Меню Рубрики

Как понимать испарение с молекулярно кинетической точки зрения

Парообразование, которое происходит только со свободной поверхности жидкости, граничрщей с газообразной средой или с вакуумом, называется испарением.

Рассмотрим процесс испарения с точки зрения молекулярно-кинетической теории. Как известно, потенциальная энергия молекул жидкости при увеличении расстояния между ними должна возрастать. Следовательно, чтобы покинуть жидкость, молекула должна выполнить работу за счет уменьшения своей кинетической энергии. Среди хаотически движущихся молекул жидкости в ее поверхностном слое всегда найдутся такие молекулы, которые стремятся еылететь из жидкости. Когда такая молекула выходит за поверхностный слой, то возникает сила, втягивающая молекулу обратно в жидкость (рис. 7.1). Поэтому вылетают из жидкости только те молекулы, у которых кинетическая энергия больше работы, необходимой для преодоления противодействия молекулярных сил в слое толщиной где — радиус молекулярного действия.

Покинувшие жидкость молекулы совместно составляют пар над ее поверхностью. Так как из жидкости вылетают молекулы с достаточно большой кинетической энергией, а остаются в ней

молекулы с меньшей кинетической энергией, то среднее значение энергии для молекул, остающихся в жидкости, в процессе испарения уменьшается, т. е. жидкость при испарении охлаждается. Этим объясняется ощущение холода при выходе из воды после купанья, охлаждение руки, смоченной эфиром, и т. п.

Некоторые молекулы пара при хаотическое движении над поверхностью жидкости залетают обратно в жидкость. Это означает, что наряду с испарением жидкости всегда происходит и конденсация ее паров. Так как молекулы пара, залетающие в жидкость, частично передают свою кинетическую энергию молекулам жидкости, то при этом происходит возрастание Еаост у молекул жидкости, т. е. увеличение внутренней энергии жидкости (нагревание жидкости).

Итак, на поверхности жидкости одновременно происходит испарение и конденсация. Когда преобладает процесс испарения, жидкость охлаждается, а когда преобладает конденсация, жидкость нагревается.

Поскольку силы молекулярного взаимодействия зависят от природы молекул, скорость испарения зависит от рода жидкости. Эту зависимость легко обнаружить на опыте. Если в одинаковые открытые сосуды налить равные объемы разных жидкостей, то через некоторое время будет видно, что быстрота испарения этих жидкостей разная. Оказывается, что эфир испаряется быстрее спирта, а спирт — быстрее воды.

Опыт показывает, что скорость испарения жидкости зависит от площади ее свободной поверхности. Чем больше эта площадь, тем быстрее испаряется жидкость. (Приведите примеры, подтверждающие эту зависимость, и объясните ее.)

Испарение происходит при любой температуре. Поэтому над свободной поверхностью жидкости всегда находится пар этой жидкости.

Легко заметить, что с повышением температуры скорость испарения жидкости возрастает. Например, горячая вода испаряется быстрее холодной. Объясняется это тем, что при повышении температуры увеличивается средняя кинетическая энергия молекул жидкости и становится больше таких молекул, которые могут преодолеть противодействие поверхностного слоя жидкости и вылететь за его пределы.

Как было отмечено выше, наряду с испарением жидкости всегда происходит и конденсация ее паров, которая уменьшает скорость испарения. При увеличении плотности молекул пара над поверхностью жидкости конденсация пара возрастает и испарение замедляется. Следовательно, чем меньше плотность пара жидкости над ее поверхностью, тем больше скорость испарения. Поэтому откачка паров с поверхности ускоряет ее испарение.

Отметим еще, что охлаждение жидкости в процессе ее испарения не всегда заметно. Объясняется это тем, что между жидкостью и окружающими телами существует теплообмен, который компенсирует потери ее энергии, уменьшая охлаждение жидкости. Однако при большой скорости испарения температура жидкости может заметно понизиться.

Испарение и конденсация

Переход вещества в газообразное состояние называется парообразованием.

Совокупность молекул, вылетевших из вещества, называется паром это го вещества.

При парообразовании увеличиваются средние расстояния между молекулами. В результате потенциальная энергия взаимодействия частиц увеличивается (численное значение ее уменьшается, но она отрицательна). Таким образом, процесс парообразования связан с увеличением внутренней энергии вещества.

Парообразование может происходить непосредственно из твердого состояния — это возгонка (или сублимация).

Переход из жидкого состояния в газообразное возможен двумя различными процессами: испарением и кипением.

Испарение — это парообразование, происходящее только со свободной поверхности жидкости, граничащей с газообразной средой или с вакуумом.

Экспериментально установлены следующие закономерности:

  1. При одинаковых условиях различные вещества испаряются с различной скоростью (скорость испарения определяется числом молекул, переходящих в пар с поверхности вещества за 1 с).
  2. Скорость испарения тем больше:
    1. чем больше площадь свободной поверхности жидкости;
    2. чем меньше плотность паров над поверхностью жидкости. Скорость увеличивается при движении окружающего воздуха (ветер);
    3. чем больше температура жидкости.
  3. При испарении температура тела понижается.

Механизм испарения можно объяснить с точки зрения MKT: молекулы, находящиеся на поверхности, удерживаются силами притяжения со стороны других молекул вещества. Молекула может вылететь за пределы жидкости лишь тогда, когда ее кинетическая энергия превышает значение той работы, которую необходимо совершить, чтобы преодолеть силы молекулярного притяжения (работа выхода). Поэтому покинуть вещество могут только быстрые молекулы. В результате средняя кинетическая энергия оставшихся молекул уменьшается, а температура жидкости понижается.

Для поддержания температуры испаряющейся жидкости неизменной к ней необходимо подводить некоторое количество теплоты.

Количество теплоты Q, необходимое для превращения жидкости в пар при постоянной температуре, называется теплотой парообразования.

Экспериментально установлено, что Q = Lm, где m — масса испарившейся жидкости, L — удельная теплота парообразования.

Удельная тепло га парообразования — величина, численно равная количеству теплоты, необходимому для превращения в пар жидкости единичной массы при неизменной температуре.

Удельная теплота парообразования L зависит от рода жидкости и внешних условий. При увеличении температуры она уменьшается (рис. 1). Это объясняется тем, что все жидкости при нагревании расширяются. Расстояния между молекулами при этом увеличиваются и силы молекулярного взаимодействия уменьшаются. Кроме того, чем больше температура, тем больше средняя кинетическая энергия движения молекул и тем меньше энергии им нужно добавить, чтобы они могли вылететь за пределы поверхности жидкости.

Молекулы пара хаотически движутся. Поэтому скорости некоторых из них будут направлены в сторону жидкости. Достигнув поверхности, они втягиваются в нее силами притяжения со стороны молекул, находящихся на поверхности жидкости, и снова становятся молекулами жидкости. Процесс перехода вещества из газообразного состояния в жидкое называется конденсацией.

Число возвратившихся в жидкость за определенный промежуток времени молекул тем больше, чем больше концентрация молекул пара, а следовательно, чем больше давление пара над жидкостью. Конденсация пара сопровождается нагреванием жидкости. При конденсации выделяется такое же количество теплоты, которое было затрачено при испарении.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 197-198.

Испарение и конденсация. Кипение жидкости

1. Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарения и кипения.

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре.

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Иапример, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

2. Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным.

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром.

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

3. В воздухе всегда содержится водяной пар, являющийся продуктом испарения воды. Содержание водяного пара в воздухе характеризует его влажность.

Абсолютной влажностью воздуха ​ \( (\rho) \) ​ называют массу водяного пара, содержащегося в 1 м 3 воздуха, или плотность водяного пара, содержащегося в воздухе.

Если относительная влажность равна 9,41·10 -3 кг/м 3 , то это означает, что в 1 м 3 содержится 9,41·10 -3 кг водяного пара.

Для того чтобы судить о степени влажности воздуха, вводят величину, называемую относительной влажностью.

Относительной влажностью воздуха ​ \( (\varphi) \) ​ называют величину, равную отношению плотности водяного пара ​ \( (\rho) \) ​, содержащегося в воздухе (абсолютной влажности), к плотности насыщенного водяного пара ​ \( (\rho_0) \) ​ при этой температуре:

​Обычно относительную влажность выражают в процентах.

При понижении температуры ненасыщенный нар может превратиться в насыщенный. Примером такого превращения является выпадение росы и образование тумана. Так, летним днём при температуре 30 °С плотность водяного пара равна 12,8·10 -3 кг/м 3 . Этот водяной пар является ненасыщенным. При понижении вечером температуры до 15 °С он уже будет насыщенным, и выпадет роса.

Температуру, при которой водяной пар, содержащийся в воздухе, становится насыщенным, называют точкой росы.

Для измерения влажности воздуха используют прибор, называемый психрометром.

Психрометр состоит из двух термометров, один из которых сухой, а другой — влажный (рис. 74). Термометры прикреплены к таблице, в которой по вертикали указана температура, которую показывает сухой термометр, а по горизонтали — разность показаний сухого и влажного термометров. Определив показания термометров, по таблице находят значение относительной влажности воздуха.

Например, температура, которую показывает сухой термометр, 20 °С, показание влажного термометра — 15 °С. Разность показаний 5 °С. По таблице находим значение относительной влажности ​ \( \varphi \) ​ = 59%.

4. Второй процесс парообразования — кипение. Наблюдать этот процесс можно с помощью простого опыта, нагревая воду в стеклянной колбе. При нагревании воды в ней через некоторое время появляются пузырьки, в которых содержатся воздух и насыщенный водяной пар, который образуется при испарении воды внутри пузырьков. При повышении температуры давление внутри пузырьков растёт, и под действием выталкивающей силы они поднимаются вверх. Однако, поскольку температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться, и они сжимаются. Когда вода прогреется по всему объёму, пузырьки с паром поднимаются до поверхности, лопаются, и пар выходит наружу. Вода кипит. Это происходит при такой температуре, при которой давление насыщенного пара в пузырьках равно атмосферному давлению.

Процесс парообразования, происходящий во всем объёме жидкости при определённой температуре, называют кипением. Температуру, при которой жидкость кипит, называют температурой кипения.

Эта температура зависит от атмосферного давления. При повышении атмосферного давления температура кипения возрастает.

Опыт показывает, что в процессе кипения температура жидкости не изменяется, несмотря на то, что извне поступает энергия. Переход жидкости в газообразное состояние при температуре кипения связан с увеличением расстояния между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения расходуется подводимая к жидкости энергия. Так происходит до тех пор, пока вся жидкость не превратится в пар. Поскольку жидкость и пар в процессе кипения имеют одинаковую температуру, то средняя кинетическая энергия молекул не изменяется, увеличивается лишь их потенциальная энергия.

На рисунке 75 приведён график зависимости температуры воды от времени в процессе её нагревания от комнатной температуры до температуры кипения (АБ), кипения (БВ), нагревания пара (ВГ), охлаждения пара (ГД), конденсации (ДЕ) и последующего охлаждения (ЕЖ).

5. Для превращения разных веществ из жидкого состояния в газообразное требуется разная энергия, эта энергия характеризуется величиной, называемой удельной теплотой парообразования.

Удельной теплотой парообразования ​ \( (L) \) ​ называют величину, равную отношению количества теплоты, которое нужно сообщить веществу массой 1 кг, для превращения его из жидкого состояния в газообразное при температуре кипения.

Единица удельной теплоты парообразования — ​ \( [L] \) ​ = Дж/кг.

Чтобы рассчитать количество теплоты ​ \( Q \) ​, которое необходимо сообщить веществу массой ​ \( m \) ​ для его превращения из жидкого состояния в газообразное, необходимо удельную теплоту парообразования ​ \( (L) \) ​ умножить на массу вещества: ​ \( Q=Lm \) ​.

При конденсации пара выделяется некоторое количество теплоты, причем его значение равно значению количества теплоты, которое необходимо затратить для превращения жидкости в пар при той же температуре.

ПРИМЕРЫ ЗАДАНИЙ

1. Испарение и кипение — два процесса превращения вещества из одного агрегатного состояния в другое. Общей характеристикой этих процессов является то, что оба они

А. Представляют собой процесс превращения вещества из жидкого состояния в газообразное
Б. Происходят при определённой температуре

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. Испарение и кипение — два процесса перехода вещества из одного агрегатного состояния в другое. Различие между ними заключается в том, что

А. Кипение происходит при определённой температуре, а испарение — при любой температуре.
Б. Испарение происходит с поверхности жидкости, а кипение — во всём объёме жидкости.

Правильным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. При нагревании вода превращается в пар той же температуры. При этом

1) увеличивается среднее расстояние между молекулами
2) уменьшается средний модуль скорости движения молекул
3) увеличивается средний модуль скорости движения молекул
4) уменьшается среднее расстояние между молекулами

4. В процессе конденсации водяного пара при неизменной его температуре выделилось некоторое количество теплоты. Что произошло с энергией молекул водяного пара?

1) изменилась как потенциальная, так и кинетическая энергия молекул пара
2) изменилась только потенциальная энергия молекул пара
3) изменилась только кинетическая энергия молекул пара
4) внутренняя энергия молекул пара не изменилась

5. На рисунке приведён график зависимости температуры воды от времени при её охлаждении и последующем нагревании. Первоначально вода находилась в газообразном состоянии. Какой участок графика соответствует процессу конденсации воды?

1) АВ
2) ВС
3) CD
4) DE

6. На рисунке приведён график зависимости температуры воды от времени. В начальный момент времени вода находилась в газообразном состоянии. В каком состоянии находится вода в момент времени ​ \( \tau_1 \) ​?

1) только в газообразном
2) только в жидком
3) часть воды в жидком состоянии, часть — в газообразном
4) часть воды в жидком состоянии, часть — в кристаллическом

7. На рисунке приведён график зависимости температуры спирта от времени при его нагревании и последующем охлаждении. Первоначально спирт находился в жидком состоянии. Какой участок графика соответствует процессу кипения спирта?

Читайте также:  Как называются очки с простыми стеклами не для зрения

1) АВ
2) ВС
3) CD
4) DE

8. Какое количество теплоты необходимо затратить, чтобы превратить в газообразное состояние 0,1 кг спирта при температуре кипения?

1) 240 Дж
2) 90 кДж
3) 230 кДж
4) 4500 кДж

9. В понедельник абсолютная влажность воздуха днём при температуре 20 °С была равной 12,8 г/см 3 . Во вторник она увеличилась и стала равной 15,4 г/см 3 . Выпала ли роса при понижении температуры до 16 °С, если плотность насыщенного пара при этой температуре 13,6 г/см 3 ?

1) не выпала ни в понедельник, ни во вторник
2) выпала и в понедельник, и во вторник
3) в понедельник выпала, во вторник не выпала
4) в понедельник не выпала, во вторник выпала

10. Чему равна относительная влажность воздуха, если при температуре 30 °С абсолютная влажность воздуха равна 18·10 -3 кг/м 3 , а плотность насыщенного пара при этой температуре 30·10 -3 кг/м 3 ?

11. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ
A) физическая величина
Б) единица физической величины
B) прибор для измерения физической величины

ПРИМЕРЫ
1) кристаллизация
2) джоуль
3) кипение
4) температура
5) мензурка

12. На рисунке приведены графики зависимости от времени температуры двух веществ одинаковой массы, находившихся первоначально в жидком состоянии, получающих одинаковое количество теплоты в единицу времени. Из приведённых ниже утверждений выберите правильные и запишите их номера.

1) Вещество 1 полностью переходит в газообразное состояние, когда начинается кипение вещества 2
2) Удельная теплоёмкость вещества 1 больше, чем вещества 2
3) Удельная теплота парообразования вещества 1 больше, чем вещества 2
4) Температура кипения вещества 1 выше, чем вещества 2
5) В течение промежутка времени ​ \( 0-t_1 \) ​ оба вещества находились в жидком состоянии

13. Какое количество теплоты необходимо для превращения в стоградусный пар 200 г воды, взятой при температуре 40 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

Как понимать испарение с молекулярно кинетической точки зрения

Любое вещество при определенных условиях может находиться в различных агрегатных состояниях – твердом, жидком и газообразном. Переход из одного состояния в другое называется фазовым переходом . Испарение и конденсация являются примерами фазовых переходов.

Все реальные газы (кислород, азот, водород и т. д.) при определенных условиях способны превращаться в жидкость. Однако такое превращение может происходить только при температурах ниже определенной, так называемой критической температуры . Например, для воды критическая температура равна , для азота , для кислорода . При комнатной температуре () вода может находиться и в жидком, и в газообразном состояниях, а азот и кислород существуют только в виде газов.

Испарением называется фазовый переход из жидкого состояния в газообразное. С точки зрения молекулярно-кинетической теории, испарение – это процесс, при котором с поверхности жидкости вылетают наиболее быстрые молекулы, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости. Это приводит к уменьшению средней кинетической энергии оставшихся молекул, т. е. к охлаждению жидкости (если нет подвода энергии от окружающих тел).

Конденсация – это процесс, обратный процессу испарения. При конденсации молекулы пара возвращаются в жидкость.

В закрытом сосуде жидкость и ее пар могут находиться в состоянии динамического равновесия , когда число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся в жидкость из пара, т. е. когда скорости процессов испарения и конденсации одинаковы. Такую систему называют двухфазной . Пар, находящийся в равновесии со своей жидкостью, называют насыщенным .

Число молекул, вылетающих с единицы площади поверхности жидкости за одну секунду, зависит от температуры жидкости. Число молекул, возвращающихся из пара в жидкость, зависит от концентрации молекул пара и от средней скорости их теплового движения, которая определяется температурой пара. Отсюда следует, что для данного вещества концентрация молекул пара при равновесии жидкости и ее пара определяется их равновесной температурой. Установление динамического равновесия между процессами испарения и конденсации при повышении температуры происходит при более высоких концентрациях молекул пара. Так как давление газа (пара) определяется его концентрацией и температурой, то можно сделать вывод: давление насыщенного пара данного вещества зависит только от его температуры и не зависит от объема . Поэтому изотермы реальных газов на плоскости () содержат горизонтальные участки, соответствующие двухфазной системе (рис. 3.4.1).

Рисунок 3.4.1.

При повышении температуры давление насыщенного пара и его плотность возрастают, а плотность жидкости уменьшается из-за теплового расширения. При температуре, равной критической температуре для данного вещества, плотности пара и жидкости становятся одинаковыми. При исчезают физические различия между жидкостью и ее насыщенным паром.

Если изотермически сжимать ненасыщенный пар при , то его давление будет возрастать, пока не станет равным давлению насыщенного пара. При дальнейшем уменьшении объема на дне сосуда образуется жидкость и устанавливается динамическое равновесие между жидкостью и ее насыщенным паром. С уменьшением объема все большая часть пара конденсируется, а его давление остается неизменным (горизонтальный участок на изотерме). Когда весь пар превращается в жидкость, давление резко возрастает при дальнейшем уменьшении объема вследствие малой сжимаемости жидкости.

Из газообразного состояния в жидкое можно перейти, минуя двухфазную область. Для этого нужно совершить процесс в обход критической точки . Один из возможных процессов такого рода показан на рис. 3.4.1 ломаной линией .

В атмосферном воздухе всегда присутствуют пары воды при некотором парциальном давлении , которое, как правило, меньше давления насыщенного пара . Отношение , выраженное в процентах, называется относительной влажностью воздуха.

Ненасыщенный пар можно теоретически описывать с помощью уравнения состояния идеального газа при обычных для реальных газов ограничениях: давление пара должно быть не слишком велико (практически ), а его температура выше некоторого определенного для каждого вещества значения. К насыщенному пару также можно приближенно применять законы идеального газа при условии, что для каждой температуры давление насыщенного пара определяется по кривой равновесия для данного вещества.

Давление насыщенного пара очень быстро возрастает с ростом температуры . Зависимость нельзя получить из законов идеального газа. Давление газа при постоянной концентрации молекул растет прямо пропорционально температуре. В насыщенном паре при повышении температуры возрастает не только средняя кинетическая энергия движения молекул, но и их концентрация. Поэтому давление насыщенного пара при повышении температуры возрастает быстрее, чем давление идеального газа при постоянной концентрации молекул.

Испарение может происходить не только с поверхности, но и в объеме жидкости. В жидкости всегда имеются мельчайшие пузырьки газа. Если давление насыщенного пара жидкости равно внешнему давлению (т. е. давлению газа в пузырьках) или превышает его, жидкость будет испаряться внутрь пузырьков. Пузырьки, наполненные паром, расширяются и всплывают на поверхность. Этот процесс называется кипением . Таким образом, кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению .

В частности, при нормальном атмосферном давлении вода кипит при температуре . Это значит, что при такой температуре давление насыщенных паров воды равно . При подъеме в горы атмосферное давление уменьшается, и поэтому температура кипения воды понижается (приблизительно на на каждые 300 метров высоты). На высоте давление составляет примерно , и температура кипения понижается до .

В герметически закрытом сосуде жидкость кипеть не может, т. к. при каждом значении температуры устанавливается равновесие между жидкостью и ее насыщенным паром. По кривой равновесия можно определять температуру кипения жидкости при различных давлениях.

Изображенная на рис. 3.4.1 картина изотерм реального газа описывает процессы испарения и конденсации, т. е. фазовый переход между газообразной и жидкой фазами вещества. На самом деле эта картина является неполной, т. к. из газообразного и жидкого любое вещество может перейти в твердое состояние. При заданной температуре термодинамическое равновесие между двумя фазами одного и того же вещества возможно лишь при определенном значении давления в системе. Зависимость равновесного давления от температуры называется кривой фазового равновесия . Примером может служить кривая равновесия насыщенного пара и жидкости. Если кривые равновесия между различными фазами данного вещества построить на плоскости (), то они разбивают эту плоскость на отдельные области, в которых вещество существует в однородном агрегатном состоянии – твердом, жидком или газообразном (рис. 3.4.2). Изображенные в координатной системе () кривые равновесия называются фазовой диаграммой .

Рисунок 3.4.2.

Кривая , соответствующая равновесию между твердой и газообразной фазами, называется кривой сублимации . Кривая равновесия между жидкостью и паром называется кривой испарения , она обрывается в критической точке . Кривая равновесия между твердым телом и жидкостью называется кривой плавления .

Кривые равновесия сходятся в точке , в которой могут сосуществовать в равновесии все три фазы. Эта точка называется тройной точкой .

Для многих веществ давление в тройной точке меньше . Такие вещества при нагревании при атмосферном давлении плавятся. Например, тройная точка воды имеет координаты , и используется в качестве опорной для калибровки абсолютной температурной шкалы Кельвина (см. §3.2). Существуют, однако, и такие вещества, у которых превышает . Так для углекислоты (CO2) давление и температура . Поэтому при атмосферном давлении твердая углекислота может существовать только при низкой температуре, а в жидком состоянии при она вообще не существует. В твердом состоянии в равновесии со своим паром при атмосферном давлении углекислота находится при температуре или . Это широко применяемый «сухой лед», который никогда не плавится, а только испаряется (сублимирует).

Билет № 6. Испарение и конденсация. Объяснение явления испарения на основе представлений о молекулярном строении вещества

Испарение и конденсация. Объяснение явления испарения на основе представлений о молекулярном строении вещества. Удельная теплота парообразования. Ее единицы.

Явление превращения жидкости в пар называется парообразованием.

Испарение-процесс парообразования, происходящий с открытой поверхности.

Молекулы жидкости движутся с разными скоростями. Если какая-нибудь молекула окажется у поверхности жидкости, она может преодолеть притяжение соседних молекул и вылететь из жидкости. Вылетевшие молекулы образуют пар. У оставшихся молекул жидкости при соударении меняются скорости. Некоторые молекулы при этом приобретают скорость, достаточную для того, чтобы вылететь из жидкости. Этот процесс продолжается, поэтому жидкости испаряются медленно.

*Скорость испарения зависит от рода жидкости. Быстрее испаряются те жидкости, у которых молекул притягиваются с меньшей силой..

*Испарение может происходить при любой температуре. Но при высоких температурах испарение происходит быстрее.

*Скорость испарения зависит от площади ее поверхности.

*При ветре (потоке воздуха) испарение происходит быстрее.

При испарении внутренняя энергия уменьшается, т.к. при испарении жидкость покидают быстрые молекулы, следовательно, средняя скорость остальных молекул уменьшается. Значит, что если нет притока энергии из вне, то температура жидкости уменьшается.

Явление превращения пара в жидкость называется конденсацией. Она сопровождается выделением энергии.

Конденсацией пара объясняется образование облаков. Пары воды, поднимающиеся над землей, образуют в верхних холодных слоях воздуха облака, которые состоят из мельчайших капель воды.

Удельная теплота парообразования – физ. величина, показывающая какое кол-во теплоты необходимо, чтобы обратить жидкость массой 1 кг в пар без изменения температуры.

Уд. теплоту парообразования обозначают буквой L и измеряется в Дж/кг

Уд. теплоту парообразования воды:L=2,3×10 6 Дж/кг, спирт L=0,9×10 6

Кол-во теплоты, необходимое для превращения жидкости в пар: Q = Lm

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 7702 — | 6713 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары

Любое вещество при определенных условиях может находиться в различных агрегатных состояниях – твердом, жидком и газообразном. Переход из одного состояния в другое называется фазовым переходом . Испарение и конденсация являются примерами фазовых переходов. Все реальные газы (кислород, азот, водород и т. д.) при определенных условиях способны превращаться в жидкость. Однако превращение газа в жидкость может происходить только при температурах ниже определенной, так называемой критической температуры Tкр.

Например , для воды критическая температура равна 647,3°K, для азота 126°K, для кислорода 154,3°K. При комнатной температуре (≈ 300°K) вода может находиться и в жидком, и в газообразном состояниях, а азот и кислород существуют только в виде газов. Испарением называется фазовый переход из жидкого состояния в газообразное.

С точки зрения молекулярно-кинетической теории,

В закрытом сосуде жидкость и ее пар могут находиться в состоянии динамического равновесия , когда число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся в жидкость из пара, то есть когда скорости процессов испарения и конденсации одинаковы. Такую систему называют двухфазной . Пар, находящийся в равновесии со своей жидкостью, называют насыщенным . Число молекул, вылетающих с единицы площади поверхности жидкости за одну секунду, зависит от температуры жидкости. Число молекул, возвращающихся из пара в жидкость, зависит от концентрации молекул пара и от средней скорости их теплового движения, которая определяется температурой пара.

Отсюда следует, что для данного вещества концентрация молекул пара при равновесии жидкости и ее пара определяется их равновесной температурой. Установление динамического равновесия между процессами испарения и конденсации при повышении температуры происходит при более высоких концентрациях молекул пара. Так как давление газа (пара) определяется его концентрацией и температурой, то можно сделать вывод: давление насыщенного пара p данного вещества зависит только от его температуры и не зависит от объема. Поэтому изотермы реальных газов на плоскости (p, V) содержат горизонтальные участки, соответствующие двухфазной системе (рис. 1).

Рисунок 1. Изотермы реального газа. Область I – жидкость, область II – двухфазная система «жидкость + насыщенный пар», область III – газообразное вещество. K – критическая точка.

При повышении температуры давление насыщенного пара и его плотность возрастают, а плотность жидкости уменьшается из-за теплового расширения. При температуре, равной критической температуре Tкр для данного вещества, плотности пара и жидкости становятся одинаковыми. При T > Tкр исчезают физические различия между жидкостью и ее насыщенным паром. Если изотермически сжимать ненасыщенный пар при T относительной влажностью воздуха.

Ненасыщенный пар можно теоретически описывать с помощью уравнения состояния идеального газа при обычных для реальных газов ограничениях: давление пара должно быть не слишком велико (практически p ≤ (10 6 –10 7 ) Па), а его температура выше некоторого определенного для каждого вещества значения. К насыщенному пару также можно приближенно применять законы идеального газа при условии, что для каждой температуры T давление p насыщенного пара определяется по кривой равновесия p(T) для данного вещества.

Давление p насыщенного пара очень быстро возрастает с ростом температуры T. Зависимость p(T) нельзя получить из законов идеального газа. Давление газа при постоянной концентрации молекул растет прямо пропорционально температуре. В насыщенном паре при повышении температуры возрастает не только средняя кинетическая энергия движения молекул, но и их концентрация.

Поэтому давление насыщенного пара при повышении температуры возрастает быстрее, чем давление идеального газа при постоянной концентрации молекул. Испарение может происходить не только с поверхности, но и в объеме жидкости. В жидкости всегда имеются мельчайшие пузырьки газа. Если давление насыщенного пара жидкости равно внешнему давлению (то есть давлению газа в пузырьках) или превышает его, жидкость будет испаряться внутрь пузырьков. Пузырьки, наполненные паром, расширяются и всплывают на поверхность. Этот процесс называется кипением .

Таким образом, кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению. В частности, при нормальном атмосферном давлении вода кипит при температуре 100°С. Это значит, что при такой температуре давление насыщенных паров воды равно 1 атм. При подъеме в горы атмосферное давление уменьшается, и поэтому температура кипения воды понижается (приблизительно на 1 °С на каждые 300 метров высоты). На высоте 7°Kм давление составляет примерно 0,4 атм, и температура кипения понижается до 70 °С. В герметически закрытом сосуде жидкость кипеть не может, т.°K. при каждом значении температуры устанавливается равновесие между жидкостью и ее насыщенным паром. По кривой равновесия p(T) можно определять температуры кипения жидкости при различных давлениях. Изображенная на рис. 1 картина изотерм реального газа описывает процессы испарения и конденсации, то есть фазовый переход между газообразной и жидкой фазами вещества.

На самом деле эта картина является неполной, т.°K. из газообразного и жидкого состояний любое вещество может перейти в твердое состояние. При заданной температуре T термодинамическое равновесие между двумя фазами одного и того же вещества возможно лишь при определенном значении давления в системе. Зависимость равновесного давления от температуры называется кривой фазового равновесия . Примером может служить кривая равновесия p(T) насыщенного пара и жидкости. Если кривые равновесия между различными фазами данного вещества построить на плоскости (p, T), то они разбивают эту плоскость на отдельные области, в которых вещество существует в однородном агрегатном состоянии – твердом, жидком или газообразном (рис. 2). Изображенные в координатной системе (p, T) кривые равновесия называются фазовой диаграммой .

Рисунок 2. Типичная фазовая диаграмма вещества. K – критическая точка, T – тройная точка. Область I – твердое тело, область II – жидкость, область III – газообразное вещество.

Кривая OT, соответствующая равновесию между твердой и газообразной фазами, называется кривой сублимации . Кривая TK равновесия между жидкостью и паром называется кривой испарения, она обрывается в критической точке K. Кривая TM равновесия между твердым телом и жидкостью называется кривой плавления. Кривые равновесия сходятся в точке T, в которой могут сосуществовать в равновесии все три фазы. Эта точка называется тройной точкой .

Для многих веществ давление pтр в тройной точке меньше 1 атм ≈ 10 5 Па. Такие вещества при нагревании при атмосферном давлении плавятся. Например, тройная точка воды имеет координаты Tтр = 273,16°K, pтр = 6,02·10 2 Па. Эта точка используется в качестве опорной для калибровки абсолютной температурной шкалы Кельвина. Существуют, однако, и такие вещества, у которых pтр превышает 1 атм. Так для углекислоты (CO2) давление pтр = 5,11 атм и температура Tтр = 216,5°K. Поэтому при атмосферном давлении твердая углекислота может существовать только при низкой температуре, а в жидком состоянии при p = 1 атм она вообще не существует. В равновесии со своим паром при атмосферном давлении углекислота находится при температуре 173°K или –80 °С в твердом состоянии. Это широко применяемый «сухой лед», который никогда не плавится, а только испаряется (сублимирует).

Изложения нового материала. Объяснение явления испарения с точки зрения мкт


Название Изложения нового материала. Объяснение явления испарения с точки зрения мкт
Дата конвертации 30.03.2013
Размер 36.83 Kb.
Тип Рассказ

учитель физики МОУ «Гимназия №5»

Урок в 8 классе по теме «Испарение и конденсация»

Цели урока:


  • дидактические – создать условия для усвоения нового материала по данной теме, используя элементы проблемного обучения.

  • образовательные – дать учащимся знания об особенностях физических процессов перехода вещества из жидкого состояния в газообразное состояние и наоборот, научить школьников понимать микромеханизм этих явлений, объяснить эти процессы с точки зрения молекулярно кинетической теории;

  • развивающие – формировать представление о процессе научного познания развитие логического мышления, отработка практических навыков в понимании законов физики.

  • воспитательные – сформировать умения применять полученные знания при оказании первой медицинской помощи в экстренных ситуациях.

Тип урока: комбинированный.

1. Зависимость скорости испарении от температуры, движения воздуха.
2. Охлаждение жидкости при испарении.

План изложения нового материала.


  1. Объяснение явления испарения с точки зрения МКТ.

  2. Испарение как физическое явление, его признаки.

  3. Факторы, влияющие на скорость испарения.

  4. Конденсация.

  5. Насыщенный пар.

  6. Испарение в природе, технике.

Ход урока

2. Подготовка к усвоению нового материала

На столах у вас лежат предметные стеклышки. Подышите на стеклышко. Что вы наблюдается? Как называется наблюдаемое явление? Как и почему можно изменить «картину» на стеклышке?

Объявление темы урока: «Испарение и конденсация». Постановка целей и задач урока.

3. Объяснение нового материала.

Рассказ о явлении испарения с точки зрения МКТ.

Нарисуйте в тетради сосуд, который наполненный жидкостью. Изобразим молекулы этой жидкости в виде шариков, которые расположены довольно плотно друг к другу. Это молекулярная модель жидкости. Изобразите стрелками направления движения некоторых молекул. Каким молекулам легче всего покинуть жидкость?

Вывод: поверхностный слой жидкости могут покинуть молекулы находящиеся вблизи поверхности, и которые имеют большую кинетическую энергию равную работе, которую необходимо совершить против сил сцепления, удерживая их внутри жидкости.

Признаки явления испарения с помощью видеофильма «Молекулярная физика»

Демонстрация — уменьшение количеств вещества при испарении, которое сопровождается понижением температуры испаряющейся жидкости.

Вывод: При испарении происходит понижение температуры, т.к. внутренняя энергия испаряющейся жидкости уменьшается.

От каких факторов зависит скорость испарения?

Демонстрация – зависимость скорости испарения от температуры, движения воздуха с помощью видеофильма «Молекулярная физика»

Вывод: Испарение зависит от:

а) температуры;
б) площади поверхности жидкости;
в) рода жидкости;
г) от скорости удаления паров с поверхности жидкости.

Испарение происходит с любой поверхности, в том числе и с поверхности твердого тела. Пример: бельё высыхает и на морозе. Испаряется и нафталин, поэтому мы чувствуем его запах. Этот процесс называют сублимацией.

Конденсация — процесс перехода молекул из пара в жидкость.

Этот процесс происходит на поверхности жидкости или твердого тела.

Конденсация сопровождается выделением энергии. Пример: образование облаков, выпадение росы.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром.

Испарение в природе, технике.

а) В естественных условиях испарение является единственным способом передачи влаги с океанов в атмосферу и основной составляющей круговорота воды на земном шаре.

Пример: С поверхности земли, ежегодно испаряется 577 000 куб. км воды.

С поверхности Мирового океана — 505 000 куб. км; с поверхности рек, озер ….- 74 000 куб. км.

Огромное количество воды испаряется растениями. За вегетационный период 1 га пшеницы испаряется около 2 000 куб. м воды. 1 га взрослых лиственных деревьев за лето испаряет до 15 000 куб. м

б) в технике применяется испарение как средство для очистки веществ или разделения жидких смесей перегонкой (получение бензина, керосина и т.д.).

Процесс испарения лежит в основе двигателей внутреннего сгорания, холодильных установок, а так же для разбрызгивания воды в горячем цеху для охлаждения воздуха, а также в основе всех процессов сушки в сушильных камерах.

а) фронтальная беседа по вопросам.

1. Что называют испарением?
2. От чего зависит интенсивность испарения?
3. Что называют конденсацией?

б) работа в группах

1 группа: В каких случаях понижение температуры при испарении жидкости полезно и что следует сделать, чтобы его ускорить?

2 группа: Когда быстрое испарение вредно, и каким образом его можно замедлить?

3 группа: Почему учителя физкультуры настаивают, чтобы ученики после урока обязательно переодевались?

1 группа: Выйдя в летний жаркий день из реки, вы ощущаете прохладу, это ощущение усиливается в ветреную погоду. Объясните, почему это происходит?

2 группа: Утром на траве появились капельки росы. Какой будет день, холодный или теплый?

3 группа: Какой суп остынет быстрее: жирный или постный?

Молекулярная физика

Основные положения МКТ вещества. Диффузия. Броуновское движение. Постоянная Авогадро. Количество вещества.

Основные положения МКТ:

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.

В основе молекулярно-кинетической теории лежат три основных положения:

Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

Атомы и молекулы находятся в непрерывном хаотическом движении.

Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Диффузия — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией.

Броуновское движение —беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Постоянная Авогадро — физическая величина, численно равная количеству специфицированных структурных единиц (атомов,молекул,ионов,электронов или любых других частиц) в 1 молевещества. Определяется как количество атомов в 12граммах(точно) чистогоизотопауглерода-12. Обозначается обычно как NA, реже как L.

Значение числа Авогадро, рекомендованное CODATAв2010 году:

NA = 6,022 141 29(27)·10 23 моль −1 .

В начале 2011 года опубликованы (но официально пока не приняты) ещё более точные измерения числа Авогадро: NA = 6,022 140 78(18)·10 23 моль −1

Количество вещества — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся ввеществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы,молекулы,ионы,электроныили любые другие частицы).Единица измеренияколичества вещества вСИ—моль.

Взаимодействие молекул. Природа сил межмолекулярного взаимодействия. График зависимости их от расстояния.

Газы: расстояние между атомами или молекулами в среднем во много раз превышает размеры самих молекул. Газы легко сжимаются. Молекулы с огромными скоростями движутся в пространстве. Газы не сохраняют обьема и формы. Мнодественные удары молекул газа о стенки сосуда создают давление газа (молекулы стоят свободно).Жидкости: Молекулы жидкости расположены почти вплотную друг к другу. Жидкости текучи, не сохраняют формы, но сохраняют обьем (молекулы стоят не очень плотно друг к другу).Твердые тела: Сохраняют и обьем и форму . Если соеденить центры положения равновесий атомов или ионов твердого тела, то получится правильная пространственная решетка называемая кристалической (молекулы стоят очень плотно друг к другу).

Природа сил межмолекулярного взаимодействия:

Межмолекулярное взаимодействиеимеет электростатическую природу. Предположение о его существовании было впервые использовано Я. Д. Ван-дер-Ваальсомв1873 годудля объяснения свойствреальных газов и жидкостей. В наиболее широком смысле под ним можно понимать такие взаимодействия между любыми частицами (молекулами, атомами, ионами), при которых не происходит образования химических, то есть ионных, ковалентных или металлических связей. Иными словами, эти взаимодействия существенно слабее ковалентных и не приводят к существенной перестройке электронного строения взаимодействующих частиц.

На больших расстояниях преобладают силы притяжения, которые могут иметь ориентационную, поляризационную (индукционную) и дисперсионную природу (см. подробнее в статьях ван-дер-ваальсово взаимодействиеидисперсионные силы). При усреднении по вращению частиц, происходящему вследствие теплового движения, потенциал межмолекулярных сил обратно пропорционален шестой степени расстояния, а ион-дипольных (как с постоянным, так и с наведенным диполем) — четвёртой степени. На малых расстояниях начинают преобладать силы отталкивания электронных оболочек частиц. Особым случаем является водородная связь — возникающее на малом расстоянии взаимодействие между атомом водорода одной молекулы и электроотрицательным атомом другой, когда эти атомы несут достаточно большой эффективный заряд.

График зависимости их от расстояния:

Идеальный газ. Основное уравнение МКТ идеального газа.

Идеальный газ — математическая модельгаза, в которой предполагается, что: 1)потенциальной энергиейвзаимодействиямолекулможно пренебречь по сравнению с ихкинетической энергией; 2) суммарный объем молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосудаабсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сферилиэллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др.

Основное уравнение МКТ идеального газа:

Молекулярно-кинетическая теория (сокращённо МКТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

все тела состоят из частиц: атомов,молекулиионов;

частицы находятся в непрерывном хаотическомдвижении (тепловом);

частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

Изменение агрегатных состояний вещества

, где k являетсяпостоянной Больцмана(отношениеуниверсальной газовой постоянной R кчислу АвогадроNA), i — число степеней свободы молекул ( в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T — абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давление,объём,температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Молекулярно-кинетический смысл температуры. Энергия и скорость теплового движения молекул.

Молекулярно-кинетический смысл температуры:

Если два тела находятся в тепловом равновесии, то температуры этих тел одинаковы. А это означает, что результирующий поток энергии от одного тела к другому равен нулю. Это условие выполняется при равенстве средних значений кинетической энергии движения молекул контактирующих тел.

Энергия и скорость теплового движения молекул:

Все молекулы вещества находятся в беспрерывном хаотическом движении (перемещаются, колеблются около положения равновесия и т.д.). Молекулы, находясь в движении, обладают кинетическими энергиями. Сумма кинетических энергий движущихся молекул составляет часть внутренней энергии тела (потенциальную энергию взаимодействия молекул пока не рассматриваем). Так вот эта «внутренняя энергия» и называется энергией теплового движения. Ею и определяется температура тела. (Т.е. ТЕМПЕРАТУРА- является мерой средней кинетической энергии молекул тела.)

Движение молекул в разных телах происходит по-разному. Молекулы газов беспорядочно движутся с большими скоростями (сотни м/с) по всему объему газа. Сталкиваясь, они отскакивают друг от друга, изменяя величину и направление скоростей. Молекулы жидкости колеблются около равновесных положений ( т.к. расположены почти вплотную друг к другу) и сравнительно редко перескакивают из одного равновесного положения в другое. Движение молекул в жидкостях является менее свободным, чем в газах, но более свободным, чем в твердых телах. В твердых телах частицы колеблются около положения равновесия. С ростом температуры скорость частиц увеличивается, поэтому хаотическое движение частиц принято называть тепловым.

Испарение и конденсация. Насыщенные и ненасыщенные пары.

Испарение и конденсация:

Парообразование— процесс превращения жидкости в пар.

Конденсация— процесс превращения пара в жидкость.

ИСПАРЕНИЕ— процесс парообразования с поверхности жидкости или твердого тела.

Заключается в вылетании частиц (молекул, атомов), которых превышает потенциальную энергию их связи с остальными частицами вещества. Скорость испарения зависит от:

1. площади поверхности жидкости,

2. температуры (увеличивается), хотя происходит при любой температуре и не требует постоянного притока тепла. Температура жидкости уменьшается.

3. движения молекул над поверхностью жидкости или газа,

4. рода вещества.

Насыщенные и ненасыщенные пары:

Насыщенный пар — пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава. Давление насыщенного пара зависит от температуры и рода жидкости и не зависит от объема.

Ненасыщенный пар — пар, не достигший динамического равновесия со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше. Давление ненасыщенного пара зависит от температуры, объема и рода жидкости.

Кипение. Зависимость температуры кипения от давления.

Кипение — процесс парообразования в жидкости (переход вещества из жидкого в газообразное состояние), с возникновением границ разделения фаз. Температура кипения при атмосферном давлении приводится обычно как одна из основных физико-химических характеристик химически чистого вещества.

Кипение отличается от испарения, тем, что может происходить при определённой температуре и давлении. Кипение, как и испарение, является одним из способов парообразования.

Кипение является фазовым переходом первого рода. Кипение происходит гораздо более интенсивно, чем испарение с поверхности, из-за образования очагов парообразования, обусловленных как достигнутой температурой кипения, так и наличием примесей.

Зависимость температуры кипения от давления:

Температу́ра кипе́ния, точка кипения — температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения соответствует температуре насыщенного пара над плоской поверхностью кипящей жидкости, так как сама жидкость всегда несколько перегрета относительно температуры кипения.

Согласно уравнению Клапейрона — Клаузиуса с ростом давления температура кипения увеличивается, а с уменьшением давления температура кипения соответственно уменьшается. Предельной температурой кипения является критическая температура вещества. Так температура кипения воды будет изменяться на Земле в зависимости от высоты

Влажность воздуха. Точка росы.

Влажность воздуха — это величина, характеризующая содержание водяных паров в атмосфере Земли — одна из наиболее существенных характеристик погоды и климата.

Влажность воздуха в земной атмосфере колеблется в широких пределах. Так, у земной поверхности содержание водяного пара в воздухе составляет в среднем от 0,2 % по объёму в высоких широтах до 2,5 % в тропиках. Упругость пара в полярных широтах зимой меньше 1 мбар (иногда лишь сотые доли мбар) и летом ниже 5 мбар; в тропиках же она возрастает до 30 мбар, а иногда и больше. В субтропических пустынях упругость пара понижена до 5—10 мбар.

Абсолютная влажность воздуха (f) — это количество водяного пара, фактически содержащегося в 1 м³ воздуха. Определяется как отношение массы содержащегося в воздухе водяного пара к объёму влажного воздуха.

Обычно используемая единица абсолютной влажности — грамм на метр кубический, г/м³

Относительная влажность воздуха (φ) — это отношение его текущей абсолютной влажности к максимальной абсолютной влажности при данной температуре. Она также определяется как отношение парциального давления водяного пара в газе к равновесному давлениюнасыщенного пара.

Температура точки росы газа (точка росы) — это значение температуры газа, ниже которой водяной пар, содержащийся в газе, охлаждаемом изобарически, становится насыщенным над плоской поверхностью воды.

Линейное тепловое расширение твердых тел. Коэффициент линейного расширения. Объемное тепловое расширение твердых тел. Связь между α и γ .

Линейное тепловое расширение твердых тел:

Тепловое расширение — изменение линейных размеров и формы тела при изменении его температуры. Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Раздел физики изучающий данное свойство называется дилатометрией.

Тепловое расширение тел учитывается при конструировании всех установок, приборов и машин, работающих в переменных температурных условиях.

Основной закон теплового расширения гласит, что тело с линейным размером в соответствующем измерении при увеличении его температуры на расширяется на величину , равную:

,

где — так называемый коэффициент линейного теплового расширения. Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

Коэффициент линейного расширения:

Коэффициент теплового расширения — безразмерная величина, характеризующая относительное изменение объёма или линейных размеров тела с увеличением температуры на 1 К при постоянном давлении.

Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:

— относительное изменение линейного размера тела при нагревании его на dT градусов при постоянном давлении.

Объемное тепловое расширение твердых тел:

Cвязь между коэффициентами линейного и объемного расширения:

Пусть кубик со стороной l расширяется от нагревания. Его начальный объем равен V=l3. При нагревании на t каждая его сторона сделается равной l(1+at) и объем V’ = l3(l+at)3. Следовательно, Мы видели, что a— величина весьма малая. Так как, кроме того, мы рассматриваем только небольшие изменения температуры, то члены 3a2t и a3t2 малы по сравнению с 3a (например, при a=2,0•10-5 К-1 и t=100 К член 3a2t в 500 раз меньше 3a, a член a3t2 в 750 000 раз меньше 3a). Поэтому мы можем пренебречь членами 3a2t и a3t2 по сравнению с 3a и считать, что b=3a. Итак, коэффициент объемного расширения равен утроенному коэффициенту линейного расширения. Например, для железа он равен 3,6•10-5 К-1.

Термодинамическое равновесие. Термодинамические параметры системы. Температура. Шкала температур Кельвина. Абсолютный нуль.

Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз.

Термодинамические параметры системы:

Термодинамические параметры — физ. величины, характеризующие равновесное состояние термодинамич. системы: темп-pa, объём, плотность, давление, намагниченность, электрич. поляризация и др. Различают экстенсивные П. с., пропорциональные объёму(или массе) системы ( внутренняя энергия U, энтропия S, энтальпия Н,Гельмголъцаэнергия, или свободная энергия F, Гиббса энергия G), и интенсивныеП. с., не зависящие от массы системы (темп-pa Т, давление Р,концептрация с, хим. потенциал ).В состоянии термодинамич. равновесия П. с. не зависят от времени и пространств. координат. В неравновесном состоянии П. с. могут зависеть от координат и времени.

Температура — скалярная физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Температура всех частей системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различную температуру, происходит теплопередача (переход энергии от более нагретых частей системы к менее нагретым), приводящая к выравниванию температур в системе.

Температура определяет: распределение образующих систему частиц по уровням энергии (см. Статистика Максвелла — Больцмана) и распределение частиц по скоростям (см. Распределение Максвелла); степень ионизации вещества (см.Уравнение Саха); спектральную плотность излучения (см. Формула Планка); полную объёмную плотность излучения (см. Закон Стефана — Больцмана) и т. д. Температуру, входящую в качестве параметра в распределение Больцмана, часто называют температурой возбуждения, в распределение Максвелла — кинетической температурой, в формулу Саха — ионизационной температурой, в закон Стефана — Больцмана — радиационной температурой. Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы [1] .

Температура относится к интенсивным величинам, не зависящим от массы системы.

Шкала температур Кельвина:

Абсолютная шкала температур, не зависящая от свойств термометрического вещества (начало отсчета — абсолютный нуль температур, он же по шкале Цельсия равен 273,16 градусов).

Абсолютный нуль температуры — минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой — тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия, абсолютному нулю соответствует температура −273,15 °C.

Закон Бойля-Мариотта. Графическое изображение изотермического процесса.

Закон Бойля-Мариотта — один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона.

Закон Бойля-Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

где — давление газа; — объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля-Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Графическое изображение изотермического процесса:

Закон Гей-Люссака. Графическое изображение изохорного процесса.

Закон Гей-Люссака — закон пропорциональной зависимости объёма газа от абсолютной температуры при постоянном давлении, названный в честь французского физика и химика Жозефа Луи Гей-Люссака, впервые опубликовавшего его в 1802 году.

Изобарический закон, открытый Гей-Люссаком в 1802 году утверждает, что при постоянном давлении объём постоянной массы газа пропорционален абсолютной температуре. Математически закон выражается следующим образом:

где — объём газа, — температура.

Если известно состояние газа при неизменном давлении и двух разных температурах, закон может быть записан в следующей форме:

.

Графическое изображение изохорного процесса:

Закон Шарля. Графическое изображение изобарного процесса.

Закон Шарля или второй закон Гей-Люссака — один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путем зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 году.

Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина. Математически закон записывают так:

P — давление газа,

T — температура газа (в градусах Кельвина),

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде:

Графическое изображение изобарного процесса:

Уравнение состояния идеального газа. Универсальная газовая постоянная. Плотность газа.

Уравнение состояния идеального газа. Универсальная газовая постоянная:

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева Клапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температуройидеального газа. Уравнение имеет вид:

,

— давление,

— молярный объём,

— универсальная газовая постоянная

— абсолютная температура,К.

Так как , где — количество вещества, а , где — масса, — молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.

Уравнение, выведенное Клапейроном содержало некую неуниверсальную газовую постоянную , значение которой необходимо было измерять для каждого газа:

Менделеев же обнаружил, что прямо пропорциональна , коэффициент пропорциональности он назвал универсальной газовой постоянной.

Понятие внутренней энергии в термодинамике. Способы изменения внутренней энергии. Работа газа в термодинамике.

Совершение работы и выделение энегргии при термодинамических процессах говорит о том, что термодинамические системы обладают запасом внутренней энергии. Существует два способа изменения внутренней энергии:

Совершение механической работы А’ внешними силами над системой или самой системой над внешними телами А(А=А’)

Теплообмен. Количество энергии, полученное или отданное телом при таком процессе, называется количеством теплоты и обозначается Q

Изменение внутренней энергии U может быть найдено по формуле

U=U1 +U2 , где

U2 и U1– внутренняя энергия в первом и во втором состояниях

Первое начало термодинамики. Применение 1-ого начала термодинамики к изопроцессам.

Первое начало термодинамаики:

Количество теплоты , сообщенное системе, расходуется на увеличение ее внутренней энергии и на работу, совершаемую системой против внешних сил:

Q=U+A

Изменение внутренней энергии системы равно сумме сообщенного телу количества теплоты и работы, произведенной над системой внешними силами

U=Q+A

В качестве примера его применения рассмотрим процесс торможения бруска силами трения на горизонтальной поверхности- механическая энергия бруска не исчезает, а превращается во внутреннюю энергию системы «стоп-брусок», т.е трущие поверхности при этом нагреваются.

Первое начало термодинамики запрещает существование древней мечты человечества- вечного двигателя. невозможен вечный двигатель первого рода- устройство , которое может совершать полезную работу, превышающую затраченную.

Адиабатный процесс- термодинамический процесс в теплоизолированной системе Q=0.

Такой процесс происходит при хорошей теплоизоляции системы либо при малой длительности процесса, когда теплообмена практически не происходит. В применении к адиабатным процессам первое начало термодинамики принимает вид

A=-U

Согласно определению адиабатному процессу соответствует теплоемкость, равная 0 (СА =0)

Принципиальная схема устройства тепловой машины. Максимальный КПД тепловых двигателей. Второе начало термодинамики.

Принципиальная схема устройства тепловой машины

Любая тепловая машина- из трех честей:

Рабочее тело Коэффициент полезного действия (КПД) тепловой машины определяется как отношение совершенной машинной работы А к количеству тепла Q1 , полученному от нагревателя:

КПД цикла Карно

,где Т1 – температура нагревателя, Т2— температура холодильника

Второе начало термодинамики:

Невозможен такой циклический процесс, единственным результатом которого было бы превращение теплоты, получаемой системой от внешней среды , в работу, без изменений в окружающей среде.

Строение жидкостей. Поверхностное натяжение. Коэффициент поверхностного натяжения. Методы определения коэффициента поверхностного натяжения.

Работа А по образованию S=1м2.поверхности жидкости при постоянной температуре называется поверхностным натяжением

ό=

поверхностное натяжение зависит от рожа жидкости, ее температуры, наличия примесей. С ростом температуры оно уменьшается или исчезает вовсе.

Явление смачивания и несмачивания. Краевой угол. Капиллярные явления. Капиллярность в быту, природе, технике.

Смачивание- явление межмолекулярного взаимодействия частиц твердого тела и жидкости на их границе, а жидкость называется смачивающей.

Если силы притяжения между молекулами жидкости и твердого тела меньше, чем между молекулами самой жидкости , то прилегающие слои жидкости « отталкиваются «от его поверхности- явление несмачивания, а жидкость- несмачивающая.

Явление смачивания и несмачивания приводят к искривлению поверхности жидкости у стенок сосуда, так называевым краевым эффектом.

Количественной характеристикой эффектов служит краевой угол ɵ между плоскостью касательной к поверхности жидкости и поверхности твердого тела.

Подъем и опускание жидкости в капиллярах под действием сил поверхностного натяжения называется капиллярным явлением.

Капиллярные явления играют существенную роль в водоснабжении растений, в подъеме влаги в почве, в проникновении жидкости в пористые тела, в системе кровообращения легких.

Механические свойства твердых тел. Закон Гука. Модуль Юнга

Твердым телом в механике называется неизменимая система материальных точек, т.е. такая идеализированная система, при любых движениях которой взаимные расстояния между материальными точками системы остаются неизменными (материальные точки — достаточно малые макроскопические частицы).

Силы притяжения и отталкивания обуславливают механическую прочность твердых тел. т. е. их способность противодействовать изменению формы и объема. Растяжению тел препятствуют силы межатомного притяжения, а сжатию — силы отталкивания.

Недеформируемых тел в природе не существует.

Деформация — изменение формы или объема тела под действием внешних сил. Деформация может быть упругая или неупругая.

Упругая деформация — деформация, при которой после прекращения действия силы размеры и форма тела восстанавливаются.

а) Растяжение (тросы подъемных кранов, канатных дорог, буксирные тросы)

б) Сжатие (колонны, стены, фундаменты зданий).

2. Сдвиг (заклепки, болты, соед. металлические конструкции, процесс разрезания ножницами бумаги).

3. Кручение (завинчивание гаек, работа валов машин, сверление металлов и т.п.).

4. Изгиб (формально деформация растяжения и сжатия, различная в разных частях тела. Нейтральный слой — слой, не подвергающийся ни растяжению, ни сжатию, при изгибе.)

Деформацию растяжения и сжатия можно охарактеризоватьабсолютной деформацией, равной разности длин образца после растяжения и до него : = ℓ – ℓ

Отношение абсолютной деформации  к первоначальной длине образцаo называют относительной деформацией:

Если деформация упругая, а относительная деформацияИз опыта: — закон Гука.Сила упругости прямо пропорциональна абсолютной деформации.

С учетом направления:

k — коэффициент жесткости (упругости). Зависит от материала, формы и размеров тела (Например, чем длиннее и тоньше пружина, тем ее жесткость меньше.)

Единицы коэффициента упругости в СИ: .

Движение под действием силы упругости.

— ускорение изменяется с координатой! Это неравнопеременноедвижение. Такое движение является колебательным.

Частные случаи силы упругости:

1. Сила реакции опоры — направлена всегда перпендикулярно поверхности.

2. Сила натяжения (нити, сцепки)

Физическая величина, равная отношению модуля силы упругости Fупр, возникающей при деформации, к площади сечения S образца, перпендикулярного вектору силы F. называется механическим напряжением: . За единицу механического напряжения в СИ принята единица паскаль (Па): 1 Па= 1Н/м 2 .

Отношение механического напряжения к относительному удлинению ,при малых упругих деформациях растяжения и сжатия, называетсямодулем упругости Е (модулем Юнга): .

Из выше написанной формулы видно, что модуль Юнга Е величина не зависящая от формы и размеров предмета, изготовленных из данного материала. [Е]=Па. Модуль Юнга показывает, какое надо создать механическое напряжение, чтобы деформировать тело в 2 раза (Если — на самом деле нереально).

Если обозначить ,

то получим Fупр =k|l| — закон Гука. Другая форма записи этого закона: = E||механическое напряжение прямо пропорционально модулю относительной деформации.

Источники:
  • http://www.physbook.ru/index.php/%D0%A2._%D0%98%D1%81%D0%BF%D0%B0%D1%80%D0%B5%D0%BD%D0%B8%D0%B5
  • http://fizi4ka.ru/ogje-2018-po-fizike/isparenie-i-kondensacija-kipenie-zhidkosti.html
  • http://physics.ru/courses/op25part1/content/chapter3/section/paragraph4/theory.html
  • http://studopedia.ru/8_97003_bilet--.html
  • http://bourabai.kz/physics/phases.html
  • http://koledj.ru/docs/index-6711.html
  • http://studfiles.net/preview/5558367/