Меню Рубрики

Идентификация по радужной оболочке глаза где применяется

Дактилоскопия — наиболее известный и распространенный метод установления личности по биометрическому параметру, отлично зарекомендовала себя в криминалистике XX века и помогла раскрыть ни одну сотню преступлений. Однако технологии не стоят на месте, и отпечатки пальцев перестали быть единственным «ключом» к идентификации.

Современная техника научились узнавать пользователей по сетчатке и радужной оболочке глаза, форме лица и рук и ряду динамических характеристик — голосу, биологической активности сердца, рукописному и клавиатурному почерку.

Подобно отпечатку пальца, рисунок радужной оболочки глаза является уникальной характеристикой человека, а метод установления личности по этому биометрическому параметру, по мнению экспертов, превосходит в надежности привычную дактилоскопию. Для того, чтобы зафиксировать узор на радужке, нужна фотокамера с высоким разрешением. Полученное изображение увеличивается и преобразуется в уникальный код, присваиваемый человеку.

Рисунок радужки, который окончательно формируется на втором году жизни ребенка, практически не изменяется в течение жизни, если человек не получает травм и не страдает от серьезных офтальмологических патологий. В то же время, папиллярный узор отпечатка пальца подвержен изменению даже в результате мелких бытовых повреждений — ожогов или порезов, что делает этот метод идентификации менее эффективным, чем анализ радужной оболочки.

Достоинством метода является и простота в сканировании. Человеку не обязательно сосредоточенно смотреть в одну точку, ведь пятна на сетчатке находятся прямо на поверхности глазного яблока и легко считываются на расстоянии, не превышающем 1 метр. Использовать данный метод удобно в банковских организациях или общественном транспорте. Заинтересовались технологией и производители смартфонов — в 2015 году в Японии в продажу поступила первая модель со сканером радужной оболочки — Fujitsu Arrows NX F-04G. По мнению разработчиков, внедрение технологии идентификации по радужке глаза поможет защитить личные данные владельцев смартфонов.

Просканировать сетчатку — внутреннюю оболочку глазного яблока, реагирующую на свет, сложнее: для этого к кровеносным сосудам задней стенки глаза через зрачок посылают низкоинтенсивные инфракрасные световые лучи. Подобный метод установления личности считается высокоэффективным и активно используется на правительственных и военных объектах.

Капилярный рисунок сетчатки различается даже у близнецов, что снижает вероятность ошибки идентификации. Однако, в 2012 году ученые из Университета Нотр-Дам в США обнаружили погрешности в определении личностей людей, чьи данные были внесены в базу ранее 2008 года, и доказали, что, в отличие от рисунка на радужной оболочке, рисунок сетчатки подвержен ряду возрастных изменений.

И снова производители мобильных гаджетов не остались в стороне. Ряд компаний (например, китайская ZTE CORPORATION) работает на созданием комбинированных технологий идентификации по сетчатке и радужке.

Метод установления личности по чертам кажется экспертам одним из наиболее перспективных, во многом благодаря своей «привычности»: люди с легкостью идентифицируют друг друга по лицам, так почему бы не научить этому компьютер? В основе технологии — создание двухмерных или трехмерных «карт» человеческих черт — система запоминает и опознает контуры носа и губ, форму бровей, расстояние между отдельными чертами.

Разработчики систем биометрического анализа отечественной компании BioLink называют распознавание по лицу второй по распространенности и популярности биометрической технологией. Однако, «опознание» по геометрии лица — задача трудоемкая, ведь на восприятие машины влияет освещение, угол наклона головы, наличие макияжа.

Наиболее эффективно техника распознает статичные изображения — фотографии. Так, система искусственного интеллекта FaceNet, созданная Google, “опознала” 99,63% фото пользователей интернета.

Одна из новейших технологий динамической биометрической идентификации — установление личности на основе данных о работе сердечно-сосудистой системы.

В 2014 году Канадская компания Bionym представила миру устройство, позволяющее использовать ЭКГ человека в качестве персонального идентификатора. «В научном сообществе существует устоявшаяся идея о том, что уникальность и постоянство человеческого сердечного ритма позволяет использовать его в качестве биометрического идентификатора», — заметил генеральный директор Bionym Карл Мартин. — «В сущности, нужно сделать следующее: взять форму ЭКГ и подвергнуть ее машинному анализу, чтобы выявить уникальные и постоянные особенности».

Высокую эффективность технологии отметили отечественные специалисты по безопасности. «Кардиограмма, как оказывается, тоже может быть вполне перспективным средством биометрической аутентификации,» — отмечали эксперты «Лаборатории Касперского».

Подобные разработки уже сейчас ведутся в России. Например, представители отечественной компании CardioQVARK (о них уже были статьи на Хабре и Гиктаймс), производящей чехлы-кардиомониторы для iPhone, в работе «Исследование искусственных нейронных сетей в задаче идентификации личности по электрокардиосигналу» показали, что их продукт может помочь в установлении личности пользователей.

Основное назначение устройства — удаленный контроль за состоянием здоровья пациентов-сердечников, однако возможность сделать экспресс-анализ состояния сердечно-сосудистой системы позволит идентифицировать человека без временных затрат. Процедура снятия ЭКГ при помощи чехла от CardioQVARK предельно проста и занимает всего лишь несколько секунд: достаточно приложить пальцы к датчикам и результат ЭКГ появится на экране гаджета и в приложении для врача.

Биометрический метод идентификации по голосу прост в применении — достаточно оснастить аналитическое устройство микрофоном и записать «звучание» конкретного человека. Широкое распространение данного метода обусловлено наличием микрофона и возможности записи звука на большинстве современных мобильных гаджетов и компьютеров. Однако, технология имеет ряд существенных недостатков: голос одного и того же человека может звучать по-разному в зависимости от его психологического и физического состояния, уровня шума, качества микрофона.

Редакторы Хабра врываются в велосезон, каждый по-своему

источник

Размер рынка распознавания радужной оболочки достигнет $ 3,6 млрд к 2020 году. Совокупные темпы годового роста в период между 2015 и 2020 годом составят 23,4 %. Такие прогнозы были озвучены исследовательским агентством MarketsandMarkets. Основными драйверами названы: общее снижение стоимости и большое количество правительственных инициатив.

Frost&Sullivan опубликовала доклад «Пятилетний анализ перспектив рынка аутентификации по радужной оболочке глаза», в котором прогнозируется рост доходов от $ 142 900 000 в 2014 году до $ 167 900 000 в 2019 году.

Точность верификации по радужной оболочке глаза и её неизменное состояние на протяжении всей жизни человека — являются достаточно убедительными аргументами для развертывания технологии.

«Глобальные угрозы безопасности и активность мошенников усиливают необходимость в системах распознавания радужной оболочки глаза, — считает Рам Рави, промышленный аналитик Frost&Sullivan. — В результате, технология может найти применение в национальных системах идентификации, службе пограничного контроля и правоохранительных органах.»

Также аналитики ожидают рост популярности этих бесконтактных биометрических систем в гостиничной и финансовой индустрии, государственных ИТ-системах, мобильном банкинге и, особенно, в сфере здравоохранения. Кроме того, пока камеры смартфонов в состоянии захватить отдельные образцы радужной оболочки, перспективы развития — очевидны.

Что касается более долгосрочных прогнозов:

Tractica опубликовала новый доклад под названием «Iris Recognition», предсказывающий, что к 2024 году поставки устройств распознавания радужной оболочки глаза составят $262 млн..

В докладе отмечается, что поставки устройств — в том числе как автономных систем распознавания радужной оболочки, так и биометрических компонентов для мобильных устройств — вырастет с 7,9 млн ($ 587 млн) в 2015 году до 55,6 млн ($ 1920000000) в год к 2024 году. В течение этого 10-летнего периода, совокупные поставки на мировой рынок достигнут 262,8 млн ($ 11,7 млрд) при среднегодовом темпе роста в 24%.

«Аутентификация по радужной оболочке глаза признана одним из самых эффективных биометрических методов последнего десятилетия, — говорит Боб Локхарт, главный аналитик Tractica. — Такие системы дают очень низкий процент ложных срабатываний. Скорость обработки приближается к 200 миллионов шаблонов в секунду. Тем не менее, технология распознавания радужной оболочки уступает конкурирующей технологии распознавания отпечатков пальцев, за счет более низкой цены последней».

«Несмотря на потенциал метода среди различных биометрических систем, тормозящим фактором остается его высокая стоимость, — соглашается Рам Рави. — Однако, постоянные исследования и разработки позволят снизить затраты, а расширение сферы использования за счет госзаказов — позволит технологии аутентификации по радужной оболочке глаза занять заметный сегмент на рынке биометрических СКУД».

К 2020 году мировой рынок аутентификации по радужной оболочке глаза вырастет более чем на 21% до $5 млрд, согласно отчету TechNavio. Рост связан с увеличением интеграции систем распознавания по радужной оболочки глаза в мультимодальные биометрические системы крупных государственных проектов, такие как пограничный контроль, электронные паспорта, регистрация избирателей данных и т.п

Аутентификация по радужной оболочке глаза становится все более доступной.

«С точки зрения продукта, многие сканирующие радужку устройства теперь совершенствуют баланс легкости использования, точности, цены и производительности», — говорит Джоуи Притайкин, вице-президент по маркетингу и управлению продуктами для биометрии фирмы Tascent.

Ссылаясь на надежность технологии, при общем снижении стоимости приложений и оборудования, многие эксперты предсказывают, что сканирование глаза людей, станет распространенным методом идентификации.

«Радужная оболочка глаза — золотой биометрический идентификатор. Отпечатки пальцев имеют пределы, радужка — нет. Идентификация пользователя по радужной оболочке глаза выделяется во многих отношениях по сравнению с другими коммерчески жизнеспособными биометрическими технологиями. Каждый хочет ее использовать. В прошлом это было слишком дорого и слишком сложно, но это меняется», — говорит Марк Клифтон, президент продуктов и решений Princeton Identity (ранее SRI International).

В первую очередь, повышение доступности технологии связано с завершением срока действия многих ключевых патентов на биометрию радужной оболочки глаза.

Современные высокотехнологичные камеры обеспечивают простой захват биометрического идентификатора без дополнительного позиционирования положения глаз пользователя.

Основная технология также становится дешевле. Если раньше распознавание пользователя по глазам требовало специализированных, достаточно дорогих, аппаратных средств, выпускаемых по спец заказу, то сейчас оборудование, необходимое для захвата и обработки радужной оболочки, встраивается в большинство смартфонов. С миниатюризацией и промышленным выпуском основных компонентов, сканеры радужной оболочки вскоре могут стать сравнимы по цене с высококачественными считывателями отпечатков пальцев.

Чтобы стать мейнстримом, биометрическая технология должна быть принята потребителем. В течение многих десятилетий биометрия отпечатка пальцев изо всех сил старается преодолеть стереотип ассоциативной связи с преступностью. Прорыв произошел, когда сканеры отпечатков пальцев появились на iPhone.

В биометрии радужной оболочки глаза так же есть несколько мифов о сканировании, вроде небезопасности для зрения, которые должны постепенно развеяться.

«Производители уже встраивают сканеры радужной оболочки в свои мобильные телефоны и планшеты. На следующем этапе технология внедряться в дверные замки, замки, ноутбуки или даже такие вещи как холодильники. Простота и удобство использования будут стимулировать принятие людей. Поскольку технология становится менее дорогой, потенциал будет расти. Принятие займет некоторое время, но очевидно большое будущее для биометрии радужной оболочки глаза», — говорит Марк Клифтон, президент продуктов и решений Princeton Identity (ранее SRI International).

В августе 2016 компания EyeLock объявила, что разработала технологию распознавания радужной оболочки, позволяющую идентифицировать человека на расстоянии до 60 см и способную работать даже если пользователь носит очки или контактные линзы. Разработчики прогнозируют активное применение технологии в мобильных устройствах.

Появление технологии произошло почти сразу после выхода смартфона Samsung с аутентификацией по радужной оболочке глаза. Таким образом, если учитывать опыт Apple по популяризации биометрии, и у этого метода самые радужные перспективы.

Одна из уникальных биометрических характеристик, используемых для идентификации, — радужная оболочка глаза. При верификации используется около 260 ключевых точек (для сравнения, верификация отпечатка пальца использует около 16 ключевых точек). При этом сам шаблон занимает небольшой объем памяти, что позволяет быстро производить аутентификацию пользователя, а так же использовать большие базы данных при сравнительно небольших вычислительных ресурсах.

Системы контроля и учета доступа с идентификацией по радужной оболочке глаза имеют коэффициенты FAR – 0,00001% и FRR – 0,016%. При реализации СКУД со строгой аутентификацией по двум глазам коэффициент ложного пропуска уменьшается в геометрической прогрессии: FAR – 10-10% при FRR – 0,016%.

Считается, что подделать идентификационные данные при использовании этого метода – невозможно. По крайней мере, об успешных попытках ничего не известно. Дело в том, что кроме индивидуального рисунка радужной оболочки, человеческий глаз обладаете уникальными отражающими характеристиками (за счет состояния тканей и естественного увлажнения), которые учитываются в процессе считывания информации. А для дополнительного повышения уровня безопасности, некоторые СКУД также фиксируют непроизвольные движения глазного яблока, присущие живому человеку. Кстати аутентификация по радужной оболочке мертвого человека также считается невозможной: после смерти зрачок расширяется, делая область радужки слишком узкой и, следовательно, непригодной для сканирования.

Кроме того, эта биометрическая характеристика имеет малую вероятность изменения с течением времени: единственными причинами могут быть оперативное медицинское вмешательство или серьезная травма.

Метод распознавания по радужной оболочке глаза позволяет создавать бесконтактные системы контроля доступа, действующие на довольно большом расстоянии и способные к быстрой аутентификации в потоковом режиме. Это дополнительное достоинство позволяет использовать их для организации систем безопасности крупных объектов.

Ограничивающим фактором для распространения систем идентификации по радужной оболочке глаза является их высокая стоимость, а для российского рынка – и низкая доступность ввиду отсутствия отечественных производителей. .

При сканировании глаза выделяется область зрачка и область самой радужной оболочки. Получаемое кольцо программно очищается от шумов, и преобразуется в прямоугольный формат — Iris Code, содержащий информацию об уникальных характеристиках объекта в черно-белом виде (наподобие штрих-кода или QR-кода). Далее Iris Code сравнивается с базой зарегистрированных шаблонов. Скорость обработки при этом крайне высока, что позволяет использовать систему для работы с большими базами данных, в т.ч. выполняя задачи правоохранительных органов и других государственных организаций.

Читайте также:  Какие назальные капли можно капать в глаза

Основные тонкости, при создании СКУД на основе метода аутентификации по радужной оболочке глаза, связаны с организацией освещения. В первую очередь, стоит учитывать, что вся поверхность глаза имеет прекрасную отражающую способность и появление на ней световых бликов и отражения посторонних объектов – затрудняет считывание данных. Поэтому, как правило, системы, использующие этот биометрический метод, комплектуются собственным источником освещения, создающим преобладающий световой фон на объекте (иногда работающем в режиме «вспышки»).

Кроме того, собственное освещение решает еще несколько задач. Первая – поиск объекта идентификации. Найти глаз в видеопотоке движущихся людей – задача не простая. Поэтому биометрические системы распознавания радужной оболочки глаза, в первую очередь, ищут специфический световой блик, отражаемый зрачком. И уже в окрестности блика детектируется глаз.

Вторая задача, решаемая при помощи освещения – достаточная ширина радужной оболочки, для считывания индивидуальных биометрических данных. В условиях недостаточной освещенности зрачок имеет свойство расширяться, что не позволяет считать рисунок радужной оболочки глаза. При этом, человеческий глаз реагирует только на видимую часть светового потока, поэтому решить проблему при помощи ИК-подсветки не представляется возможным.

Кстати, ИК-подсветка является одним из стандартных элементов СКУД с распознаванием радужной оболочки, поскольку структура рисунка темных глаз в видимом свете практически неразличима. Однако, рисунок светлых глаз, напротив, в почти неразличим в ИК-диапазоне, а регистрируется в видимом свете. Стандартно, в системах идентификации радужной оболочки глаза рекомендуется использование света 700-900 нм. Но в таком широком диапазоне возможны сильные изменения регистрируемой картины. Дополнительный источник дневного света позволяет создать дополнительные условия для регистрации рисунка светлых глаз, оставив ИК-диапазон для более темных.

Распознавание по сетчатке глаза часто путают с методом распознавания радужной оболочки, что неверно. Идентификация объекта в данном случае осуществляется по уникальному рисунку сосудов и капилляров на сетчатке глаза. Метод является прекрасно защищенным от подделки биометрических данных, поскольку их невозможно сфотографировать или осуществить несанкционированный захват другим простым способом. При этом, системы аутентификации по сетчатке глаза обладают очень высоким уровнем надежности: FAR – 0,0001% при FRR – 0,4%.

На этом достоинства заканчиваются и начинаются недостатки. Процедура идентификации довольно длительна и, можно считать, контактна: пользователю необходимо наблюдать сквозь окуляр удаленную световую точку. При этом малейшее движение, неверный наклон головы или неправильная фокусировка на источнике света — ведут к отказу распознавания.

Сетчатка, в отличие от радужной оболочки глаза, более подвержена изменениям в результате травм и заболеваний (например, кровоизлияние на сетчатку глаза или катаракта). Также сетчатка содержит элементы зрительного нерва и слепое пятно, геометрия которых тоже может изменяться со временем.

Стоимость подобной системы крайне высока.

В целом, биометрические системы аутентификации по сетчатке глаза получили довольно узкое распространение: для организации систем безопасности на объектах повышенной секретности. На сегодняшний день на рынке подобные СКУД практически отсутствуют.

Материал спецпроекта «Без ключа»

Спецпроект «Без ключа» представляет собой аккумулятор информации о СКУД, конвергентном доступе и персонализации карт

источник

Технологии распознавания радужной оболочки глаза становятся все более популярными во всем мире и используются многими коммерческими и правительственными учреждениями для различных целей: от системы контроля доступа (СКД) до организации рабочего времени. Лаборатория ASSA ABLOY Future Lab занимается исследованием новой области применения этой биометрической технологии — управление идентификационными данными, — а также другими вариантами применений в целях обеспечения безопасности.

Разница между сканированием сетчатки и радужной оболочки глаза

Часто путаемые со сканированием сетчатки глаза, системы распознавания радужной оболочки фиксируют изображение глаза, а затем анализируют цветную часть вокруг зрачка, радужку, которую вы можете видеть невооруженным глазом.

Сетчатка, в свою очередь, состоит из фоторецепторных клеток, расположенных на задней стенке глаза, и ее нельзя увидеть. В то время как при распознавании радужной оболочки в сущности фиксируется рисунок текстуры радужки, при сканировании сетчатки глаза захватывается изображение сетки кровеносных сосудов внутри глаза.

«В отличие от сетчатки, радужную оболочку можно увидеть невооруженным взглядом, поэтому гораздо проще получить качественное изображение радужки,» — говорит Дэвид Ашер, старший научный сотрудник компании Retica Systems (штат Массачусетс), которая проектирует и разрабатывает системы идентификационных данных на основе анализа радужной оболочки глаза. «В системе распознавания радужной оболочки, изображения радужки фиксируются при помощи светодиодов ближнего ИК диапазона (NIR) и алгоритмов, которые в последствие используются для преобразования текстуры сетчатки в специальный код. Этот код или образ сравнивается с шаблонами в памяти устройства, после чего подтверждается или опровергается идентификация личности.»

Применение СКД с распознаванием радужной оболочки глаза

Технологии очень быстро распространяются. Один из крупнейших отелей Бостона использует СКД с распознаванием по радужной оболочке глаза для идентификации личности гостей, останавливающихся в элитных президентских апартаментах. Другое учреждение в Бостоне использует эту технологию для ведения учета детей, на случай пропажи без вести и необходимости идентификации кого-нибудь из них в будущем.

«С 2002 года наблюдался рост спроса (в двухзначных цифрах) на системы распознавания радужной оболочки глаза,» говорит Мохамед Мурад, Вице-президент по развитию международного бизнеса и продаж компании Iris ID. Американская компания Iris ID находится в штате Нью-Джерси и выпускает продукцию и программное обеспечение для распознавания радужной оболочки глаза с 1999 года.

«На сегодняшний день наши технологии можно применять везде, где требуется установление подлинности личности,» — говорит Мурад. «Среди возможных областей применения — от базовых СКД (вход/выход в/из помещения или здания) до привязки данных человека к документу или жетону.»

Биометрические данные, считываемые с радужной оболочки глаза играют важную роль в контроле доступа к строго ограниченным зонам. В двадцати девяти аэропортах Канады применяются технологии распознавания радужной оболочки глаз сотрудников для проверки их авторизации при допуске на борт самолета. В амстердамском аэропорте Schiphol предусмотрено ускоренное прохождение паспортного контроля с применением сканирования радужной оболочки глаза для идентификации экипажа и пассажиров, которые часто летают на самолетах.

Многие считают, что системы распознавания радужки — это сложные технологии из фильмов о шпионах и доступны только высокопоставленным представителям государственной власти. На самом деле некоторые области применения таких систем вполне традиционны.

«У нас есть сахарный завод в штате Висконсин, где система распознавания радужки применяется для организации рабочего времени и контроля прихода/ухода сотрудников,» — говорит Мурад. Эта технология намного точнее традиционных бесконтактных карточек, а процедура сканирования радужки более простая по сравнению с другими биометрическими технологиями (например, снятие отпечатков пальцев).

По словам Ашера, процесс захвата изображения является безопасным. «Уровень освещения, необходимого для светодиода ближнего ИК диапазона при идентификации радужной оболочки, значительно ниже ограничений, установленных для систем безопасности.»

Биометрические преимущества при распознавании радужной оболочки глаза

Как технологии распознавания радужной оболочки вытесняют более традиционные виды биометрики, например, снятие отпечатков пальцев?

«В радужке содержится гораздо больше данных, чем в отпечатке вашего пальца или других биометрических данных,» — говорит Мурад. «Эта технология гораздо точнее традиционной биометрики и не доставляет неудобств идентифицируемому лицу. Вам не нужно ни до чего дотрагиваться и ничего не прикасается к вам.»

Некоторые учреждения пытаются объединить технологии распознавания радужной оболочки глаза с другими биометрическими технологиями для обеспечения максимального уровня безопасности. В США, к примеру, Федеральное бюро расследований (ФБР) исследует способы комбинирования технологий снятия отпечатков пальцев и распознавания радужной оболочки для создания программы Идентификации следующего поколения.

«Раньше в ФБР использовали только технологию снятия отпечатков пальцев, но сейчас они поняли значимость применения технологий распознавания глаз,» говорит Мурад.

Однако технологии распознавания радужной оболочки глаза не всегда могут корректно работать.

«Если человек носит, к примеру, непрозрачные контактные линзы, то это то же самое, что перчатки на руках. Вы не сможете снять отпечаток пальца, если на руках человека перчатки,» — поясняет Ашер. «Поэтому, что нужно сделать продавцам технологий распознавания радужки, так это определить, как можно ее распознать, если человек надел те самые пресловутые «перчатки».» В случае с прозрачными линзами, технология успешно фиксирует изображение радужной оболочки.

В отличие от сканирования сетчатки глаза, которое используется в основном в научных и медицинских учреждениях и не имеет широкого применения в промышленном масштабе, системы распознавания радужной оболочки глаза не контактируют с идентифицируемым лицом. Многие поставщики и исследователи разрабатывают технологии, которые могут захватывать изображение радужной оболочки движущихся объектов на расстоянии более одного метра.

Переход на бесконтактную биометрику

Целью новых разработок и достижений в этой сфере стало максимальное сокращение контакта с человеком при идентификации радужной оболочки. «Наша цель — получение возможности упростить этот процесс настолько, чтобы вы могли быть идентифицированы просто проходя мимо устройства,» говорит Мурад. Более того, поскольку первоначальная цена на системы падает, этот вид биометрики стает все более популярным.

«С 2002 года наблюдался рост спроса (в двухзначных цифрах) на системы распознавания радужной оболочки глаза» В некоторых аэропортах используются технологии распознавания радужной оболочки глаза для идентификации экипажа и пассажиров, которые часто летают на самолетах.

источник

В некоторых системах идентификации в качестве ключа используется глаз человека. Существует две разновидности этих систем, использующие разные идентификаторы. В первом случае в качестве «носителя» идентификационного кода применяется рисунок капилляров (кровеносных сосудов) на сетчатке (дне) глаза, а во втором — узор радужной оболочки глаза.
Для начала рассмотрим способ идентификации по узору кровеносных сосудов, расположенных на поверхности глазного дна (сетчатке). Сетчатка расположена глубоко внутри глаза, но это не останавливает современные технологии. Более того, именно благодаря этому свойству, сетчатка — один из наиболее стабильных физиологических признаков организма. Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Для этих целей используется лазерный луч мягкого излучения. Вены и артерии, снабжающие глаз кровью, хорошо видны при подсветке глазного дна внешним источником света. Еще в 1935 году Саймон и Голдштейн доказали уникальность дерева кровеносных сосудов глазного дна для каждого конкретного индивидуума.
Сканеры для сетчатки глаза получили большое распространение в сверхсекретных системах контроля доступа, так как у них один из самых низких процентов отказа доступа зарегистрированных пользователей. Кроме того, в системах предусмотрена защита от муляжа.
В настоящее время широкому распространению этого метода препятствует ряд причин:
высокая стоимость считывателя;
невысокая пропускная способность;
психологический фактор.
Невысокая пропускная способность связана с тем, что пользователь должен в течение нескольких секунд смотреть в окуляр на зеленую точку.
Примером такого устройства распознавания свойств сетчатки глаза может служить продукция EyeDentify’s. Она использует камеру с сенсорами, которые с короткого расстояния (менее 3 см) измеряют свойства сетчатки глаза. Пользователю достаточно взглянуть одним глазом в отверстие камеры ICAM 2001, и система принимает решение о праве доступа. Основные характеристики считывателя ICAM 2001:
время регистрации (enrolment) — менее 1 мин;
время распознавания при сравнении с базой эталонов в 1 500 человек — менее 5 с; средняя пропускная способность — 4—7 с.
И тем не менее, эти системы совершенствуются и находят свое применение. В США, например, разработана новая система проверки пассажиров, основанная на сканировании сетчатки глаза. Специалисты утверждают, что теперь для проверки не нужно доставать из кармана бумажник с документами, достаточно лишь пройти перед камерой. Исследования сетчатки основываются на анализе более 500 характеристик. После сканирования код будет сохраняться в базе данных вместе с другой информацией о пассажире, и в последующем идентификация личности будет занимать всего несколько секунд. Использование подобной системы будет абсолютно добровольной процедурой для пассажиров.
Английская Национальная физическая лаборатория (National Physical Laboratory, NPL), по заказу организации Communications Electronics Security Group, специализирующейся на электронных средствах защиты систем связи, провела исследования различных биометрических технологий идентификации пользователей.
В ходе испытаний система распознавания пользователя по сетчатке глаза не разрешила допуск ни одному из более чем 2,7 млн «посторонних», а среди тех, кто имел права доступа, лишь 1,8% были ошибочно отвергнуты системой (проводилось три попытки доступа). Как сообщается, это был самый низкий коэффициент ошибочных решений среди проверяемых систем биометрической идентификации. А самый большой процент ошибок был у системы распознавания лица — в разных сериях испытаний она отвергла от 10до 25% законных пользователей.
Еще одним уникальным для каждой личности статическим идентификатором является радужная оболочка глаза. Уникальность рисунка радужной оболочки обусловлена генотипом личности, и существенные отличия радужной оболочки наблюдаются даже у близнецов. Врачи используют рисунок и цвет радужной оболочки для диагностики заболеваний и выявления генетической предрасположенности к некоторым заболеваниям. Обнаружено, что при ряде заболеваний на радужной оболочке появляются характерные пигментные пятна и изменения цвета. Для ослабления влияния состояния здоровья на результаты идентификации личности в технических системах опознавания используются только черно-белые изображения высокого разрешения.
Идея распознавания на основе параметров радужной оболочки глаза появилась еще в 1950-х годах. Джон Даугман, профессор Кембриджского университета, изобрел технологию, в состав которой входила система распознавания по радужной оболочке, используемая сейчас в Nationwide ATM. В то время ученые доказали, что не существует двух человек с одинаковой радужной оболочкой глаза (более того, даже у одного человека радужные оболочки глаз отличаются), но программного обеспечения, способного выполнять поиск и устанавливать соответствие образцов и отсканированного изображения, тогда еще не было.
В 1991 году Даугман начал работу над алгоритмом распознавания параметров радужной оболочки глаза и в 1994 году получил патент на эту технологию. С этого момента ее лицензировали уже 22 компании, в том числе Sensar, British Telecom и японская OKI.
Получаемое при сканировании радужной оболочки глаза изображение обычно оказывается более информативным, чем оцифрованное в случае сканирования отпечатков пальцев.
Уникальность рисунка радужной оболочки глаза позволяет выпускать фирмам целый класс весьма надежных систем для биометрической идентификации личности. Для считывания узора радужной оболочки глаза применяется дистанционный способ снятия биометрической характеристики.
Системы этого класса, используя обычные видеокамеры, захватывают видеоизображение глаза на расстоянии до одного метра от видеокамеры, осуществляют автоматическое выделение зрачка и радужной оболочки. Пропускная способность таких систем очень высокая. Вероятность же ложных срабатываний небольшая. Кроме этого, предусмотрена защита от муляжа. Они воспринимают только глаз живого человека. Еще одно достоинство этого метода идентификации — высокая помехоустойчивость. На работоспособность системы не влияют очки, контактные линзы и солнечные блики.
Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Даже у людей с ослабленным зрением, но с неповрежденной радужной оболочкой, все равно могут сканироваться и кодироваться идентифицирующие параметры. Даже если есть катаракта (повреждение хрусталика глаза, которое находится позади радужной оболочки), то и она никак не влияет на процесс сканирования радужной оболочки. Однако плохая фокусировка камеры, солнечный блик и другие трудности при распознавании приводят к ошибкам в 1% случаев.
В качестве такого устройства идентификации можно привести, например, электронную систему контроля доступа «Iris Access 3000», созданную компанией LG. Эта система за считанные секунды считывает рисунок оболочки, оцифровывает его, сравнивает с 4000 других записей, которые она способна хранить в своей памяти, и посылает соответствующий сигнал в систему безопасности, в которую она интегрирована. Система очень проста в эксплуатации, но при этом, данная технология
обеспечивает высокую степень защищенности.
Считыватель сетчатки объекта. Модель ICAM 2001. В состав системы входят:
устройство регистрации пользователей EOU 3000;
оптическое устройство идентификации / оптический считыватель ROU 3000;
контроллер двери ICU 3000;
сервер.
Устройство регистрации пользователей EOU 3000 обеспечивает начальный этап процесса регистрации пользователей. Оно снимает изображение радужной оболочки глаза при помощи камеры и подсветки. В процессе получения изображения и при его завершении устройство использует голосовую и световую подсказку.
Оптическое устройство идентификации, оно же оптический считыватель ROU 3000, содержит элементы для получения изображения радужной оболочки глаза. Голосовая и световая индикация информирует пользователя, определен он системой или нет.
Контроллер двери ICU 3000 создает специальный код (IrisCode) изображения сетчатки глаза, получаемой от считывателя ROU, сравнивает этоткод с уже имеющимися в его памяти кодами изображений. При идентификации соответствующего кода, результат сообщается голосом из динамика в считывателе ROU
3000. К контроллеру возможно подключение до четырех считывателей ROD 3000, что обеспечивает управление четырьмя дверями.
Сервер выполнен на базе персонального компьютера. Он выполняет функции главного сервера, сервера,
станции регистрации пользователей, станции мониторинга и управления системой. Главный сервер контролирует передачу информации из базы данных по запросу от одного сервера другим серверам. Сервер отвечает за управление рабочими станциями и контроллерами дверей ICU. Станция ввода изображения обеспечивает регистрацию пользователей при помощи устройства EOU 3000. Станция мониторинга производит отслеживание статуса контроллеров ICU, оптических считывателей ROU? устройства регистрации и состояния дверей ROU. Станция управления обеспечивает поддержку основной базы данных пользователей, загрузку необходимых данных в контроллер ICU.
Пример построения системы доступа на основе электронной системы распознавания радужной оболочки глаза «Iris Access 3000» представлен на рисунке.

Читайте также:  Как снять отек над глазом после удара

Перспективы распространения этого способа биометрической идентификации для организации доступа в компьютерных системах очень хорошие. Тем более, что сейчас уже существуют мультимедийные мониторы со встроенными в корпус видеокамерами. Поэтому на такой компьютер достаточно установить необходимое программное обеспечение, и система контроля доступа готова к работе. Понятно, что и ее стоимость при этом будет не очень высокой.

Акции! Скидки!

При заказе монтажа Охранно-пожарной сигнализации, пожаротушения скидка на техническое обслуживание смонтированных систем 30%.

При заказе огнезащитной обработки свыше 1500 м2 протокол испытаний образцов из ИПЛ бесплатно.

Обслуживание пожарной сигнализации от 1000 рублей в месяц .

Проект бесплатно.

При заказе пожарной или охранной сигнализации
от 50 000 рублей проект бесплатно.

Работаем по бартеру.

Вы оплачиваете оборудование и материалы, оплата работ возможна бартером.

источник

уЙУФЕНБ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ рбрймпо «гЙТЛПО» ОБ ВБЪЕ ВМПЛБ ДПУФХРБ гйтлпо-4

пФУЛБОЙТПЧБОЩЕ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ

уЙУФЕНБ рбрймпо «гЙТЛПО» ПУОПЧБОБ ОБ ВЙПНЕФТЙЮЕУЛПН НЕФПДЕ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ.

тБУРПЪОБЧБОЙЕ МЙЮОПУФЙ РП ТБДХЦОПК ПВПМПЮЛЕ СЧМСЕФУС ПДОЙН ЙЪ ОБЙВПМЕЕ ФПЮОЩИ Й ОБДЕЦОЩИ УРПУПВПЧ ВЙПНЕФТЙЮЕУЛПК ЙДЕОФЙЖЙЛБГЙЙ. чЕТПСФОПУФШ ФПЗП, ЮФП УЙУФЕНБ «ОЕ ХЪОБЕФ УЧПЕЗП» ЙМЙ «РТПРХУФЙФ ЮХЦПЗП» ДМС ЬФПЗП НЕФПДБ РТБЛФЙЮЕУЛЙ ТБЧОБ ОХМА.

пДОЙН ЙЪ РТЕЙНХЭЕУФЧ НЕФПДБ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ РП ТБДХЦЛЕ СЧМСЕФУС ЕЗП “ОЕБЗТЕУУЙЧОПУФШ” Л РТПЧЕТСЕНПНХ – ОЕФ ОЕРПУТЕДУФЧЕООПЗП ЛПОФБЛФБ ЮЕМПЧЕЛБ У БРРБТБФХТПК, ЪБИЧБФ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ РТПЙЪЧПДЙФУС РТПУФП РТЙ ЧЪЗМСДЕ Ч ПВЯЕЛФЙЧ УЛБОЕТБ.

уЛБОЕТ БОБМЙЪЙТХЕФ ЛБЮЕУФЧП ЙЪПВТБЦЕОЙС ЗМБЪБ Ч ЛБДТЕ, ПРТЕДЕМСЕФ ГЕОФТ ЪТБЮЛБ, ГЕОФТ ТБДХЦОПК ПВПМПЮЛЙ Й ЕЕ ЗТБОЙГЩ. ъБФЕН РТПЙУИПДЙФ УПРТПЧПЦДБАЭЙКУС УЙЗОБМПН ЪБИЧБФ ЙЪПВТБЦЕОЙС, ЕЗП ЛПДЙТПЧБОЙЕ Й РТПЧЕТЛБ РП вд.

  • ТЕЗЙУФТБГЙС Й ГЙЖТПЧПЕ ЛПДЙТПЧБОЙЕ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ
  • УПЪДБОЙЕ Й ИТБОЕОЙЕ Ч ЬМЕЛФТПООПК вд НБУУЙЧБ ЪБРЙУЕК, ЛБЦДБС ЙЪ ЛПФПТЩИ УПДЕТЦЙФ: ЪБЛПДЙТПЧБООПЕ ЙЪПВТБЦЕОЙЕ ТБДХЦОПК ПВПМПЮЛЙ, ФЕЛУФПЧЩЕ ДБООЩЕ, ЖПФПЗТБЖЙЙ ЪБТЕЗЙУФТЙТПЧБООПК МЙЮОПУФЙ
  • РТПЧЕТЛБ ЛПДБ ТБДХЦОПК ПВПМПЮЛЙ РП вд Ч ТЕЦЙНЕ «ПДЙО-ЛП НОПЗЙН»
  • РТПЧЕТЛБ ЛПДБ ТБДХЦОПК ПВПМПЮЛЙ РП вд Ч ТЕЦЙНЕ «ПДЙО-Л ПДОПНХ»
  • ТБВПФБ У вд: РПМХЮЕОЙЕ ЧЩВПТПЛ ЙЪ вд, УПТФЙТПЧЛБ УРЙУЛПЧ вд, ХДБМЕОЙЕ Й ТЕДБЛФЙТПЧБОЙЕ ЪБРЙУЕК Й Ф.Д.


йОФЕЗТБГЙС УЙУФЕНЩ рбрймпо «гЙТЛПО» Ч улхд

уЙУФЕНБ ТЕЗЙУФТБГЙЙ Й ТБУРПЪОБЧБОЙС РП ТЙУХОЛХ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ рбрймпо «гЙТЛПО» БДБРФЙТПЧБОБ ДМС ЙОФЕЗТБГЙЙ Ч БЧФПНБФЙЪЙТПЧБООЩЕ УЙУФЕНЩ ЛПОФТПМС Й ХРТБЧМЕОЙС ДПУФХРПН (улхд). дМС ЬФЙИ ГЕМЕК ОБ РТЕДРТЙСФЙЙ ТБЪТБВПФБОБ SDK-ВЙВМЙПФЕЛБ рбрймпо гйтлпо SDK, РПУФБЧМСЕНБС УПЧНЕУФОП У ВМПЛПН ДПУФХРБ гйтлпо-4.

рПУФТПЕОЙЕ улхд ОБ ВБЪЕ ВМПЛПЧ ДПУФХРБ гйтлпо-4 ЙМЙ ЙОФЕЗТБГЙС ВМПЛПЧ ДПУФХРБ Ч ДЕКУФЧХАЭХА улхд ПУХЭЕУФЧМСЕФУС РХФЕН ПВТБЭЕОЙС Л ЖХОЛГЙСН ВЙВМЙПФЕЛЙ рбрймпо гйтлпо SDK УП УФПТПОЩ ЛМЙЕОФУЛПЗП РТЙМПЦЕОЙС.

жХОЛГЙЙ ЖБКМПЧПЗП УЕТЧЕТБ ЧПЪМБЗБАФУС ОБ ГЕОФТБМШОЩК ХЪЕМ улхд. чЪБЙНПДЕКУФЧЙЕ ЧУФТПЕООПЗП Ч гйтлпо-4 ЧЩЮЙУМЙФЕМС Й ГЕОФТБМШОПЗП ХЪМБ улхд ПУХЭЕУФЧМСЕФУС Ч МПЛБМШОПК УЕФЙ РП РТПФПЛПМХ Ethernet. рЕТЕДБЮБ ЛПНБОД НЕЦДХ ЧЩЮЙУМЙФЕМЕН Й ПЛПОЕЮОЩН ПВПТХДПЧБОЙЕН улхд – ЮЕТЕЪ ЙОФЕТЖЕКУОЩК РПТФ RS-232 (RS-485).

лБЦДЩК ВМПЛ ДПУФХРБ РПДДЕТЦЙЧБЕФ ЪБИЧБФ ЙЪПВТБЦЕОЙС ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ, ЛБЛ Ч ТЕЦЙНЕ ТЕЗЙУФТБГЙЙ, ФБЛ Й Ч ТЕЦЙНБИ ЧЕТЙЖЙЛБГЙЙ (УТБЧОЕОЙЕ У ЛПОФТПМШОЩН ЫБВМПОПН «ПДЙО-Л-ПДОПНХ») ЙМЙ ЙДЕОФЙЖЙЛБГЙЙ («ПДЙО-ЛП-НОПЗЙН»). дМС ТБВПФЩ Ч ТЕЦЙНЕ ЧЕТЙЖЙЛБГЙЙ ВМПЛ ДПУФХРБ ДПРПМОСЕФУС ХЪМПН УЮЙФЩЧБОЙС РЕТУПОБМШОЩИ ID-ЛБТФ.

лБЦДЩК ВМПЛ ДПУФХРБ РПДДЕТЦЙЧБЕФ УПВУФЧЕООХА ВБЪХ ДБООЩИ ВЙПНЕФТЙЮЕУЛЙИ ДБООЩИ, ЮЕН ПВЕУРЕЮЙЧБЕФУС ЗЙВЛПУФШ ОБУФТПКЛЙ УЙУФЕНЩ Й ЙУЛМАЮБАФУС РПФЕТЙ ЧТЕНЕОЙ, УЧСЪБООЩЕ У ЧОХФТЙУЕФЕЧЩН ЧЪБЙНПДЕКУФЧЙЕН.

ч РТБЛФЙЮЕУЛПК ТЕБМЙЪБГЙЙ улхд ГЕМЕУППВТБЪОП ПУФБЧЙФШ ЖХОЛГЙА ТЕЗЙУФТБГЙЙ ОБ ПДОПН ЙМЙ ОЕУЛПМШЛЙИ ВМПЛБИ ДПУФХРБ. оБ ПУФБМШОЩИ ПУХЭЕУФЧМСЕФУС ФПМШЛП ПРЕТБГЙС ЙДЕОФЙЖЙЛБГЙЙ/ЧЕТЙЖЙЛБГЙЙ.

фЕТТЙФПТЙБМШОПЕ НБУЫФБВЙТПЧБОЙЕ УЙУФЕНЩ ПВЕУРЕЮЙЧБЕФУС ЧЧЕДЕОЙЕН ДПРПМОЙФЕМШОЩИ ВМПЛПЧ ДПУФХРБ У РПДЛМАЮЕОЙЕН ЙИ Л ГЕОФТБМШОПНХ ХЪМХ улхд РП МАВЩН ДПУФХРОЩН МЙОЙСН УЧСЪЙ, РПДДЕТЦЙЧБАЭЙН РТПФПЛПМ TCP/IP. лПМЙЮЕУФЧП ВМПЛПЧ ДПУФХРБ Ч УЙУФЕНЕ ОЕ ПЗТБОЙЮЙЧБЕФУС.

рПДПВОБС УЙУФЕНБ ОБИПДЙФУС Ч РТБЛФЙЮЕУЛПК ЬЛУРМХБФБГЙЙ ОБ ПДОПН ЙЪ РТЕДРТЙСФЙК юЕМСВЙОУЛПК ПВМБУФЙ.

вМПЛ ДПУФХРБ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ гйтлпо-4

вМПЛ ДПУФХРБ РП ТБДХЦОПК ПВПМПЮЛЕ ЗМБЪБ гйтлпо-4 РТЕДУФБЧМСЕФ УПВПК ПЛПОЕЮОЩК ХЪЕМ ТЕЗЙУФТБГЙЙ Й ТБУРПЪОБЧБОЙС РП ТЙУХОЛХ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ.

вМПЛ ДПУФХРБ РТЕДОБЪОБЮЕО ДМС ЪБИЧБФБ Й БЧФПНБФЙЮЕУЛПЗП УПРПУФБЧМЕОЙС ЙЪПВТБЦЕОЙК ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ ЛБЛ Ч БЧФПОПНОПН ТЕЦЙНЕ, ФБЛ Й Ч УПУФБЧЕ БЧФПНБФЙЪЙТПЧБООПК УЙУФЕНЩ ЛПОФТПМС Й ХРТБЧМЕОЙС ДПУФХРПН (булхд) Ч ТЕЦЙНБИ ЧЕТЙЖЙЛБГЙЙ (УТБЧОЕОЙЕ У ЛПОФТПМШОЩН ЫБВМПОПН «ПДЙО-Л-ПДОПНХ») ЙМЙ ЙДЕОФЙЖЙЛБГЙЙ («ПДЙО-ЛП-НОПЗЙН»).

ч БЧФПОПНОПН ТЕЦЙНЕ ТЕЗЙУФТБГЙС РПМШЪПЧБФЕМЕК, УПЪДБОЙЕ Й ИТБОЕОЙЕ ВБЪЩ ЛМАЮЕК ПУХЭЕУФЧМСЕФУС МПЛБМШОП ОБ ВМПЛЕ ДПУФХРБ. вМПЛ ЧУЕЗДБ ТБВПФБЕФ Ч ТЕЦЙНЕ ЙДЕОФЙЖЙЛБГЙЙ Й РТЙ ХУРЕЫОПН ТБУРПЪОБЧБОЙЙ ХРТБЧМСЕФ ЬМЕЛФТПООЩН ЪБНЛПН.

рТЙ ТБВПФЕ ВМПЛБ Ч УПУФБЧЕ булхд Ч ТЕЦЙНЕ ЧЕТЙЖЙЛБГЙЙ ВБЪБ ДБООЩИ ЛМАЮЕК НПЦЕФ УПЪДБЧБФШУС ОБ РХОЛФЕ ТЕЗЙУФТБГЙЙ Й ИТБОЙФШУС ОБ УЕТЧЕТЕ. булхд ЧЪБЙНПДЕКУФЧХЕФ У ВМПЛПН ДПУФХРБ РП РТПФПЛПМХ, ПРЙУБООПНХ Ч SDK. лМАЮ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ УТБЧОЙЧБЕФУС «ПДЙО-Л-ПДОПНХ» У ЛПОФТПМШОЩН ЫБВМПОПН У РПНПЭША ДПРПМОЙФЕМШОПЗП ЙДЕОФЙЖЙЛБФПТБ — ВЕУЛПОФБЛФОПК ЛБТФЩ, ВТЕМПЛБ Й Ф. Р.

пФМЙЮЙЕ ТБВПФЩ ВМПЛБ Ч УПУФБЧЕ булхд Ч ТЕЦЙНЕ ЙДЕОФЙЖЙЛБГЙЙ УПУФПЙФ Ч ФПН, ЮФП ЛМАЮ ТБДХЦОПК ПВПМПЮЛЙ ЗМБЪБ ЙДЕОФЙЖЙГЙТХЕНПЗП УХВЯЕЛФБ УТБЧОЙЧБЕФУС «ПДЙО-ЛП-НОПЗЙН» УП ЧУЕНЙ ЪБРЙУСНЙ вд, ЪБЗТХЦЕООЩНЙ Ч ВМПЛ ДПУФХРБ булхд.

вМПЛ ДПУФХРБ ТБЪНЕЭБЕФУС Ч ЛПОФТПМЙТХЕНПК ФПЮЛЕ РЕТЕУЕЮЕОЙС ПИТБОСЕНПЗП РЕТЙНЕФТБ Й ЛТЕРЙФУС ОБ ЧЕТФЙЛБМШОПК РПЧЕТИОПУФЙ Ч ОЕРПУТЕДУФЧЕООПК ВМЙЪПУФЙ ПФ ПВПТХДПЧБООПЗП РТПИПДБ Ч ПИТБОСЕНПЕ РПНЕЭЕОЙЕ, У ЧОЕЫОЕК ЕЗП УФПТПОЩ.

вМПЛ ДПУФХРБ ПВПТХДПЧБО ЪЕТЛБМПН РПЪЙГЙПОЙТПЧБОЙС Й ВМПЛПН УЧЕФПДЙПДОПК ЙОДЙЛБГЙЙ, ФБЛЦЕ ТЕБМЙЪПЧБОБ ЖХОЛГЙС ЗПМПУПЧПК РПДУЛБЪЛЙ. чУЕ ЬФЙ ЙОУФТХНЕОФЩ ЙУРПМШЪХАФУС ДМС ХРТПЭЕОЙС РПЪЙГЙПОЙТПЧБОЙС ПВЯЕЛФБ Ч ТБВПЮЕК ПВМБУФЙ УЛБОЕТБ.

дМС ЪБРХУЛБ РТПГЕДХТЩ ЪБИЧБФБ ЙЪПВТБЦЕОЙС ДПУФБФПЮОП РПДПКФЙ Л ВМПЛХ ДПУФХРБ Й ХЧЙДЕФШ Ч ЪЕТЛБМЕ РПЪЙГЙПОЙТПЧБОЙС ПФТБЦЕОЙЕ УЧПЙИ ЗМБЪ. ъБИЧБФ ЙЪПВТБЦЕОЙС РТПЙУИПДЙФ ОБ ТБУУФПСОЙЙ 350—500 НН ПФ РЕТЕДОЕК РБОЕМЙ ВМПЛБ ДПУФХРБ Ч РПМЕ ЪТЕОЙС ЕЗП ПРФЙЮЕУЛПЗП ВМПЛБ.

тЕЗХМЙТПЧЛБ РТЙВПТБ РПД ТПУФ ЮЕМПЧЕЛБ ПУХЭЕУФЧМСЕФУС ЧТХЮОХА, РПЧПТПФПН РЕТЕДОЕК РБОЕМЙ ОБ ОЕПВИПДЙНЩК ХЗПМ.

ч УЛБОЕТЕ ТБДХЦОПК ПВПМПЮЛЙ ТЕБМЙЪПЧБОБ ЖХОЛГЙС БЧФПЖПЛХУБ. йУРПМШЪХЕНБС ЙОЖТБЛТБУОБС РПДУЧЕФЛБ ВЕЪПРБУОБ ДМС ЪТЕОЙС.

ч УЙУФЕНЕ ЙУРПМШЪХАФУС ФПМШЛП ЮЕТОП-ВЕМЩЕ ЙЪПВТБЦЕОЙС ДМС ФПЗП, ЮФПВЩ ОБ ТЕЪХМШФБФ ЙДЕОФЙЖЙЛБГЙЙ МЙЮОПУФЙ ОЕ ЧМЙСМП ГЧЕФПЧПЕ ЙЪНЕОЕОЙЕ ТБДХЦОПК ПВПМПЮЛЙ, РТПЙУИПДСЭЕЕ Ч ТЕЪХМШФБФЕ РЕТЕОЕУЕООЩИ ЪБВПМЕЧБОЙК.

фЕИОЙЮЕУЛЙЕ ИБТБЛФЕТЙУФЙЛЙ ВМПЛБ ДПУФХРБ гйтлпо-4

источник

2.2 Идентификация по радужной оболочке глаз

Первооткрывателем в области идентификации личности по радужной оболочке глаза является доктор Джон Даугман. В 1994 г. он запатентовал в США метод распознавания радужной оболочки глаза (US Patent S, 291, 560). Разработанные им алгоритмы используются до сих пор.

С помощью этих алгоритмов необработанные видеоизображения глаза преобразуются в уникальный идентификационный двоичный поток Iris-код, полученный в результате определения позиции радужки, ее границы и выполнения других математических операций для описания текстуры радужки в виде последовательности чередования фаз, похожей на штрих-код.

Полученный таким образом Iris-код используется для поиска совпадений в базах данных (скорость поиска — около 1 млн. сравнения Iris-кодов в 1 с) и для подтверждения или неподтверждения заявленной личности

Преимущество сканеров для радужной оболочки глаза состоит в том, что они не требуют от пользователя сосредоточения на цели, так как образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза может быть отсканировано на расстоянии менее 1 м, что делает возможным использование сканеров для радужной оболочки глаза, допустим, в банкоматах. Разработкой технологии идентификации личности на основе принципа сканирования радужной оболочки глаза в настоящее время занимаются более 20 компаний, в том числе British Telecom, Sensar, японская компания Oki.

Различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

В качестве примера современной системы идентификации на основе анализа радужной оболочки глаза рассмотрим решение, предложенное компанией LG.

Система IrisAccess позволяет менее чем за 1 с отсканировать рисунок радужной оболочки глаза, обработать и сравнить с 4 тыс. других записей, которые она хранит в своей памяти, а затем послать соответствующий сигнал в охранную систему. Технология — полностью бесконтактная. На основе изображения радужной оболочки глаза строится компактный цифровой код размером 512 байт. Устройство имеет высокую надежность по сравнению с большинством известных систем биометрического контроля, поддерживает объемную базу данных, выдает звуковые инструкции на русском языке, позволяет интегрировать в систему карты доступа и ПИН-клавиатуры. Один контроллер поддерживает четыре считывателя Система может быть интегрирована с LAN Система IrisAccess 3000 состоит из оптического устройства внесения в реестр E01J3000, удаленного оптического устройства R01J3000, контрольного устройства опознавания ICLI3000, платы захвата изображения, дверной интерфейсной платы и PC-сервера. Если требуется осуществлять контроль за несколькими входами, то ряд удаленных устройств, включая ICU3000 и R01J3000, может быть подключен к PC-серверу через локальную сеть (LAN).

Представляет интерес камера для идентификации личности путем сканирования радужной оболочки глаза, используемая в системах защиты и безопасности для компьютеров типа десктоп/лэптоп. Разработки визуальных систем (Vision Systems) компании Panasonic и хорошо показавшие себя на прак-тике разработки в области идентификации личности на основе рисунка радужной оболочки глаз компании Iridian Technologies позволили создать легкие в использовании и отличающиеся высокой точностью средства, которые можно использовать в широком диапазоне современных и будущих потребностей в области обеспечения безопасности.

Камера Authenticam™ компании Panasonic в сочетании с программным продуктом PrivatelD™ компании Indian Technologies представляет собой экономически выгодный и надежный путь обеспечения безопасности доступа. Для такой камеры характерны безопасность и простота использования. Достаточно взглянуть в объектив камеры с расстояния приблизительно 50 см, и менее чем через 2 с произойдет захват изображения.

Программный продукт PrivatelD™ обрабатывает рисунок радужной оболочки глаз и кодирует полученную информацию в виде 512-байтовой записи IrisCode. Эти записи вводятся для хранения в память и используются для сравнения с другими записями кодов IrisCodes — для идентификации личности при любых транзакциях и деловых операциях, когда для сравнения представляется радужная оболочка глаза живого человека.

Дифференциатор ключей для идентификации личности по рисунку радужной оболочки глаза осуществляет поиск в базе данных для нахождения соответствующего идентификационного кода. При этом база данных может состоять из неограниченного числа записей кодов IrisCode. Технология допуска, основанная на сканировании радужной оболочки глаза, уже несколько лет успешно применяется в государственных организациях США и в учреждениях с высокой степенью секретности (в частности, на заводах по производству ядерного вооружения). Эффективность этого способа доказана, он безопасен для пользователя и надежен в работе. Он обеспечивает моментальную аутентификацию личности, предназначенную для замены символов ПИН-кодов и паролей.

Многие эксперты подчеркивают «незрелость» технологии, хотя потенциальные возможности метода достаточно высоки, так как характеристики рисунка радужной оболочки человеческого глаза достаточно стабильны и не изменяются практически в течение всей жизни человека, невосприимчивы к загрязнению и ранам. Отметим также, что радужки правого и левого глаза по рисунку существенно различаются. Этот метод идентификации отличается от других большей сложностью в использовании, более высокой стоимостью аппаратуры и жесткими условиями регистрации.

источник

Обеспечение транспортной безопасности

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов.

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов. Основным источником информации для идентификации этим способом служит специфическая ткань, которая окончательно формируется в глазах человека еще до рождения, примерно на 8-м месяце беременности матери. В медицине радужную оболочку глаза рассматривали в качестве инструмента для диагностики различных заболеваний, в частности, было обнаружено, что при определенных заболеваниях на радужной оболочке глаза появляются так называемые пигментные пятна. Для уменьшения влияния этого фактора на результат распознавания в биометрических системах используют черно-белые (полутоновые) изображения. Технология биометрического распознавания по радужной оболочке предусматривает несколько степеней защиты:

  • идентификация пользователя при условии затенения (или повреждения) радужной оболочки, но не более, чем на 2/3, то есть по оставшейся 1/3 изображения возможна идентификация с вероятностью ошибки 1 к 100 000;
  • обнаружение замены глаза и контактных линз на роговице – за счет контроля размера зрачка (система отличает живой глаз от изображения глаза, искуственного глаза и неживого глаза за счет использования инфракрасного освещения для определения состояния ткани глаза и контроля расширения/сужения зрачка).

Преимуществами технологии биометрического распознавания по радужной оболочке являются:

— независимость от косвенных факторов, таких как прическа, грим, макияж, и прочее;

— вероятность пропуска незарегистрированного пользователя равна вероятности ложного отказа в допуске зарегистрированному пользователю и составляет 1 к 1 200 000 (это самый высокий показатель по сравнению с другими типами биометрического распознавания).

Как работает система биометрического распознавания человека по радужной оболочке глаза? Технология распознавания базируется на формировании до 266 уникальных точек идентификации на изображении роговицы, решение принимается на основании результатов сравнения с точек идентификации с эталонными данными базы авторизованных пользователей. Захват видеоизображения глаза осуществляется регистрирующей аппаратурой на расстоянии до одного метра. Далее, система выполняет ряд действий: выделение зрачка, сбор и подсчет точек идентификации радужной оболочки, принятие решения и верификации или идентификации.

Мы протестировали высокоточную систему биометрического распознавания человека по радужной оболочке глаза, разработанную компанией eyeLock (США). Эта система обеспечивает быстрое распознавание человека на расстоянии и в движении. Оборудование eyeLock применяется для создания систем биометрического контроля и управления доступом (СКУД) на объектах с повышенными требованиями обеспечения безопасности, таких как: опасные производства, центры обработки данных, банки, объекты транспортной инфраструктуры. Для построения системы контроля доступа с биометрическим распознаванием по радужной оболочке eyaLock предлагает несколько типов оборудования: NANO NXT, HBOX, MYRIS.

NANO NXT – комплексное устройство, выполняющее функции считывателя биометрических данных, устройства обработки данных для выполнения алгоритма идентификации, хранилища эталонных данных базы авторизованных пользователей и контроллера управления замком или запирающим устройством. Устройство легко интегрировать в существующую систему управления доступом.

  • Регистрация и проверка соответствия самим устройством — «On Board»
  • Распознавание в темных очках или цветных линзах
  • Хранение в памяти «On Board» записей на 20 000 человек
  • Регистрация по 1 или 2 глазам
  • Возможность подключения кардридера для обеспечения двухфакторной аутентификации (глаза + карта)
  • Типы (протоколы) подключения: Wiegand, F/2/F, OSDP, PAC, реле и Ethernet для простой интеграции со всеми существующими платформами и СКУД
  • Питание через PoE (IEEE 802.3af)

HBOX — комплексное устройство, устанавливаемое на проходных с высокой пропускной способностью, обеспечивает биометрическое распознавание на расстоянии до 1,6 метра потока людей со скоростью 50 человек в минуту. Темные очки и цветные контактные линзы не являются препятствием для работы HBOX.

MYRIS — устройство для контроля логического доступа пользователей к информационным ресурсам. Устройство позволяет обеспечить дополнительную защиту доступа к информационным ресурсам предприятия и надежную идентификацию/авторизацию пользователей, это может быть актуально, например, для доступа к банковским системам при совершении операций повышенного риска и в других подобных случаях.

источник

Секция: Физико-математические науки

LIII Студенческая международная научно-практическая конференция «Молодежный научный форум: технические и математические науки»

Технология распознавания радужной оболочки для улучшения идентификации

В наше время, мир информационных технологий – безграничен, и нам без них, будет намного сложнее. Безопасность информационных систем – это наиважнейший вопрос в надёжной и бесперебойной работе. Число скомпрометированных систем, которые потеряли доверие пользователей, постоянно растет. Идентификация — это одна из важнейших технологий защиты, которая не допускает в нашу личную или рабочую сеть незваных «гостей».

Существует три основных типа идентификации — это то:

— что все хорошо знают – логин и пароль;

— что многие имеют – устройство аутентификации: пластиковая карта, личная печать или ключ;

— что является частью нас – биометрика: глаза, отпечаток пальца, ладони и т.д.

Пароли ненадёжны тем, что их легко взломать, так как человеку свойственно делать их легкими и хранить на виду. Картами и ключами может воспользоваться кто угодно, и, хотя ключ или карта узнаваема, нет надёжного способа узнать, является ли человек представляющий карту, фактическим владельцем. А вот биометрия, обеспечивает безопасный метод аутентификации и идентификации, поскольку ее трудно повторить или украсть. Если она используется в сочетании с чем-то, что знаете только Вы, то это есть двухфакторная аутентификация. Двухфакторная аутентификация сложнее, поскольку она требует два или три компонента, прежде чем пользователь сможет получить доступ к чему-либо.

Биометрическая идентификация использует физиологические и поведенческие характеристики, для определения личности человека. Есть общие физические характеристики, которые используются для идентификации — это отпечатки пальцев, ладоней или особенность глаза. Поведенческие характеристики включают в себя цифровую подпись, образец голоса, динамику нажатия клавиш и т.д. Биометрическая система работает просто: она сканирует и запоминает биометрическую информацию человека, и, каждый раз, сравнивает вновь отсканированные данные с тем, что хранятся в базе данных.

Из всех доступных физических свойств человека, радужная оболочка глаза является самой надёжной физиологической характеристикой, которую можно использовать.

Технология распознавания радужной оболочки

Радужная оболочка

Радужка имеет много особенностей, которые могут быть использованы для распознания. Это — трабекулярная сеть, ткань, которая придает внешний вид и разделяет радужную оболочку на круговую форму, она формируется на восьмом месяце беременности. Во время развития радужки на нее не влияют гены, процесс, известный как «хаотический морфогенез», который проходит в течение седьмого месяца беременности и это значит, что даже близнецы могут иметь разные радужки. Радужная оболочка имеет более 266 цветовых градаций, т. е. количество вариаций, которые позволяют отличать их друг от друга.

Радужка защищена веком и роговицей. В отличие от других биометрических данных, таких как отпечатки пальцев и ладоней, вероятность повреждения или износа — минимальна. Радужка, не подвержена старению, а значит, она остается в стабильной форме до самой смерти человека (есть, конечно, исключения – тяжёлые заболевания). Использование очков или контактных линз (цветные или прозрачные) практически не влияет на изображение радужки и, следовательно, не мешает технологии распознавания. На рисунке ниже показаны варианты радужных оболочек:

Рисунок 2. Варианты радужной оболочки

Процесс распознавания радужки

Процесс захвата радужки в биометрический шаблон состоит из трёх шагов:

2. Определение местоположения радужной оболочки и оптимизация изображения

3. Хранение и сравнение изображения.

Захват изображения

Изображение радужки можно захватить, стандартной камерой, используя видимый свет и инфракрасный. Сделать это можно как вручную, так и автоматически. Камеру располагают на расстоянии от 3.5 дюймов до 1 метра, для захвата изображения. Если это делать вручную, то, пользователь должен сам настроить камеру так, чтобы получить диафрагму в фокусе, и стать перед камерой на расстоянии 6-12 дюймов. Этот процесс трудоемкий и пользователь нуждается в обучении. Автоматическая процедура проще. Здесь используют набор камер, которые автоматически определяют местоположение лица и радужной оболочки, что удобнее и проще для пользователя.

Определение местоположения радужной оболочки и оптимизация изображения

После того, как камера нашла глаз, система распознавания определяет изображение, которое имеет лучший фокус и четкость радужной оболочки. Затем изображение анализируется, чтобы определить внешнюю границу радужки, где она встречается с белой склерой глаза, краем и центром зрачка. Это приводит к точному положению круговой радужки.

Рисунок 3: Расположение круговой диафрагмы

После этого, система распознавания радужки определяет зоны изображения радужки, которые соответствуют оригиналу. Это включает в себя: удаление областей, которые покрыты веками, любые тени и отражающие области. На рисунке 4 показана оптимизация изображения.

Рисунок 4. Оптимизация изображения

Хранение и сравнение изображения

Как только, изображение захватывается, в работу включается алгоритм 2D Габора, вейвлет-фильтр и карта сегментов радужной оболочки в сотни векторов. Даже после применения алгоритмов к изображению радужки, все еще есть 173 цветовых градаций для её идентификации. Эти алгоритмы, также, учитывают изменения, которые могут произойти с радужкой, например, реакция зрачка на свет, он будет сужаться, либо расширятся. Эта информация используется для получения, так называемого, кода радужной оболочки «IrisCode», который является 512-байтовой записью. Эта запись хранится в базе данных для следующих сравнений. При текущих сравнениях, данные не сохраняются, а просто сравниваются с данными, которые хранятся в базе. Также не сравниваются и изображение радужки, только шестнадцатеричное значение, полученное после применения алгоритмов.

Для того чтобы сравнить сохраненную запись «IrisCode», с только что отсканированным изображением, необходим расчет расстояния «Хэмминга». Расстояние «Хэмминга» — это процесс сравнения между записью «IrisCode» для текущей радужки и записью «IrisCode», хранящихся в базе данных. Каждый из 2048 битов сравнивается друг с другом, т. е. сравнивается 1 бит из полученного «IrisCode» и 1 бит из базы данных «IrisCode», затем 2-ой бит, и так далее. Битам, которые не совпали, присваивается значение-1, а тем, которые совпали значение-0. Как только все биты проверены, число несоответствующих битов делят на полное количество битов, для создания двузначного показателя «IrisCode», и делается вывод. Например, расстояние Хэмминга 0.20 означает, что два «IrisCode» отличаются на 20%.

Во всех биометрических системах существуют ошибки, на которые надо, обязательно, обращать внимание. Ложное отклонение происходит, когда биометрическое измерение, взятое с живого объекта, не соответствует шаблону, хранящемуся в биометрической системе. Вероятность ошибочной идентификации происходит тогда, когда измерения взяты с живого объекта, который находится ближе к камере, чем на шаблоне, хранящемся в базе данных. В данном случае вероятно не совпадение, т.е. — ошибка. В технологии распознавания радужки, расстояние Хемминга равное 0.342, это — минимальный коэффициент ошибок. Это означает, что если разница между представленной записью «IrisCode» и записью, хранящейся в базе данных, составляет 34,2% и больше, то считается, что они от двух разных объектов. Во время режима распознавания, сравнение должно происходить между записью с живого объекта и данными, хранящимися в базе. Следующая Таблица показывает вероятности ложного принятия и ложного отклонения с технологией распознавания радужной оболочки глаза:

Расстояния Хэмминга и вероятность ошибок

источник

Источники:
  • http://www.techportal.ru/glossary/kontrol-dostupa-po-raduzhnoi-obolochke-glaza.html
  • http://worldvision.com.ua/articles/sistemi-raspoznavaniya-raduzhnoy-obolochki-glaza
  • http://txcom.ru/identifikatsiya-po-glazu
  • http://papillon.ru/rus/79
  • http://www.kazedu.kz/referat/189175/2
  • http://tbexpert.ru/biometriya_eyelock/
  • http://nauchforum.ru/studconf/tech/liii/30727