

Все это, на первый взгляд, действительно свидетельствует в пользу этой точки зрения. Однако если более внимательно посмотреть на эти многочисленные и успешно применяемые знания, то мы увидим, что они являются, прежде всего, практическими знаниями, которые существуют неотделимо от практической деятельности носителей этого знания. Другими словами, если перечисленные выше практические знания и можно назвать научными, то это будет наукой без ученых. Эти практические знания были элементом профессиональной деятельности и существовали только в ней. Жрецы вели астрономические наблюдения, строители строили, землемеры вели учет и измерение земельных участков, лекари лечили. Находясь внутри замкнутой профессиональной группы – касты, человек приобретал необходимые для успешной деятельности знания в опыте совместной работы с мастерами своего дела и воспринимал их как последовательность действий, ведущих к определенной цели. Это так называемое рецептурное знание, позволяющее очень точно воспроизводить успешные приемы и навыки практической деятельности [12]. Закрепление и точное воспроизводство алгоритма достижения успешного результата составляет основную характеристику этого типа знания, которое позволило человечеству накопить огромный объем практических знаний и создать материальный фундамент следующим этапам развития цивилизации. Но как таковые эти знания для нас потеряны. И теперь мы можем лишь бесконечно разгадывать тайны строительства египетских пирамид, изготовления фарфора или булатной стали, так как эти знания ушли вместе с мастерами, которые несли их на «кончиках своих пальцев».

Другой подход связывает возникновение науки с древнегреческой цивилизацией, в которой возникают первые формы теоретического знания. В отличие от первого типа рецептурного знания-умения, жители древнегреческих городов освоили принципиально иную форму знания-понимания, которое практически без потерь дошло до нашего времени. Такая форма знания оформляется в виде теории – системы логически связанных понятий, соответствующих наблюдаемым явлениям. Отличительной особенностью теоретического знания является его относительная независимость от практических потребностей человека. Оно не включено в профессиональную деятельность и поэтому представляет собой своего рода общественную собственность. Общее знание, не обладая практической значимостью, выполняет, тем не менее, очень важную социальную функцию – объединение людей на основе общих ценностей и представлений, а также координацию их совместных действий. Очевидным образом возникновение теоретического знания именно в древнегреческих полисах связано с особенностью их политического устройства. Древняя Греция – родина не только теории, но и демократии и театра. Общее собрание граждан полиса принимает общее решения, ориентируясь на представления о возможных его последствиях. Эти представления существуют только в модусе возможного, умозрительного. Другими словами – теоретически, как и события, разворачивающиеся на театральной сцене. Театральное представление – это только зрелище (theoria), которое можно отстраненно созерцать, пытаясь понять смысл происходящего. Мы видим, что в такой ситуации действительно возникают предпосылки для возникновения науки, основой которой являются теоретические принципы. Но в случае с древнегреческой наукой наблюдается другая крайность – совершенная невозможность практического применения теоретического знания, предназначение которого лежит в плоскости интеллектуального удовольствия — искусства вести беседу или теоретическую дискуссию. Подтверждением такого отношения к знанию в древней Греции служит тот факт, что виднейший ученый этой эпохи Архимед был вынужден приписывать собственные изобретения и открытия своим рабам, чтобы отстраниться от столь недостойного свободного гражданина занятия – практического познания природы и облегчения «естественного» положения человека.

Некоторыми исследователями науки справедливо указывается на недопустимость абсолютизации теоретического содержания древнегреческой науки, которая формировалась в тесной связи с практической деятельностью. Многие теоретические положения натурфилософов, действительно, были бы не возможны без внимательного наблюдения за работой ремесленников: гончаров, кузнецов, ткачей и суконщиков. Представления о первоначале, строении материи, природе человека формируются по аналогии с приемами обработки материалов, земледелием и животноводством. Известно также об успехах античной медицины, связанных с именем Гиппократа, впервые в истории соединившего теоретические рассуждения и практический опыт. Это конечно так, но этот вектор развития научного знания был прерван утверждением авторитета философских школ Платона и Аристотеля, в которых абсолютизировалась ценность умозрительного, чисто теоретического знания. В результате многие идеи их современников были вытеснены и забыты, возродившись в более позднее время. Наверное, это не пошло на пользу науке и, если бы практическая направленность познания была сохранена, ее успехи были бы более значительны. Но, по сравнению с древними формами знания, в древнегреческой науке все же происходит выделение научного познания в самостоятельную сферу, которая получает общественное признание. Развитие и накопление знания становится общественной задачей, и ее выполнение требует в этом случае специальных методов и языка описания, имеющего универсальный – общезначимый и общедоступный характер. Именно поэтому можно согласиться с утверждением, что в древнегреческой культуре формируется новый тип порождения знания – техногенный [13].

Утверждение в качестве начала науки XVII века – это наиболее распространенная и обоснованная в современной философской и научно-методологической литературе позиция. Не отрицая важности прежних этапов развития методов познания, эта точка зрения определяет их как до- или пранаучные. Действительно, только в семнадцатом столетии возникает то, что принято называть математически-экспериментальным естествознанием. Новый тип знания, объединяющий эмпирические и теоретические методы исследования. Возникновение и развитие новоевропейской науки связано с именами таких ученых, как Ф. Бэкон, Н. Коперник, Г. Галилей, Р. Декарт, И. Кеплер, И. Ньютон. Этими мыслителями были пересмотрены теоретические принципы древнегреческой философии, которые вошли в противоречие с изменившимися условиями жизни. Широкое распространение технических изобретений – машин, различных механизмов, огнестрельного оружия – поставило неразрешимые для теоретических моделей античности вопросы. Общественная практика требовала новых решений, и они были предложены. Конечно, эти решения также носили в основном теоретический характер и не имели практического применения, но были востребованы стремящейся к знаниям публикой – новой социальной группой, принимающей активное участие в общественной жизни, которая нуждалась в непротиворечивой «картине мира». И эта картина была создана в результате реабилитации эмпирических методов познания и математики.

Так, по убеждению Ф. Бэкона, теоретические обобщения возможны только на основе тщательного исследования явлений и фактов окружающего мира. Теоретическое знание для него – это индуктивное заключение из множества частных наблюдений, обобщение эмпирических фактов. Только таким образом возможно, с его точки зрения, получение достоверного, соответствующего действительному положению дел, знания, позволяющего человеку обрести подлинную власть – способность воздействовать на природу в собственных интересах. Для Г. Галилея же не менее очевидной является способность математики стать универсальным языком описания действительности, поскольку «великая книга мира написана на языке математики». Исследуя закономерности движения, он убедительно доказал, что они могут быть представлены в виде очень простых математических формул, которые и сегодня известны каждому школьнику. Например, V = V (0) + gt, позволяющая вычислить скорость падения тела. Развитие математических методов исследования позволило вскоре И. Кеплеру сформулировать закон всемирного тяготения – F = m/s², а И. Ньютону – свои знаменитые законы, описывающие движение и взаимодействие тел. Распространение этих методов на другие предметные сферы позволило в течении последующих столетий сформироваться классическому естествознанию, доказавшему применимость математических методов не только в физике, но и в химии, биологии и других «науках о природе».

Как мы видим, все три версии возникновения науки имеют право на существование. Но в двух первых из этих случаев абсолютизируется один из аспектов научного познания. Если понимать под наукой только способ получения практически полезных знаний, то временем возникновения действительно можно считать глубокую древность. Однако этого недостаточно для понимания специфики научного познания. Более того, многие практически полезные знания человек получает в обыденной жизни, зачастую даже не осознавая этого. В этом отношении античная философия содержит очень важный компонент современного научного знания. В рамках этой первой формы теоретического знания формируются такие сущностные характеристики научного знания, как доказательность и общезначимость. Но, поскольку при этом практически исключается экспериментальная проверка и практическая применяемость получаемого знания, то в полной мере критериям научности не соответствует и эта форма знания. В то же время, ограничиваться при рассмотрении истории науки Новым временем – означает упускать из вида очень важные генетические компоненты становления научного знания и его социокультурные предпосылки.

Следует также обратить внимание на то, что при рассмотрении истории становления науки в современной исследовательской литературе преобладают два противоположных подхода: интернализм и экстернализм. Первый подход рассматривает становление научного знания исключительно в логике развития научных идей. С этой точки зрения изменения, происходящие в науке, обусловливаются внутренними причинами: необходимостью приведения в соответствие теоретических положений и эмпирических данных, совершенствованием методологии, новыми открытиями, заставляющими пересматривать базисные теоретические принципы. Этот подход позволяет представить историю науки в виде последовательных и непрерывных преобразований, движимой логикой самого научного исследования, но не может объяснить революционных изменений, периодически происходящих в науке и сопровождающихся сменой ее фундаментальных принципов. Экстернализм же, напротив, предполагает причинами изменений в первую очередь внешние факторы: социокультурные условия, формирующие мировоззренческие установки ученых; политические и экономические обстоятельства, формирующие задачи научного исследования. Такой подход позволяет гораздо лучше понять логику революционных преобразований, но практически оставляется без внимания преемственность и взаимосвязь различных этапов становления науки.

Мы постараемся избежать подобного сужения горизонта исследования и рассмотрим генетические взаимосвязи различных этапов становления науки и социокультурные предпосылки ее возникновения. Такой подход позволит нам увидеть формирование отличительных признаков науки и как специфического знания и способа познания, и как важнейшего социокультурного института. Таких признаков семь, хотя в различных источниках можно встретить их большее или меньшее количество [11].

Первый признак – это особым образом подготовленный объект научного познания. В отличие от обыденного практического познания, которое имеет дело с естественными, непосредственно чувственно воспринимаемыми объектами окружающей действительности, научное познание направлено на предварительно «сконструированные» объекты, которые принято называть «идеализированными объектами». Это означает, что внимание ученого сосредоточено на тех свойствах познаваемого объекта, которые имеют значение только для проводимого им исследования. Вам хорошо известны примеры таких идеализированных объектов науки, как «абсолютно упругое тело», «несжимаемая жидкость», «абсолютно черное тело», которые необходимы для большинства физических теорий. В гуманитарных науках подобными объектами являются «общество», «товар», «экономическое поведение» и множество других объектов, полученных методом абстрагирования, т.е. исключения признаков наблюдаемого или изучаемого явления, не имеющих отношения к целям и задачам исследования.

Второй признак – это направленность на выявление закономерностей в поведении изучаемых предметов и явлений, необходимых для формирования способов изменения этого поведения в целях, соответствующих потребностям человека. Благодаря этому признаку наука способна осуществлять функцию прогнозирования результатов деятельности человека.

Третий признак – это наличие специализированных языков науки, с помощью которых осуществляется построение теоретических моделей, формулируются задачи, определяются средства их решения и критерии оценки результатов.

Четвертым отличительным признаком научного познания является наличие специального инструментария научного исследования. В число этих инструментов входят и специальные эмпирические методы исследования, и специализированные приборы, позволяющие осуществлять необходимые наблюдения и измерения. Без использования подобных инструментов было бы невозможным получение проверяемых и воспроизводимых результатов.

Пятый признак определяется предыдущими четырьмя и предполагает профессиональную подготовку ученого, который для проведения научных исследований предварительно должен обладать определенными знаниями, навыками и умениями. Поэтому наука является специализированным видом человеческой деятельности, требующей профессиональной и очень долгой, как показывает Ваш собственный опыт, подготовки.

Шестым признаком научного познания является особая организация результатов научной деятельности, их систематизированность, обоснованность и интерпретируемость. Для достижения этого наука стремится к максимальной формализованности, позволяющей научному сообществу однозначно интерпретировать полученные результаты и сохранять взаимопонимание.

Последним отличительным признаком науки, характерным для современного этапа ее развития, является наличие в ней уровня метанаучного исследования, объектом которого является сама наука и методы ее исследования. История и методология науки, представленная данным учебным пособием, и является воплощением этого уровня.

Источники:
  • http://biofile.ru/his/2037.html
  • http://studfiles.net/preview/6149708/page:2/