Меню Рубрики

Какие дефекты зрения изображены на рисунках предложите

64. Заполните таблицу.

65. Рассмотрите рисунок, изображающий строение глаза человека. Напишите названия частей глаза, обозначенных цифрами.

66. Перечислите структуры, которые относятся к вспомогательному аппарату органа зрения.
К вспомогательному аппарату относятся – брови, веки и ресницы, слезная железа, слезные канальцы, глазодвигательные мышцы.

67. Выпишите названия частей глаза, через которые проходят лучи света, прежде чем они попадут на сетчатку.
Роговица → передняя камера → радужка → задняя камера → кристаллик → стекловидное тело → сетчатка

68. Запишите определения.
Палочки – это рецепторы сумеречного света, которые отличают светлое от темного.
Колбочки – обладают меньшей светочувствительностью, но различают цвета.
Сетчатка – внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора.
Жёлтое пятно – место наибольшей остроты зрения в сетчатке глаза.
Слепое пятно – область на сетчатке, не чувствительная к свету. Нервные волокна от рецепторов к слепому пятну идут поверх сетчатки и собираются в зрительный нерв.

69. Какие дефекты зрения изображены на рисунках? Предложите (дорисуйте) способы их исправления.

70. Напишите рекомендации для сохранения хорошего зрения.
Читать книги только сидя, при хорошем освещении. Книгу держать на расстоянии 30 см от глаз. При работе за компьютером стараться как можно чаще моргать, делать 15-ти минутные перерывы каждый час. Телевизор смотреть не более трёх часов в день; расстояние от глаз до телевизора должно быть в 5 раз больше его диагонали. Делать гимнастику для глаз, употреблять продукты, содержащие витамины А, С и Е.

71. Выполните практическую работу «Изучение изменения размера зрачка».

64. Заполните таблицу.

65. Рассмотрите рисунок, изображающий строение глаза человека. Напишите названия частей глаза, обозначенных цифрами.

66. Перечислите структуры, которые относятся к вспомогательному аппарату органа зрения.

Вспомогательный аппарат органа зрения — это брови, веки и ресницы, слезная железа, слезные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды.

67. Выпишите названия частей глаза, через которые проходят лучи света, прежде чем они попадут на сетчатку.

Свет проходит через роговицу, переднюю камеру, радужную оболочку глаза, заднюю камеру, хрусталик, стекловидное тело, а затем уже попадает на сетчатку.

68. Запишите определения.

Палочки — фоторецепторы сетчатки, возбуждающиеся под влиянием сумеречного света.

Колбочки — фоторецепторы сетчатки, обеспечивающие дневное и цветовое зрение.

Сетчатка — внутренняя оболочка глаза, в которой находятся светочувствительные рецепторы – палочки и колбочки.

Жёлтое пятно — область на сетчатке, где сконцентрировано наибольшее количество зрительных рецепторов.

Слепое пятно — место выхода зрительного нерва на сетчатке глаза. Не имеет светочувствительных элементов и не воспринимает световых раздражений.

69. Какие дефекты зрения изображены на рисунках? Предложите (дорисуйте) способы их исправления.

70. Напишите рекомендации для сохранения хорошего зрения.

Смотреть телевизор на расстоянии 2-3 метра, освещение должно быть правильным (светильник с правой стороны, свет должен быть дневным), читать не лёжа и не в движении, проводить тренировку глаз, принимать витамин А (чернику, морковку), расстояние от экрана компьютера до глаз должно составлять минимум 30 см, выполняйте упражнения для зрения или несложную разминку.

71. Выполните практическую работу «Изучение изменения размера зрачка».

1. Приготовьте квадратный лист плотной чёрной бумаги (4 см х 4 см) с точечным отверстием посередине (проткните лист иголкой).

2. Закройте левый глаз. Правым глазом смотрите через отверстие на источник яркого света (окно или настольную лампу).

3. Продолжая смотреть через отверстие правым глазом, откройте левый. Как изменился в этот момент размер отверстия в листе бумаги (ваше субъективное восприятие)?

Размер отверстия в бумаге уменьшился.

4. Снова закройте левый глаз. Как изменился размер отверстия?

Размер отверстия увеличивается.

5. Сделайте вывод.

Вывод: Размер отверстия в листе бумаги не изменяется. Возникающее ощущение иллюзорное. На самом деле расширяется и суживается зрачок, потому что количество света, попадающее на него, изменяется. В первом случае света попадает на зрачок больше, чем во втором.

какие дефекты зрения изображены на рисунках? предложите (дорисуйте) способы их исправления.

Изображения или рисунка нет.

Другие вопросы из категории

_____________ яиц.Большая ______________ обеспечивает сохранение яиц в природе так как большинство из них не попадает в организм ____________ и гибнет.Яйца покрыты _____________ оболочкой . Из кишечника человека они попадают в _______________.Через 2-3 недели в яйце развивается ________________________.Если яйца с личинками попадут в _______________ человека то происходит заражение оскаридом. ЗАПОЛНИТЕ пропуски

2. органоид это?
3. верно ли утверждение (ядро — обязательный компонент всех клеток организмов?) обоснуйте свой ответ.
4. заполните таблицу строение клетки.
название органоида функции
5. сравните строение растительной и живой клеток
6. какую роль в клетке играют хромосомы
7
8
9
10

Помогите!
Какие деффекты зрения изображены на рисунках? Предлжите(дорисуйте) способы их исправления.

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Juliankaaaa 05.11.2013

KatyshaSem

1-близорукость, 2-дальнозоркость
чтобы их исправить надо чтобы лучи пересекались ровно на линии сетчатки, а не перед ней, и не позади неё, т.е на 1-ой картинке надо продолжить эти лучи до сетчатки, а на 2-ой картинке надо сжать, уменьшить до сетчатки

вот, должно быть как на верхней картинке, где Normal

Какие дефекты зрения изображены на рисунках предложите

На ри­сун­ке приведена схема хода лучей внут­ри глаза. Ка­ко­му дефекту зре­ния (дальнозоркости или близорукости) со­от­вет­ству­ет приведенный ход лучей и какие линзы нужны для очков в этом случае?

1) близорукости, для очков тре­бу­ет­ся собирающая линза

2) близорукости, для очков тре­бу­ет­ся рассеивающая линза

3) дальнозоркости, для очков тре­бу­ет­ся собирающая линза

4) дальнозоркости, для очков тре­бу­ет­ся рассеивающая линза

Из ри­сун­ка видно, что изоб­ра­же­ние фокусируется не на сетчатке, а ближе к хрусталику, следовательно, близ­кие предметы че­ло­век будет ви­деть лучше чем далёкие. Для очков тре­бу­ет­ся рассеивающая линза.

Дефект зрения. Способы устранения дефектов зрения

Дефект зрения – это что такое? Ответ на поставленный вопрос вы узнаете из представленной статьи. Кроме того, вы получите информацию о том, с какими глазными проблемами люди сталкиваются чаще всего, и как от них можно избавиться.

Общая информация

В медицинской практике дефект зрения часто называют аномалией рефракции. Такие аномалии — самые распространенные глазные проблемы. Суть этой группы заболеваний заключается в том, что оптическая система глаза неспособна сфокусировать световые лучи на сетчатке, которая является нашим регистратором световых раздражителей. Основным признаком и следствием этого патологического состояния является плохое зрение.

Дефект зрения и его структура

Данное отклонение может носить разный характер. Сегодня выделяется несколько распространенных дефектов зрения, а именно:

  • астигматизм;
  • близорукость, или так называемая миопия;
  • дальнозоркость, или же гиперметропия;
  • дальтонизм, или цветовая слепота;
  • цветовая агнозия.

Чтобы понять, по какой причине возникает тот или иной дефект зрения, следует рассмотреть особенности представленных отклонений более подробно.

Астигматизм

Причиной развития такого патологического состояния является неверно сформированная роговая оболочка зрительного органа. Следует также отметить, что на развитие астигматизма оказывает непосредственное влияние смещение хрусталика глаза по отношению к оси преломления. Обе названные причины влекут за собой различия в расстояниях, которые крайне необходимы для фокусировки «картинки».

Такой дефект зрения в одном глазу может сочетать в себе эффекты дальнозоркости, близорукости и нормального зрения.

Близорукость, или так называемая миопия

Близорукость может развиться по нескольким причинам. Первой является удлинение глаза при сохранении правильного преломления. Что касается второй причины, то это чересчур мощное оптическое преломление, которое составляет более 60-ти диоптрий, при длине зрительного органа в пределах нормы. Оба представленных отклонения негативно влияют на получение нормального изображения. Другими словами, картинка не способна сфокусироваться на глазной сетчатке, а располагается внутри глазного яблока. Таким образом, на сетчатку проникает только сфокусированное изображение каких-либо предметов, находящихся на небольшом расстоянии от человека.

Чтобы скорректировать такой дефект зрения, пациентам часто прописывают специальные очки, помогающие построить более четкую картинку. В этом случае человек может рассматривать предметы вдалеке без особого напряжения. Для того чтобы близорукий пациент видел более четко, используются минусовые линзы, приближающие удаленные объекты.

Дальнозоркость, или же гиперметропия

Такой дефект развивается вследствие чрезмерно слабого оптического преломления в зрительных органах при сохранении нормальной длины глазного яблока. Следует особо отметить, что причиной дальнозоркости становится и укорочение глазного яблока при условии сохранности преломляющей оптической силы.

Вследствие того, что дальнозоркий глаз не способен создать фокус на сетчатке, напряжение мышц значительно возрастает. Такое явление постепенно изменяет искривление хрусталика, что в свою очередь приводит к приспособлению зрительного органа под сложившиеся условия. Однако и этого не хватает для нормальной фокусировки получаемого изображения.

При рассмотрении предметов, находящихся вблизи глаз, мышечные ткани данного органа напрягаются еще сильней. Другими словами, чем ближе расположен объект, тем дальше на сетчатке возникает его изображение.

Какие существуют способы устранения дефектов зрения, а точнее, дальнозоркости? Для коррекции такого отклонения используют очки с плюсовыми линзами. Они достаточно хорошо помогают в построении изображения.

Как известно, при рождении малыша его глаза немного сдавливаются по горизонтали. Именно поэтому все маленькие дети несколько дальнозорки. Однако в процессе развития их зрение постепенно нормализуется.

Если степень дальнозоркости у человека небольшая, то зрение вдали и вблизи может быть нормальным. Но при этом люди будут жаловаться на сильные головные боли и усталость глаз. Если же степень дальнозоркости средняя, то это проявляется плохим зрением вблизи.

Читайте также:  Попадают ли в спецназ с плохим зрением

Дальтонизм, или цветовая слепота

Такой дефект представляет собой врожденное заболевание, которое чаще всего наблюдается у мужчин. Суть данного отклонения заключается в том, что у больных нарушается правильное восприятие цвета, регулируемое фоторецепторными клетками (колбочками) в глазной сетчатке. Если какого-либо типа колбочек у человека не хватает, то у него присутствует цветовая слепота.

Цветовая агнозия

Цветовая агнозия – это разновидность такого отклонения, как зрительная агнозия. При таком заболевании пациент с сохранным цветовым зрением может неправильно различать цвета. Также существует симультанная и буквенная агнозия. Диагностика подобных отклонений требует проведения тщательного обследования у невролога. Определить вид агнозии можно при помощи специальных тестов.

Лечение такого заболевания заключается в активной терапии того отклонения, которое привело к поражению отдельно взятых участков головного мозга. Очень часто агнозия не излечивается, доставляя огромный дискомфорт пациенту.

Дефект зрения, типичный для классической мигрени

Мигрень с типичной аурой чаще встречается у лиц мужского пола. При этом у пациентов могут наблюдаться зрительные нарушения. Как правило, они проявляются в виде сверкающих точек, молниеподобных вспышек, зигзагов, шаров, после чего развивается довольно сильный приступ головной боли. Интенсивность таких явлений наблюдается на протяжении нескольких минут или секунд. Довольно часто сверкающие образы сменяются выпадением некоторых участков полей зрения. Следует особо отметить, что такие нарушения иногда сочетаются с онемением лица, половины тела и языка, а также со слабостью в конечностях и нарушением нормальной речи.

Опишите строение глаза ответ Укажите дефекты зрения, изображенные на рисунках, и укажите тип линзы для очков 12 ответ. — презентация

Презентация была опубликована 6 лет назад пользователемelenaek1.narod.ru

Похожие презентации

Презентация на тему: » Опишите строение глаза ответ Укажите дефекты зрения, изображенные на рисунках, и укажите тип линзы для очков 12 ответ.» — Транскрипт:

2 Опишите строение глаза ответ

4 Укажите дефекты зрения, изображенные на рисунках, и укажите тип линзы для очков 12 ответ

5 1.Дальнозоркость, собирающие линзы 2. Близорукость, рассеивающие линзы

6 Почему у хищников глаза расположены близко друг к другу, а у травоядных – по бокам головы? ответ

7 У хищников близко расположенные глаза создают объемное стереоскопическое зрение. Это помогает им оценить расстояние до добычи (по углу α). У травоядных глаза расположены по бокам головы, из-за этого поле зрения становится намного шире, но изображение панорамное (не стереоскопическое). Такое зрение позволяет вовремя заметить врага. α

8 Сколько профилей вы видите на рисунке? ответ

mozok.click

Глаз как оптическая система. Дефекты зрения и их коррекция

Орган зрения человека — глаз — одно из самых совершенных и в то же время самых простых оптических устройств. Как устроен глаз? Почему некоторые люди плохо видят и как скорректировать их зрение? С какими обенностями зрения связано производство мультипликационных фильмов? Об этом вы узнаете из данного параграфа.

Вспоминаем строение глаза

Глаз человека — это оптическая система, состоящая из нескольких оптических элементов, которые в совокупности предназначены для создания изображения.

Глаз (см. рис. 16.1) имеет форму шара диаметром примерно 2,5 см. Снаружи глаз покрыт плотной непрозрачной оболочкой — склерой. Передняя часть склеры переходит в прозрачную роговую оболочку — роговицу, которая действует как собирающая линза и вместе с глазной жидкостью обеспечивает 75 % способности глаза преломлять свет. Изнутри склера покрыта сосудистой оболочкой, которая в передней части глаза переходит в радужную оболочку — радужку. В центре радужки расположено круглое отверстие — зрачок. Зрачок сужается при увеличении освещенности и расширяется при ее ослаблении.

Способность глаза приспосабливаться к изменению освещенности называют адаптацией.

За зрачком расположен хрусталик — собирающая линза, которая благодаря скрепленным с ней мышцам может изменять свою кривизну, а значит, оптическую силу.

В создании изображения принимает участие и стекловидное тело — прозрачная студенистая масса, заполняющая пространство между хрусталиком и сетчаткой.

Свет, попадающий в глаз, преломляется в роговице, глазной жидкости, хрусталике и стекловидном теле. В результате на сетчатке образуется действительное, уменьшенное, перевернутое изображение предмета (рис. 16.2).

Выясняем, почему человек видит как отдаленные предметы, так и расположенные рядом

Если у человека хорошее зрение, он видит четкими как далеко, так и близко расположенные предметы. Такое возможно потому, что при изменении расстояния до предмета хрусталик изменяет свою кривизну, то есть изменяет свою оптическую силу.

Способность хрусталика изменять свою кривизну при изменении расстояния до рассматриваемого предмета называют аккомодацией.

Если человек смотрит на удаленные предметы, то лучи, исходящие от этих предметов и попадающие в глаз, практически параллельны. В этом случае глаз наиболее расслаблен (вспомните: задумавшись, мы смотрим как будто вдаль). Чем ближе расположен предмет, тем сильнее напрягается глаз (мышцы глаза увеличивают кривизну хрусталика).

Наименьшее расстояние, на котором глаз видит предмет практически не утомляясь, называют расстоянием наилучшего зрения.

Для человека с нормальным зрением расстояние наилучшего зрения — примерно 25 см (именно на таком расстоянии он держит книгу при чтении).

Узнаём об инерции зрения

Если мы будем быстро перемещать в темноте бенгальский огонь, то увидим светящиеся фигуры, образованные «огненным контуром». Во время быстрого вращения карусели ее разноцветные лампы, сливаясь, выглядят для нас как кольца. Наши глаза все время мигают, при этом мы не замечаем, что на некоторый интервал времени предмет, на который мы смотрим, становится невидимым.

Описанные явления объясняются инерцией зрения. Дело в том, что, после того как изображение предмета исчезает с сетчатки глаза (предмет перемещают, прекращают освещать, заслоняют непрозрачным экраном и т. п.), зрительный образ, вызванный этим предметом, сохраняется в течение 0,1 с.

Инерцию зрения широко используют в анимационном кино. Картинки на экране сменяются очень быстро (24 раза в секунду), и во время их смены экран не освещается, однако зритель этого не замечает, — он просто видит

ряд чередующихся картинок. Так на экране создается иллюзия движения.

Сколько картинок нужно нарисовать художнику, чтобы получить мультипликационный фильм продолжительностью всего 10 мин?

На инерции зрения также основано применение стробоскопа. (Стробоскоп представляет собой источник света, излучающий световые вспышки через малые равные интервалы времени.) При фотографировании объектов, освещенных стробоскопом, получают стробоскопические фотографии (рис. 16.3).

Узнаём о недостатках зрения и их коррекции

С точки зрения физики глаз — оптическая система, основные элементы которой — роговица, глазная жидкость, хрусталик, стекловидное тело. Свет преломляется в этой оптической системе, и в результате на сетчатке образуется уменьшенное, действительное, перевернутое изображение предмета.

После того как изображение предмета исчезает с сетчатки глаза, зрительный образ, вызванный этим предметом, хранится в сознании человека в течение 0,1 с. Это свойство называют инерцией зрения.

1. Назовите оптические элементы глаза и их функции. 2. Как реагирует зрачок на изменение освещенности? 3. Почему человек с нормальным зрением может одинаково четко видеть как далеко, так и близко расположенные предметы? 4. Что такое инерция зрения? Приведите примеры. 5. Какой недостаток зрения называют близорукостью? дальнозоркостью? Как их можно скорректировать?

1. Оптическая сила линз бабушкиных очков -2,5 дптр. Определите фокусное расстояние этих линз. Какой недостаток зрения у бабушки?

2. На каком минимальном расстоянии от глаза человек с нормальным зрением должен держать зеркальце, чтобы, не утомляясь, видеть четкое изображение глаза?

3. Почему, чтобы лучше видеть, близорукий человек щурится?

4. Почему даже в чистой воде человек без маски плохо видит?

5. Мальчик держит книгу на расстоянии 20 см от глаз. Определите оптическую силу линз, необходимых мальчику, чтобы читать книгу на расстоянии наилучшего зрения для нормального глаза.

6. Проведите аналогию между фотоаппаратом и глазом человека. Какие функции глаза выполняют разные части фотоаппарата? При необходимости обратитесь к дополнительным источникам информации.

7. Воспользуйтесь дополнительными источниками информации и узнайте о методах профилактики дефектов зрения. Как можно исправить зрение?

Возьмите разные очки и предложите несколько способов, с помощью которых можно определить, какой недостаток зрения (близорукость или дальнозоркость) корректирует каждая пара. Проверьте, «работают» ли эти способы.

Физика и техника в Украине

Александр Теодорович Смакула (1900-1983) — выдающийся украинский физик и изобретатель. Использовав понятие квантовых осцилляторов, А. Т. Смакула смог объяснить радиационную окраску кристаллов и вывести количественное математическое соотношение, известное в науке как «формула Смакулы». Работы ученого создали предпосылки для синтеза витаминов А, В2 и др., а процесс трансформации кристаллического углерода называют теперь «инверсией Смакулы».

В 1935 г. А. Т. Смакула сделал открытие, благодаря которому его имя навсегда останется в истории мировой науки, — способ улучшения оптических устройств («просветление оптики»). Суть открытия в том, что поверхность линзы покрывают слоем специального материала толщиной 1/4 длины падающей волны (десятые доли микрометра), что значительно уменьшает отражение света от поверхности линзы и в то же время увеличивает контрастность изображения. Данное открытие получило очень широкое применение, ведь линзы являются основным элементом большинства оптических устройств (фотоаппаратов, биноклей, микроскопов и т. д.).

2000 год был объявлен ЮНЕСКО годом А. Т. Смакулы.

подводим итоги РАЗДЕЛА II «Световые явления»

1. Изучив раздел II, вы узнали, что мы видим окружающий мир благодаря тому, что тела вокруг нас отражают свет или сами являются источниками света.

2. Вы узнали о законах геометрической оптики.

Читайте также:  Социальная организация с точки зрения психологический подход

законы геометрической оптики

3. Вы ознакомились с опытами И. Ньютона и выяснили, что белый свет состоит из света разных цветов. Свет разных цветов распространяется в вакууме с одинаковой скоростью (c = 3 10 8 м/с), а в среде — с разной.

4. Вы научились строить изображения в плоском зеркале и линзах.

5. Вы ознакомились с оптическими устройствами, в которых используют линзы.

ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ К РАЗДЕЛУ II «Световые явления»

Задания 1-8 содержат только один правильный ответ. 1. (1 балл) Какое оптическое явление иллю

стрирует фотография (рис. 1)?

а) отражение света;

б) поглощение света;

в) дисперсию света;

г) преломление света.

2. (1 балл) Какой закон подтверждается существованием солнечных и лунных затмений?

а) закон отражения света;

б) закон прямолинейного распространения света;

в) закон сохранения энергии;

г) закон преломления света.

3. (1 балл) Каким является изображение предмета в плоском зеркале?

а) увеличенным действительным; в) уменьшенным мнимым;

б) равным действительным; г) равным мнимым.

4. (1 балл) Луч света падает из воздуха на поверхность стеклянной пластины (рис. 2). На каком рисунке правильно указаны все три угла: угол падения α, угол отражения β и угол преломления γ ?

5. (2 балла) Какая точка (рис. 3) является изобра

жением светящейся точки S в плоском зеркале?

г) изображения точки S в зеркале нет.

6. (2 балла) Какова оптическая сила линзы, ход лучей в которой показан на рис. 4?

а) -0,04 дптр; в) +25 дптр;

б) +4 дптр; г) +50 дптр.

7. (2 балла) Какое у человека нарушение зрения, если он носит очки, нижняя часть которых — выпуклые стекла, а верхняя часть — плоские?

в) у человека нет нарушений зрения;

г) определить невозможно.

8. (2 балла) Во время фотографирования на объектив фотоаппарата села муха. Повлияет ли это на снимок, и если повлияет, то как?

б) на снимке будет изображение мухи;

в) снимок будет менее ярким;

г) снимок будет более ярким.

9. (3 балла) Человек приближается к зеркалу со скоростью 2 м/с. С какой скоростью к человеку приближается его отражение в зеркале?

10. (3 балла) Угол падения луча на зеркальную поверхность равен 70°. Чему равен угол между отраженным лучом и зеркальной поверхностью?

11. (3 балла) Свет падает из воздуха на поверхность прозрачного вещества под углом 45°. Определите абсолютный показатель преломления данного вещества, если преломленный пучок света распространяется под углом 60° к границе раздела сред.

12. (3 балла) Предмет расположен на расстоянии 1 м от собирающей линзы с фокусным расстоянием 0,5 м. На каком расстоянии от линзы расположено изображение предмета?

13. (3 балла) Установите соответствие между средой и скоростью распространения света в этой среде.

1 Алмаз А 1,24 · 10 8 м/с

2 Бензин Б 1,76 · 10 8 м/с

3 Лед В 2,00 · 10 8 м/с

14. (4 балла) На рис. 5 показаны главная оптическая ось КМ линзы, предмет АВ и его изображение А^. Определите тип линзы, ее фокусное расстояние и оптическую силу.

15. (4 балла,) Почему кривизна хрусталика глаза рыбы (рис. 6) больше, чем у человека?

16. (4 балла) Рассматривая марку с помощью лупы, мальчик видит ее на расстоянии наилучшего зрения увеличенной в 4 раза. На каком расстоянии от глаз мальчик держит лупу, если у него нормальное зрение, а оптическая сила лупы +15 дптр?

Сверьте ваши ответы с приведенными в конце учебника. Отметьте задания, которые вы выполнили правильно, и подсчитайте сумму баллов. Затем эту сумму разделите на три. Полученный результат будет соответствовать уровню ваших учебных достижений.

Тренировочные тестовые задания с компьютерной проверкой вы найдете на электронном образовательном ресурсе «Интерактивное обучение».

Новые приемники и источники света

Благодаря достижениям в электронике существенным образом изменились как источники, так и приемники света, стали общедоступными уникальные научные изобретения.

Расспросите ваших дедушек и бабушек о том, как делали фотографии двадцать и более лет тому назад. Оказывается, это была достаточно сложная процедура. Для вас же стало обычным, увидев интересный сюжет, навести камеру мобильного телефона, нажать соответствующую кнопку и мгновенно переслать готовое изображение друзьям.

Приведем еще пример. Об узком направленном пучке света, имеющем уникальные свойства, раньше шла речь только в фантастических произведениях. В наше время лазерный луч применяется настолько широко, что даже самые смелые фантасты прошлого века не могли себе этого представить. Так что, получается, раздел физики под названием «Оптика» безнадежно устарел и вы зря изучали раздел II учебника?

Не будем делать поспешных выводов и рассмотрим некоторые из современных оптических устройств подробнее.

Все вы, конечно, видели лазерные шоу в цирке или на эстрадных концертах: тонкие пучки света пронизывают пространство зала, быстро пролетают над головами зрителей. Захватывающее зрелище!

На рисунке представлен один из видов лазеров — газовый. Яркий светящийся «шнур» в стеклянной трубке — это не лазерный луч, а электрический разряд, подобный разряду в лампах дневного света.

Разряд служит для «накачки» рабочего тела (газа внутри стеклянной трубки). Этот процесс заключается в том, что атомы газа постепенно приобретают избыточную энергию от электрического разряда, а затем лавинообразно отдают ее в виде импульса (вспышки) света.

По названию вещества рабочего тела стали классифицировать и сами лазеры: газовые, жидкостные и наиболее удобные для бытовых целей — твердотельные лазеры.

Эстрадные шоу — далеко не единственное применение лазеров. Данные устройства широко используют в медицине, военном деле и др.

В фотоаппаратах старых конструкций устройством, фиксирующим изображение, была фотопленка. В цифровых фотоаппаратах таким устройством является пластинка, покрытая очень мелкими световыми датчиками (пикселями). Каждый из этих датчиков фиксирует «кусочек» светового потока. Чем меньше размер пикселя, тем более качественное изображение можно получить. Пластинка хорошего фотоаппарата насчитывает 18-20 млн пикселей. Количество пикселей в мобильном телефоне меньше, так как съемка — не основная функция телефона, соответственно и качество снимков хуже.

Микропроцессор фотоаппарата обрабатывает информацию от сенсоров и запоминает ее в виде отдельного файла.

История фотографии насчитывает более 180 лет. При этом и в старых фотоаппаратах, и в самых современных один из важнейших элементов — оптическая система, которая должна обеспечить четкое изображение разных объектов съемки — и вашего приятеля, стоящего совсем рядом, и гор, виднеющихся на горизонте. Так что рано сбрасывать оптику со счетов, конструкторам современных фотоаппаратов и видеокамер она еще наверняка пригодится!

Очень часто создатели современных фильмов сознательно (или из-за недостатка знаний) искажают информацию о возможностях лазеров. Приведем лишь несколько примеров.

Сколько ни дыми, все ровно не увидишь. Во многих фильмах для обнаружения охранной сигнализации герои пускают клубы дыма — и лучи лазера становятся видимыми. На самом деле изготовить лазеры, работающие в инфракрасном (невидимом для глаза) диапазоне, намного проще, чем работающие в видимом диапазоне. Именно их и используют в стандартных охранных системах. Инфракрасный луч, сколько его не задымляй, все равно остается невидимым для глаз.

Берегите глозо. Лазеры в фильмах используют для разрезания металлических препятствий (решетки, дверей сейфа и т. п.) — и это соответствует действительности. Вот только авторы фильмов часто забывают о защите героев от отраженных лучей, ведь отражение сверхмощного луча от разрезаемого металла будет тоже достаточно мощным. А значит, как минимум, следует беречь глаза!

Попробуй догони. Иногда создатели фильмов демонстрируют, что процесс распространения луча подобен полету пули. Это, конечно, не так. Скорость пули составляет несколько сотен метров в секунду, поэтому ее полет действительно может быть зарегистрирован с помощью скоростной киносъемки. А вот аналогичным образом проследить за процессом распространения луча света невозможно (напомним, что скорость света огромна — 300 000 км/с).

Ориентировочные темы проектов

1. Изготовление простейших оптических приборов и устройств.

2. Оптические иллюзии.

3. Исследование мощности и КПД искусственных источников света разных типов.

4. Вогнутые зеркала: свойства и примеры применения.

5. Оптические явления в природе.

6. Глаз и зрение.

Темы рефератов и сообщений

1. Будущее — за светодиодами.

2. Чудо фотосинтеза.

3. Миражи: как они возникают и где их можно наблюдать.

4. Зачем пешеходу на одежде светоотражающие поверхности.

Как светоотражающие поверхности используют автомобилисты.

6. Почему ночью мы почти не различаем цвета.

7. Оптическое искусство «Оп-арт» как синтез науки и искусства.

8. Нарушения зрения и методы их коррекции с помощью оптических устройств.

9. Зрительные тренажеры. Почему и как можно восстановить зрение.

10. Оптические приборы в медицине.

11. История фотографии.

12. Ультрафиолетовое очищение воды.

13. Почему мыльные пузыри разноцветные.

14. Приборы ночного видения.

15. Подзорная труба: история создания, устройство, принцип действия.

Темы экспериментальных исследований

1. Изучение законов распространения света с помощью лазерной указки.

2. Изучение законов преломления света и связанных с ними оптических эффектов. Оптические фокусы.

3. Исследование спектрального состава света с помощью призмы (воспроизведение опытов И. Ньютона).

4. Исследование преломляющих свойств собирающей и рассеивающей линз.

5. Изготовление оптических устройств (камера-обскура, калейдоскоп).

2.4. Дефекты зрения и их коррекция

Если дальняя точка глаза бесконечно удалена, то такой глаз называют нормальным или эмметропическим. При этом глаз хорошо различает предметы и вдали, и вблизи. Это означает, что оптический аппарат глаза (роговица и хрусталик) имеют фокусное расстояние, равное длине оси глаза, и фокус в этом случае попадает точно на сетчатку. При эмметропии изображение от далеко расположенных предметов фокусируется в центральной ямке сетчатки – наиболее чувствительной области воспринимающего аппарата глаза. Несовпадение дальней точки с бесконечно удаленной называют аметропией глаза.

Читайте также:  Вредны ли светодиодные ленты для зрения

Глазу свойственны три основных недостатка:

  • миопия (близорукость), при которой лучи от бесконечно удаленного точечного источника фокусируются перед сетчаткой (рис. 2.6 а).
  • гиперметропия (дальнозоркость), при которой истинный фокус лучей от бесконечно удаленного предмета лежит за сетчаткой (рис. 2.6 б).
  • астигматизм, при котором преломляющая способность глаза различна в разных плоскостях, проходящих через его оптическую ось.

Рис. 2.6. Фокусировка параллельного пучка близоруким и дальнозорким глазом.

2.4.1. Близорукость

Причин близорукости может быть две. Первая – удлиненное глазное яблоко при нормальной преломляющей силе глаза. Другая причина – слишком большая оптическая сила оптической системы глаза (более 60 диоптрий) при нормальной длине глаза (24 мм). И в первом, и во втором случаях изображение от предмета не может сфокусироваться на сетчатку, а находится внутри глаза. На сетчатку попадает только фокус от близко расположенных к глазу предметов, то есть дальняя точка глаза приближается от бесконечности на конечное расстояние (рис. 2.7 а).


а) близорукий глаз

б) дальнозоркий глаз

Рис. 2.7. Коррекция близорукости.

Чтобы скорректировать близорукость, нужно при помощи очков построить изображение бесконечно удаленной точки в том месте, которое глаз может видеть без всякого напряжения, то есть в дальней точке. Для исправления близорукости используются отрицательные очки (рис. 2.7 б), которые строят изображение бесконечно удаленной точки перед глазом.

Близорукость может быть врожденной, однако чаще всего она появляется в детском и подростковом возрасте, причем по мере роста глазного яблока в длину близорукость увеличивается. Истинной близорукости, как правило, предшествует так называемая ложная близорукость – следствие спазма аккомодации. В этом случае при применении средств, расширяющих зрачок и снимающих напряжение ресничной мышцы, зрение восстанавливается до нормы.

2.4.2. Дальнозоркость

Дальнозоркость вызывается слабой оптической силой оптической системы глаза для данной длины глазного яблока (либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при нормальной длине). Поскольку дальнозоркий глаз обладает относительно слабой преломляющей способностью, чтобы сфокусировать изображение на сетчатке, увеличивается напряжение мышц, изменяющих кривизну хрусталика, то есть глазу приходится аккомодироваться. Но даже и этого бывает недостаточно, чтобы рассмотреть предметы вдали. При рассматривании близко расположенных предметов напряжение еще больше возрастает: чем ближе предметы к глазу, тем все дальше за сетчатку уходит их изображение (рис. 2.8 а).

Скорректировать дальнозоркость можно при помощи положительных очков (рис. 2.8.б), которые строят изображение бесконечно удаленной точки за глазом.


а) дальняя точка

б) коррекция

а) дальняя точка

б) коррекция
Рис. 2.8. Коррекция дальнозоркости.

У новорожденного глаз немного сдавлен в горизонтальном направлении, поэтому у глаза есть небольшая дальнозоркость, которая проходит по мере роста глазного яблока.

При небольшой дальнозоркости зрение вдаль и вблизи хорошее, но могут быть жалобы на быструю утомляемость, головную боль при работе. При средней степени дальнозоркости зрение вдаль остается хорошим, а вблизи – затруднено. При высокой дальнозоркости плохим становится зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

Аметропия глаза выражается в диоптриях как величина, обратная расстоянию от первой поверхности глаза до дальней точки (рис. 2.7 а), рис. 2.8 а)), выраженной в метрах:

, (2.3)

Оптическая сила линзы, необходимая для коррекции близорукости или дальнозоркости, зависит не только от величины аметропии, но и от расстояния от очков до глаза. Контактные линзы располагаются вплотную к глазу, поэтому их оптическая сила равна аметропии.

Например, если при близорукости дальняя точка находится перед глазом на расстоянии 50 см, то , то есть для исправления такой близорукости нужны отрицательные очки с оптической силой .

Слабая степень аметропии считается до 3 диоптрий, средняя – от 3 до 6 диоптрий и высокая степень – свыше 6 диоптрий.

2.4.3. Астигматизм

Причина астигматизма лежит либо в неправильной, несферичной форме роговицы (в разных сечениях глаза, проходящих через ось, радиусы кривизны неодинаковы), либо в нецентричном по отношению к оптической оси глаза положении хрусталика. Обе причины приводят к тому, что для различных сечений глаза фокусные расстояния оказываются неодинаковыми.

При астигматизме в одном глазу сочетаются эффекты близорукости, дальнозоркости и нормального зрения. Может, например, случиться, что для вертикального сечения фокусное расстояние равно нормальному, а для горизонтального – больше нормального. Тогда глаз окажется в горизонтальном сечении близоруким и не сможет видеть ясно горизонтальных линий на бесконечности, а вертикальные будет четко различать. На близком расстоянии благодаря аккомодации глаз прекрасно различит вертикальные линии, а горизонтальные будут расплывчатыми.

Астигматизм чаще всего является врожденным, но может стать следствием операции или глазной травмы. Кроме дефектов зрительного восприятия, астигматизм обычно сопровождается быстрой утомляемостью глаз, понижением зрения и головными болями.

Исправление астигматизма возможно при помощи цилиндрических (собирательных или рассеивающих) линз. Астигматизм обычно сочетается с другими дефектами зрения – близорукостью или дальнозоркостью, поэтому астигматические очки содержат чаще всего и сферические, и цилиндрические элементы.

Дефекты зрения

У человека с хорошим зрением глаз в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. При нарушении зрения изображения удаленных предметов в случае ненапряженного глаза могут оказаться либо перед сетчаткой — близорукость , либо за сетчаткой — дальнозоркость (рис. 4.2.1).

Изображение удаленного предмета в глазе: a – нормальный глаз; b – близорукий глаз; с – дальнозоркий глаз.

Расстояние наилучшего зрения у близорукого глаза меньше, а у дальнозоркого больше, чем у нормального глаза. Для исправления дефекта зрения служат очки. Для дальнозоркого глаза необходимы очки с положительной оптической силой (собирающие линзы), для близорукого – с отрицательной оптической силой (рассеивающие линзы).

Для наблюдения удаленных предметов оптическая сила линз должна быть такой, чтобы параллельные пучки фокусировались на сетчатке глаза. Глаз должен видеть через очки мнимое прямое изображение удаленного предмета, находящееся в дальней точке аккомодации данного глаза. Если, например, дальняя точка аккомодации близорукого глаза находится на расстоянии 80 см, то применяя формулу тонкой линзы получим:

d = 7 , f = –0,8 м, следовательно, дптр.

Следует отметить, что у дальнозоркого глаза дальняя точка аккомодации мнимая, то есть ненапряженный глаз фокусирует на сетчатке сходящийся пучок лучей. Потому при рассмотрении удаленных предметов очки для дальнозоркого глаза должны превращать параллельный пучок лучей в сходящийся, то есть обладать положительной оптической силой.

Очки для «ближнего зрения» (например, для чтения) должны создавать мнимое изображение предмета, находящегося на расстоянии d 0 = 25 см (то есть на расстоянии наилучшего зрения нормального глаза), на расстоянии наилучшего зрения данного глаза. Пусть, например, близорукий глаз имеет расстояние наилучшего зрения 16 см. По формуле тонкой линзы получим: f = –0,16 м, следовательно, дптр. Вследствие сужения области аккомодации у многих людей очки для ближнего зрения должны обладать большей (по модулю) оптической силой по сравнению с очками для рассматривания удаленных предметов.

Рис. 4.2.2 иллюстрирует коррекцию дальнозоркого и близорукого глаза с помощью очков.

Рисунок 4.2.2. Подбор очков для чтения для дальнозоркого (a) и близорукого (b) глаза.

Предмет A располагается на расстоянии d = d 0 = 25 см наилучшего зрения нормального глаза. Мнимое изображение A’ располагается на расстоянии f, равном расстоянию наилучшего зрения данного глаза.

Кратковременная парктическая работа

Задание: исправьте дефекты зрения, подобрав соответствующие линзы.

Другие дефекты глаза.

Все недостатки, присущие оптическим системам, характерны и для глаза. Например, дифракция ограни­чивает разрешающую способность глаза (остроту зрения): нельзя увидеть раздельно две точки, если они расположены под углом, меньшим 1′.

Хроматическая аберрация также присуща глазу. Однако из-за чувствительности сетчатки глаза к очень небольшой части элект­ ромагнитного спектра, а также из-за того, что показатель преломления хрусталика возрастает к его центру, эта аберрация ослаблена. По этой же причине ослаблена и сферическая абер­рация, тем более, что зрачок пропускает весьма узкий пучок.

Очевидно, что на сетчатке возникает перевернутое изобра­ жение всех предметов. Но мозг, перерабатывая полученную зри­ тельную информацию и сопоставляя ее с опытом, воспринимает предметы правильно.

Бинокулярное зрение.

Р ассматривая предмет двумя глазами, мы получаем на сетчатке каждого из них несколько различные изображения. В то же время мы воспринимаем один предмет, но видим его стереоскопически, т. е. объемно. Представление о глубине пространства возникает благодаря тому, что, направляя оба глаза на один объект, мы усилием глазных мышц поворачи­ваем их так, чтобы их оптические оси пересекались на предмете. Угол a между осями называется углом конвергенции . Расстоя­ние между глазами (база) равно b= 5 см, а расстояние до предмета d >25 см . Следовательно, угол конвергенции a = b / d меняется от нуля (дальняя точка) до 10° (ближняя точка).

Одновременные и непроизвольные аккомодация и конверген­ция позволяют оценить глубину пространства и расстояние до предметов значительно лучше, чем при зрении одним глазом. Увеличивая искусственно базу с помощью биноклей или стерео­труб, можно оценить расстояние до удаленных предметов точнее, чем невооруженным глазом.

Источники:

Популярные записи