Меню Рубрики

Глаз важный и сложный орган зрения

Глаз — орган зрения животных и человека. Глаз человека состоит из глазного яблока, соединенного зрительным нервом с головным мозгом, и вспомогательного аппарата (веки, слезные органы и мышцы, двигающие глазное яблоко).

Глазное яблоко (рис. 94) защищено плотной оболочкой, называемой склерой. Передняя (прозрачная) часть склеры 1 называется роговицей. Роговица является самой чувствительной наружной частью человеческого тела (даже самое легкое ее касание вызывает мгновенное рефлекторное смыкание век).

За роговицей расположена радужная оболочка 2, которая у людей может иметь разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость. В радужной оболочке есть небольшое отверстие — зрачок 3. Диаметр зрачка может изменяться от 2 до 8 мм, уменьшаясь на свету и увеличиваясь в темноте.

За зрачком расположено прозрачное тело, напоминающее двояковыпуклую линзу, — хрусталик 4. Снаружи он мягкий и почти студенистый, внутри более твердый и упругий. Хрусталик окружен мышцами 5, прикрепляющими его к склере.

За хрусталиком расположено стекловидное тело 6, представляющее собой бесцветную студенистую массу. Задняя часть склеры — глазное дно — покрыто сетчатой оболочкой (сетчаткой) 7. Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.

Как возникают и воспринимаются глазом изображения различных предметов?

Свет, преломляясь в оптической системе глаза, которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительные, уменьшенные и обратные изображения рассматриваемых предметов (рис. 95). Попав на окончания зрительного нерва, из которых состоит сетчатка, свет раздражает эти окончания. По нервным волокнам эти раздражения передаются в мозг, и у человека появляется зрительное ощущение: он видит предметы.

Изображение предмета, возникающее на сетчатке глаза, является перевернутым. Первым, кто это доказал, построив ход лучей в оптической системе глаза, был И. Кеплер. Чтобы проверить этот вывод, французский ученый Р. Декарт (1596—1650) взял глаз быка и, соскоблив с его задней стенки непрозрачный слой, поместил в отверстии, проделанном в оконном ставне. И тут же на полупрозрачной стенке глазного дна он увидел перевернутое изображение картины, наблюдавшейся из окна.

Почему же тогда мы видим все предметы такими, как они есть, т. е. неперевернутыми? Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств. В свое время английский поэт Уильям Блейк (1757—1827) очень верно подметил:

Посредством глаза, а не глазом
Смотреть на мир умеет разум.

В 1896 г. американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказывались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У ученого появились симптомы морской болезни. В течение трех дней он ощущал тошноту. Однако на четвертые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать себя так же, как и до эксперимента. Мозг ученого освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, все опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.

Любопытно, что подобная приспосабливаемость характерна лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки надели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У нее стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается.

Однако и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии зрения — наблюдаемый предмет нам кажется не таким, каков он есть на самом деле (рис. 96).

Есть еще одна особенность зрения, о которой нельзя не сказать. Известно, что при изменении расстояния от линзы до предмета меняется и расстояние до его изображения. Каким же образом на сетчатке сохраняется четкое изображение, когда мы переводим свой взгляд с удаленного предмета на более близкий?

Оказывается, те мышцы, которые прикреплены к хрусталику, способны изменять кривизну его поверхностей и тем самым оптическую силу глаза. Когда мы смотрим на далекие предметы, эти мышцы находятся в расслабленном состоянии и кривизна хрусталика оказывается сравнительно небольшой. При переводе взгляда на близлежащие предметы глазные мышцы сжимают хрусталик, и его кривизна, а следовательно, и оптическая сила увеличиваются.

Способность глаза приспосабливаться к видению как на близком, так и на более далеком расстоянии называется аккомодацией (от лат. accomodatio — приспособление). Благодаря аккомодации человеку удается фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика — на сетчатке глаза.

Однако при очень близком расположении рассматриваемого предмета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием ясного (или наилучшего) зрения.

Какое преимущество дает зрение двумя глазами?

Во-первых, именно благодаря наличию двух глаз мы можем различать, какой из предметов находится ближе, какой дальше от нас. Дело в том, что на сетчатках правого и левого глаза получаются отличающиеся друг от друга изображения (соответствующие взгляду на предмет как бы справа и слева). Чем ближе предмет, тем заметнее это различие. Оно и создает впечатление разницы в расстояниях. Эта же способность зрения позволяет видеть предмет объемным, а не плоским.

Во-вторых, благодаря наличию двух глаз увеличивается поле зрения. Поле зрения человека изображено на рисунке 97, а. Для сравнения рядом с ним показаны поля зрения лошади (рис. 97, в) и зайца (рис. 97, б). Глядя на эти рисунки, легко понять, почему хищникам так трудно подкрасться к этим животным, не выдав себя.

Зрение позволяет людям видеть друг друга. Возможно ли самому видеть, но для других быть невидимым? Впервые на этот вопрос попытался ответить в своем романе «Человек-невидимка» английский писатель Герберт Уэллс (1866—1946). Человек окажется невидимым после того, как его вещество станет прозрачным и обладающим той же оптической плотностью, что и окружающий воздух. Тогда отражения и преломления света на границе человеческого тела с воздухом не будет, и он превратится в невидимку. Так, например, толченое стекло, имеющее на воздухе вид белого порошка, тут же исчезает из виду, когда его помещают в воду — среду, обладающую примерно той же оптической плотностью, что и стекло.

В 1911 г. немецкий ученый Шпальтегольц пропитал препарат мертвой ткани животного специально приготовленной жидкостью, после чего поместил его в сосуд с такой же жидкостью Препарат стал невидимым.

Однако человек-невидимка должен быть невидимым на воздухе, а не в специально приготовленном растворе. А этого достигнуть не удается.

Но допустим, что человеку все-таки удастся стать прозрачным. Люди перестанут его видеть. А сможет ли он сам их видеть? Нет, ведь все его части, в том числе и глаза, перестанут преломлять световые лучи, и, следовательно, никакого изображения на сетчатке глаза возникать не будет. Кроме того, для формирования в сознании человека видимого образа световые лучи должны поглощаться сетчаткой, передавая ей свою энергию. Эта энергия необходима для возникновения сигналов, поступающих по зрительному нерву в мозг человека. Если же у человека-невидимки глаза станут совершенно прозрачными, то этого происходить не будет. А раз так, то он вообще перестанет видеть. Человек-невидимка будет слепым.

Герберт Уэллс не учел этого обстоятельства и потому наделил своего героя нормальным зрением, позволяющим ему, оставаясь незамеченным, терроризировать целый город.

. 1. Как устроен глаз человека? Какие его части образуют оптическую систему? 2. Охарактеризуйте изображение, возникающее на сетчатке глаза. 3. Как передается изображение предмета в мозг? Почему мы видим предметы прямыми, а не перевернутыми? 4. Почему, переводя взгляде близкого предмета на удаленный, мы продолжаем видеть его четкий образ? 5. Чему равно расстояние наилучшего зрения? 6. Какое преимущество дает зрение двумя глазами? 7. Почему человек-невидимка должен быть слепым?

Глаз — орган зрения, весьма сложный орган чувств, воспринимающий действие света. Глаз человека раздражается лучами определенной части спектра. На него действуют электромагнитные волны длиной приблизительно от 400 до 800 нм, что при поступлении афферентных импульсов в зрительный анализатор головного мозга вызывает зрительные ощущения. Функции глаза весьма разнообразны. Посредством глаза определяется форма предметов, их величина, расстояние от глаза, направление, в котором они движутся, их неподвижность, степень освещенности, цветность, окрашенность.

Так как важнейшая часть глаза — сетчатая оболочка со зрительным нервом — развивается непосредственно из мозговой ткани, то глаз является частью мозга, выдвинутой на периферию.

Преломляющие среды

Глаз состоит из двух систем: 1) оптической системы светопреломляющих сред и 2) рецепторной системы сетчатки.

К светопреломляющим средам глаза относятся: роговица, водянистая влага передней камеры глаза, хрусталик и стекловидное тело. Каждая из этих сред имеет свой показатель преломления лучей. Показатель преломления роговицы — 1,37, водянистой влаги и стекловидного тела — 1,33, наружного слоя хрусталика — 1,38, ядра хрусталика — 1,40. Ясное видение существует только при условии прозрачности преломляющих сред глаза.

Чем короче фокусное расстояние, тем больше преломляющая сила оптической системы, которая выражается в диоптриях. Диоптрия — это преломляющая сила линзы с фокусным расстоянием 1 м. Преломляющая сила оптической системы глаза равна (в диоптриях): роговицы — 43, хрусталика при взгляде вдаль — 19, при максимальном приближении предмета к глазу — 33. Преломляющая сила всей оптической системы глаза равна для дали — 58, а при максимальном приближении предмета — 70.

Статическая и динамическая рефракция глаза и ее нарушения

Рефракцией называется оптическая установка глаза при взгляде вдаль.

Нормальный глаз. При взгляде вдаль, когда на глаза падает пучок параллельных лучей, они без всякого изменения кривизны хрусталика собираются в фокус, как раз на сетчатку, в центральную ямку. Такой глаз является нормальным, или эмметропическим. Но существуют следующие отклонения от нормы.

Близорукость. Наблюдается тогда, когда длина глаза превышает нормальную (больше 22,5-23,0 мм) или когда сила преломляющих сред глаза больше нормальной (кривизна хрусталика больше). Параллельный пучок лучей, падая на глаз, собирается в этих случаях в фокус впереди центральной ямки, и поэтому на центральную ямку падает пучок расходящихся лучей, и изображение предмета расплывчатое. Такой глаз называется близоруким, или миопическим. Для получения четкого изображения на сетчатке необходимо, чтобы фокус попал на сетчатку, что происходит тогда, когда на близорукий глаз падает пучок расходящихся лучей; поэтому близорукий приближает предметы к глазу или глаз к предмету и ясно видит только вблизи.

Для исправления (коррекции) близорукости пользуются двояковогнутыми стеклами, которые отодвигают фокус на сетчатку, что компенсирует увеличение преломляющей силы хрусталика. Близорукость часто бывает наследственной. Однако вследствие нарушения гигиенических правил она увеличивается в школьном возрасте от младших классов к старшим. Близорукость в тяжелых случаях сопровождается изменениями сетчатки, что ведет к падению зрения и даже к слепоте (при отслойке сетчатки). Поэтому необходимо своевременное назначение школьникам стекол, исправляющих зрение, и общее укрепление организма (физкультура, питание, общие гигиенические мероприятия) и соблюдение правил школьной гигиены.

Дальнозоркость. При длине глаза меньше нормальной или слабой преломляющей его силе пучок параллельных лучей после преломления в глазу собирается в фокус за центральной ямкой сетчатки. При этом на сетчатку падают сходящиеся лучи, и изображение предметов расплывчато. Такой глаз ни пинается дальнозорким, или гиперметропическим. Ближайшая точка ясного зрения отстоит у дальнозоркого глаза дальше, чем у нормального. Для исправления дальнозоркости пользуются двояко выпуклыми стеклами, которые увеличивают преломляющую силу глаза.

Врожденную и приобретенную дальнозоркость не следует смешивать со старческой дальнозоркостью, которая рассмотрена ниже.

Астигматизм — невозможность схождения всех лучей в одну точку, в один фокус. Наблюдается обычно при разной кривизне роговицы в различных ее меридианах. Если больше преломляет вертикальный меридиан, астигматизм называется прямым, если горизонтальный меридиан — обратным. Даже нормальные глаза в небольшой степени астигматичны, так как поверхность роговицы не строго сферическая. При рассматривании с расстояния наилучшего видения диска с нанесенными на него концентрическими кругами наблюдается незначительное сплющивание кругов. Астигматизм, нарушающий зрение, исправляется при помощи цилиндрических стекол, которые располагаются по соответствующим меридианам роговицы, в которых нарушена кривизна.

Аккомодация глаза и ее возрастные особенности

Аккомодацией называется способность глаза приспособляться к четкому видению предметов, находящихся на различных от него расстояниях. Эта способность обусловлена тем, что хрусталик благодаря своей эластичности может изменять кривизну, а следовательно, преломляющую силу. Поэтому изображение перемещающегося предмета всегда падает на сетчатку, которая остается неподвижной. При взгляде вдаль на предметы, находящиеся на далеком расстоянии от глаза, ресничная мышца расслаблена, а циннова связка, которая прикреплена преимущественно к передней и задней поверхностям капсулы хрусталика, в это время натянута. Натяжение цинновой связки вызывает сдавливание хрусталика спереди назад и его растягивание. Таким образом, при рассматривании далекого предмета кривизна хрусталика наименьшая и, следовательно, его преломляющая сила также наименьшая. При приближении предмета к глазу происходит сокращение ресничной мышцы; при этом меридиональные и радиальные волокна тянут вперед сосудистую оболочку, к которой они прикреплены. Поэтому циннова связка расслабляется, что прекращает сдавливание и растягивание хрусталика. При очень сильном расслаблении цинновой связки хрусталик в силу своей тяжести опускается до 0,3 мм. Вследствие своей эластичности хрусталик становится более выпуклым и, следовательно, его преломляющая сила увеличивается.

Сокращение ресничной мышцы вызывается рефлекторно благодаря притоку афферентных импульсов в средний мозг и возбуждению парасимпатических волокон, входящих в состав глазодвигательного нерва.

При покое аккомодации, т. е. при взгляде вдаль, радиус кривизны передней поверхности хрусталика равен 10 мм, а при наибольшем напряжении аккомодации, т. е. при четком видении максимально приближенного к глазу предмета, радиус кривизны передней поверхности хрусталика равен 5,3 мм. Соответствующие изменения кривизны задней поверхности хрусталика меньше (с 6,0) до 5,5 мм).

Читайте также:  Геннадий кибардин как сохранить зрение детей эффективные упражнения

Аккомодация глаза начинается тогда, когда предмет находится на расстоянии около 65 м от глаза. В это время начинает сокращаться ресничная мышца. Однако при таком расстоянии предмета от глаза сокращение ее очень невелико. Отчетливое сокращение ресничной мышцы начинается при расстоянии предмета от глаза в 5-10 м. При дальнейшем приближении предмета к глазу аккомодация все более и более усиливается, и, наконец, отчетливое видение предмета становится невозможным. Наименьшее расстояние предмета от глаза, на котором предмет еще отчетливо виден, называется ближайшей точкой ясного видения. У нормального глаза дальняя точка ясного видения лежит в бесконечности.

У птиц и млекопитающих такой же механизм аккомодации глаза.

С возрастом вследствие потери хрусталиком эластичности объем (амплитуда) аккомодации уменьшается. После 10 лет дальняя точка ясного видения почти не смещается, а ближайшая с годами отодвигается все дальше.

Необходимо учесть, что при занятиях на близком расстоянии глаз не утомляется, когда по крайней мере одна треть объема аккомодации остается в запасе.

Старческая дальнозоркость, или пресбиопия, обусловлена отодвиганием ближайшей точки ясного видения вследствие потери хрусталиком эластичности и соответствующего уменьшения его преломляющей силы при наибольшем усилении аккомодации. В 10-летнем возрасте ближайшая точка ясного видения находится на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 лет — 11 см, а к 60-70 годам приближается к 80-100 см.

Построение изображения на сетчатке

Так как глаз представляет собой чрезвычайно сложную оптическую систему, то для изучения его оптических свойств и построения изображения можно пользоваться упрощенной моделью глаза (редуцированный глаз). Зрительная ось редуцированного глаза, как и в нормальном глазу, проходит через центры преломляющих сред глаза в центральную ямку сетчатки.

В редуцированном глазу преломляющей средой является только стекловидное тело; в нем отсутствуют главные точки, которые лежат в месте пересечения главных преломляющих плоскостей на зрительной оси. Обе узловые точки, которые в истинном глазу находятся друг от друга на небольшом расстоянии 0,3 мм, заменяются одной точкой. Узловыми точками называются две сопряженные точки. Луч, проходящий через одну из точек, непременно проходит через другую и покидает ее параллельно первоначальному направлению. Таким образом, в редуцированном глазу есть только одна узловая точка, через которую лучи проходят, не преломляясь. Узловая точка редуцированного глаза помещается на расстоянии 7.5 мм от вершины роговицы в задней трети хрусталика. Расстояние от узловой точки до сетчатки равно 15 мм. При построении изображения предмета на сетчатке все его точки рассматриваются как светящиеся. От каждой точки проводится прямая линия через узловую точку на сетчатку.

Изображение на сетчатке получается действительное, обратное и уменьшенное. Для определения размеров изображения на сетчатке фиксируют глазом какое-нибудь длинное слово, напечатанное мелким шрифтом, и устанавливают, сколько букв видит глаз при полной его неподвижности. Затем посредством линейки определяют длину этого ряда букв в миллиметрах, после чего из подобия треугольников АВО и Ова следует, что изображение этих букв на сетчатке во столько раз меньше длины этих букв, во сколько Об меньше, чем БО. Так как БО равно расстоянию от книги до вершины роговицы плюс 7,5 мм, а Об 15 мм, то длина изображения на сетчатке легко высчитывается и таким образом определяется диаметр желтого пятна. Желтое пятно осуществляет функцию центрального зрения.

Несмотря на то что на сетчатке изображение получается обратным, мы видим предметы в прямом виде благодаря повседневной тренировке мозгового отдела зрительного анализатора. Для определения положения предмета в пространстве мы пользуемся показаниями не одной только сетчатки; например, верхнюю часть предмета мы воспринимаем в том случае, когда поднимаем глаза, получая при этом показания из проприоцепторов глазных мышц, или поднимаем также руку для ощупывания этой верхней части, или пользуемся одновременно показаниями других анализаторов.

Таким образом, определение положения предметов основано на условных рефлексах, показаниях нескольких анализаторов и постоянном упражнении и проверке их в повседневной практике.

Реакция зрачка и ее значение

В центре светонепроницаемой радужной оболочки есть круглое отверстие — зрачок.

Зрачок пропускает в глаз только центральный пучок световых лучей, чем устраняется явление сферической и хроматической аберрации. Благодаря этому изображение предмета на сетчатке оказывается в фокусе и является четким, не расплывчатым.

Вторая функция радужной оболочки заключается в регуляции количества лучей, проникающих в глаз, и тем самым в регуляции интенсивности раздражения сетчатки.

Регулирующая функция радужной оболочки осуществляется изменением диаметра просвета зрачка. Сокращение циркулярных, кольцевых, мышечных волокон радужной оболочки, образующих сфинктер, вызывает сужение зрачка. Сокращение радиальных мышечных волокон радужной оболочки, образующих дилятатор, вызывает расширение зрачка. Сфинктер зрачка иннервируется парасимпатическими волокнами глазодвигательного нерва, а дилятатор зрачка — симпатическим нервом.

Сужение или расширение зрачка в одном глазу сопровождается сужением или расширением зрачка в другом, что, вероятно, обусловлено соединением ядер глазодвигательных нервов в среднем мозге, таким образом, сужение и расширение зрачков обоих глаз происходит рефлекторно и содружественно.

Сужение зрачка происходит: 1) при усилении освещения сетчатки; 2) при направлении взора на близкий предмет; 3) во сне. Расширение зрачка происходит: 1) при уменьшении освещения сетчатки; 2) при раздражениях рецепторов и ядер любых афферентных нервов, при эмоциях (боли, гнева, страха и т. д.), психических возбуждениях; 3) при удушье, наркозе.

Сужение зрачка (миоз) при. ярком освещении имеет защитное значение, так как предохраняет сетчатку от повреждения при действии яркого света. Наоборот, расширение зрачка (мидриаз) при недостаточном освещении вызывает поступление в глаз большего количества лучей, чем достигается лучшая видимость предмета. Наиболее благоприятна для зрения человека ширина зрачка 3 мм. При более узком зрачке освещение сетчатки недостаточно, а при более широком — глаз ослепляется. У взрослых людей ширина зрачка колеблется в среднем от 2,5 до 4,5 мм. Площадь зрачка у взрослого человека изменяется в 17 раз, что обеспечивает регуляцию освещенности сетчатки и резкость изображения. С годами изменения площади зрачка уменьшаются. Сужение зрачка при рассматривании близких предметов связано с возбуждением ядер глазодвигательных нервов. Сужение зрачка во сне обусловлено повышением тонуса парасимпатической системы. Расширение зрачка при раздражениях рецепторов и ядер афферентных нервов и эмоциях зависит от возбуждения симпатической системы и больших полушарий. Расширение зрачка при удушье связано с раздражающим нервную систему действием углекислоты, накапливающейся в крови. Сужение и расширение зрачка может быть вызвано путем условного рефлекса. Расширение зрачка при психических воздействиях и условно-рефлекторные его изменения указывают на регуляцию величины зрачка большими полушариями.

Строение сетчатки глаза, палочки и колбочки

Световозбудимый аппарат глаза — слой сетчатки, содержащий у человека около 130 млн. палочек и около 7 млн. колбочек. Наружные членики палочек и колбочек состоят из двоякопреломляющего вещества, сильно преломляющего свет. В наружных члениках палочек есть особое вещество пурпурного цвета — зрительный пурпур, или родопсин. В колбочках содержится вещество фиолетового цвета — йодопсин, которое в отличие от родопсина выцветает в красном свете.

Наружные членики этих рецепторов состоят из 400-800 тончайших пластинок, или дисков, расположенных друг над другом. Между наружными и внутренними сегментами находятся мембраны, через которые проходят 16-18 тонких фибрилл. Нижний отросток внутреннего сегмента соединен с биполярным нейроном. Самый наружный слой сетчатки — пигментный — содержит пигмент фусцин, который поглощает свет и не допускает его рассеивания, что обеспечивает четкость зрительного восприятия.

Распределение палочек и колбочек в сетчатке неравномерно. У человека в середине сетчатки преобладают колбочки, а в боковых ее частях — палочки. В центральной ямке желтого пятна находятся почти исключительно колбочки, а в самых периферических частях сетчатки — исключительно палочки.

Колбочки, расположенные в центральной ямке, имеют утонченную и удлиненную форму. На месте центральной ямки сетчатка становится значительно тоньше.

В самом центре желтого пятна каждая колбочка соединена через биполярный нейрон с отдельным ганглиозным нейроном, что создает наибольшую остроту зрения. В других участках центральной ямки, прилегающих к ее периферии, каждый биполярный нейрон соединен с несколькими колбочками и многими палочками, а каждый ганглиозный нейрон — со многими биполярными. В отличие от колбочек большое количество палочек соединено с общим биполярным нейроном (до 200 палочек). Рецепторы, связанные с одним ганглиозным нейроном, образуют его рецептивное поле. Рецептивные поля разных ганглиозных нейронов соединены между собой горизонтальными (звездчатыми) и амакриновыми клетками, что приводит к связи одного ганглиозного нейрона с десятками тысяч рецепторов. Волокна зрительного нерва представляют собой отростки ганглиозных нейронов. Один ганглиозный нейрон связан с тысячами нейронов зрительной области, а один нейрон этой области конвергирует многочисленные афферентные волокна.

Световые лучи действуют на наружный слой сетчатки,, в котором расположены палочки и колбочки, предварительно они проходят через все слои сетчатки, а следовательно, через биполярные нейроны, расположенные кнутри от рецепторов, и через ганглиозные нейроны, которые находятся кнутри от биполярных. Между биполярными и ганглиозными нейронами имеются синапсы. От рецепторов сетчатки импульсы передаются в ганглиозные нейроны в два раза медленнее, чем из них в зрительную область, в которой происходит пространственная и временная суммация афферентных импульсов из глаз.

Дневное и сумеречное зрение

Палочки и колбочки представляют собой два самостоятельных аппарата зрения. Орган сумеречного зрения, дающий только бесцветные световые ощущения, — палочки. Орган дневного зрения, дающий цветовые ощущения, — колбочки. Установлено, что между палочками и колбочками существуют реципрокные отношения. Когда функционируют колбочки, палочки заторможены (Л. А. Орбели, 1934). Палочки дают ощущение света даже при слабом освещении. Колбочки менее возбудимы к свету и поэтому при попадании пучка слабого света в центральную ямку, где находятся колбочки, а палочек нет или их чрезвычайно мало, мы его видим очень плохо или не видим вовсе. Но тот же слабый свет хорошо виден при действии его на боковые поверхности сетчатки. Более того, установлено, что только палочки функционируют при действии слабого света менее 0,01 лк на белой поверхности (люкс — лк — единица освещенности, создаваемая одной международной свечой на поверхности 1 м 2 при перпендикулярном падении света с расстояния 1 м). При яркостях света, превышающих 30 лк на белой поверхности, функционируют почти исключительно колбочки. Однако нельзя полностью отрицать участия палочек при взгляде на источник света большой яркости. В сумерках при слабом освещении цвета не различаются. При этом синяя часть спектра кажется свет — лес красной, а наиболее светлой представляется зеленая часть спектра (явление Я. Пуркинье).

Днем красная часть спектра представляется более светлой, а самой яркой — желтая его часть. Длинные волны красного цвета не действуют на палочки, а возбуждают только колбочки. Палочки более лабильны, чем колбочки.

В пользу этой теории двойственности зрения свидетельствуют результаты изучения строения сетчатки дневных и ночных животных. В сетчатке дневных животных, у которых зрение приспособлено к большой яркости света, например у кур, голубей, есть только колбочки или почти только колбочки. В сетчатке ночных животных, у которых зрение приспособлено к слабому освещению, например у сов, летучих мышей, есть только палочки или почти только палочки.

В сетчатке ночных животных преобладает возбуждение, а дневных — торможение. У человека сетчатка смешанная, так как в ней есть и палочки и колбочки.

Возбудимость сетчатки

Возбудимость сетчатки к свету чрезвычайно велика. Она зависит не только от функционального состояния глаза, но и от функционального состояния нейронов зрительного анализатора и от других раздражителей, одновременно действующих на человека. Если упростить действительность и принять во внимание только раздражитель, действующий на глаз, то наименьшая энергия раздражителя, впервые вызывающая зрительное ощущение, характеризует абсолютную возбудимость глаза. Установлено, что глаз человека максимально возбудим к лучам зеленой части спектра. Пороговая интенсивность раздражителя, вызывающая зрительное ощущение, измеряется тысячными долями люкса, действующими на глаз с расстояния 1 км при абсолютной прозрачности атмосферы.

Возбудимость к цветным раздражителям больше в центре сетчатки, где преобладают колбочки, а возбудимость к световым раздражителям — на периферии сетчатки, где преобладают палочки.

Зрительное ощущение возникает при продолжительности раздражения глаза в Течение менее 100 мке при действии 5-15 квантов света.

Возбудимость сетчатки регулируется по эфферентным гамма-волокнам, исходящим из ретикулярной формации среднего мозга (Р. Гранит, 1953).

Наиболее высокая возбудимость глаза к волнам 550 нм соответствует максимуму солнечного излучения. Это доказывает, что филогенез глаза обусловлен излучением солнца. Следует учесть, что максимум поглощения света йодопсином около 575-580 нм. Наибольшая возбудимость зрительного анализатора у людей с 20 до 25 лет. Наибольшая лабильность, измеряемая по наибольшему временному порогу, в 18-30 лет.

Последовательные образы

Зрительное ощущение возникает не сразу с началом раздражения, а через некоторый скрытый период раздражения, который в среднем равен 0,1 с.

Зрительное ощущение не исчезает также одновременно с прекращением раздражения светом, а остается в течение некоторого времени. Ощущение, которое продолжается после прекращения действия на глаз светового раздражителя, называется последовательным образом. Последовательный образ продолжается в течение времени, необходимого для исчезновения из сетчатки раздражающих ее продуктов распада светореактивных веществ и их восстановления. При быстром вращении в темноте зажженной папиросы видны не отдельные вспышки света, а огненный круг. На явлении последовательных образов основано кино. Кинолента состоит из отдельных кадров, но промежутки между ними глазом не различаются, а наблюдается непрерывное движение. Существуют положительные последовательные образы, которые по своей светлоте и цветности соответствуют первоначальному раздражению, и отрицательные последовательные образы, которые представляют собой негативные изображения предмета. После удаления рассматриваемого предмета наблюдаются несколько очень быстро следующих друг за другом образов, которые отделены друг от друга долями секунды. Эти последовательные образы представляют собой постепенное затухание зрительного ощущения. У некоторых людей последовательные образы необычайно ярки.

Читайте также:  Аппаратное лечение зрения у детей при астигматизме

Слияние мельканий в ощущение ровного непрерывающегося света происходит при некоторой большой частоте мельканий света. При этом частые световые ощущения благодаря последовательным образам сливаются в одно световое ощущение.

Наименьшая скорость смены- отдельных вспышек света, при которой они вызывают слитное ощущение, называется критической частотой слияния мельканий. Эта частота зависит от интенсивности света и от адаптации.

У человека и кошки критическая частота слияния мельканий достигается при частоте вспышек света около 50 в 1 с.

При просмотре кинофильмов пропускается 24 кадра в 1 с, что превышает критическую частоту слияния мельканий при данном освещении экрана.

У некоторых людей, чаще у детей, после исчезновения рассматриваемого предмета он очень ярко виден со всеми деталями и только постепенно исчезает из поля зрения. Этот случай необыкновенно четкой и длительной зрительной памяти называется эйдетизмом. У детей эйдетизм связан с изменением функции щитовидной или паращитовидных желез.

Возбудимость зрительного анализатора зависит от количества светореактивных веществ в сетчатке. При действии света на глаз вследствие распада светореактивных веществ возбудимость глаза понижается. Это явление обозначается как приспособление глаза к свету, или световая адаптация. Например, при выходе из темного помещения на яркий солнечный свет мы вначале ничего не различаем, но вскоре адаптируемся к свету и прекрасно все видим. Падение возбудимости глаза на свету тем больше, чем ярче свет. Особенно быстро понижается возбудимость в первые 3-5 мин. В первую минуту действия света она падает до 90-98%.

Наоборот, в связи с восстановлением светореактивных веществ возбудимость глаза к свету в темноте возрастает, что обозначается как адаптация к темноте, или темповая адаптация. Например, после пребывания на солнце мы в первый момент ничего не видим в плохо освещенном помещении, но постепенно начинаем отчетливо различать находящиеся в нем предметы.

Возбудимость колбочек может возрасти в темноте в 20-60 раз, а палочек — в 200-400 000 раз. В первые 10 мин пребывания в темноте возбудимость глаза к свету увеличивается очень быстро, а затем постепенно и непрерывно в течение всего времени пребывания в темноте.

Темновая адаптация колбочек во много тысяч раз меньше темновой адаптации палочек, но совершается быстрее. Адаптация колбочек в темноте заканчивается через 4-6 мин, а палочек — через 45 мин и больше. Зрение осуществляется на фоне спонтанной импульсной активности ганглиозных нейронов сетчатки, увеличивающейся в темноте.

Темновая адаптация снижается под влиянием пищевого голодания, недостатка витамина А, недостатка кислорода в воздухе, при утомлении и т. п. Она увеличивается до 1,5 ч при одновременных звуковых раздражениях, холодных обтираниях, усиленной кратковременной вентиляции легких и т. п.

Кроме световой адаптации существует еще цветовая адаптация, или падение возбудимости глаза при действии лучей, вызывающих цветовые ощущения. Чем интенсивнее цвет, тем быстрее падает возбудимость глаза: уже через несколько секунд она снижается на 50% и более. Наиболее быстро и особенно резко возбудимость падает при действии сине-фиолетового раздражителя, наиболее медленно и меньше всего — при действии зеленого раздражителя. Красный раздражитель занимает среднее положение. Таким образом, наименее снижает возбудимость при длительном действии зеленый раздражитель.

Адаптация происходит не только в рецепторах, но и в зрительном анализаторе больших полушарий. Адаптация зрения состоит в приспособлении к меняющемуся освещению, аккомодации, конвергенции, изменениях зрачкового рефлекса, ретино-моторных явлениях и перестройке колбочковых рецептивных полей.

При проектировании в сетчатку глаза человека неподвижного изображения оно скоро перестает различаться. Вследствие адаптации человек не мог бы видеть неподвижных предметов, но при стремлении фиксировать взор на неподвижном предмете совершаются колебательные движения глаз. Адаптации препятствуют три вида движений глаз, перемещающих изображение с одной группы рецепторов на другую. 1) Саккадические произвольные и непроизвольные скачки глазного яблока начинаются через 0,2-0,3 с после появления зрительного раздражителя. Они одинаковы у обоих глаз и производятся одновременно. Произвольные скачки регулируются лобными долями, а непроизвольные — нижнетеменной и затылочной областями. Каждое движение продолжается 10-20 мс, интервалы между непроизвольными — от 100 мс до нескольких секунд. 2) Тремор — мелкие колебания глаз от 30 до 200 в 1 с. 3) Дрейф — медленные движения глаз, каждое длится 300 мс. Все виды движения — результат совместной рефлекторной деятельности рецепторов сетчатки и гамма-мотонейронов глазных мышц. За время каждого движения прекращается адаптация соответствующего рецептивного поля, возобновляется эффект включения зрительного раздражения, и поэтому человек может видеть неподвижный предмет. У лягушек таких движений глаз нет, поэтому они могут видеть только те предметы, которые перемещаются в поле зрения.

Современные представления о передаче зрительной информации

Современные исследования показали, что в процессе эволюции увеличивается число элементов, передающих информацию из рецепторов, и возрастает количество параллельных афферентных цепей нейронов. Это видно на примере слухового анализатора и в еще большей степени проявляется в зрительном анализаторе.

Зрительный нерв содержит 800 тыс. — 1 млн. нервных волокон. Каждое волокно делится в промежуточном мозге на 5-6 волоконец, каждое из которых заканчивается синапсами на отдельных клетках наружного коленчатого тела. Каждое одиночное волокно, направляющееся из коленчатого тела в большие полушария, может контактировать примерно с 5 тысячами нейронов зрительного анализатора, а в каждый из нейронов зрительного анализатора поступают импульсы от 4 тыс. других нейронов. Следовательно, зрительные пути еще больше расширяются по направлению к большим полушариям, чем слуховые.

Рецепторы сетчатки передают сигналы только один раз, в момент появления нового предмета, а затем только добавляются сигналы о его изменениях или исчезновении. Неизменяемое изображение предмета вследствие адаптации перестает возбуждать рецепторы сетчатки, поэтому статические изображения не передаются. Существуют рецепторы сетчатки, которые передают только изображения предметов, и другие рецепторы, которые реагируют только на появление или исчезновение светового сигнала или на его движение.

При бодрствовании из рецепторов сетчатки по зрительным нервам всегда проводятся афферентные импульсы, которые при различных условиях освещения глаз возбуждают или тормозят. В составе зрительных нервов имеются три типа нервных волокон. Волокно первого типа дает разряд потенциалов при включении света и не реагирует на его выключение. В волокне второго типа освещение глаз вызывает торможение фона афферентной импульсации и дает разряд потенциалов при прекращении освещения. Если повторить освещение во время выключения света, то в этом волокне тормозится разряд импульсов, вызванный выключением предыдущего освещения. Большинство волокон зрительных нервов принадлежит к третьему типу, который реагирует учащением афферентной импульсации как при освещении глаз, так и при выключении освещения (Р. Гранит, 1956).

Электрофизиологические исследования и их математический анализ позволили установить, что на пути от сетчатки в зрительный анализатор происходит укрупнение передачи зрительной информации.

Элементы зрительного восприятия — линии. В первую очередь зрительная система выделяет контуры предметов. Механизмы выделения контура и простейших конфигураций являются врожденными. Благодаря индукции контуры предметов четко подчеркиваются.

В сетчатке происходит пространственная и временная суммация зрительных раздражений в рецептивных полях, число которых при хорошем дневном освещении достигает 800 тыс., что соответствует числу волокон в зрительном нерве человека.

Ретикулярная формация регулирует обмен веществ рецепторов сетчатки. Ее раздражение электрическим током посредством игольчатых электродов изменяет частоту афферентных импульсов, возникающих в рецепторах сетчатки при вспышке света. Действие ретикулярной формации осуществляется по тонким эфферентным гамма-волокнам, поступающим из нее в сетчатку, так же как и в другие рецепторы, например в проприоцепторы. Как правило, через некоторое время после начала раздражения сетчатки афферентная импульсация резко возрастает, и этот эффект сохраняется довольно долго после прекращения раздражения. Следовательно, возбудимость сетчатки повышают адренергические, симпатические нейроны ретикулярной формации, которые отличаются большим латентным периодом и последействием.

В сетчатке имеются рецептивные поля двух типов: 1) кодирующие простейшие конфигурации зрительного образа по отдельным элементам и 2) кодирующие эти конфигурации в целом, т. е. укрупняющие зрительные образы. Следовательно, статистическое кодирование начинается уже в сетчатке. На выходе из сетчатки в ганглиозных нейронах регистрируются ВПСП и ТПСП, возникают серии одиночных импульсов, которые по волокнам зрительного нерва поступают в наружные коленчатые тела, где происходит оптимальное кодирование зрительного образа крупными блоками, передаются отдельные элементы конфигурации изображения, направление и скорость его движения.

В течение жизни условно-рефлекторно запечатлевается система тех зрительных образов, которые подкрепляются, т. е. имеют биологическое значение (В. Д. Глезер и И. И. Цуккерман, 1961). Следовательно, рецепторы сетчатки передают отдельные зрительные сигналы. Пока неизвестно, как они декодируются.

Из центральной ямки сетчатки человека выходит около 30 тыс. нервных волокон, что позволяет за 0,1 с передать примерно 900 тыс. бит, а в зрительной области больших полушарий за 0,1 с обрабатывается не больше 4 бит. Следовательно, зрительная информация ограничена не сетчаткой и передачей в нервных волокнах, а декодированием в нервном центре.

Восприятие пространства

Глаза приводятся в движение шестью мышцами — четырьмя прямыми и двумя косыми. К глазному яблоку прикрепляются наружная, внутренняя, верхняя и нижняя прямые мышцы, верхняя косая (блоковая) и нижняя косая мышцы. Глазодвигательный нерв (3-я пара) иннервирует внутреннюю, верхнюю И нижнюю прямые и нижнюю косую мышцы. Блоковый нерв (4-я пара) иннервирует верхнюю косую мышцу. Отводящий нерв (6-я пара) иннервирует наружную прямую мышцу.

Центр вращения глаза находится на 1,3 мм сзади от центра глаза. Из положения, когда глаз смотрит прямо вперед, он может повернуться кнаружи на 42°, кнутри — на 45°, вверх — на 54° и вниз на 57°. Движения глаз совершаются содружественно. Зрительные оси глаз всегда скрещиваются на предмете. Это происходит в результате сокращения обеих внутренних прямых мышц и называется конвергенцией. Так как основной нерв, двигающий глаз, — глазодвигательный, который одновременно напрягает аккомодацию и суживает зрачок, то при рассматривании близких предметов все три процесса — конвергенция, аккомодация и сужение зрачка — совершаются почти одновременно. Конвергенция начинается через 0,16-0,2 с после появления объекта, а сужение зрачка начинается через 0,25-0,5 с после начала конвергенции.

Расхождение зрительных осей называется дивергенцией. Восприятие пространства не является врожденной способностью. Оно обусловлено прежде всего афферентными импульсами, поступающими из глаз в большие полушария (из проприоцепторов ресничной, или аккомодационной, мышцы и глазодвигательных мышц, участвующих в конвергенции). Именно благодаря этим импульсам мы в течение жизни обучаемся определять расстояние предметов от глаз, проверяя правильность этого определения при помощи других анализаторов. Таким образом, восприятие расстояния и глубины основано на образовании условных рефлексов. В определении пространства имеет значение величина изображения предмета на сетчатке в том случае, когда мы знаем величину предмета. Существенная роль в восприятии расстояния и глубины принадлежит также теням, которые видимы на предметах.

Восприятие величины предметов обусловлено величиной их изображения на сетчатке и расстоянием от глаза.

Восприятие движения предмета в случае неподвижности глаза зависит от передвижения его изображения на сетчатке. Восприятие движущихся предметов при одновременном движении глаз и головы и определение скорости движения предметов обусловлены не только импульсами, поступающими в зрительный анализатор при возбуждении различных участков сетчатки, но и афферентными импульсами, притекающими в кинестезический анализатор больших полушарий из рецепторов кожи и глазных и шейных мышц. В больших полушариях образуются временные связи зрительного и кинестезического анализаторов.

После удаления катаракты обоих глаз в 12-18 лет обучение видению требовало сочетаний раздражений сетчатки с кинестезическими ощущениями в течение нескольких месяцев. Многолетнее повышение или понижение зрения вызывает значительные изменения строения нейронов зрительной области: роста дендритов, числа шипиков, структуры синапсов.

Соответствие ощущения в зрительном и кинестезическом анализаторах реальной действительности проверяется жизненным опытом.

Глаз — важный и сложный орган зрения

В работе рассматривается строение глаза. Дефекты зрения, причины возникновения, способы лоечения дефектов зрения

Вложение Размер
glaz_-_vazhnyy_i_slozhnyy_organ_zreniya.doc 113 КБ

Предварительный просмотр:

Муниципальное общеобразовательное учреждение Лицей №8

Исследовательская работа по теме:

«Глаз – важный и сложный орган зрения»

ученица 10 «А» класса

Погожева Маргарита Анатольевна

а)Строение зрительного анализатора с точки зрения биологии.

б) Зрение и физика

в) Дефекты зрения

Мир, полный красок, звуков и запахов, дарят нам наши органы чувств.

«Стянутая рыбачья сеть, закинутая на дно глазного бокала и ловящая солнечные лучи!» — так представил себе в древние времена мудрый грек Герофил сетчатку глаза. Это поэтическое сравнение оказалось удивительно точным. Сейчас с полной достоверностью можно утверждать, что сетчатка – именно сеть и именно ловящая…ловящая отдельные кванты света. Свет – не бестелесный посланник Солнца, а само Солнце, часть его, долетавшая до нас в форме квантов, скрупулезно изученных физиками. Темной ночью от далекой неяркой звезды не так уж много квантов, этих бесконечно малых, единых и неделимых порций света, ловит наш глаз. По своей чувствительности глаз приближается к идеальному физическому прибору, потому что нельзя создать прибор, который зарегистрировал бы меньше одного кванта. Этим уникальным свойством глаза пользовались ученые – пионеры атомной и ядерной физики. Долго находясь в темной комнате, они ухитрялись воочию наблюдать отдельные радиоактивные частицы. И вместе с тем глаз выносит астрономическую лавину квантов, исчисляемую десятками миллиардов в секунду. Если вы взглянете на Солнце, ваши глаза получат миллиардную дозу квантов. Но не делайте этого! Берегите глаза, как полагается беречь «зеницу ока».

Свет играет в нашей жизни очень важную роль. С одной стороны, благодаря восприятию его глазом в процессе зрения мы видим и познаем окружающий мир. С другой стороны, именно свет, приходящий на Землю от Солнца, создает условия, необходимые для существования жизни на нашей планете.

Без света нет зрения. Мы видим только при наличии света, если его не будет, мы просто ослепнем.

Зрение – это удивительно сложная и еще далеко не познанная, совместная работа глаза и мозга. Уже столетия наука изучает глаз, и каждый ученый, открывая его новые свойства и новые тайны, испытывает чувство волнения и преклонения перед его совершенством.

По данным некоторых ученых 70% всех сведений человек получает из окружающего мира с помощью зрения, другие полагают, что цифра должна быть увеличена до 90%. Недаром А. М. Горький, которому пришлось несколько дней во время болезни пробыть с повязкой на глазах, писал о своем состоянии так: “Ничто не может быть страшнее, как потерять зрение,— это невыразимая обида, она отнимает у человека девять десятых мира”. Уникальность зрения по сравнению с другими анализаторами состоит в том, что оно позволяет не только опознавать предмет, но и определять его место в пространстве, следить за перемещениями. Основная функция зрения состоит в различении яркости, цвета, формы и размеров наблюдаемых объектов.

Читайте также:  Зрение при котором не допускают до прыжка

Глаз человека – удивительный дар природы. Он способен различать тончайшие оттенки и мельчайшие размеры, хорошо видеть днем и неплохо ночью. А по сравнению с глазами животных обладает и большими возможностями. Например, голубь видит очень далеко, но только днем. Совы и летучие мыши хорошо видят ночью, но днем они слепы. Многие животные не различают отдельного цвета.

Как же устроен такой важный и сложный прибор как глаз? В чем его преимущества по сравнению с другими анализаторами? Какие свойства присущи глазу? Какие дефекты зрения встречаются у людей, и каковы их меры профилактики? Как устроен зрительный анализатор с точки зрения биологии и физики? В теоретической части моей работы я попытаюсь ответить на эти вопросы.

Итак, целями моей работы стали:

  1. Рассмотреть зрительный анализатор со стороны биологии и физики
  2. Выяснить, какие дефекты зрения встречаются у людей и каковы способы их профилактики.
  3. Выяснить основные причины ухудшения зрения.
  4. Выявить процент учащихся в моем классе, имеющих те или иные заболевания глаз.
  5. По окончанию работы сделать вывод.

Для того чтобы выполнить теоретическую часть моей работы я ознакомилась с большим количеством литературы, воспользовалась ресурсом Интернет.

Строение зрительного анализатора с точки зрения биологии.

Глаз человека имеет приблизительно шарообразную форму; диаметр его (в среднем) 2,5 см (рис. 1); глаз окружен снаружи тремя оболочками.

Внешняя твердая и прочная оболочка, называемая склерой или белковой оболочкой, защищает внутренность глаза от механических повреждений. Склера на передней части глаза прозрачна и называется роговой оболочкой или роговицей ; на всей остальной части глаза она непрозрачна, имеет белый цвет и называется белком.

С внутренней стороны к склере прилегает сосудистая оболочка, состоящая из сложного сплетения кровеносных сосудов, питающих глаз. В сосудистой оболочке находится ресничная мышца, которая регулирует кривизну хрусталика. Эта вторая оболочка в передней части глаза переходит в радужную оболочку, окрашенную у разных людей в различный цвет. Радужная оболочка имеет в середине отверстие, называющееся зрачком. Радужная оболочка способна деформироваться и таким образом менять диаметр зрачка. Изменение это происходит рефлекторно (без участия сознания) в зависимости от количества света, попадающего в глаз; при ярком освещении диаметр зрачка равен 2 мм, при слабом освещении доходит до 8 мм.

На внутренней поверхности сосудистой оболочки расположена сетчатая оболочка, или сетчатка . Она покрывает все дно глаза, кроме его передней части. Во внутренней оболочке глаза – сетчатке находятся светочувствительные рецепторы – палочки и колбочки. В них энергия света превращается в процесс возбуждения. Колбочки сосредоточены в центре сетчатки, напротив зрачка – в желтом теле и обеспечивают дневное зрение, воспринимая цвета, форму и детали предметов. На периферии сетчатки имеются только палочки, которые раздражаются слабым сумеречным светом, но они не чувствительны к цвету.

Сзади через оболочку входит зрительный нерв, соединяющий глаз с мозгом. Сетчатка состоит в основном из разветвлений волокон зрительного нерва и их окончаний и образует светочувствительную поверхность глаза.

Рисунок 1. Схематический разрез глаза человека. 1 — белковая оболочка, 2 —роговая оболочка, 3 — сосудистая оболочка, 4 — зрачок, 5 — хрусталик, 6 — сетчатая оболочка, 7 — нерв, 8 — стекловидное тело, 9 — передняя камера

Промежуток между роговой и радужной оболочками называется передней камерой; он заполнен камерной влагой . Внутри глаза, непосредственно за зрачком, расположен хрусталик, представляющий собой прозрачное упругое тело, имеющее форму двояковыпуклой линзы. Кривизна поверхностей хрусталика может меняться в результате действия облегающей его со всех сторон мышцы. Посредством изменения кривизны поверхностей хрусталика достигается приведение изображения предметов, лежащих на различных расстояниях, точно на поверхность чувствительного слоя сетчатки; этот процесс называется аккомодацией. Вся полость глаза за хрусталиком заполнена прозрачной студенистой жидкостью, образующей стекловидное тело.

По своему устройству глаз как оптическая система сходен с фотоаппаратом. Роль объектива выполняет хрусталик совместно с преломляющей средой передней камеры и стекловидного тела. Изображение получается на светочувствительной поверхности сетчатки.

Биологу, понимающему, как сложно и гармонично устроен глаз, сравнение с фотоаппаратом кажется обидным, а уподобление сетчатки цветной пленке, даже самой высокочувствительной и хорошей, просто кощунственным.

Зрение и физика.

«Биология становится слишком серьезной наукой, чтобы ее можно было доверять биологам», — пошутил кто-то из физиков. Конечно, это несправедливая шутка, но в отношении физиологии зрения в какой-то мере верна. Именно физики сделали первый шаг в решении проблем оптики глаза, цветового зрения, абсолютной световой чувствительности. И это неслучайно, ибо физика, в первую очередь оптика, и физиология зрения тесно связаны. Со времен Евклида, Галена и Птолемея до 1583 г. существовало заблуждение, будто хрусталик — чувствующий свет орган. Именно Кеплер, который, воздав должное всеми забытому биологу Ф.Платеру, осознал, что светочувствительный орган зрения не хрусталик, а сетчатка. Кеплера по праву следует считать отцом физиологической оптики.

Абсолютная чувствительность глаза

Жизненный опыт убеждает, сколь чувствителен глаз человека к свету. Астрономы давно научились краешком глаза (как мы теперь понимаем, периферическим палочковым зрением) различать на ночном небе даже самые слабые звезды. Однако необходимы были конкретные знания о минимальной энергии света или числа квантов, способных создать субъективное ощущение световой вспышки. От этого прямо зависит понимание процессов преобразования светового сигнала в зрительный. Еще в конце XIX в. вполне грамотно определил порог чувствительности глаза американский физик и астроном С. Р. Лэнгли (1834-1906). Как мы теперь знаем, в эксперименте по определению порога чувствительности зрительной системы необходимы следующие условия: предварительная темновая адаптация глаза наблюдателя; фиксация пятна света на периферии сетчатки, где находятся более чувствительные к свету палочки (сумеречное зрение); достаточно маленькое световое пятно, падающее на сетчатку глаза; световая вспышка; определенная длина волны света, соответствующая максимуму спектральной чувствительности палочкового зрения. При изучении солнечной активности ему необходимо было измерять интенсивность радиации во всем диапазоне длин волн. Так он создал тепловой детектор световой энергии — болометр, чувствительность которого не зависела от длины волны света, что и было принципиально важным для Лэнгли. Таким образом, директор обсерватории, профессор физики и астрономии Питсбургского университета Лэнгли вошел в историю науки как изобретатель болометра, а в историю физиологии зрения как физик, экспериментально определивший порог абсолютной световой чувствительности глаза. Согласно Лэнгли, значение по энергии — 3·10 –9 эрг, что соответствует потоку, содержащему 800 фотонов. Это всего лишь на порядок величины выше современных значений. И это можно понять, поскольку знания физиологии зрения того времени не позволило учесть в эксперименте целый ряд факторов. Пороговые значения, полученные независимо Ю.Б.Харитоном и С.И.Вавиловым в конце 20 — начале 30-х годов, были гораздо ближе к современным. Как и Лэнгли, для решения собственных физических задач им требовалось регистрировать исключительно слабые световые вспышки. Болометры того времени их не удовлетворяли, а других точных приборов еще не было. Самым чувствительным прибором оказывался собственный глаз экспериментатора.

Ранние работы известных физиков – Харитона и Ли (20-е годы), Вавилова и сотрудников (30-е годы) и Хехта и коллег (40-е годы), несут следующий главный вывод, состоящий в том, что зрительная клетка сетчатки — палочка — возбуждается при поглощении даже одного фотона. В ней фотон поглощается одной из 109 молекул зрительного пигмента – родопсина или зрительного пурпура. Палочка должна каким-то образом “узнать” возбужденную молекулу и ответить на это одноквантовое событие возникновением электрического (рецепторного) сигнала. В последние годы удалось впрямую зарегистрировать этот очень слабый электрический сигнал. В результате стало ясно: ответ зрительной клетки (и палочки, и колбочки) на единичный фотон есть событие дискретное, не зависит от интенсивности света, длительности вспышки и длины волны (цвета). У колбочек, однако, его величина оказалась слишком мала для того, чтобы возник такой рецепторный сигнал, который передавался бы следующим нейронам сетчатки. Этим объясняется относительно низкая (примерно на два порядка величины) чувствительность колбочек по сравнению с палочками. Палочка способна уверенно детектировать один фотон, т.е. представляет собой эффективный счетчик квантов света. Сейчас достаточно ясен молекулярный механизм, обеспечивающий высокую чувствительность палочки. Одно из удивительных и важных свойств палочки как счетчика одиночных фотонов — постоянство формы и величины электрического отклика, которое обеспечивается строго определенной геометрией клетки. Итак, абсолютная световая чувствительность зрительной системы (глаза и мозга) определяется наименьшим количеством световой энергии, которое вызывает субъективное ощущение света. В настоящее время порог светового восприятия экспериментально определен в (4-7)·10 –10 эрг/с. Это — минимальный поток световой энергии от точечного источника, который падает на роговицу глаза и воспринимается мозгом как вспышка света. Природа феномена предельной световой чувствительности зрительной клетки находит свое объяснение. Заслуга С. Лэнгли, Ю.Б.Харитона, С.И.Вавилова, С. Хехта и многих других исследователей состоит в установлении самого этого феномена: одного поглощенного светового кванта достаточно для физиологического возбуждения рецептора сумеречного зрения — палочки сетчатки глаза.

Дефекты зрения и способы их профилактики

В дальнозорком глазе фокус при спокойном состоянии глаза находится за сетчаткой . Дальнозоркий глаз преломляет слабее нормального. Для того чтобы видеть даже весьма удаленные предметы, дальнозоркий глаз должен делать усилие; для видения близко лежащих предметов аккомодационная способность глаза уже недостаточна. Следовательно, близкие предметы не могут быть видимы без напряжения глаза.

Поэтому для исправления дальнозоркости употребляются очки с собирающими линзами, приводящие фокус глаза в спокойном состоянии на сетчатку.

В том случае, если расстояние между сетчатой оболочкой и хрусталиком ненормально велико или хрусталик настолько закруглён и толст, что его фокусное расстояние ненормально мало, изображение удалённого предмета попадает перед сетчатой.

Этот дефект глаза очень распространён и называется близорукостью или миопией. Близорукость – это такой дефект глаза, который чрезвычайно распространён среди школьников и студентов. Согласно данным специалистов каждые 3 новорождённых из 100 обладают этим дефектом; в начальной школе число близоруких составляет примерно 10 из 100; в средней школе число близоруких достигает 24%, а в колледже – 31%. Среди диких племён, живущих и работающих большей частью на открытом воздухе, близорукость почти неизвестна. Точно также среди фермеров и лиц, работающих на открытом воздухе, очень малое количество страдает от близорукости, если только они не приобрели её в школе или при работе с близкими объектами.

Причиной близорукости в большинстве случаев является, по-видимому, то, что в детстве глаз легко деформируется. При работе с близкими предметами глазное яблоко “привыкает” удлиняться на столько, что хрусталик уже теряет способность сплющиваться для фокусирования изображения удалённого предмета на сетчатой оболочке без избыточного напряжения.

Для исправления близорукости, глаза должны быть снабжены очками с рассеивающими линзами.

Близорукость глаза (а) исправляется с помощью рассеивающей линзы (б);

дальнозоркость (в) — с помощью собирающей линзы (г)

Обычно поверхность роговой оболочки – несколько выступающей передней части глазного яблока – и поверхность хрусталика являются частями почти идеальной сфер. Однако нередко кривизна одной или обоих этих поверхностей оказывается большей в одной плоскости, чем в какой – либо другой. Этот дефект, в результате которого получается нечёткое зрение, называется астигматизмом.

Таблица для испытания на астигматизм

Астигматизм можно обнаружить при помощи специальной таблицы.

Нормальный глаз видит группы линий, изображенных на рисунке с одинаковой чёткостью на всех расстояниях от глаза. В случае если глаз имеет астигматизм (каждый глаз проверяется отдельно), вертикальные или горизонтальные линии или некоторые линии между ними кажутся чёткими и чёрными, а линии, расположенные под прямым углом к ним, кажутся менее тёмными.

Астигматизм может причинить головные боли и создавать расплывчатость, в особенности, если читать длительное время подряд. Астигматизм исправляется цилиндрической линзой.

Дальтонизм – неспособность различать цвета, если колбочки какого – либо вида оказываются с дефектом. Это расстройство зрения названо по фамилии английского химика и физика Джона Дальтона(1766-1844), впервые исследовавшего это явление. Дальтонизмом страдают 8% мужчин и 0.5% женщин.

Одни дальтоники не воспринимают красный цвет, другие – зеленый, третьи – фиолетовый. Встречаются и такие люди, для которых мир «окрашен» только в оттенки серого.

Косоглазие – отклонение одного глаза или попеременно одного из глаз от совместной точки фиксации с нарушением бинокулярного зрения. В результате действия ряда причин нарушается бинокулярное зрение и происходит отклонение одного глаза. Выделяют две основные клинические формы косоглазия: содружественное и паралитическое. Содружественное косоглазие развивается чаще в детском возрасте. Отклоняться может постепенно один глаз или попеременно правый и левый. Различают косоглазие внутреннее, или сходящееся, наружное, или расходящееся, косоглазие кверху и книзу. Подвижность глазных яблок обычно не страдает. Паралитическое косоглазие развивается вследствие пореза или паралича наружных мышц глаза. Подвижность косящего глаза ограничена, острота зрения длительное время не снижается. При паралитическом косоглазии возникают жалобы на двоение видимых предметов и иногда на головокружение.

Данные теоретической части моей работы доказывают, что глаз –

действительно очень важный и сложный орган зрения. Играющий огромную роль в нашей жизни.

В практической части моего исследования я решила:

1)Выявить процент учащихся среди 4,7,8 классов, имеющих какие-либо дефекты зрения.

2)Опросить школьников о возможных причинах ухудшения зрения.

2)По результатам полученных данных вывить и сформулировать основные причины развития болезней, а также предложить упражнения для гигиены зрения.

Меня заинтересовало, а насколько хуже становится зрение у учеников разных классов.

Источники:
  • http://www.polnaja-jenciklopedija.ru/biologiya/glaz-i-zrenie.html
  • http://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2013/01/27/glaz-vazhnyy-i-slozhnyy-organ-zreniya